
TinyPBC: Pairings for Authenticated

Identity-Based Non-Interactive Key

Distribution in Sensor Networks

Leonardo B. Oliveira a,∗ Diego F. Aranha b,
Conrado P. L. Gouvêa b, Michael Scott c, Danilo F. Câmara b,

Julio López b, Ricardo Dahab b,

aFaculty of Technology – UNICAMP
Limeira - SP, CEP 13484-332, Brazil
bInstitute of Computing – UNICAMP

Campinas - SP, CEP 13083-970, Brazil
cSchool of Computing – Dublin City University

Glasnevin, Dublin 9, Ireland

Abstract

Key distribution in Wireless Sensor Networks (WSNs) is challenging. Symmetric
cryptosystems can perform it efficiently, but they often do not provide a perfect
trade-off between resilience and storage. Further, even though conventional public
key and elliptic curve cryptosystems are computationally feasible on sensor nodes,
protocols based on them are not, as they require the exchange and storage of large
keys and certificates, which is expensive.

Using Pairing-based Cryptography (PBC) protocols parties can agree on keys
without any interaction. In this work, we (i) show how security in WSNs can be
bootstrapped using an authenticated identity-based non-interactive protocol and
(ii) present TinyPBC, to our knowledge, the most efficient implementation of PBC
primitives for 8, 16 and 32-bit processors commonly found in sensor nodes. TinyPBC
is able to compute pairings, the most expensive primitive of PBC, in 1.90s on
ATmega128L, 1.27s on MSP430 and 0.14s on PXA27x.

Key words: Key Distribution, Sensor Networks, Security, Identity-Based
Cryptography, Pairing-Based Cryptography, Efficient Implementation.

∗ Corresponding author. Address: R. Paschoal Marmo, 1888 - CEP 13484-332 - Jd.
Nova Itália - Limeira, SP – Brazil. Tel +55 19 2113-3368 / +55 19 2113-3339
Email addresses: leob@ft.unicamp.br (Leonardo B. Oliveira),

Preprint submitted to Elsevier April 8, 2010

1 Introduction

Wireless sensor networks (WSNs) [1] are ad hoc networks composed primarily
of perhaps thousands of tiny sensor nodes with limited resources and one or
more base stations (BSs). They are used for monitoring purposes, providing
information about the area of interest to the rest of the system.

On the other hand, Pairing-Based Cryptography (PBC) [2,3] is an emerg-
ing technology that allows a wide range of applications. Pairings have been
attracting the interest of the international cryptography community because
they enable the design of original cryptographic schemes and make well-known
cryptographic protocols more efficient. Perhaps the main evidence of this is the
realization of Identity-Based Encryption (IBE) [4] which in turn has facilitated
complete schemes for Identity-Based Cryptography (IBC) [5].

In the context of WSNs, the issue of securing and authenticating communica-
tions is a difficult one, especially as currently nodes have no capacity for the
secure storage of secret keys and are frequently deployed in unprotected areas,
which make them more vulnerable to attacks [6]. One simple idea to introduce
minimal security is to fit each sensor node with the same cryptographic key to
be used for all communications (e.g. [7]). But this does not authenticate the
source of a message, and furthermore if one node is successfully attacked, all
communications are compromised.

Assume now that there are n nodes, and that each has its own unique identifier
ID ∈ {0, . . . , n − 1}. A better idea would be to fit each pair of nodes with a
unique mutual key for all communications between them. But if that were the
case each node would have to store n−1 secret keys, and furthermore n(n−1)/2
such keys would need to be generated in all. This is a big requirement in terms
of time and storage for large n. Furthermore, if new nodes are to be deployed
at a later stage all existing ones must be recalled to be fitted with new keys.

Now consider this scenario: each node is issued with (i) a unique ID; and (ii)
a unique secret, not shared with any other entity. Two parties, each know-
ing only the ID of the other and without communicating, are then able to
derive a mutual secret unknown to any other party, and use that secret to
derive a cryptographic key to secure their communications. It is also trivial
to dynamically add new nodes to the WSN without any impact on existing
nodes.

dfaranha@ic.unicamp.br (Diego F. Aranha), conradoplg@ic.unicamp.br
(Conrado P. L. Gouvêa), mike@computing.dcu.ie (Michael Scott),
dfcamara@gmail.com (Danilo F. Câmara), jlopez@ic.unicamp.br (Julio López),
rdahab@ic.unicamp.br (Ricardo Dahab).

