
Noname manuscript No.
(will be inserted by the editor)

The Other Guys: Automated Analysis of Marginalized
Malware

Marcus Felipe Botacin · Paulo Ĺıcio de Geus · André Ricardo Abed

Grégio

Received: date / Accepted: date

Abstract In order to thwart dynamic analysis and by-

pass protection mechanisms, malware have been using

several file formats and evasive techniques. While pub-

licly available dynamic malware analysis systems are

one of the main sources of information for researchers,

security analysts and incident response professionals,

they are unable to cope with all types of threats. There-

fore, it is difficult to gather information from pub-

lic systems about CPL, .NET/Mono, 64-bits, reboot-

dependent, or malware targeting systems newer than

Windows XP, which result in a lack of understanding

about how current malware behave during infections

on modern operating systems. In this paper, we discuss

the challenges and issues faced during the development

of this type of analysis system, mainly due to security

features available in NT 6.x kernel versions of Windows
OS. We also introduce a dynamic analysis system that

addresses the aforementioned types of malware as well

as present results obtained from their analyses.

Keywords Malware analysis systems · Evasive

malware · OS security · 64-bit systems · CPL malware ·
.Net malware

1 Introduction

Desktop malicious programs continue to threaten users

on a daily basis. Despite all security mechanisms and

Marcus Botacin · Paulo Ĺıcio de Geus
University of Campinas, Campinas-SP, Brazil
E-mail: marcus@lasca.ic.unicamp.br
E-mail: paulo@lasca.ic.unicamp.br

André Ricardo Abed Grégio
Federal University of Paraná, Curitiba-PR, Brazil
E-mail: gregio@inf.ufpr.br

defensive tools, users are still being infected from mali-

cious attachments from phishing e-mail messages, cam-

paigns of malware variants are continuously arising, and

operating systems protection, as well as third-party se-

curity mechanisms may be subverted by simple, older

techniques.

An effective way to understand and work on miti-

gation of malware infections is to monitor the actions

exhibited by suspicious samples in a dynamic anal-

ysis system. There are several systems proposed in

the literature and available as online services to cope

with this task. The latter are a useful resource for re-

searchers, incident response professionals and security

analysts, which take advantage of the information pre-

sented in the reports to assess specific threats. However,

most of the publicly available dynamic analysis systems

are only able to run PE32 executable files on Win-

dows XP virtual/emulated machines1, whereas modern

MS-Windows can run PE+ files (64-bits) and .NET

framework-dependent samples natively. Another con-

cern of these systems is the ability to analyze samples

that require rebooting the OS to complete the infec-

tion and, therefore, exhibit important actions of their

malicious behavior.

The analysis of this type of malware relies on a sys-

tem that has to overcome some design and implementa-

tion issues related to the security mechanisms present

on newer versions of MS-Windows systems, which dif-

ficult kernel-based monitoring of subsystems (Registry,

file system, processes) in a way more privileged than the

malware process. In this paper, we propose a dynamic

analysis system to monitor “marginalized” malware,

i.e., those samples that have not been addressed by pub-

licly available systems. Our proposed system is able to

1 As detailed on Section 4.4

2 Marcus Felipe Botacin et al.

analyze PE32 (Portable Executable 32-bits), PE+ (PE

64-bit version), CPL (Control Panel) and .NET/Mono

files in Windows 7 and 8 environments, as well as to

monitor reboot-activated malware and extract their be-

havior. The main contributions of this paper are: (i) we

provide an overview on CPL and .NET/Mono file types

and discuss their role in current malware attacks; (ii) we

present the challenges of designing and implementing a

malware dynamic analysis system using modern Win-

dows operating systems (7 and 8 — kernel NT 6.x);

(iii) we introduce a new dynamic analysis system to

monitor both 32 and 64-bits malware samples, which

is able to analyze reboot-activated malware, as well as

samples encapsulated in other executable file formats

(specifically CPL and .NET/Mono). Our work provides

richer behavioral information than other available sys-

tems, showing how current malware samples act and

helping in a better understanding of them.

The remainder of this paper is organized as follows:

In Section 2, we provide a background on different file

types being used to deploy malware (PE+, CPL, and

.NET/Mono files), on new Windows internal mecha-

nisms and their implications on current in-system mon-

itoring tools, and we present the related works; in Sec-

tion 3, we detail the architecture of our proposed dy-

namic analysis system and choices about its design; in

Section 4, we present some case studies to evaluate our

proposed system using malware samples collected in the

wild, mainly the ones marginalized by currently avail-

able public analysis systems; in Section 5, we discuss

the limitations of our system, and, finally, in Section 6,

we provide our final considerations.

2 Background and Related Work

We present a brief background about file types used by

malicious programs, simple techniques malware uses to

prevent analysis, dynamic analysis systems, and tools

from literature and the monitoring techniques they

make use of.

2.1 File Encapsulation

Executable file formats that run correctly in a victim’s

system may hinder the dynamic analysis, if used to

encapsulate malware. We have observed a significant

number of CPL and .NET binaries in our dataset (we

collected these samples in the wild during the last few

years), apart from the prevalence of PE files. Below, we

discuss the file types available among our samples.

CPL. It is the file extension of Control Panel ap-

plets, which are dynamic libraries (DLL) that export

the CPlApplet function [28] and can be directly exe-

cuted by users’ double-click, often leading to a back-

ground execution. CPL malware is a Brazilian phe-

nomenon mostly related to Internet Banking attacks,

whose actions are recognized by antivirus vendors as

significant threats [21].

.NET/Mono. Mono is a software platform that al-

lows the creation of cross-platform applications (http:

//www.mono-project.com/) and it is an open source im-

plementation of Microsoft’s .NET framework. This kind

of sample has the same range of actions that traditional

PE ones, but it usually crashes on or does not work

on .NET framework versions for Windows XP (used in

most publicly available sandboxes). We observed an in-

crease in the number of malware samples using this file

type2, but did not find specific literature about them.

PE+. Portable Executable [35] is a file format used

on Windows systems mainly for executable and library

files. There are two versions of it: PE32 and PE+,

for 32 and 64-bits files, respectively. Analysis support

for PE32 is widespread, but there is a lack of specific

PE+ malware analysis tools. As reported in [5], 64-bits

malware is an inevitable move. The more 64-bits plat-

forms are deployed, the more it becomes attractive for

malware creators. Malware developers do not need to

move immediately from coding 32 to 64-bit malicious

programs—modern Windows are still compatible with

both (WoW64 [26] is responsible for such translation)—

, but if they do, researchers must be able to analyze

those samples, since 64-bits malware is already in the

wild: in [5], the authors present a version of the Zeus

malware that is able to inject 32 and 64-bits versions

of itself, depending on the host; Regin [18] samples also

have 64-bits modules. In spite of that, there is still a

lack of malware analysis literature for 64-bits samples’

analysis and execution. For instance, a reference text-

book [40] covers PE Header changes and the new 64-bit

calling convention but do not address changes in dy-

namic execution. Furthermore, as far as we know, there

are no portable and publicly available sandboxes able to

adequately handle PE+ files in the context of malware

analysis3. Thomas et al. [43] discuss some differences of

executing 32-bits samples on 64-bits modern operating

systems (from Windows 7 forensics procedures perspec-

tive), while Corregedor et al. [6] provides a first step on

analyzing a 32-bit modern Windows, which makes us

to consider the results on 64-bits ones.

