
Advances in Mathematics of Communications doi:10.3934/amc.2010.4.169
Volume 4, No. 2, 2010, 169–187

EFFICIENT IMPLEMENTATION OF ELLIPTIC CURVE

CRYPTOGRAPHY IN WIRELESS SENSORS

Diego F. Aranha, Ricardo Dahab,
Julio López and Leonardo B. Oliveira

University of Campinas (UNICAMP)

Campinas - SP, CEP 13083-970, Brazil

(Communicated by Joan-Josep Climent)

Abstract. The deployment of cryptography in sensor networks is a challeng-
ing task, given the limited computational power and the resource-constrained
nature of the sensoring devices. This paper presents the implementation of
elliptic curve cryptography in the MICAz Mote, a popular sensor platform.
We present optimization techniques for arithmetic in binary fields, including
squaring, multiplication and modular reduction at two different security levels.
Our implementation of field multiplication and modular reduction algorithms
focuses on the reduction of memory accesses and appears as the fastest result
for this platform. Finite field arithmetic was implemented in C and Assembly
and elliptic curve arithmetic was implemented in Koblitz and generic binary
curves. We illustrate the performance of our implementation with timings for
key agreement and digital signature protocols. In particular, a key agreement
can be computed in 0.40 seconds and a digital signature can be computed and
verified in 1 second at the 163-bit security level. Our results strongly indicate
that binary curves are the most efficient alternative for the implementation of
elliptic curve cryptography in this platform.

1. Introduction

A Wireless Sensor Network (WSN) [5] is a wireless ad-hoc network consisting of
resource-constrained sensoring devices (limited energy source, low communication
bandwidth, small computational power) and one or more base stations. The base
stations are more powerful and collect the data gathered by the sensor nodes so
it can be analyzed. As any ad hoc network, routing is accomplished by the nodes
themselves through hop-by-hop forwarding of data. Common WSN applications
range from battlefield reconnaissance and emergency rescue operations to surveil-
lance and environmental protection.

WSNs may be organized in different ways. In flat WSNs, all nodes play similar
roles in sensing, data processing, and routing. In hierarchical WSNs, on the other
hand, the network is typically organized into clusters, with ordinary cluster mem-
bers and the cluster heads playing different roles. While ordinary cluster members
are responsible for sensing, the cluster heads are responsible for additional tasks
such as collecting and processing the sensing data from their cluster members, and
forwarding the results towards the base stations.

2000 Mathematics Subject Classification: Primary: 11-04; Secondary: 94A60.
Key words and phrases: Efficient software implementation, cryptographic engineering, elliptic

curve cryptography, finite field arithmetic.

169 c©2010 AIMS-SDU

http://dx.doi.org/10.3934/amc.2010.4.169

170 Diego F. Aranha, Ricardo Dahab, Julio López and Leonardo B. Oliveira

Besides the vulnerabilities already present in ad-hoc networks, WSNs pose addi-
tional challenges: the sensor nodes are commonly distributed on locations physically
accessible to adversaries; and the resources available in a sensor node are more lim-
ited than those in a conventional ad hoc network node, thus traditional solutions
are not adequate. For example, the fact that sensor nodes should be discardable
and consequently have low cost makes the integration of anti-tampering measures
on these devices difficult.

Conventional public key cryptography systems such as RSA and DSA are im-
practical in this scenario due to the low processing power of sensor nodes. Until
recently, security services such as confidentiality, authentication and integrity were
achieved exclusively by symmetric techniques [26, 13]. Nowadays, however, ellip-
tic curve cryptography (ECC) [22, 14] has emerged as a promising alternative to
traditional public key methods on WSNs [8], because of its lower processing and
storage requirements. These features motivate the search for increasingly efficient
algorithms and implementations of ECC for such devices. The usual target platform
is the MICAz Mote [10], a node commonly used on real WSN deployments, whose
main characteristics are the low availability of RAM memory and the high cost of
memory instructions, memory addressing and bitwise shifts by arbitrary amounts.

This work proposes optimizations for implementing ECC over binary fields, im-
proving its limits of performance and viability. Experimental results show that
binary elliptic curves offer significant computational advantages over prime curves
when implemented in WSNs. Note that this observation contradicts a common
misconception that sensor nodes are not sufficiently equipped to compute elliptic
curve arithmetic over binary fields in an efficient way [8, 4].

Our main contributions in this work are:

• Efficient implementations of multiplication, squaring, modular reduction and

inversion in F2163 and F2233 : optimized versions of known algorithms are
presented, reducing the number of memory accesses to obtain performance
gains. The new optimizations produce the fastest implementation of binary
field arithmetic published for this platform;
• Efficient implementation of elliptic curve cryptography: point multiplication

algorithms are implemented on Koblitz curves and generic binary curves. The
time for a scalar multiplication of a random point in a binary curve is 61%
faster than the best implementation so far [12] and 57% faster than the best
implementation over a prime curve [7] at the 160-bit security level. We also
present the first point multiplication timings at the 233-bit security level in
this platform. Performance is illustrated by executions of key agreement and
digital signature protocols.

The remaining sections of this paper are organized as follows. Related work
is presented in Section 2 and elementary elliptic curve concepts are introduced
in Section 3. The platform characteristics are presented in Section 4. Section 5
investigates efficient implementations of finite field arithmetic in the target platform
while Section 6 investigates efficient elliptic curve arithmetic. Section 7 presents
implementation results and Section 8 concludes the paper.

2. Related work

Cryptographic protocols are used to establish security services in WSNs. Key
agreement is a fundamental protocol in this context because it can be used to nego-
tiate cryptographic keys suitable for fast and energy-efficient symmetric algorithms.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

Efficient implementation of ECC in wireless sensors 171

One possible solution for key agreement in WSNs is the deployment of pairing-based
protocols, such as TinyTate [23] and TinyPBC [25], with the added advantage of
not requiring communication. Here instead we focus on the performance side and
assume that a simple one-pass Elliptic Curve Diffie-Hellman [3] protocol is employed
for key agreement. With this assumption, different implementations of ECC can be
compared by the cost of multiplying a random elliptic point by a random integer.

Gura et al. [8] presented the first implementation results of ECC and RSA on
ATmega128 microcontrollers and demonstrated the superiority of the former over
the latter. In Gura’s work, prime field arithmetic was implemented in C and As-
sembly and a point multiplication took 0.81 seconds on a 8MHz device. Uhsadel
et al. [32] later presented an expected time of 0.76 seconds for computing a point
multiplication in a 7.3728MHz device. The fastest implementation of prime curves
so far [7] explores the potential of elliptic curves with efficient computable endo-
morphisms defined over optimal prime fields and computes a point multiplication
in 5.5 million cycles, or 0.745 second.