2

This scheme exists and in the area of Cryptography it is known as an Identity-
Based Non-Interactive Key Distribution Scheme (ID-NIKDS) [2]. It is Identity-
Based [8], as only IDs are required – in particular no extra public key data
is needed. It is Non-Interactive, as only the ID of the “other” is required to
determine the key – no interaction is required. In fact “non-interactive” implies
“Identity-based”: In this setting the only information a node knows about
another node is its identity. And it is a Key Distribution Scheme, because each
node pair ends up with the same key value. Also, the protocol is authenticated
as each party knows that only the other can possibly calculate the same key 1 .

One issue has not been addressed – from where does each entity get its unique
secret? It gets it from a Trusted Authority. This authority generates the unique
secret from nodes’ IDs and a master secret of its own. Note that this “trusted
authority” must be just that, as it is in a position to determine all the keys
used within the system.

It is our contention that such a set-up is an ideal way to bootstrap a WSN
for security. The Trusted Authority is simply the deployer of the network, and
there will be no issue in assuming their trustworthiness. Indeed, it might even
be regarded as a “feature” that the deployer should be in a position to monitor
all wireless traffic.

An alternative idea is to use the well-known Diffie-Hellman interactive key
exchange to dynamically derive a mutual key between pairs of nodes. But
this is not authenticated, and hence is subject to a deadly man-in-the-middle
attack. Also, interaction involves communication, and wireless communication
is expensive in terms of power consumption.

Can the method we suggest be realized using regular Public Key Cryptogra-
phy (PKC)? No, because in regular PKC there is no correlation between an
individual’s ID and their public key. Indeed, it is only relatively recently that
a viable scheme has been discovered, and its implementation is quite difficult
and computationally costly. However, we only suggest it as a bootstrapping
mechanism. Once the WSN nodes are deployed, they can cache keys, and
create their own local keys for use within their own neighborhood. In this
way the ID-NIKDS protocol is only required very occasionally. Note that the
ID-NIKDS secret is the only long-term secret that the node possesses, and
that possession of such a unique secret is unavoidable if authentication is a
requirement.

We do not claim that a scheme like this is by itself sufficient for securing
WSNs and that a network bootstrapped in this way will be immune from
attack. An attacker could, after all, in theory compromise every node in the
network. We do however claim that it is the best possible way to bootstrap a

1 Actually, as we will see latter, so can an entity that is unconditionally trusted.

3

WSN, given that a node does not have secure storage for its secrets. Built on
top of such a system, the network can dynamically evolve and develop routing
and communications algorithms with maximum confidence that the damage
caused by an attacker will be localized and minimized.

In this work, we first discuss why and how ID-NIKDS should be used to boot-
strap security in WSNs. After that, we present TinyPBC, to our knowledge
the most efficient implementation of PBC primitives for the 8, 16 and 32-bit
processors found in sensor nodes. Performance figures are presented for the
processors ATmega128L (the MICA2 and MICAZ node microcontroller [9]),
MSP430 (the TelosB and Tmote Sky microcontroller [10]) and PXA271 (the
Imote2 microcontroller [11]). TinyPBC is based on the RELIC cryptographic
toolkit [12], which is a publicly available and open source library. To sum up,
our key contributions are:

(1) demonstrate how sensor nodes can exchange keys in an authenticated and
non-interactive way;

(2) present the fastest pairing computation on several sensor platforms; and
(3) show the best figures for the implementation of finite field arithmetic in

these platforms.

The remainder of this work is organized as follows. In Section 2, we discuss
the need for new security solutions in WSNs. We point out the synergy be-
tween IBC and WSNs in Section 3. In Section 4 we show how ID-NIKDS
can bootstrap security in WSNs. Implementation and results are presented in
Section 5. Finally, we discuss related work and conclude in Sections 6 and 7,
respectively.

2 Bootstrapping Security in WSNs: Need for New Approaches

Security is mainly justified in WSNs because of their battlefield applications.
We believe, however, that, once WSNs start to be deployed in large scale, se-
curity will become much more common than it is thought today. Apart from
the well-known battlefield applications, confidentiality is likely to be a require-
ment in industrial and other scenarios. For example, industries/farmers that
employ WSNs to monitor their supply-chains/crops may want to keep their
data private from competitors. Additionally, authentication might be useful
even in domestic WSNs, avoiding interaction with nodes from a neighboring
network.