2 We identified as .NET 0.6%, 1.1%, and 7.6% of all samples
from our dataset collected in 2013, 2014, and the first quarter
of 2015, respectively.
3 Solutions like Sandboxie (http://www.sandboxie.com) are

not designed for this purpose and can be detected due to their
userland modules.

http://www.mono-project.com/
http://www.mono-project.com/
http://www.sandboxie.com

The Other Guys 3

2.2 Dynamic Analysis Evasion and Reboot

Malware creators use a varied set of techniques to by-

pass sandbox-based analysis, such as virtual machine

detection and fingerprinting [16,34,12]. Different ap-

proaches are required to address them, such as the mon-

itoring of split behavior [2] and the use of bare metal

systems [15]. An effective evasive technique against dy-

namic analysis system is to delay the execution of a

sample, either by stalling it or requiring a reboot to

complete the process of performing malicious actions.

Both approaches have high chances of success against

ordinary users and bypass automated sandboxes and

bare metal systems. The stalling malware problem is

addressed by [20].

Lindorfer et al. proposed a method to trace the evo-

lution of malware samples over time [19], which consists

on running self-updating malware every day and ana-

lyzing the downloaded artifacts. Their approach uses a

snapshot patch to restore sandbox infection from the

previous day, since their goal is to observe behavioral

changes in already deployed malware. On the other

hand, our approach intends to observe the behavior of

malware that requires a reboot as a way to evade dy-

namic analysis.

2.3 Dynamic analysis techniques and systems

In this section, we cover techniques used to monitor

malware execution, based on [9].

SSDT Hooking. This technique allows the inter-

ception of system calls by directly changing the System

Service Dispatch Table (SSDT) pointer to a trampoline

function. This approach runs in a more privileged ring

(kernel land) than the monitored sample (userland).and

is able to monitor the system in a wide manner, with-

out the need to handle each process individually. Kirat

et al. [15] present Barebox, a dynamic analysis system

that does not use a virtual or emulated environment. It

monitors the actions of the analyzed samples by hook-

ing SSDT while executing them in a bare-metal envi-

ronment. It allows the execution and observation of the

behavior of malware that employs anti-VM techniques.

Afonso et al. [1] present a framework able to analyze

drive-by downloads. If an URL causes the download of

an executable, the framework’s OS module runs and

monitor its actions. This module consists of a pool of

analysis machines (emulated and bare-metal) that make

use of an SSDT hooking kernel driver.

DLL Injection. In this case, hooks for system calls

are implemented through the injection of a Dynamic

Linked Library (DLL) inside the process to be moni-

tored. The monitoring DLL loaded inserts a JMP in-

struction to the trampoline function in order to redi-

rect the execution flow. Some drawbacks include it be-

ing userland-based (more prone to be bypassed) and

requiring the injection of the DLL in each of the to be

monitored processes. Examples of tools employing this

techniques are CWsandbox [46] and Cuckoo [11].

Virtual Machine Introspection. Consists of in-

strumenting the virtual machine hypervisor to collect

information about the guest system. It allows for finer-

grained analysis, since it is possible to obtain assembly

or IR instructions. It is also more secure (from the mon-

itoring perspective), since it is external to the malware

execution environment. The main disadvantage of this

technique is the dependence on the guest OS, which

makes it difficult to bridge the semantic gap [33][8] and

does not allow using bare metal systems. Anubis [3] is

an analysis system that implements VMI (Virtual Ma-

chine Introspection) through Qemu instrumentation [4].

This technique creates a layer between the analysis sys-

tem (guest) and the processing environment (host). Its

use enables monitoring actions performed within the

analysis environment without any interference in the

environment where the malware is running or in the

guest system. As far as we know, Anubis analysis envi-

ronment is based on a Windows XP operating system.

Modern VMI approaches, such as hardware-assisted hy-

pervisor monitoring, could also be used to inspect Win-

dows x64 kernel without restriction, since they operate

from outside of the system. Nevertheless, general ap-

proaches like Ether [7] and HyperDbg [10] are based on

Windows XP, depending of a port for Windows 7 and 8

in order to handle both OS semantic gap. Another ap-

proach, CXPInspector [47], was developed for Windows

7 x64 and is able to handle the OS kernel semantic gap.

There are commercial solutions that aim at analyzing

64-bit malware, but they are mostly based on this kind

of external instrumentation. For instance, Vmray re-

lies on VMI 4, while Lastline’s analyzer depends on full

emulation [17].

System Callbacks and File system Filters. In

this technique, the monitoring of a system uses OS-

defined callbacks and file system intercepts. Every time

a given action is performed on the system, a registered-

callback is called. This approach also runs on ring 0

(kernel level) and is able to monitor the whole sys-

tem without injecting process individually. On the one

hand, it does not tamper with any kernel structure, but

on the other hand, it is limited to OS-provided sub-

system monitoring. An example of tool that employs

callbacks is CaptureBAT [39]. Capture-BAT is a ker-

nel driver based malware analysis tool, which runs on

Windows XP SP2 and monitors the file operations of “

4 https://www.vmray.com/technology/

4 Marcus Felipe Botacin et al.

Read” and “Write” using a file system filter, operations

of “SetValueKey” and “DeleteValueKey” on Registry

using kernel callbacks, and the creation and termina-

tion of processes using the same technique. However,

unlike previously mentioned tools, Capture-BAT has

no processes tracking, so all information capturing is

performed in system-wide mode. Furthermore, the col-

lected information is very restricted (timestamp, source

process, target key, file or process).

Mixed Approaches There are solutions that com-

bine multiple approaches to overcome system’s limita-

tions. Sandboxie, for example, makes use of a kernel

driver along with userland DLLs5.

2.4 Changes in Security Mechanisms

Regarding defensive mechanisms, Microsoft Windows

evolved from XP (kernels NT 5.1 and 5.2) to Vista,

7 and 8 (kernel NT 6.x). Windows 8 is claimed to be

the most secure version of this operating system (apart

from the recent release of Windows 10) due to its new

security features. We briefly describe how they impact

the implementation of malware dynamic analysis sys-

tems.

Kernel Patch Protection. This mechanism pre-

vents kernel-mode drivers from extending or replacing

kernel services in undocumented ways, aiming to in-

crease the security of the OS against rootkits. KPP is

only present in 64-bits versions of Windows 8. Enabling

KPP has an immediate consequence for dynamic analy-

sis, since it prevents the use of hooking techniques (e.g.,

SSDT).

Driver Signing. Its goal is to prevent arbitrary

components from loading into kernel space. This ap-

proach may be restrictive for analysis systems based

on monitoring drivers, due to the price of a certificate

and the signing process conditioned to Microsoft Qual-

ity Process approval. However, this protection can be

turned off for analysis purpose, allowing us to load a

malware analysis driver. This workaround was already

deployed by other tools, such as Sandboxie6.

Session Isolation. This mechanism aims to isolate

different families of applications, such as graphical ap-

plications, user jobs, system services and remote jobs

to keep data and application privileges restricted to

their own (user) space. This restriction prevents pro-

cesses from writing on foreign regions (at least in dif-

ferent sessions) without user’s direct control, as seen

5 http://www.sandboxie.com/
index.php?ContributedUtilities#BlockProcessAccess
6 http://www.sandboxie.com/

index.php?ExperimentalProtection

on CreateRemoteThread [30]. Analysis tools based on

DLL injection may be bypassed by a sample whose

payload is installed as a service running on a dif-

ferent session. For instance, Cuckoo sandbox replaces

CreateRemoteThread with QueueUserAPC [24] to pre-

vent bypass, requiring a trap to inject the monitoring

payload. However, this opens another possibility of eva-

sion for the sample.