For binary curves, Malan et al. [20] implemented ECC using polynomial basis
and presented results for the Diffie-Hellman key agreement protocol. A public key
generation, which consists of a point multiplication, was computed in 34 seconds.
Yan and Shi [34] implemented ECC over F2163 and obtained a point multiplication in
13.9 seconds, suggesting that binary curves had too high a cost for sensors’ current
technology. Eberle et al. [4] implemented ECC in Assembly over F2163 and obtained
a point multiplication in 4.14 seconds, making use of architectural extensions for
additional acceleration. NanoECC [31] specialized portions of the MIRACL arith-
metic library [28] in the C programming language for efficient execution in sensor
nodes, resulting in a point multiplication in 2.16 seconds over prime fields and 1.27
seconds over binary fields. Later, TinyECCK [29] presented an implementation of
ECC over binary curves which takes into account the platform characteristics to
optimize finite field arithmetic and obtained a point multiplication in 1.14 second.
Recently, Kargl et al. [12] investigated algorithms resistant to simple power analysis
and obtained a point multiplication in 0.7633 second on a 8MHz device. Table 1
presents the increasing efficiency of ECC in WSNs.

Finite field Work Execution time (seconds)

Binary

Malan et al. [20] 34
Yan and Shi [34] 13.9
Eberle et al. [4] 4.14
NanoECC [31] 2.16
TinyECCK [29] 1.14
Kargl et al. [12] 0.83

Prime

Wang and Li. [33] 1.35
NanoECC [31] 1.27
Gura et al. [8] 0.87

Uhsadel et al. [32] 0.76
TinySA [7] 0.745

Table 1. Timings for scalar multiplication of a random point on
a MICAz Mote at the 160-bit security level. The timings are nor-
malized for a clock frequency of 7.3728MHz.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

172 Diego F. Aranha, Ricardo Dahab, Julio López and Leonardo B. Oliveira

3. Elliptic curve cryptography

An elliptic curve E over a field K is the set of solutions (x, y) ∈ K × K which
satisfy the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where a1, a2, a3, a4, a6 ∈ K and the curve discriminant is ∆ 6= 0; together with a
point at infinity denoted by O. If K is a field of characteristic 2, then the curve is
called a binary elliptic curve and there are two cases to consider. If a1 6= 0, then an
admissible change of variables transforms E to the non-supersingular binary elliptic

curve of equation

y2 + xy = x3 + ax2 + b

where a, b ∈ F2m and ∆ = b. A non-supersingular curve with a ∈ {0, 1} and b = 1
is also a Koblitz curve. If a1 = 0, then an admissible change of variables transforms
E to the supersingular binary elliptic curve

y2 + cy = x3 + ax + b

where a, b, c ∈ F2m and ∆ = c4.
The number of points on the curve E(F2m), denoted by #E(F2m), is called

the curve order over the field F2m . The Hasse bound enunciates in this case that
n = 2m + 1 − t and |t| ≤ 2

√
2m, where t is the trace of Frobenius. A curve can

be generated with a prescribed order using the complex multiplication method [15]
or the curve order can be explicitly computed in binary curves using the approach
due to Satoh, Skjernaa and Taguchi [27]. Non-supersingularity comes from the fact
that t is not a multiple of the characteristic 2 of the underlying finite field [9].

The set of points {(x, y) ∈ E(F2m)}∪{O} under the addition operation + (chord
and tangent) forms an additive group, with O as the identity element. Given
an elliptic point P ∈ E(F2m) and an integer k, the operation kP , called point

multiplication, is defined by the addition of the point P to itself k − 1 times:

kP = P + P + . . . + P
︸ ︷︷ ︸

k−1 additions

.

Public key cryptography protocols, such as the Elliptic Curve Diffie-Hellman
key agreement [3] and the Elliptic Curve Digital Signature Algorithm [3], employ
point multiplication as a fundamental operation; and their security is based on the
difficulty of solving the Elliptic Curve Discrete Logarithm Problem (ECDLP). This
problem consists in finding the discrete logarithm k given a point kP . Criteria
for selecting suitable secure curves are a complex subject and a matter of much
discussion. We adopt the well-known standard NIST curves as a conservative choice,
but we refer the reader to [3] for further details on how to generate efficient curves
where instances of the ECDLP are computationally hard.

We restrict the discussion to non-supersingular curves because supersingular
curves are not suitable for elliptic curve cryptosystems based on the ECDLP prob-
lem [21]. However, supersingular curves are particularly of interest in applications
of pairing-based protocols on WSNs [25].

4. The platform

The MICAz Mote sensor node is equipped with an ATmega128 8-bit processor
clocked at 7.3728MHz. The program code is loaded from an 128KB EEPROM chip

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

Efficient implementation of ECC in wireless sensors 173

and runtime memory is stored in a 4KB RAM chip [10]. The ATmega128 proces-
sor is a typical RISC architecture with 32 registers, but six of them are special
pointer registers. Since at least one register is needed to store temporary results or
data loaded from memory, 25 registers are generally available for arithmetic. The
instruction set is also reduced, as only 1-bit shift/rotate instructions are natively
supported. Bitwise shifts by arbitrary amounts can then be implemented with com-
binations of shift/rotate instructions and other instructions. The processor pipeline
has two stages and memory instructions always cause pipeline stalls. Arithmetic
instructions with register operands cost 1 cycle and memory instructions or memory
addressing cost 2 processing cycles [1]. Table 2 presents the instructions provided
by the platform which can be used for the implementation of binary field arithmetic.

Instruction Description Use Cost

rsl, lsl Right/left 1-bit shift Multi-precision 1-bit shift 1 cycle
rol, ror Right/left 1-bit rotate Multi-precision 1-bit shift 1 cycle
swap Swap high and low nibbles Shift by 4 bits 1 cycle

bld, bst Bit load/store from/to flag Shift by 7 bits 1 cycle
eor Bitwise exclusive OR Binary field addition 1 cycle

ld, st Memory load/store Read operands/write results 2 cycles
adiw, sbiw Pointer arithmetic Memory addressing 2 cycles

Table 2. Relevant instructions for the implementation of binary
field arithmetic.

5. Algorithms for finite field arithmetic

In this section we will represent the elements of F2m using a polynomial basis. Let
f(z) be an irreducible binary trinomial or pentanomial of degree m. The elements
of F2m are the binary polynomials of degree at most m− 1. A field element a(z) =
∑m−1

i=0 aiz
i is associated with the binary vector a = (am−1, . . . , a1, a0) of length m.

In a software implementation in an 8-bit processor, the element a is stored as a
vector of n = ⌈m/8⌉ bytes. The field operations in F2m can be implemented by
common processor instructions, such as logical shifts (≫,≪) and addition modulo
2 (XOR, ⊕).

5.1. Multiplication. The computation of kP is the most time-consuming oper-
ation on ECC and this operation depends directly on the finite field arithmetic. In
particular, a fast field multiplication is critical for the performance of ECC.

Two different strategies are commonly considered for the implementation of mul-
tiplication in F2m . The first one consists in applying the Karatsuba’s algorithm [11]
to divide the multiplication in sub-problems and solve each problem independently
by the following formula [9] (with a(z) = A1z

⌈m/2⌉+A0 and b(z) = B1z
⌈m/2⌉+B0):

c(z) = a(z) · b(z) = A1B1z
m + [(A1 +A0)(B1 +B0)+ A1B1 + A0B0]z

⌈m/2⌉ + A0B0.