Briefly, an ideal security scheme in WSNs should provide perfect connectivity
and resilience. In other words, nodes should be able to (i) communicate se-
curely with any other node they wish, and (ii) the compromise of a single node

4

should not impact the network as whole. (Note that these properties should
apply even to nodes deployed at different times.) Also, the scheme should be
low-cost in terms of both communication and computation.

In WSNs, security is typically bootstrapped using key distribution schemes.
Most of standard key distribution schemes in the security literature [13], how-
ever, are ill-suited to WSNs: conventional public key-based distribution, be-
cause of its processing requirements; global keying, because of its security vul-
nerabilities; complete pairwise keying, because of its memory requirements;
and those based on a key distribution center, because of its inefficiency. (See
Carman et al. [14] for a good introduction to key distribution in WSNs.)

Symmetric key based distribution schemes have been specifically designed for
WSNs (e.g., [15,16,17,18,19,20,21,22,23,24,25,26]). While they are well-suited
for the applications and organizations they were designed for, they might not
be adequate for others. They provide a trade-off between connectivity and
resilience, while not providing an ideal level of either. Further, most schemes
rely on some sort of interaction between nodes so that they can agree on keys.

Subsequently, it has been shown that methods of Public Key Cryptography
are feasible in WSNs [27,28,29]. Because in those systems communicating par-
ties only have a pair of keys, a private and a public key, PKC schemes are
scalable and easy to use. This convenience, though, comes at a price: a way of
authenticating public keys must be provided. And key authentication, in turn,
whether traditional (PKI and/or certificates) or especially tailored to WSNs
(e.g. [30]), often ends up in overhead – which is especially ill-suited to WSNs.

As we will show in Section 4, by using ID-NIKDS we are able to resolve these
security issues.

3 Synergy between IBC and WSNs

PBC has paved the way for a new wide range of cryptographic protocols and
applications [31]. It has also allowed many long-standing open problems to
be solved elegantly. Perhaps the most impressive among those applications is
IBE [4], which in turn has allowed complete IBC schemes [5] 2 .

One may thus ask why IBC is still not widely deployed in security systems.
Besides the usual time it takes for new technologies to be adopted, IBC also
faces additional drawbacks. In particular, it requires a Private Key Generator
(PKG), a trusted entity in charge of generating and escrowing users’ private
keys. That is, it is able to impersonate anybody else in the system. For that

2 Note that other methods of implementing IBE exist (e.g. [32]).

5

reason, the PKG must be an entity that is unconditionally trusted by all
network users. Such an entity, however, cannot always be easily identified in
many scenarios.

In WSNs, conversely, this is not a problem. The deployer – who loads software
into nodes, then deploys in areas of interest, and observes collected data – is,
obviously, trusted. In the world of WSNs, the deployer’s role is represented
by base station (BS) nodes. These nodes possess both laptop-level resources
and physical protection. In other words, they can play the role of the PKG
perfectly.

Another IBC requirement is that the keys must be delivered over confidential
and authenticated channels to users. If the cryptographic scheme is being used
to bootstrap security – as very often is the case – such channels will not exist.
But, again, this is not a great concern to WSNs. In their security model, there
is clearly a point in the time (i.e., prior to deployment) where secure channels
between the BS and ordinary nodes do exist. Along with application software,
private keys can be loaded into nodes during the pre-deployment stage.

4 Authenticated Identity-Based Non-Interactive Key Distribution
in Sensor Networks

The notion of Identity Based Cryptography dates back from Shamir’s original
work [5], but it has only become practical with the advent of PBC [2,4,33].
The main idea is that known information that uniquely identifies users (e.g.
IP or email address) can be used to derive public keys. As a result, keys are
self-authenticated and additional means of public key authentication, e.g. cer-
tificates, are thus unnecessary. In this Section we define pairings (Section 4.1),
and show how to setup IBC schemes in the WSN context (Section 4.2), and
finally show how ID-NIKDS can be used so that pairs of nodes can establish
common secret keys (Section 4.3).

4.1 Pairings: Definition

Bilinear pairings – or pairings for short – were first used in the context of
cryptanalysis [34], but their pioneering use in cryptosystems is due to the
works of Sakai, Ohgishi, and Kasahara [2] and Joux [33]. In what follows, let
E/Fq be an elliptic curve over a finite field Fq, E(Fq) be the group of points
of this curve, and #E(Fq) be the group order, that is the number of points on
the curve.