API changes. Newer Windows versions also intro-

duced new API interfaces. Yet the legacy interfaces are

still supported, we have to implement our analysis sys-

tem using the newer ones to take advantage of per-

formance gains and support new operation modes and

tools. As an example of API change, CmRegisterCall-

back [31] was updated to CmRegisterCallbackEx [32].

WoW64. As mentioned before, 32-bits samples can

run on 64-bits systems through an address translation

performed by the WoW64 (Windows 32-bit on Win-

dows 64-bit) subsystem [26]. Due to WoW64 transla-

tion, we can monitor the whole system without restric-

tions and/or a special handle for each process type, but

32-bits malware is able to threaten users of 64-bits sys-

tems. Hence, it brings the entire already established

32-bits threats’ arsenal to 64-bits systems.

3 System Overview

The design of a dynamic analysis system depends on

implementation choices. In this section, we present our

decisions and architecture.

3.1 Project Decisions

This section presents how the new security mechanisms

being used by Windows influenced in our project deci-

sions. One of the main requirements of an analysis tool

is to be portable for other versions of the target oper-

ating system. While SSDT hooking used to be a well-

established technique for finer-grained in-guest control

of the system calls and program flow, it is not allowed

anymore on 64-bits versions of Windows 7 and 8 due to

KPP. DLL injection-based tools are very detectable and

of limited application due to the isolation provided by

the aforementioned OS versions. The main advantage

of VMI is the possibility of out-of-the-guest monitoring,

but its deployment on different OS versions depends on

hard effort to re-instrument the virtualization layer and

port the system call interception solution. The use of

callbacks and filters to develop monitors is the recom-

mend development solution, but these techniques rely

on API limited by the OS vendors. However, their cur-

rent capabilities are enough to develop monitors suit-

http://www.sandboxie.com/index.php?ContributedUtilities#BlockProcessAccess
http://www.sandboxie.com/index.php?ContributedUtilities#BlockProcessAccess
http://www.sandboxie.com/index.php?ExperimentalProtection
http://www.sandboxie.com/index.php?ExperimentalProtection

The Other Guys 5

able for dynamic analysis of malware, so we chose them

to implement our proposal.

Most of the described OS security mechanism can

be subverted, for instance, it is possible to defeat the

driver signing requirement [13] or to break the KPP [41,

42,36]. In fact, there are malware samples that had

already deployed some exploitation techniques against

these protection mechanisms: Regin [18] uses a signed

driver to load itself as a rootkit; TDL [38] does this

by using a bootkit to disable driver signature require-

ment; the Equation Group [14] exploits known legit-

imate drivers bugs to accomplish privilege escalation.

These exploits are version-dependent, violating our re-

quirement of portability. Besides, they can be patched

any time by system vendors. Due to this “instability”,

we opt out from implementing our tool by relying on

exploiting the target OS. Instead, we adopted system

callbacks and filters. While the use of those were already

suggested by [37], we expand our implementation to in-

clude more capture capacities in addition to file system

filtering.

3.2 Architecture Overview

Our system is based on three main pipeline stages that

are responsible for collection, analysis and results pre-

sentation of processed malware samples. First of all, we

collect the available samples (through phishing, hon-

eypots, Web sites or donations from collaborators) and

store it in a database. Then, for each sample not yet an-

alyzed, we create a task that waits for further process-

ing to produce a report. The analysis subsystem has a

scheduler, external analyzers, virtual machines and a re-

sults repository. The scheduler is the module that inter-

acts with the collection interface to receive unprocessed

tasks and dispatch them to all registered analysis ma-

chines, providing scalability and concurrency control.

If everything is OK, this subsystem launches the exter-

nal analyzers (to obtain static information and network

traffic) and the dynamic analysis environments.

The dynamic analysis environment consists of pris-

tine installations of Windows 7 or 8 with the monitoring

driver running inside. It can be bare-metal, virtualized

or emulated. For this paper, we set up an emulated envi-

ronment based on Qemu/KVM. The monitoring driver

is composed by three modules—Registry callback, pro-

cess callback and file system filter. There is also an ex-

ternal client responsible to obtain the internal captured

data, filter it as defined by flags passed as arguments

(e.g., PID tracking, system-wide monitoring), and pro-

duce the resulting log files. Figure 1 shows an overview

of the proposed system.

For the sake of flexibility and portability, we chose

to deploy our monitoring tool as a driver compiled for

Windows 7 and 8 from the same source. This driver

consists of a basic toolset and three modules for inter-

cepting malware action. The basic toolset handles the

following information:

– Timestamps: the system’s time and date (with

millisecond precision) are retrieved through

KeQuerySystemTime, which is called every time a

callback is activated. Since it is implemented as a

non-reentrant function, it provides the order of the

monitored actions.

– Processes: PID and process name are retrieved on

every callback (once the caller is logged) through

ZwQueryInformationProcess, while process han-

dlers are taken from PID through the call of

PsLookupProcessByProcessId.

– Objects: we use ObQueryNameString to retrieve

file system paths from objects pointed by handlers

passed as arguments in callbacks.

– Lists: After captured, data is buffered on a FIFO

queue implemented using kernel list facilities. The

data is only sent to userland when a DeviceIoCtl

call is made by the driver client.

– String manipulation: to allow the driver to han-

dle communication from distinct clients (and do

not depend on them), we format the output di-

rectly in kernel. All data, but integers, were con-

verted to a UNICODE STRING. We used the safe li-

brary NTSTRSAFE to correctly handle strings in ker-

nel.

– Serialization: collected data is stored serialized

in a kernel list as a bit stream. The most impor-
tant data structure serialization is that applied to

UNICODE STRING, which is a structure containing a

pointer to data and its size. The serialization oper-

ation copies the data pointed by UNICODE STRING

directly to client structure along with its size.

– I/O handling: these operations are performed us-

ing IOCTLs [22]. The driver is able to handle and

export the IOCTL codes for system configuration,

such as starting and stopping the monitoring; en-

abling or disabling debugging mechanisms, as well

as for obtaining collected data.

The aforementioned intercepting of actions is per-

formed by the three modules described below:

– Registry Monitoring: the Registry callback (reg-

istered by CmRegisterCallbackEx data consists of

two arguments, a data type, which represents possi-

ble actions [25], and a pointer cast to the data type;

– Process Monitoring: this callback relies on

PsSetCreateProcessNotifyRoutine with the pro-

6 Marcus Felipe Botacin et al.

userland kernel-land

NIC

driver

controller
analysis

controller

malware

samples

host OS
guest/analysis OS

Registry

callback

Process

callback

Filesystem

filter

d
ri

v
e
r

PID

Fig. 1 The analysis controller fetches enqueued malware samples and send the first to an idle analysis machine through the
driver controller; it loads the kernel driver, obtain the sample’s PID and executes it on userland; meanwhile, the analysis
controller captures the produced network traffic. Dense arrows illustrate the monitoring flow; the sample on userland has its
actions intercepted by the driver through its PID.

cess handler and a boolean value (type of action,

such as create or delete process) as arguments.