Naturally, Karatsuba multiplication imposes some overhead for the divide and con-
quer steps. The second one consists in applying a direct algorithm like the López-
Dahab (LD) binary field multiplication (Algorithm 1) [19]. In this algorithm, the
precomputation window is usually chosen as t = 4 and the precomputation table
T has size |T | = 16(n + 1), since each element T [i] requires at most n + 1 bytes
to store the result of u(z)b(z). Operand a is scanned from left to right and pro-
cessed in groups of 4 bits. In an 8-bit processor, the algorithm is comprised by two

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

174 Diego F. Aranha, Ricardo Dahab, Julio López and Leonardo B. Oliveira

phases, where the lower halves of bytes of a are processed in the first phase and the
higher halves are processed in the second phase. These phases are separated by an
intermediate shift which implements multiplication by zt.

Algorithm 1 López-Dahab multiplication in F2m [19].

Input: a(z) = a[0..n− 1], b(z) = b[0..n− 1].
Output: c(z) = c[0..2n− 1].

1: Compute T (u) = u(z)b(z) for all polynomials u(z) of degree lower than t.
2: c[0 . . . 2n− 1]← 0
3: for k ← 0 to n− 1 do
4: u← a[k]≫ t
5: for j ← 0 to n do
6: c[j + k]← c[j + k]⊕ T (u)[j]
7: end for
8: end for
9: c(z)← c(z)zt

10: for k ← 0 to n− 1 do
11: u← a[k] mod 2t

12: for j ← 0 to n do
13: c[j + k]← c[j + k]⊕ T (u)[j]
14: end for
15: end for
16: return c

Conventionally, the series of additions involved in the LD multiplication are im-
plemented through additions over subparts of a double-precision vector. In order
to reduce the number of memory accesses employed during these additions, we em-
ploy a rotating register window. This window simulates the series of additions by
accumulating consecutive writes into registers. After a final result is obtained in
the lowest precision register, this value is written into memory and this register
is free to participate as the highest precision register. Figure 1 shows a rotating
register window with n + 1 registers. We modify the LD multiplication algorithm
by integrating a rotating register window. The result of this integration is referred
as LD multiplication with registers and shown as Algorithm 2. Figure 2 presents
this modification graphically. These descriptions of the algorithm assumes that n
general-purpose registers are available for arithmetic. If this is not the case, (e.g.
multiplication in F2233 on this platform) the accumulation in the register window
must be divided in different blocks in a multistep fashion and each block processed
with a different rotating register window. A slight overhead is introduced between
the processing of consecutive blocks because some registers must be written into
memory and freed before they can be used in a new rotating register window.

An additional suggested optimization is the separation of the precomputation
table T in different blocks of 256 bytes, where each block is stored on a 256-byte
aligned memory address. This optimization accelerates memory addressing because
offsets lower than 256 can be computed by a simple 1-cycle addition instruction,
avoiding expensive pointer arithmetic. Another optimization is to store the results
of the first phase of the algorithm already shifted, eliminating some redundant
memory reads to reload the intermediate result into registers for multi-precision
shifting. A last optimization is the embedding of modular reduction at the end of

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

Efficient implementation of ECC in wireless sensors 175

Figure 1. Rotating register window with n + 1 registers.

Figure 2. López-Dahab multiplication with registers of two field
elements represented as n-byte vectors in an 8-bit processor.

Algorithm 2 Proposed optimization for multiplication in F2m using n+1 registers.

Input: a(z) = a[0..n− 1], b(z) = b[0..n− 1].
Output: c(z) = c[0..2n− 1].
Note: vi denotes the vector of n + 1 registers (ri−1, . . . , r0, rn, . . . , ri).

1: Compute T (u) = u(z)b(z) for all polynomials u(z) of degree lower than 4.
2: Let ui be the 4 most significant bits of a[i].
3: v0 ← T (u0), c[0]← r0

4: v1 ← v1 ⊕ T (u1), c[1]← r1

5: · · ·
6: vn−1 ← vn−1 ⊕ T (un−1), c[n− 1]← rn−1

7: c← ((rn−2, . . . , r0, rn) || (c[n− 1], . . . , c[0]))≪ 4
8: Let ui be the 4 least significant bits of a[i].
9: v0 ← T (u0), c[0]← c[0]⊕ r0

10: · · ·
11: vn−1 ← vn−1 ⊕ T (un−1), c[n− 1]← c[n− 1]⊕ rn−1

12: c[n . . . 2n− 1]← c[n . . . 2n− 1]⊕ (rn−2, . . . , r0, rn)
13: return c

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

176 Diego F. Aranha, Ricardo Dahab, Julio López and Leonardo B. Oliveira

the multiplication algorithm. This trick allows the reuse of values already loaded
into registers to speed up modular reduction. The following analysis does not take
these suggested optimizations into account.

Analysis of multiplication algorithms. Observing the fact that the more
expensive instructions in the target platform are related to memory accesses, the
behavior of different algorithms was analyzed to estimate their performance. This
analysis traces the cost of different algorithms in terms of memory accesses (reads
and writes) and arithmetic instructions (XOR).

Without considering partial multiplications, the Karatsuba algorithm in a binary
field executes approximately 11n memory reads, 7n memory writes and 4n XOR
instructions.

For LD multiplication, analysis shows that building the precomputation table
requires n memory reads to obtain the values b[i] and |T | writes and 11n XOR
instructions for filling the table. Inside each inner loop, the algorithm executes
2(n + 1) memory reads, n + 1 writes and n + 1 XOR instructions. In each outer
loop, the algorithm executes n memory accesses to read the values a[k] and n
iterations of the inner loop, totalizing n + 2n(n + 1) reads, n(n + 1) writes and
n(n + 1) XOR instructions. The logical shift of c(z) computed at the intermediate
stage requires 2n memory reads and writes. Considering the initialization of c,
we have 3n + 2(n + 2n(n + 1)) memory reads, |T | + 2(2n) + 2n(n + 1) writes and
11n + 2n(n + 1) XOR instructions.

For the proposed optimization (Algorithm 2), building the precomputation table
requires n memory reads to obtain the values b[i] and |T | writes and 11n XOR
instructions for filling the table. Line 3 of the algorithm executes n+1 memory reads
and 1 write on c[0]. Lines 4-6 execute n+1 memory reads, 1 write on c[i] and n+1
XOR instructions, all this n− 1 times. The intermediate shift executes n reads and
(2n) writes. Lines 9-11 execute n+1 memory reads, 1 read and write on c[i] and n+2
XOR instructions, all this n times. The final operation costs n memory reads, writes
and XOR instructions. The algorithm thus requires a total of 3n+n(n+1)+n(n+2)
reads, |T |+n+2n+2n writes and 11n+(n−1)(n+1)+n(n+2)+n XOR instructions.