6

Let n be a positive integer. Let G be an additively-written group of order n
with identity O, and let GT be a multiplicatively-written group of order n
with identity 1.

A bilinear pairing is a computable, non-degenerate function

e : G×G→ GT ,

with additional properties, the most important of which, in cryptographic
constructions, is bilinearity; namely:

∀P,Q ∈ G, and ∀ a, b ∈ Z∗, we have

e([a]P, [b]Q) = e(P, [b]Q)a = e([a]P,Q)b = e(P,Q)ab.

For practical implementations, the group G is chosen as a set of points on
certain elliptic curves and the group GT is a multiplicative subgroup of a
finite extension field. For more on pairing definitions, see, for instance, Gal-
braith [35].

Here we are using the definition of a Type 1 or symmetric pairing (in the
sense of Galbraith, Paterson and Smart [36]), and so we have the additional
property that

e(P,Q) = e(Q,P).

In addition, pairings of Type 1 permit strings to be hashed to a specific group.
Those two aforementioned properties are required for efficient and simple im-
plementation of the protocols (pairings of Types 2 and 3 do not provide, at
once, both properties). However, realization of the solution is possible with
Type 3 pairings and some added complexity [37]. Pairing computation in sen-
sor nodes at a sufficient security level for WSNs also seems more efficient in
the symmetric setting [37].

4.2 Setup

To start up an IBC scheme, the PKG first needs to generate and distribute
private keys and public parameters. Broadly speaking, this procedure can be
accomplished as follows in WSNs. First, the BS generates a master secret key s
and then calculates each node’s private key. To do this it first maps each node’s
identity to a point on the elliptic curve, via a hashing-and-mapping function
φ; so for node X, PX = φ(idX). It then calculates the node’s private key as
SX = [s]PX. It next preloads each node X with the following information:
(i) the node’s ID idX; and (ii) the node’s private key SX. Each node is also
equipped with the function φ so that it can take any ID (e.g. idY) as input and

7

output the public key corresponding to the ID (e.g. PY) 3 . Note that, besides
the BS, only node X knows the key SX.

4.3 Applying ID-NIKDS in WSNs

WSNs are composed of maybe thousands of tiny resource-constrained sensor
nodes for which the scarcest resource is energy. Communication, on the other
hand, is the activity that consumes most energy. This, in turn, means that
besides meeting the needs described in Section 2 (i.e., perfect connectivity
and resilience), an ideal key agreement scheme for WSNs should also keep the
number of exchanged messages to a minimum.

With the advent of PBC, however, a method of accomplishing this has be-
come available. That is, PBC provides means to non-interactively distribute
keys between any two network nodes, even if they were deployed at differ-
ent times. Further, because nodes employ asymmetric primitives, the effect of
node compromise is strictly local. In what follows, we show how the proto-
col due to Sakai, Ohgishi, and Kasahara, ID-NIKDS [2], can be employed to
achieve such a goal. We assume that the setup protocol shown in Section 4.2
has been already carried out.

Suppose two nodes A and B that know each other’s IDs have to agree on a
secret key. Recall from Section 4.2 that nodes’ A and B private keys are SA =
[s]PA and SB = [s]PB, respectively. Consequently, by bilinearity (Section 4.1)
we have

e(SA, PB) = e([s]PA, PB)

= e(PA, PB)s

= e(PA, [s]PB)

= e(PA, SB)

= e(SB, PA).

Note that A possesses SA and can compute PB = φ(idB). Likewise, B possesses
SB and can compute PA = φ(idA). Therefore, both A and B are able to compute
the secret key

kA,B = e(SA, PB) = e(SB, PA).

3 To be precise, a small number of public parameters are also needed to be stored
into nodes, but for simplicity’s sake, we will omit them.

8

(Formally speaking, a key derivation function must first be applied to kA,B in
order to generate a key appropriate for cryptosystems. For details on this and
other PBC protocols refer, e.g., to Paterson [31].) Additionally, A knows that
only B – and the BS, a trusted authority – possess SB and vice-versa, and
consequently the protocol is authenticated.