– File System Monitoring: This monitor is imple-

mented by a file system filter, installed through the

call of FLTRegisterFilter, which intercepts every

system IRP [23] call. We chose to filter the action

before it happens (pre-operation) to monitor even

unsuccessful operations. We also collect additional

data when a deletion is performed:

– Deleted Files Monitoring: Once an

IRP MJ SET INFORMATION is identified, we

look at its file information class to determine if

it is a delete operation. If so, the target file is

copied for further offline analysis.

3.3 Tests and Validation

We tested our proposed system to verify its monitoring

capabilities against actual malware whose actions were

previously known. The listings below show actions that

can be monitored and the format used to log informa-

tion.

Listing 1 illustrates a sample writing its own path

on the \Run Registry key, which allows it to survive

reboots (a typical persistence behavior). Listing 2 shows

a sample deleting a Registry key related to the Internet

Explorer settings.

Listing 1 Registry’s write operation log example.

<timestamp>|SetValueKey|2032|C:\7G6C5n.exe|\
REGISTRY\USER\S−...−1001\Software\Microsoft\
Windows\CurrentVersion\Run|SoftBrue|”C:\7G6C5n.
exe”

Listing 2 Registry’s delete key operation log example.

<timestamp>|DeleteValueKey|3028|C:\visualizar.exe|\
REGISTRY\MACHINE\SOFTWARE\Wow6432Node
\Microsoft\Windows\CurrentVersion\Internet Settings
\ZoneMap|IntranetName|

Listing 3 illustrates a sample (visualizar.exe) cre-

ating a process (dll.exe) and the WoW64 mecha-

nism acting to translate this request. Listing 4 shows

a process (rundll32.exe) terminating another one

(wimplayer.exe). This type of operation can be used

to terminate an update or defense mechanism, such as

a known antivirus.

Listing 3 Process’ create operation log example.

<timestamp>|CreateProcess|3028|C:\Monitor\Malware\
visualizar.exe|2440|C:\Windows\SysWOW64\dll.exe

Listing 4 Process’ terminate operation log example.

<timestamp>|DeleteProcess|2548|C:\Windows\SysWOW64
\rundll32.exe|3040|C:\ProgramData\blackberry\
wimplayer.exe

Listing 5 illustrates the process visualizar.exe

writing a file on disk. It may be the result of a download,

a drop, keylogger data, Trojanizing an existing file,

virus-related data appending, ransomware activity etc.

Listing 6 illustrates the malware sample deposito.exe

deleting a file, a common action performed for anti-

forensics.

Listing 5 Filesystem’s write operation log example.

<timestamp>|WriteOperation|3028|C:\visualizar.exe|C:\
Windows\SysWOW64\dll.exe|

Listing 6 Filesystem’s delete operation log example.

<timestamp>|DeleteOperation|2032|C:\deposito.exe|C:\
ProgramData\rr.txt|

Listing 7 illustrates the network behavior of a sam-

ple fetching a file through an HTTP GET request, while

Listing 8 illustrates a sample sending victim’s informa-

tion through an HTTP POST request. These request

types may be used for drive-by downloading and/or in-

formation stealing, for example.

The Other Guys 7

Listing 7 Network traffic monitoring log example (GET).

<timestamp> <Analyzer IP> XX.YY.ZZ.121 HTTP 290
GET /.swim01/control.php?ia&mi=00B5AB4E−47098
BC3 HTTP/1.1

Listing 8 Network traffic monitoring log example (POST).

<timestamp> <Analyzer IP> XX.YY.ZZ.43 HTTP 335
POST /notas/nota6/index.php HTTP/1.1 arq
=07/04/2014 / 13:03:52 / &condicao=WIN8 VM1 [
Brasil]

3.4 Overhead Measurement

To minimize the overhead of intercepting and logging

samples’ actions, we opted for a decoupled data acqui-

sition procedure (illustrated on Figure 2). We measured

the impact penalties imposed by our monitoring driver

to the system during automated analysis. To do so, we

coded programs that perform specific actions on each

monitored subsystem and ran them 100 times in order

to get a decimal significance in the standard deviation.

These programs simply write and read the Registry or

the file system, and create and terminate a suspended

process7. The tests were performed on a KVM virtual-

ized machine without any other load than the testing

process. Table 1 shows the average of the measured re-

sults.

4 Case Study

We used our system to analyze the behavior of samples

not handled by other available malware analysis sys-

tems: .NET/Mono, CPL, and PE+ files. For each type

of malware, we observed the following actions:

– Run keys (persistence) - the monitored sample

wrote itself in an “AutoRun” related Registry key;

– BHO injection - a write in the Browser Helper

Object key to install a plugin.

– Proxy settings - the sample re-route the browser

gateway by adding a Proxy Auto Config (PAC) file

in the Registry.

– IE keys - the browser changed any configuration

registry key related to Internet Explorer (default

browser).

– Firewall settings - modification in this security

mechanism key.

– Enable file trace - the sample uses a log file to

determine its correct execution, indicating possible

evasive mechanisms.

7 We measure suspended processes to avoid penalties from
external factors.

– Creation - the sample launched a new process.

– cmd.exe launching - creation of the system’s

shell.

– Termination - the sample stopped a running pro-

cess.

– Services - the sample launched services.exe util-

ity to install itself as a service, load, or unload a

kernel driver.

– Delete - the sample removed a file from the target

system.

– Write a PE - the sample wrote in a portable exe-

cutable file (existing or new).

– Internet settings - the sample changed disk files

related to Internet Explorer settings, such as history

and cache.

– Write .sys - the sample wrote a driver file on the

target system’s disk.

Dataset: Our samples were collected in the wild

in the last years from malicious phishing attachments,

infected users, and honeypots. This collection allowed

us to identify the growth of CPL and .Net malware,

shedding light on these threats. In addition, we enriched

out dataset with downloaded PE+ files.

Below, we present the resulting actions obtained

from the analysis of the different file types samples;

4.1 .NET/Mono.

We ran 426 samples (from suspicious e-mail attach-

ments collected between 2012 and 2015) in our system

and evaluated the obtained analysis logs. Table 2 shows

the occurrence of the aforementioned actions.

In general, we observed two major types of “predom-

inant” behavior on .NET samples: information steal-

ing, accomplished by re-routing the user to malicious

domains through the modification of Internet Explorer

settings, installation of Browser Helper Objects exten-

sions, or a proxy in the Registry, changes in cookies,

bookmarks and history; downloading of additional com-

ponents, such as executable or driver files.

4.2 CPL.

We randomly selected 1,700 CPL samples from our

database to observe their actions. In general, their log

footprints were small (Table 3) and their names con-

tained terms from Internet Banks. We have checked

around 10% of them manually and confirmed that they

were malicious bankers, thus requiring manual stimula-

tion input from the victim or the download of another

component. After that, we sent all samples to VirusTo-

tal and verified that the two most returned AV labels

8 Marcus Felipe Botacin et al.

Fig. 2 Malware monitoring data acquisition process— interception and logging.

Table 1 Average overhead imposed by monitoring a sample in a controlled experiment.

Operation type Without the driver With the driver Avg. overhead
Registry 5.13×10−2 ms 5.47×10−2 ms 6.65%
Process 1.02 ms 1.14 ms 11.76%

File 4.06×10−1 ms 5.86×10−1 ms 44.27%

Table 2 Suspicious behavior observed on 220 .NET/Mono analyzed samples.