Table 3 presents the costs associated with memory operations for LD multipli-
cation, LD with registers multiplication and Karatsuba multiplication. Table 4
presents approximate costs of the algorithms in terms of executed memory instruc-
tions for the fields F2163 and F2233 .

Number of instructions in terms of vectors of n bytes

Method Reads Writes XOR

López-Dahab 4n2 + 9n |T |+ 2n2 + 6n 2n2 + 13n

LD with registers 2n2 + 6n |T |+ 5n 2n2 + 14n − 1

Karatsuba 11n + 3M(⌈n/2⌉) 7n + 3M(⌈n/2⌉) 4n + 3M(⌈n/2⌉)

Table 3. Costs in number of executed instructions for the multi-
plication algorithms in F2m . M(x) denotes the cost of a multipli-
cation algorithm which multiplies two x-byte vectors.

We can see from Table 3 that the number of memory accesses for LD with
registers is drastically reduced in comparison with the original algorithm, reducing
the number of reads by half and the number of writes by a quadratic factor. The
comparison between LD with registers and Karatsuba+LD with registers favors
the first (lower number of writes) on both finite fields. One problem with this

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

Efficient implementation of ECC in wireless sensors 177

n = 21 n = 30

Method Reads Writes XOR Reads Writes XOR

López-Dahab 1953 1452 1155 3870 2476 2190

LD with registers 1071 457 1175 1980 646 2219

Karatsuba+LD 1980 1647 1239 3310 2518 1984

Karatsuba+LD with registers 1155 888 1269 1898 1134 2025

Table 4. Costs in number of executed instructions for the multi-
plication algorithms in F2163 and F2233 . The Karatsuba algorithm
in F2233 executes two instances of cost M(15) and one instance of
cost M(14) to better approximate the results.

analysis is that it assumes that the processor has at least n general-purpose registers
available for arithmetic. This is not true in F2233 , because the algorithm requires
31 registers for a full rotating register window. The decision between a multistep
implementation of LD with registers and Karatsuba+LD with registers will depend
on the actual implementation of the algorithms.

5.2. Modular reduction. The NIST irreducible polynomial for the finite field
F2163 , f(z) = z163 + z7 + z6 + z3 +1, allows a fast modular reduction algorithm. Al-
gorithm 3 [29] presents an adaptation of this algorithm for 8-bit processors. In this
algorithm, reducing a digit c[i] of the upper half of the vector c requires six memory
accesses to read and write c[i] on lines 3-5. Four of them are redundant because ide-
ally we only need to read and write c[i] once. We eliminate these redundant accesses
by employing a rotating register window of three registers which accumulate writes
into registers before a final result can be written into memory. This optimization
is given in Algorithm 4 along with the substitution of some bitwise shifts which
are expensive in this platform for cheaper ones. Since the processor only supports
1-bit and 4-bit shifts natively, we further replace the various expensive shifts in the
accumulate function R by table lookups on 256-byte tables. These tables are stored
on 256-byte aligned memory addresses to speed up memory addressing. The new
version of the accumulate function is depicted in Algorithm 5.

Algorithm 3 Fast modular reduction by f(z) = z163 + z7 + z6 + z3 + 1.

Input: c(z) = c[0..40].
Output: c(z) mod f(z) = c[0..20].

1: for i← 40 downto 21 do
2: t← c[i]
3: c[i− 19]← c[i− 19]⊕ (t≫ 4)⊕ (t≫ 5)
4: c[i− 20]← c[i− 20]⊕ (t≪ 4)⊕ (t≪ 3)⊕ t⊕ (t≫ 3)
5: c[i− 21]← c[i− 21]⊕ (t≪ 5)
6: end for
7: t← c[20]≫ 3
8: c[0]← c[0]⊕ (t≪ 7)⊕ (t≪ 6)⊕ (t≪ 3)⊕ t
9: c[1]← c[1]⊕ (t≫ 1)⊕ (t≫ 2)

10: c[20]← c[20] ∧ 0x07
11: return c

For the NIST irreducible polynomial in F2233 on 8-bit processors, we present
Algorithm 6, a direct adaptation of the standard algorithm. This algorithm only

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

178 Diego F. Aranha, Ricardo Dahab, Julio López and Leonardo B. Oliveira

Algorithm 4 Fast modular reduction in F2163 with rotating register window.

Input: c(z) = c[0..40].
Output: c(z) mod f(z) = c[0..20].
Note: The accumulate function R(r0, r1, r2, t) executes:

s0 ← t≪ 4
r0 ← (r0 ⊕ t⊕ (t≫ 1))≫ 4
r1 ← r1 ⊕ s0 ⊕ (t≪ 3)⊕ t⊕ (t≫ 3)
r2 ← s0 ≪ 1

1: rb ← 0, rc ← 0
2: for i← 40 downto 25 by 3 do
3: R(rb, rc, ra, c[i]), c[i− 19]← c[i− 19]⊕ rb

4: R(rc, ra, rb, c[i− 1]), c[i− 20]← c[i− 20]⊕ rc

5: R(ra, rb, rc, c[i− 2]), c[i− 21]← c[i− 21]⊕ ra

6: end for
7: R(rb, rc, ra, c[22]), c[3]← c[3]⊕ rb

8: R(rc, ra, rb, c[21]), c[2]← c[2]⊕ rc

9: ra ← c[1]⊕ ra

10: rb ← c[0]⊕ rb

11: t← c[20]
12: c[20]← t ∧ 0x07
13: t← t≫ 3
14: c[0]← rb ⊕ (t≪ 7)⊕ (t≪ 6)⊕ (t≪ 3)⊕ t
15: c[1]← ra ⊕ (t≫ 1)⊕ (t≫ 2)
16: return c

Algorithm 5 Optimized version of the accumulate function R.

Input: r0, r1, r2, t.
Output: r0, r1, r2.

1: r0 ← r0 ⊕ T0[t]
2: r1 ← r1 ⊕ T1[t]
3: r2 ← t≪ 5

executes 1-bit or 7-bit shifts. These two shifts can be translated efficiently to the
processor instruction set, because 1-bit shifts are supported natively and 7-bit shifts
can be emulated efficiently. Hence lookup tables are not needed and the only op-
timization made during implementation of Algorithm 6 was complete unrolling of
the main loop and straightforward elimination of consecutive redundant memory
accesses.

Analysis of modular reduction algorithms. As pointed by Seo et al. [29],
Algorithm 3 executes many redundant memory accesses: 4 memory reads and 3
writes during each loop iteration and additional 4 reads and 3 writes on the final
step, which sum up to 88 reads and 66 writes. The proposed optimization reduces
the number of memory operations to 43 reads and 23 writes. Despite Algorithm 5
being specialized for the chosen polynomial, the register window technique can be
applied to any irreducible polynomial with the non-null coefficients located in the
first word. The implementation of Algorithm 6 also reduces the number of memory

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

Efficient implementation of ECC in wireless sensors 179

Algorithm 6 Fast modular reduction by f(z) = z233 + z74 + 1.

Input: c(z) = c[0..58].
Output: c(z) mod f(z) = c[0..29].