Observe that, due to the non-interactive nature of the communication, nodes
can agree on keys even if they are not online simultaneously. This is partic-
ularly useful in WSNs, where nodes might follow sleeping patterns, may be
deployed at different times, and often become temporarily unavailable due to
physical obstacles or malfunctions.

Lastly, observe that we assume that nodes already know each other’s IDs, a
reasonable assumption in WSNs since in these networks nodes already need
to get to know their neighbors’ IDs to exchange ordinary information.

5 Evaluation

The utilization of pairings to implement security in WSNs is quite complex.
For an 80-bit security level (RSA-1024 equivalent), PBC works with 1024-bit
numbers – as opposed to conventional Elliptic Curve Cryptography (ECC),
which works with 160-bit numbers only. In this section, we assess the costs
incurred by PBC on several representatives of the sensor platform spectrum:
a resource-constrained MICAZ node, a (TelosB) Tmote Sky node and a pow-
erful Imote2 node. The MICA platform features an 8-bit ATmega128 micro-
controller, the Tmote Sky node employs a 16-bit TI MSP430 microcontroller
and the Imote2 platform has a 32-bit ARM XScale PXA27x microcontroller.

5.1 Implementation

By far the most time consuming part when evaluating PBC protocols is the
pairing computation itself 4 . In this section we present TinyPBC, an imple-
mentation of the Tate pairing (realized in the form of the ηT [39] pairing –
pronounced “eta-t” – over supersingular binary curves and a variant of the
Tate pairing over prime fields [37]) for resource-constrained nodes. The source
code is available at http://sites.google.com/site/tinypbc/.

4 ID-NIKDS also requires hashing, but that can be efficiently computed in sensor
nodes [38].

9

Security Requirements. To meet efficiency constraints, security require-
ments in WSNs are often relaxed. For example, some (e.g. [15]) have adopted
a 64-bit security level. We adopted a more conservative posture and thus used
an 80-bit security level, as recommended by NIST.

Pairing. The implementation comprised the ηT [39] pairing which is defined
over binary fields. This pairing is possibly the fastest known pairing at this
security level [37]. It was proposed by Barreto, Galbraith, Ó hÉigeartaigh,
and Scott, following earlier work of Duursma and Lee [40]. Like most pairings,
it uses a variant of Miller’s algorithm to evaluate pairings. Its main feature,
however, is that the ηT pairing requires only half the number of iterations of
the Miller’s loop compared with other pairings (Line 4, Algorithm 3 of [39]).

Our sofware implementation of the ηT pairing is for binary fields (F2271). We
selected the supersingular curve y2 + y = x3 + x, which has an embedding
degree of four. In this case, the execution of the ηT pairing spends most of its
time performing extension binary field multiplications in F24×271 , the quartic
extension field.

5.2 ATmega128 8-bit processor

The MICAz Mote sensor node is equipped with an ATmega128 8-bit processor
clocked at 7.3728MHz. The program code is stored in a 128KB EEPROM chip
and data memory is provided by a 4KB RAM chip [9]. The ATmega128 proces-
sor is a typical RISC architecture with 32 registers, but six of them are special
pointer registers. Since at least one register is needed to store temporary results
or data loaded from memory, 25 registers are generally available for arithmetic.
The instruction set is also reduced, as only 1-bit shift/rotate instructions are
natively supported. Bitwise shifts by arbitrary amounts can then be imple-
mented with combinations of shift/rotate instructions and other instructions.
In particular, shifts by 7 bits can be implemented very efficiently with the in-
structions bld/bst for loading/storing individual register bits from/to a pro-
cessor flag. The processor pipeline has two stages and memory instructions
always cause pipeline stalls. Arithmetic instructions with register operands
cost 1 cycle and memory instructions or memory addressing cost 2 processing
cycles [41].

Field representation. The elements of the binary field are represented
using a polynomial basis. For the particular binary field F2271 , we have selected
the square-root friendly [42] pentanomial f(x) = x271 + x207 + x175 + x111 + 1,
given in [43]. This pentanomial has two important features: modular reduction

10

by f(z) only requires shifts by 1 bit or 7 bits which are fast in this platform;
square-root extraction does not require shifts in processors with word length
of 8 or 16 bits. In software, a field element a(z) is stored as an array of n = 34
bytes.