Registry actions
Run keys (persistence) 125 (29.34%) BHO injection 3 (0.7%)
Proxy settings 127 (29.81%) IE keys 139 (32.63%)
Firewall settings 2 (0.47%) Enable file trace 269 (63.15%)

Process actions
Creation 274 (64.32%) cmd.exe launching 19 (4.46%)
Termination 96 (22.54%) services 18 (4.24%)

File system actions
Delete 145 (34.04%) Write a PE 223 (52.35%)
Internet settings 197 (46.24%) Write .sys 47 (11.03%)

were Downloader (1,245) and Banker (1,148). An in-

spection of the captured network traffic revealed that

1,110 samples performed at least one HTTP request

related to downloading objects or sending system/user

data.

Most of the collected CPL files behaved similarly

to the .NET ones. However, they ran in a more silent

way, i.e., in background and without showing any dialog

box or opening the browser. The amount of terminated

processes occurs because as CPL files are injected, they

finish some instances of their own rundll32 process. In

addition, we observed that most registered paths under

Registry “Run” keys refer to downloaded payloads.

4.3 PE+

We collected the 998 64-bits samples from VirusShare

(http://virusshare.com/), from which 970 (97,2%)

were successfully analyzed, i.e., did not crash the envi-

ronment and returned non-empty analysis logs. Below,

we compare our analysis results with publicly available

reports about known 64-bits malware.

4.3.1 Wootbot.

According to Wootbot report [29], this threat:

1. creates a copy of itself in %windir% or the system

folder;

2. may add a value to one or more Registry keys, which

causes the worm to run each time Windows starts.

Some variants create a Windows system service for

this purpose;

3. can connect to an internet relay chat (IRC) server;

4. can exploit a Windows Local Security Authentica-

tion Server (LSASS) service process vulnerability to

create a command shell on a remote computer.

Our proposed system was able to log operations re-

lated to items 1, 3, and 4 above (Listing 9, Listing 10,

and Listing 11, respectively).

Listing 9 Writing itself on Windows Location.

<timestamp>|WriteOperation|1612|C:\Users\Win7\
AppData\Local\Temp\IXP000.TMP\server.exe|C:\
Windows\SysWOW64\server.exe|

http://virusshare.com/

The Other Guys 9

Table 3 Monitored operations observed from CPL malware samples.

Registry actions
Run keys (persistence) 61 (3.59%) BHO injection 3 (0.18%)
Proxy settings 114 (6.71%) IE keys 131 (7.71%)
Firewall settings 7 (0.41%) Enable file trace 56 (3.29%)

Process actions
Creation 111 (6.53%) cmd.exe launching 12 (0.71%)
Termination 879 (51.71%) services 1 (0.06%)

File system actions
Delete 73 (4.29%) Write a PE 860 (50.59%)
Internet settings 587 (34.57%) Write .sys 5 (0.29%)

Listing 10 Opening the LSASS process.

<timestamp>|CreateOperation|828|C:\Windows\System32
\svchost.exe|C:\Windows\System32\lsass.exe|

Listing 11 IRC traffic captured.

<timestamp> IP <Analyzer IP>.49184 > xx.yyy.zzz.76.
ircd: Flags [S], seq 1351309149, win 8192, options [mss
1460,nop,wscale 8,nop,nop,sackOK], length 0

4.3.2 Jorik.

According to Jorik report [27], this malware:

– creates %windir%\assembly\
nativeimages v4.0.30319 32\temp\998-0\
system.data.datasetextensions.dll on affected com-

puter;

– creates the file update.vbe on the victim.affected

computer;

– may contact a remote host.

In our logs, we verified that the malware uses the

svchost.exe process to check if a variant is present

on the victim’s system (see Listing 12 and Listing 13).

Listing 14 shows the malware trying to resolve the do-

main downloads.fcuked.me.uk through Google DNS

(probably to download a missing component), but it

was not found at that moment.

Listing 12 Another Infected Process

<timestamp>|CreateProcess|1456|C:\Monitor\Malware\
VirusShare 0826f81f22867a464021aa2f94576693|576|C:\
Users\Win7\AppData\Local\Temp\IXP000.TMP\
svchost.exe

Listing 13 Windows directory writing

<timestamp>|ReadOperation|576|C:\Users\Win7\AppData
\Local\Temp\IXP000.TMP\svchost.exe|C:\Windows\
assembly\NativeImages v2.0.50727 64|

Listing 14 Network Traffic

<timestamp> IP <Analyzer IP>.61489 > google−public−
dns−a.google.com.domain: 24872+ A? downloads.
fcuked.me.uk. (40)

4.3.3 DarkKomet.

According to DarkKomet report [44], it:

1. drops following copies of itself into the affected sys-

tem (\%Application Data\ %HostProcess\malware

name.exe);

2. creates \%Application Data%\dclogs;

3. adds Registry entries to enable its automatic execu-

tion at every system startup;

4. disables Windows firewall.

We were able to observe all of the expected actions:

Listings 15 and 16 show the logs representing item 1

above; Listings 17, 18, and 19 illustrate the actions men-

tioned on items 2, 3, and 4, respectively.

Listing 15 DarkKomet creating/calling other processes.

<timestamp>|CreateProcess|2536|C:\Monitor\Malware\
VirusShare 27b831e93697d45d978796198b421033|2952|
C:\Users\Win7\AppData\Local\Temp\IXP000.TMP\
andrew.exe

<timestamp>|CreateProcess|2952|C:\Users\Win7\AppData
\Local\Temp\IXP000.TMP\andrew.exe|2820|C:\Users
\Win7\Documents\MSDCSC\msdcsc.exe

Listing 16 DarkKomet copying itself locally.

<timestamp>|CreateOperation|2952|C:\Users\Win7\
AppData\Local\Temp\IXP000.TMP\andrew.exe|C:\
Users\Win7\AppData\Local\Temp\IXP000.TMP\
andrew.exe.Local|

Listing 17 Log file creation.

<timestamp>|CreateOperation|2820|C:\Users\Win7\
Documents\MSDCSC\msdcsc.exe|C:\Users\Win7\
AppData\Roaming\dclogs|

10 Marcus Felipe Botacin et al.

Listing 18 DarkKomet changing Registry Autostart key to
persist.

<timestamp>|SetValueKey|2952|C:\Users\Win7\AppData\
Local\Temp\IXP000.TMP\andrew.exe|\REGISTRY\
USER\S
−1−5−21−603313242−1591760659−684491057−1000\
Software\Microsoft\Windows\CurrentVersion\Run|
MicroUpdate|C:\Users\Win7\Documents\MSDCSC\
msdcsc.exe

Listing 19 DarkKomet disabling Windows Firewall.

<timestamp>|SetValueKey|2820|C:\Users\Win7\
Documents\MSDCSC\msdcsc.exe|\REGISTRY\
MACHINE\SYSTEM\ControlSet001\services\
SharedAccess\Parameters\FirewallPolicy\
StandardProfile|EnableFirewall|0 0 0 0

4.3.4 ZBot.

According to Zbot report [45], this malware:

1. connects to http://checkip.dyndns.org (observed

in Listings 20, 21, and 22);

2. requires the existence of a random executable’s

file name on the following directory to properly

run: C:\Users\user name\AppData\Roaming\ (ob-

served on Listing 23).