1: for i← 58 downto 32 by 2 do
2: t0 ← c[i]
3: t1 ← c[i− 1]
4: c[i− 19]← c[i− 19]⊕ (t0 ≫ 7)
5: c[i− 20]← c[i− 20]⊕ (t0 ≪ 1)⊕ (t1 ≫ 7)
6: c[i− 21]← c[i− 21]⊕ (t1 ≪ 1)
7: c[i− 29]← c[i− 29]⊕ (t0 ≫ 1)
8: c[i− 30]← c[i− 30]⊕ (t0 ≪ 7)⊕ (t1 ≫ 1)
9: c[i− 31]← c[i− 31]⊕ (t1 ≪ 7)

10: end for
11: t0 ← c[30]
12: c[0]← c[0]⊕ (t0 ≪ 7)
13: c[1]← c[1]⊕ (t0 ≫ 1)
14: c[10]← c[10]⊕ (t0 ≪ 1)
15: c[11]← c[11]⊕ (t0 ≫ 7)
16: t0 ← c[29]≫ 1
17: c[0]← c[0]⊕ t0
18: c[9]← c[9]⊕ (t0 ≪ 2)
19: c[10]← c[10]⊕ (t0 ≫ 6)
20: c[29]← c[29] ∧ 0x01
21: return c

accesses, since a standard implementation executes 122 reads and 92 writes while
our implementation executes 92 memory reads and 62 writes.

5.3. Squaring. The square of a finite field element a(z) ∈ F2m is given by a(z)2 =
∑m−1

i=0 aiz
2i = am−1z

2m−2+· · ·+a2z
4+a1z

2+a0. The binary representation of a(z)2

can be computed by inserting a “0” bit between each pair of successive bits on the
binary representation of a(z) and accelerated by introducing a 16-byte lookup table.
If modular reduction is computed in a separate step, reduntant memory operations
are required to store the squaring result and reload this result for reduction. This
can be improved by embedding the modular reduction step directly into the squaring
algorithm. This way, the lower half of the digit vector a is expanded in the usual
fashion and the upper half digits are expanded and immediately reduced. If modular
reduction of a single byte requires expensive shifts, additional lookup tables can be
used to store the expanded bytes already reduced. This is illustrated in Algorithm 7
which computes squaring in F2163 using the same small rotating register window
as Algorithm 5 and three additional 16-byte lookup tables T0, T1 and T2. For
squaring in F2233 , we also combine byte expansion of the digit vector’s lower half
with Algorithm 6 for fast reduction.

5.4. Inversion. For inversion in F2m we implemented the Extended Euclidean
Algorithm for polynomials [9]. Since this algorithm requires flexible left shifts by
arbitrary amounts, we implemented six dedicate shifting functions to shift a binary
field element by every amount possible for an 8-bit processor. The core of a multi-
precision left shift algorithm is the sequence of instructions which receives as input

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

180 Diego F. Aranha, Ricardo Dahab, Julio López and Leonardo B. Oliveira

Algorithm 7 Squaring in F2163 .

Input: a(z) = a[0..20].
Output: c(z) = a(z)2 mod f(z).
Note: The accumulate function R(r0, r1, r2, t) executes:

r0 ← r0 ⊕ T0[t], r1 ← r1 ⊕ T1[t], r2 ← r2 ⊕ T2[t]

1: For each 4-bit combination u, T (u) = (0, u3, 0, u2, 0, u1, 0, u0).
2: for i← 0 to 9 do

3: c[2i]← T (a[i] ∧ 0x0F)
4: c[2i + 1]← T (a[i]≫ 4)
5: end for

6: c[20]← T (a[10] ∧ 0x0F)
7: rb ← 0, rc ← 0, j ← 20
8: t0 ← a[20] ∧ 0x0F
9: R(rb, rc, ra, t0), c[21]← rb

10: for i← 19 downto 13 by 3 do

11: ao ← a[i], t0 ← a0 ≫ 4, t1 ← a0 ∧ 0x0F
12: R(rc, ra, rb, t0), c[j]← c[j] ⊕ rc

13: R(ra, rb, rc, t1), c[j − 1]← c[j − 1]⊕ ra

14: a0 ← a[i− 1], t0 ← a0 ≫ 4, t1 = a0 ∧ 0x0F
15: R(rb, rc, ra, t0), c[j − 2]← c[j − 2]⊕ rb

16: R(rc, ra, rb, t1), c[j − 3]← c[j − 3]⊕ rc

17: a0 = a[i− 2], t0 = a0 ≫ 4, t1 = a0 ∧ 0x0F

18: R(ra, rb, rc, t0), c[j − 4]← c[j − 4]⊕ ra

19: R(rb, rc, ra, t1), c[j − 5]← c[j − 5]⊕ rb

20: j ← j − 6
21: end for

22: t0 = a[10]≫ 4
23: R(rc, ra, rb, t0), c[2]← c[2] ⊕ rc

24: ra ← c[1]⊕ ra, rb ← c[0] ⊕ rb

25: t← c[21]
26: ra ← ra ⊕ t⊕ (t≪ 3)⊕ (t≪ 4)⊕ (t≫ 3)
27: rb ← rb ⊕ (t≪ 5)
28: t← c[20]
29: c[20]← t ∧ 0x07
30: t← t≫ 3
31: c[0]← rb ⊕ (t≪ 7)⊕ (t≪ 6)⊕ (t≪ 3) ⊕ t
32: c[1]← ra ⊕ (t≫ 1) ⊕ (t≫ 2)
33: return c

the amount to shift i, a register r and a carry register rc storing the bits shifted
out in the last iteration; and produce (r ≪ i)⊕ rc as output and r ≫ (8− i) as new
carry. Table 5 lists the required instructions and costs in cycles for shifting a single
byte in each of the implemented multi-precision shifts by i bits. Each instruction
in the table cost 1 cycle, thus the cost to compute the core of a multi-precision left
shift by i bits is just the number of rows in the i-th row of the table.

6. Algorithms for elliptic curve arithmetic

We have selected fast algorithms for elliptic curve arithmetic in three situations:
multiplying a random point P by a scalar k, multiplying the generator G by a scalar
k and simultaneously multiplying two points P and Q by scalars k and l to obtain

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

Efficient implementation of ECC in wireless sensors 181

i Intructions

1 rol r

2

clr rt

lsl r

rol rt

lsl r

rol rt

eor r, rc

mov rc, rt

i Intructions

3

clr rt

lsl r

rol rt

lsl r

rol rt

lsl r

rol rt

eor r, rc

mov rc, rt

i Intructions

4

swap r

mov rt, r

andi r, 0xF0

andi rt, 0x0F

eor r, rc

mov rc, rt

5

swap r

mov rt, r

andi r, 0xF0

andi rt, 0x0F

lsl r

rol rt

eor r, rc

mov rc, rt

i Intructions

6

bst rt, 0

bld r, 6

bst rt, 1

bld r, 7

lsr rt

lsr rt

eor r, rc

mov rc, rt

7

bst rt, 0

bld r, 7

lsr rt

eor r, rc

mov rc, rt

Table 5. Processor instructions used to efficiently implement
multi-precision left shifts by i bits. The input register is r, the
carry register is rc and a temporary register is rt. When i = 1, rc
is represented by the carry processor flag.

kP + lQ. Our implementation uses mixed addition with projective coordinates [18],
given that the ratio of inversion to multiplication is 16.