Listing 20 Connection to checkip.dyndns.com.

<timestamp> <Analyzer IP> <checkip.dyndns.com IP>
HTTP 148 GET / HTTP/1.1

Listing 21 Content of file fetched from previous GET.

Current IP Address: <Analyzer gateway IP address>

Listing 22 Removal of fetched file.

<timestamp>|DeleteOperation|1852|Trojan−Spy.Win64.
Zbot.a|C:\Users\User Windows VM\AppData\Local\
Microsoft\Windows\Temporary Internet Files\Content
.IE5\SP89WLWJ\dyndns[1].txt|dyndns[1].txt

Listing 23 Random file name created on “Roaming” direc-
tory.

<timestamp>|CreateOperation|1852|Trojan−Spy.Win64.
Zbot.a|\Users\User Windows VM\AppData\Roaming
\Gevoun\riod.exe|

4.4 Systems Comparison

In order to verify whether publicly available malware

analysis systems are able to process marginalized mal-

ware, we submitted some samples through their Web

interfaces. These systems8 either warned the user that

the file type is not supported, or did not return any re-

sults at all. Table 4 presents the results of trying to an-

alyze executables encapsulated with other file types, in

addition to reboot-dependent samples. The results show

that our solution is the only one able to handle PE+

executables and that combines CPL and .Net analysis

support to provide more information about these types

of infection.

4.5 Surviving Reboots

We analyzed 2,937 malware samples in our system col-

lected from phishing e-mail attachments and reported

incidents in 2015. From this total, 399 (13.59%) wrote

their own binary path on AutoRun-related Registry

keys, consequently triggering our “reboot-aware” anal-

ysis feature. In this mode, our driver is installed as a

bootkit, hence capturing system-related data in a wider

manner since the system’s startup.

We were able to observe that 167 (59.86%) of them

presented network traffic capture files larger than those

obtained in the first run (i.e., before reboot). Moreover,

we were able to identify malicious activity after reboot,

sometimes performed by the same executable inserted

first time.

It is worth to mention that tracing a previously in-

stalled sample’s activities is not a simple task. Since we

do not have a PID after the analysis system’s reboot,

we had to perform capture in a system-wide manner.

This way, the analysis system produces a much larger

log file that needs to be parsed in order to remove noise.
Hence, monitoring reboot-dependent malware is an in-

teresting way to detect behavior that does not appear

during the first run of a sample, as well as persistent

malware behavior. As a drawback, it requires additional

efforts on results post-processing. Table 5 reveals infor-

mation about the analysis of the 167 samples, before

and after the reboot.

A careful analysis showed us that all samples per-

formed a single-step infection on their first run, i.e.,

they installed themselves on AutoRun related Registry

keys. According to labels obtained from VirusTotal,

73% of the samples target Internet Banking users (they

are labeled as “bankers”). This causes them to wait

for any Internet Banking related input, such as the

user typing one URL from a list of bank sites, in or-

der to redirect the victim to a fake/cloned site through

8 http://anubis.iseclab.org, https://malwr.com,
http://www.threatexpert.com, http://camas.comodo.com,
http://www.threattracksecurity.com/resources/sandbox-
malware-analysis.aspx

http://checkip.dyndns.org
checkip.dyndns.com
http://anubis.iseclab.org
https://malwr.com
http://www.threatexpert.com
http://camas.comodo.com
http://www.threattracksecurity.com/resources/sandbox-malware-analysis.aspx
http://www.threattracksecurity.com/resources/sandbox-malware-analysis.aspx

The Other Guys 11

Table 4 Comparison among publicly available dynamic analysis systems and our proposed system regarding other than PE32
file types.

Sandbox/File type PE32 PE+ .NET CPL Reboot
Anubis 3 7 3 7 7

Cuckoo 3 7 7 3 7

ThreatExpert 3 7 7 7 7

Camas Comodo 3 7 7 7 7

CWSandbox 3 7 7 7 7

Our system 3 3 3 3 3

Table 5 Actions observed during analysis before and after the reboot for reboot-dependent malware (BHO and services
actions omitted due to non-occurrence).

Type Registry Process File
Action Run Proxy Firewall IE trace Create Term. cmd Del. Net PE .sys
Before 100% 46.11% 0.60% 47.31% 1.80% 63.47% 50.30% 3.59% 12.57% 83.23% 95.21% 0.60%
After 4.19% 0% 0% 0% 0% 27.54% 0% 0% 7.78% 46.11% 0.60% 0%

the proxy auto configuration file installed previously, in

which we found the name of known banks.

5 Limitations

Our proposal is extend dynamic analysis systems to

extract more knowledge about malware samples whose

usage is increasing, but for which the automated anal-

ysis is left aside. While we showed that such analysis is

viable, it may suffer from issues that are innate for this

kind of approach. Below, we discuss some limitations of

our approach and possibilities to overcome them.

Since the monitoring mechanism is based on call-

backs and a file system filter, there is an inherent limi-

tation of using only the APIs provided by system manu-

facturer. However, there is a trade-off between the abil-

ity to intercept events and the lack of permission to

modify the kernel of modern Windows operating sys-

tems. There are user-level approaches that do not rely

on any kernel modification, which can be applied to

improve the analysis process and may be used in the

future if necessary.

The use of virtualized/emulated environments is a

natural choice for scalability. However, some malware

samples are able to identify virtualized environments,

hiding its malicious behavior. In order to overcome this

limitation, we can run samples on bare-metal environ-

ments. It is worth noticing we met the portability re-

quirement to ensure it is possible. As a kernel driver,

our analysis system could be easily deployed on a bare-

metal environment without any modification. Then, we

would have to manage the restore procedures and a

greater overall time for analysis. In spite of the ability

of our kernel-based system to handle userland malware,

it may be subverted by rootkits and other privileged

threats.

Furthermore, the nature of our dataset—with many

banker samples—imposes a limitation related to the re-

quired stimulation to trigger malware functions during

the execution. Other limitations include evasive mal-

ware, i.e., which employs anti-analysis techniques, such

as sleeping/stalling features and the need of rebooting

the compromised system so that the malware resumes

its infection procedure. Both of them are technically

solvable: Lindorfer et al. proposed techniques to detect

environment-sensitive malware by analyzing samples in

distinct environments and identifying differences on the

monitored actions so as to recognize techniques used

for detection of analysis systems [20]; Balzarotti et al.

proposed a system that records the system calls exe-

cuted by a sample in a reference environment and replay

the monitored system calls in an emulator to identify if

the observed behavior is different [2]; we introduced a

technique to analyze reboot-dependent malware in this

paper. Other anti-analysis techniques require solutions

such as to remove fingerprints from the monitoring en-

vironment, and to protect the internal analysis com-

ponent from malware interaction using rootkit-inspired

features, but they are out of the scope of this paper.

6 Conclusions and Future Work

In this paper, we introduced a dynamic analysis that

monitors marginalized malicious programs, i.e., those

malware that has not being currently addressed by

publicly available systems. We discussed the challenges

faced to implement this analysis system for 64-bits

modern Windows operating systems due to their novel

security features, as well as presented details about our

proposed architecture. We evaluated our system with

thousands of actual malware (among PE, CPL and

.NET) to show that it is able to analyze PE+, CPL,

12 Marcus Felipe Botacin et al.

.NET/Mono and reboot-dependent malware. The anal-

ysis of resulting logs allowed us to observe suspicious

behaviors from these samples execution, as well as to

confirm the expected behavior of samples reported in

the community. The features implemented in our sys-

tem increase the range of malware that can be ana-

lyzed, expanding it beyond the ability of current sys-

tems. These analysis results also allow the gathering of

additional information about infections by security re-

searchers and analysts, incident response professionals,

and interested users. We are currently working on mak-

ing our system available to the public, and on anti-anti-

analysis techniques to improve the quality of our analy-

sis environment. An extension of this work would be the

comparison of samples’ behavior while running at the

same time (and with the same inputs/parameters) on

hypervisor-based or baremetal analysis systems. This

way, it would be possible to identify evasive behavior

due to the execution in emulated environments. In ad-

dition, we aim to verify our environment’s resistance

against known fingerprint attacks, such as those imple-

mented on pafish9.

Acknowledgements This work was supported by the
Brazilian National Counsel of Technological and Scientific De-
velopment (CNPq, Universal 14/2014, process 444487/2014-
0) and the Coordination for the Improvement of Higher Ed-
ucation Personnel (CAPES, Project FORTE, Forensics Sci-
ences Program 24/2014, process 23038.007604/2014-69).

References

1. Afonso, V., Filho, D., Gregio, A., de Geus, P., Jino,
M.: A hybrid framework to analyze web and os mal-
ware. In: Communications (ICC), 2012 IEEE Inter-
national Conference on, pp. 966–970 (2012). DOI
10.1109/ICC.2012.6364108

2. Balzarotti, D., Cova, M., Karlberger, C., Kirda, E.,
Kruegel, C., Vigna, G.: Efficient detection of split per-
sonalities in malware. In: NDSS (2010)

3. Bayer, U., Kruegel, C., Kirda, E.: Ttanalyze: A tool for
analyzing malware. In: 15th European Institute for Com-
puter Antivirus Research Annual Conf. (2006)

4. Bellard, F.: Qemu, a fast and portable dynamic
translator. In: Proceedings of the Annual Confer-
ence on USENIX Annual Technical Conference, ATEC
’05, pp. 41–41. USENIX Association, Berkeley, CA,
USA (2005). URL http://dl.acm.org/citation.cfm?id=
1247360.1247401

5. Blog, S.L.: The inevitable mode - 64-bit zeus enhanced
with tor (2013). http://securelist.com/blog/events/
58184/

6. Corregedor, M., Von Solms, S.: Windows 8 32 bit - im-
proved security? In: AFRICON, 2013, pp. 1–5. IEEE
(2013)

7. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether:
Malware analysis via hardware virtualization extensions.

9 https://github.com/a0rtega/pafish

In: Proceedings of the 15th ACM Conference on Com-
puter and Communications Security, CCS ’08, pp. 51–
62. ACM, New York, NY, USA (2008). DOI 10.1145/
1455770.1455779. URL http://doi.acm.org/10.1145/
1455770.1455779

8. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee,
W.: Virtuoso: Narrowing the semantic gap in virtual
machine introspection. In: Proceedings of the 2011
IEEE Symposium on Security and Privacy, SP ’11,
pp. 297–312. IEEE Computer Society, Washington, DC,
USA (2011). DOI 10.1109/SP.2011.11. URL http:

//dx.doi.org/10.1109/SP.2011.11
9. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey

on automated dynamic malware-analysis techniques and
tools. ACM Computing Surveys 44(2), 6 (2012)

10. Fattori, A., Paleari, R., Martignoni, L., Monga, M.: Dy-
namic and transparent analysis of commodity produc-
tion systems. In: Proceedings of the IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering, ASE ’10, pp. 417–426. ACM, New York, NY,
USA (2010). DOI 10.1145/1858996.1859085. URL http:

//doi.acm.org/10.1145/1858996.1859085
11. Guarnieri, C.: Cuckoo sandbox. http://

www.cuckoosandbox.org/ (2013)
12. Guri, M., Kedma, G., Sela, T., Carmeli, B., Rosner, A.,

Elovici, Y.: Noninvasive detection of anti-forensic mal-
ware. In: Malicious and Unwanted Software: ”The Amer-
icas” (MALWARE), 8th International Conference on, pp.
1–10 (2013). DOI 10.1109/MALWARE.2013.6703679

13. j00ru: Defeating windows driver signature en-
forcement 3: The ultimate encounter. http:

//j00ru.vexillium.org/?p=1455
14. Kaspersky: Equation group: Questions and an-

swers. http://securelist.com/files/2015/02/
Equation group questions and answers.pdf

15. Kirat, D., Vigna, G., Kruegel, C.: Barebox: efficient mal-
ware analysis on bare-metal. In: Proceedings of the 27th
Annual Computer Security Applications Conference, pp.
403–412. ACM (2011)

16. Kirat, D., Vigna, G., Kruegel, C.: Barecloud:
Bare-metal analysis-based evasive malware de-
tection. In: 23rd USENIX Security Symposium
(USENIX Security 14), pp. 287–301. USENIX As-
sociation, San Diego, CA (2014). URL https:

//www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/kirat

17. Kruegel, C.: Full system emulation: Achieving suc-
cessful automated dynamic analysis of evasive
malware. https://www.blackhat.com/docs/us-14/
materials/us-14-Kruegel-Full-System-Emulation-

Achieving-Successful-Automated-Dynamic-Analysis-

Of-Evasive-Malware.pdf (2014)
18. Lab, K.: The regin platform - nation-state ownage of

gsm networks. http://securelist.com/files/2014/11/
Kaspersky Lab whitepaper Regin platform eng.pdf

19. Lindorfer, M., Di Federico, A., Maggi, F., Comparetti,
P.M., Zanero, S.: Lines of malicious code: Insights into
the malicious software industry. In: Proceedings of the
28th Annual Computer Security Applications Confer-
ence, ACSAC ’12, pp. 349–358. ACM, New York, NY,
USA (2012)

20. Lindorfer, M., Kolbitsch, C., Milani Comparetti, P.: De-
tecting Environment-Sensitive Malware. In: Recent Ad-
vances in Intrusion Detection Symposium (2011)

21. Mercês, F.: Cpl malware - malicious control panel
items. http://www.trendmicro.com/cloud-content/us/

http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://securelist.com/blog/events/58184/
http://securelist.com/blog/events/58184/
https://github.com/a0rtega/pafish
http://doi.acm.org/10.1145/1455770.1455779
http://doi.acm.org/10.1145/1455770.1455779
http://dx.doi.org/10.1109/SP.2011.11
http://dx.doi.org/10.1109/SP.2011.11
http://doi.acm.org/10.1145/1858996.1859085
http://doi.acm.org/10.1145/1858996.1859085
http://www.cuckoosandbox.org/
http://www.cuckoosandbox.org/
http://j00ru.vexillium.org/?p=1455
http://j00ru.vexillium.org/?p=1455
http://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
http://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kirat
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kirat
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kirat
https://www.blackhat.com/docs/us-14/materials/us-14-Kruegel-Full-System-Emulation-Achieving-Successful-Automated-Dynamic-Analysis-Of-Evasive-Malware.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Kruegel-Full-System-Emulation-Achieving-Successful-Automated-Dynamic-Analysis-Of-Evasive-Malware.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Kruegel-Full-System-Emulation-Achieving-Successful-Automated-Dynamic-Analysis-Of-Evasive-Malware.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Kruegel-Full-System-Emulation-Achieving-Successful-Automated-Dynamic-Analysis-Of-Evasive-Malware.pdf
http://securelist.com/files/2014/11/Kaspersky_Lab_whitepaper_Regin_platform_eng.pdf
http://securelist.com/files/2014/11/Kaspersky_Lab_whitepaper_Regin_platform_eng.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-cpl-malware.pdf