For multiplying a random point by a scalar, we choose Solinas’ τ-adic non-

adjacent form (TNAF) representation [30] with w = 4 for Koblitz curves (4-TNAF
method with 4 precomputation points) and the method due to López and Dahab [17]
for random binary curves. Solinas’ algorithm explores the optimizations provided
by Koblitz curves and accelerates the computation of kP by substituting point
doublings for applications of the efficiently computable endomorphism based on the
Frobenius map τ(x, y) = (x2, y2). The method due to López and Dahab does not use
precomputation, its execution time is constant and each iteration of the algorithm
executes the same number of operations, independently of the bit pattern in k [9].

For multiplying the generator, we employ the same 4-TNAF method for Koblitz
curves; and for generic curves, we employ the Comb method [16] with 16 precom-
puted points. Precomputed tables for the generator are stored in ROM memory to
reduce RAM consumption. Larger precomputed tables can be used if program size
is not an issue.

For simultaneous multiplication, we implement the interleaving method with 4-
TNAFs for Koblitz curves and the interleaving of 4-NAFs with integers represented
in non-adjacent form (NAF) for generic curves [6]. The same table built for mul-
tiplying the generator is used during simultaneous multiplication in Koblitz curves
when point P or Q is the generator G. An additional small table of 4 points is
precomputed for the generator and stored in ROM to provide the same situation
with generic curves.

7. Implementation results

The compiler and assembler used is the GCC 4.1.2 suite for ATmega128 with
optimization level -O2. The timings were measured with the software AVR Studio
4.14 [2]. This tool is a cycle-accurate simulator frequently used to prototype soft-
ware for execution on the target platform. We have written a specialized library
containing the software implementations.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

182 Diego F. Aranha, Ricardo Dahab, Julio López and Leonardo B. Oliveira

Finite field arithmetic. The algorithms for squaring, multiplication, modular
reduction and inversion in the finite field were implemented in the C language
and Assembly. Table 6 presents the costs measured in cycles of each implemented
operation in F2163 and F2233 . Since the platform does not have cache memory or
out-of-order execution, the finite field operations always cost the same number of
cycles and the timings were taken exactly once, except for inversion. The timing for
inversion was taken as the average of 50 timings measured on consecutive executions
of the algorithm.

m = 163 m = 233

Algorithm C language Assembly C language Assembly

Squaring 629 430 908 463

Modular Squaring 1154 570 1340 956

LD Mult. with registers 13838 4508 – 8314

LD Mult. (new variant) 9738 – 18028 –

Karatsuba+LD with registers 12246 6968 25850 9261

Modular reduction 606 430 911 620

Inversion 243790 81365 473618 142986

Table 6. Timings in cycles for arithmetic algorithms in F2m .

From Table 6, m = 163, we can observe that in the C language implementa-
tion, Karatsuba+LD with registers multiplication is more efficient than the direct
application of LD with registers multiplication. This contradicts the preliminary
analysis based on the number of memory accesses executed by each algorithm. This
can be explained by the fact that the LD with registers multiplication uses 21 of
the 32 general-purpose registers to store intermediate results during multiplication.
Several additional registers are also needed to store memory addresses and tempo-
rary variables for arithmetic operations. The inefficiency found is thus originated
from the difficulty of the C compiler to maintain all intermediate values on registers.
To confirm this limitation, a new variant of LD with registers multiplication which
reduces the number of temporary variables needed was also implemented. This vari-
ant processes 32 bits of the operand in each interaction compared to the original
version of LD multiplication which processes 4 bits in each interaction. The new
variant reduces the number of memory accesses while keeping a smaller number of
temporary variables and thus exhibits the expected performance. For the squaring
algorithm, we can see that embedding the modular reduction step reduces the cost
of modular squaring significantly compared with the sequential execution of squar-
ing plus modular reduction. Table 6, m = 233, shows that the Karatsuba algorithm
in F2233 indeed does not improve performance over the multistep implementation
of LD with registers multiplication, even if the processor does not have enough
registers to store the full rotating register window. The Assembly implementations
demonstrate the compiler inefficiency in generating optimized code and allocating
resources for the target platform, showing considerably faster timings.

Elliptic curve arithmetic. Point multiplication was implemented on elliptic
curves standardized by NIST. Table 7 presents the execution time of the multi-
plication of a random point P by a random integer k of 163 or 233 bits, with the
underlying finite field arithmetic implemented in C or Assembly. In each of the pro-
gramming languages, the fastest field multiplication algorithm is used. The results

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

Efficient implementation of ECC in wireless sensors 183

were computed by the arithmetic mean of the timings measured on 50 consecutive
executions of the algorithm.

C language Assembly

Curve kG kP kP + lQ kG kP kP + lQ
NIST-K163 (Koblitz) 0.56 0.67 1.24 0.29 0.32 0.60
NIST-B163 (Generic) 0.77 1.55 2.21 0.37 0.74 1.04

NIST-K233 (Koblitz) 1.26 1.48 2.81 0.66 0.73 1.35
NIST-B233 (Generic) 1.94 3.90 5.35 0.94 1.89 2.52

Table 7. Timings in seconds for point multiplication.

Table 8 compares the performance of the proposed implementation with
TinyECCK [29] and the work of Kargl et al. [12], the previously fastest binary
curves implementation in C and Assembly published for this platform. For the C
implementation, we achieve faster timings on all finite field arithmetic operations
with improvements over 50%. For the Assembly implementation, we obtain speed
improvements on field squaring and multiplication and exactly the same timing for
modular reduction, but the polynomial used by Kargl et al.[12] is a trinomial care-
fully selected to support a faster modular reduction algorithm. The computation of
kP on Koblitz curves implemented in C language was 41% faster than TinyECCK.
By choosing the López-Dahab point multiplication algorithm with generic curves
implemented in Assembly, we achieve a timing 11% faster than [12] while satis-
fying the timing-resistant property. If we relax this condition, we obtain a point
multiplication 61% faster in Assembly by using Solinas’ method. Comparing our
Assembly implementation with TinyECCK and [12] with the same curve param-
eters, we achieve a 72% speedup and an 11% speedup for point multiplication,
respectively.

Proposed TinyECCK Proposed Kargl et al. [12]

Algorithm C language C language Assembly Assembly

Modular Squaring 1154 c 2729 c 570 c 663

Multiplication 9738 c 19670 c 4508 c 5057 c

Modular reduction 606 c 1904 c 430 c 433 c

Inversion 243790 c 539132 c 81365 c –

kP on Koblitz 0.67 s 1.14 s 0.32 s –

kP on Generic 1.55 s – 0.74 s 0.83 s

Table 8. Comparison between different implementations. The
timings are presented in cycles (c) or seconds (s) on a 7.2838MHz
device.