The Other Guys 13

pdfs/security-intelligence/white-papers/wp-cpl-

malware.pdf
22. Microsoft: Device input and output control (ioctl).

https://msdn.microsoft.com/pt-br/library/windows/
desktop/aa363219%28v=vs.85%29.aspx

23. Microsoft: I/o request packets. https://

msdn.microsoft.com/en-us/library/windows/hardware/
hh439638%28v=vs.85%29.aspx

24. Microsoft: Queueuserapc func-
tion. [https://msdn.microsoft.com/en-
us/library/windows/desktop/ms684954%28v=vs.85%29.aspx

25. Microsoft: Reg notify class enumeration. https:

//msdn.microsoft.com/pt-br/library/windows/
hardware/ff560950%28v=vs.85%29.aspx

26. Microsoft: Running 32-bit applications. https:

//msdn.microsoft.com/en-us/library/windows/
desktop/aa384249%28v=vs.85%29.aspx

27. Microsoft: Trojan:win32/jorik.c. http://

www.microsoft.com/security/portal/threat/
encyclopedia/Entry.aspx?Name=Trojan:Win32/Jorik.C

28. Microsoft: Using cplapplet. https://

msdn.microsoft.com/en-us/library/windows/desktop/
cc144199%28v=vs.85%29.aspx

29. Microsoft: Win32/wootbot. http://www.microsoft.com/
security/portal/threat/ encyclopedia/

entry.aspx?name=Win32%2FWootbot
30. Microsoft: CreateRemoteThread. http://

msdn.microsoft.com/en-us/library/windows/desktop/
ms682437(v=vs.85).aspx (2013)

31. Microsoft: CmRegisterCallback. http://

msdn.microsoft.com/en-us/library/windows/hardware/
ff541918(v=vs.85).aspx (2014)

32. Microsoft: CmRegisterCallbackEx. http://

msdn.microsoft.com/en-us/library/windows/hardware/
ff541921(v=vs.85).aspx (2014)

33. More, A., Tapaswi, S.: Virtual machine introspection: to-
wards bridging the semantic gap. Journal of Cloud Com-
puting 3(1), 1–14 (2014). DOI 10.1186/s13677-014-0016-
2. URL http://dx.doi.org/10.1186/s13677-014-0016-2

34. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychron-
akis, M., Ioannidis, S.: Rage against the virtual machine:
Hindering dynamic analysis of android malware. In: Pro-
ceedings of the Seventh European Workshop on System
Security, EuroSec ’14, pp. 5:1–5:6. ACM, New York, NY,
USA (2014)

35. Pietrek, M.: Peering inside the pe: A tour of the
win32 portable executable file format. https://

msdn.microsoft.com/en-us/library/ms809762.aspx
36. Reloaded, P.: Skywing. http://uninformed.org/?v=8&a=

5
37. Rienhardt, F.: Kernel-basedmonitoringonwindows(32/64bit).

http://www.bitnuts.de/KernelBasedMonitoring.pdf
(2012)

38. Rodionov, E., Matrosov, A.: The evolution of tdl:
Conquering x64. http://www.eset.com/us/resources/
white-papers/The Evolution of TDL.pdf

39. Seifert, C., Steenson, R., Welch, I., Komisarczuk, P.,
Endicott-Popovsky, B.: Capture - a behavioral analysis
tool for applications and documents. Digital Investiga-
tion 4S, 23–30 (2007)

40. Sikorski, M., Honig, A.: Practical Malware Analysis: The
Hands-On Guide to Dissecting Malicious Software. No
Starch Press, San Francisco, CA, USA (2012)

41. skape, Skywing: Bypassing patchguard on windows x64.
http://uninformed.org/index.cgi?v=3&a=3

42. Skywing: Subverting patchguard version 2. http://

www.uninformed.org/?a=1&t=txt&v=6

43. Thomas, S., Sherly, K., Dija, S.: Extraction of memory
forensic artifacts from windows 7 ram image. In: Informa-
tion & Communication Technologies (ICT), 2013 IEEE
Conference on, pp. 937–942. IEEE (2013)

44. TrendMicro: Darkkomet. http://www.trendmicro.com/
vinfo/us/threat-encyclopedia/malware/DARKCOMET

45. TrendMicro: Tspy64 zbot.aanp. http://about-

threats.trendmicro.com/Malware.aspx ?language=

au&name=TSPY64 ZBOT.AANP
46. Willems, C., Holz, T., Freiling, F.: Toward automated dy-

namic malware analysis using cwsandbox. IEEE Security
& Privacy 5, 32–39 (2007)

47. Willems, C., Hund, R., Holz, T.: Cxpinspector:
Hypervisor-based, hardware-assisted system monitoring.
Tech. Rep. TR-HGI-2012-002, HGI, Ruhr-Universitat
Bochum (2012)

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-cpl-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-cpl-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-cpl-malware.pdf
https://msdn.microsoft.com/pt-br/library/windows/desktop/aa363219%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/aa363219%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh439638%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh439638%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh439638%28v=vs.85%29.aspx
[
https://msdn.microsoft.com/pt-br/library/windows/hardware/ff560950%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/hardware/ff560950%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/hardware/ff560950%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384249%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384249%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384249%28v=vs.85%29.aspx
http://www.microsoft.com/security/portal/threat/
http://www.microsoft.com/security/portal/threat/
encyclopedia/Entry.aspx?Name=Trojan:Win32/Jorik.C
https://msdn.microsoft.com/en-us/library/windows/desktop/cc144199%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc144199%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc144199%28v=vs.85%29.aspx
http://www.microsoft.com/security/portal/threat/
http://www.microsoft.com/security/portal/threat/
encyclopedia/entry.aspx?name=Win32%2FWootbot
encyclopedia/entry.aspx?name=Win32%2FWootbot
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682437(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682437(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682437(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff541918(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff541918(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff541918(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff541921(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff541921(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff541921(v=vs.85).aspx
http://dx.doi.org/10.1186/s13677-014-0016-2
https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://msdn.microsoft.com/en-us/library/ms809762.aspx
http://uninformed.org/?v=8&a=5
http://uninformed.org/?v=8&a=5
http://www.bitnuts.de/KernelBasedMonitoring.pdf
http://www.eset.com/us/resources/white-papers/The_Evolution_of_TDL.pdf
http://www.eset.com/us/resources/white-papers/The_Evolution_of_TDL.pdf
http://uninformed.org/index.cgi?v=3&a=3
http://www.uninformed.org/?a=1&t=txt&v=6
http://www.uninformed.org/?a=1&t=txt&v=6
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/DARKCOMET
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/DARKCOMET
http://about-threats.trendmicro.com/Malware.aspx
http://about-threats.trendmicro.com/Malware.aspx
?language=au&name=TSPY64_ZBOT.AANP
?language=au&name=TSPY64_ZBOT.AANP

	Introduction
	Background and Related Work
	System Overview
	Case Study
	Limitations
	Conclusions and Future Work