The fastest time for point multiplication previously published for this platform
at the 160-bit security level was 0.745 second [7]. Compared to this implementation,
which uses prime fields, the proposed optimizations result in a point multiplication
57% faster.

The implemented optimizations allow performance gains but provoke a collateral
effect on memory consumption. Table 9 presents memory requirements for code size
and RAM memory for the different implementations at the 160-bit security level.
We can also observe that Assembly implementations are responsible for a significant
expansion in program code size.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

184 Diego F. Aranha, Ricardo Dahab, Julio López and Leonardo B. Oliveira

ROM memory Static RAM Stack RAM

Proposed (Koblitz) – C 22092 1028 1207

Proposed (Koblitz) – C+Assembly 25802 1732 1207

Proposed (Generic) – C 12848 881 682

Proposed (Generic) – C+Assembly 16218 1585 682

TinyECCK (C-only) 5592 – 618

Kargl et a. (C+Assembly) [12] 11264 – –

Table 9. Cost in bytes of memory for implementations of scalar
multiplication of a random point at the 160-bit security level.

Cryptographic protocols. We now illustrate the performance obtained by our
efficient implementation with some executions of cryptographic protocols for key
agreement and digital signatures. Key agreement is employed in sensor networks
for establishing symmetric keys which can be used for encryption or authentication.
Digital signatures are employed for communication between the sensor nodes and
the base stations where data must be made available to multiple applications and
users [24]. For key agreement between nodes, we implemented the Elliptic Curve
Diffie & Hellman (ECDH) protocol [3], and for digital signatures, we implemented
the Elliptic Curve Digital Signature Algorithm (ECDSA) [3]. We assume that public
and private keys are generated and loaded into the nodes before the deployment of
the sensor network. Hence timings for key generation and public key authentication
are not presented or considered. Table 10 presents the timings for the ECDH
protocol and Table 11 presents the timings for the ECDSA protocol, using the choice
of algorithms discussed in Section 6. Results on these tables pose an interesting
decision between deploying generic binary curves on the lower security level or
deploying special curves on the higher security level.

C language Assembly

Curve Time ROM RAM Time ROM RAM
NIST-K163 0.74 28.3 2.2 0.39 32.0 2.8
NIST-B163 1.62 24.0 1.1 0.81 27.8 1.9

NIST-K233 1.55 31.0 2.9 0.80 38.6 3.7
NIST-B233 3.97 26.9 1.5 1.96 34.6 2.2

Table 10. Timings for the ECDH protocol execution. Timings
are given in seconds and ROM memory or Static+Stack RAM con-
sumption are given in KB.

C language Assembly

Curve Time (S + V) ROM RAM Time (S + V) ROM RAM
NIST-K163 0.67 + 1.23 31.8 2.9 0.36 + 0.63 35.3 3.7
NIST-B163 0.87 + 2.17 29.6 2.1 0.45 + 1.05 33.2 2.8

NIST-K233 1.46 + 2.76 34.6 3.1 0.78 + 1.39 42.2 3.8
NIST-B233 2.09 + 5.25 32.8 2.3 1.04 + 2.55 40.4 3.1

Table 11. Timings for the ECDSA protocol execution. Timings
for signature (S) and verification (V) are given in seconds and ROM
memory or Static+Stack RAM consumption are given in KB.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

Efficient implementation of ECC in wireless sensors 185

8. Conclusions

Despite several years of intense research, security and cryptography on WSNs
still face several open problems. In this work, we presented efficient implementa-
tions of binary field algorithms such as squaring, multiplication, modular reduction
and inversion. These implementations take into account the characteristics of the
target platform (the MICAz Mote) to develop optimizations, specifically: (i) the
cost of memory addressing; (ii) the cost of memory instructions; (iii) the limited
flexibility of bitwise shift instructions. We obtain the fastest binary field arithmetic
implementations in C and Assembly published for the target platform. Significant
performance benefits where achieved by the Assembly implementation, resulting
from fine-grained resource allocation and instruction selection. These optimizations
produced a point multiplication at the 160-bit security level under 1

3 of a second, an
improvement of 72% compared to the best implementation of a Koblitz curve previ-
ously published and an improvement of 61% compared to the best implementation
of binary curves. When compared to the best implementation of prime curves, we
obtain a performance gain of 57%. We also presented the first timings of elliptic
curves at the higher 233-bit security level. For both security levels, we illustrate
the performance obtained with executions of key agreement and digital signature
protocols. In particular, a key agreement can be computed in under 0.40 second
at the 163-bit security level and under 0.80 second at the 233-bit security level. A
digital signature can be computed and verified in 1 second at the 163-bit security
level and in 2.17 seconds at the 233-bit security level. We hope that our results can
increase the efficiency and viability of elliptic curve cryptography on wireless sensor
networks.

Acknowledgements

We would like to thank the referees for their valuable comments and suggestions.
Diego F. Aranha is supported by FAPESP, grant no. 2007/06950-0. Julio López
and Ricardo Dahab are partially supported by CNPq and FAPESP research grants.

References

[1] Atmel Corporation, 8 bit AVR Microcontroller ATmega128(L) manual, Atmel, (2004),
2467m-avr-11/04 edition.

[2] Atmel Corporation, AVR Studio 4.14, Atmel, (2005), available online at http://www.atmel.

com/.
[3] Certicom Research, SEC 1: elliptic curve cryptography, (2000), available online at http://

www.secg.org.
[4] H. Eberle, A. Wander, N. Gura, S. Chang-Shantz and V. Gupta, Architectural extensions

for elliptic curve cryptography over GF(2m) on 8-bit microprocessors, in “Proceedings of
IEEE International Conference on Application-specific Systems, Architectures and Processors
(ASAP’05),” IEEE, (2005), 343–349.

[5] D. Estrin, R. Govindan, J. S. Heidemann and S. Kumar, Next century challenges: scalable
coordination in sensor networks, in “Proceedings of Mobile Computing and Networking (Mo-
biCom’99),” (1999), 263–270.

[6] R. Gallant, R. Lambert and S. Vanstone, Faster point multiplication on elliptic curves with
efficient endomorphisms, in “Proceedings of the 21st Annual International Cryptology Con-
ference on Advances in Cryptology (CRYPTO’01),” Springer, (2001), 190–200.

[7] J. Großschädl, TinySA: a security architecture for wireless sensor networks, in “Proceedings
of ACM International Conference on emerging Networking EXperiments and Technologies
(CoNEXT’06),” ACM, (2006).

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

http://www.atmel.com/
http://www.atmel.com/
http://www.secg.org
http://www.secg.org
http://www.ams.org/mathscinet-getitem?mr=MR1931422&return=pdf

186 Diego F. Aranha, Ricardo Dahab, Julio López and Leonardo B. Oliveira

[8] N. Gura, A. Patel, A. Wander, H. Eberle and S. C. Shantz, Comparing elliptic curve cryp-
tography and RSA on 8-bit CPUs, In “Proceedings of Workshop on Cryptographic Hardware
and Embedded Systems (CHES’04),” Springer, (2004), 119–132.

[9] D. Hankerson, A. J. Menezes and S. Vanstone, “Guide to Elliptic Curve Cryptography,”
Springer-Verlag, Secaucus, 2003.

[10] J. L. Hill and D. E. Culler, MICA: a wireless platform for deeply embedded networks, IEEE
Micro., 22 (2002), 12–24.

[11] A. Karatsuba and Y. Ofman, Multiplication of many-digital numbers by automatic computers,
Transl. Physics-Doklady, 7 (1963), 595–596.

[12] A. Kargl, S. Pyka and H. Seuschek, Fast arithmetic on ATmega128 for elliptic curve cryp-
tography, preprint, available online at http://eprint.iacr.org/2008/442.

[13] C. Karlof, N. Sastry and D. Wagner, TinySec: a link layer security architecture for wireless
sensor networks, In “Proceedings of 2nd ACM Conference on Embedded Networked Sensor
Systems (SenSys’04)”, ACM, (2004), 162–175.

[14] N. Koblitz, Elliptic curve cryptosystems, Math. Comput., 48 (1987), 203–209.
[15] G.-J. Lay and H. G. Zimmer, Constructing elliptic curves with given group order over large

finite fields, in “Algorithmic Number Theory,” (1994), 250–263.
[16] C. H. Lim and P. J. Lee, More flexible exponentiation with precomputation, in “Proceed-

ings of the 14th Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO’01),” Springer, (1994), 95–107.

[17] J. López and R. Dahab, Fast multiplication on elliptic curves over GF(2m) without precom-
putation, in “Proceedings of Workshop on Cryptographic Hardware and Embedded Systems
(CHES’99),” Springer, (1999), 316–327.

[18] J. López and R. Dahab, Improved algorithms for elliptic curve arithmetic in GF(2n), in
“Proceedings of Workshop on Selected Areas in Cryptography (SAC’98),” Springer, (1999),
201–212.

[19] J. López and R. Dahab, High-speed software multiplication in GF(2m), in “Proceedings of
International Conference on Cryptology in India (INDOCRYPT’00),” Springer, (2000), 203–
212.

[20] D. J. Malan, M. Welsh and M. D. Smith, A public-key infrastructure for key distribution
in TinyOS based on elliptic curve cryptography, in “Proceedings of IEEE Communications

Society Conference on Sensor and Ad Hoc Communications and Networks (SECON’04),”
(2004).

[21] A. Menezes, T. Okamoto and S. Vanstone, Reducing elliptic curve logarithms to logarithms
in a finite field, IEEE Trans. Inform. Theory, 39 (1993), 1639–1646.

[22] V. Miller, Uses of elliptic curves in cryptography, in “Advances in Cryptology (CRYPTO’85),”
Springer, (1986), 417–426.

[23] L. B. Oliveira, D. F. Aranha, E. Morais, F. Daguano, J. López and R. Dahab, TinyTate:
computing the Tate pairing in resource-constrained sensor nodes, in “Proceedings of IEEE
International Symposium on Network Computing and Applications (NCA’07),” IEEE, (2007),
318–323.

[24] L. B. Oliveira, A. Kansal, B. Priyantha, M. Goraczko and F. Zhao, Secure-TWS: authen-
ticating node to multi-user communication in shared sensor networks, in “Proceedings of
International Conference on Information Processing in Sensor Networks (IPSN’09),” IEEE,
(2009), 289–300.

[25] L. B. Oliveira, M. Scott, J. López and R. Dahab, TinyPBC: pairings for authenticated
identity-based non-interactive key distribution in sensor networks, in “Proceedings of In-
ternational Conference on Networked Sensing Systems (INSS’08),” IEEE, (2008), 173–180.

[26] A. Perrig, R. Szewczyk, V. Wen, D. Culler and J. D. Tygar, SPINS: security protocols for
sensor networks, Wireless Networks, 8 (2002), 521–534.

[27] T. Satoh, B. Skjernaa and Y. Taguchi, Fast computation of canonical lifts of elliptic curves
and its application to point counting, Finite Fields Appl., 9 (2003), 89–101.

[28] M. Scott, MIRACL – multiprecision integer and rational arithmetic C/C++ library, available
online at http://www.shamus.ie/.

[29] S. C. Seo, D. Han and S. Hong, TinyECCK: efficient elliptic curve cryptography implementa-
tion over GF(2m) on 8-bit MICAz mote, preprint, available online at http://eprint.iacr.

org/2008/122.
[30] J. A. Solinas, Efficient arithmetic on Koblitz curves, Designs Codes Cryptogr., 19 (2000),

195–249.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

http://www.ams.org/mathscinet-getitem?mr=MR2054891&return=pdf
http://eprint.iacr.org/2008/442
http://www.ams.org/mathscinet-getitem?mr=MR0866109&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1316405&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1715809&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1847757&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1281712&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0851432&return=pdf
http://www.shamus.ie/
http://eprint.iacr.org/2008/122
http://eprint.iacr.org/2008/122
http://www.ams.org/mathscinet-getitem?mr=MR1759617&return=pdf

Efficient implementation of ECC in wireless sensors 187

[31] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier and R. Dahab, NanoECC: testing
the limits of elliptic curve cryptography in sensor networks, in “Proceedings of European
Conference on Wireless Sensor Networks (EWSN’08),” Springer, (2008), 305–320.

[32] L. Uhsadel, A. Poschmann and C. Paar, Enabling full-size public-key algorithms on 8-bit
sensor nodes, in “Proceedings of European Workshop on Security in Ad-hoc and Sensor
Networks (ESAS ’07),” (2007), 73–86.

[33] H. Wang and Q. Li, Efficient implementation of public key cryptosystems on mote sensors,
in “Proceedings of International Conference on Information and Communication Systems
(ICICS’06),” Springer, (2006), 519–528.

[34] H. Yan and Z. J. Shi, Studying software implementations of elliptic curve cryptography,
in “Proceedings of International Conference on Information Technology: New Generations
(ITNG’06),” IEEE, (2006), 78–83.

Received June 2009; revised December 2009.

E-mail address: dfaranha@ic.unicamp.br
E-mail address: rdahab@ic.unicamp.br
E-mail address: jlopez@ic.unicamp.br
E-mail address: leob@ft.unicamp.br

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 169–187

http://www.ams.org/mathscinet-getitem?mr=MR2446318&return=pdf

	1. Introduction
	2. Related work
	3. Elliptic curve cryptography
	4. The platform
	5. Algorithms for finite field arithmetic
	5.1. Multiplication
	Analysis of multiplication algorithms
	5.2. Modular reduction
	Analysis of modular reduction algorithms
	5.3. Squaring
	5.4. Inversion

	6. Algorithms for elliptic curve arithmetic
	7. Implementation results
	Finite field arithmetic
	Elliptic curve arithmetic
	Cryptographic protocols

	8. Conclusions
	Acknowledgements
	References