Squaring. Given a(z) ∈ F2271 , the binary representation of a(z)2 can be
computed by inserting a “0” bit between each pair of successive bits of the
binary representation of a(z). This can be accelerated by introducing a small
16-byte lookup table which stores in memory the square of all 4-bit poly-
nomials. In platforms with expensive access to memory, redundant memory
accesses can be avoided by implementing squaring in two steps. The first one
computes the square of the lower half of the digit vector using a conventional
4-bit expansion table. The second step computes the square of the higher
half combined with modular reduction. This way, values already loaded into
registers can be reduced immediately.

Multiplication. Multiplication is a performance-critical operations and was
implemented with the López-Dahab algorithm [44] using a window size of
t = 4 bits (Algorithm 1). In order to avoid redundant memory accesses, the
intermediate digit vector is stored inside a rotating register window as in Al-
gorithm 2. This optimization alone reduces the number of read instructions
by half and the number of write instructions by a quadratic factor, compared
with a standard implementation of the algorithm. Since this register window
would require 35 registers and only 25 are available for arithmetic, the accu-
mulation in the register window was divided in different blocks in a multistep
fashion and each block processed with a different rotating register window.
A slight overhead is introduced between the processing of consecutive blocks
because some registers must be written into memory and freed before they
can be used in a new rotating register window. Some additional implemented
optimizations are: storing the results of the first phase of the algorithm already
shifted; and the embedding of modular reduction at the end of the multiplica-
tion algorithm, again by making use of results already stored in registers and
avoiding redundant memory accesses.

Square-root. Square-root extraction was implemented according to the ap-
proach due to Fong et al. [45]. This approach requires a splitting step for
concatenating the coefficients with even or odd indexes of a field element.
This is commonly implemented using a lookup table (as in [37]), but the mi-
crocontroller support for bit load/store operations allowed a particularly fast
implementation without table lookups using simple bit manipulation.

11

Algorithm 1 López-Dahab multiplication in F2m [44].

Input: a(z) = a[0..n− 1], b(z) = b[0..n− 1].
Output: c(z) = c[0..2n− 1].

1: Compute T (u) = u(z)b(z) for all polynomials u(z) of degree lower than t.
2: c[0 . . . 2n− 1]← 0
3: for k ← 0 to n− 1 do
4: u← a[k]� t
5: for j ← 0 to n do
6: c[j + k]← c[j + k]⊕ T (u)[j]
7: end for
8: end for
9: c(z)← c(z)zt

10: for k ← 0 to n− 1 do
11: u← a[k] mod 2t

12: for j ← 0 to n do
13: c[j + k]← c[j + k]⊕ T (u)[j]
14: end for
15: end for
16: return c

Algorithm 2 Proposed optimization for multiplication in F2m using n + 1
8-bit registers.

Input: a(z) = a[0..n− 1], b(z) = b[0..n− 1].
Output: c(z) = c[0..2n− 1].
Note: vi denotes the vector of n+ 1 registers (ri−1, . . . , r0, rn, . . . , ri).

1: Compute T (u) = u(z)b(z) for all polynomials u(z) of degree lower than 4.
2: Let ui be the 4 most significant bits of a[i].
3: v0 ← T (u0), c[0]← r0
4: v1 ← v1 ⊕ T (u1), c[1]← r1
5: · · ·
6: vn−1 ← vn−1 ⊕ T (un−1), c[n− 1]← rn−1

7: c← ((rn−2, . . . , r0, rn) || (c[n− 1], . . . , c[0]))� 4
8: Let ui be the 4 least significant bits of a[i].
9: v0 ← T (u0), c[0]← c[0]⊕ r0

10: · · ·
11: vn−1 ← vn−1 ⊕ T (un−1), c[n− 1]← c[n− 1]⊕ rn−1

12: c[n . . . 2n− 1]← c[n . . . 2n− 1]⊕ (rn−2, . . . , r0, rn)
13: return c

5.3 MSP430 16-bit processor

The Tmote Sky sensor node is equipped with an MSP430F1611 16-bit proces-
sor clocked at 8MHz. It contains 48KB of program flash memory and 10KB of
RAM. The MSP430 family provides 12 general purpose registers and a small

12

instruction set with 27 instructions including 1-bit-only shifts. In particular,
15-bit shifts can be implemented with the left-shift/rotate-through-carry in-
structions. Operands may be located in registers or in memory. Since there
is no cache, determining the number of cycles taken by each instruction is
simple (with a few exceptions): one cycle to fetch the instruction, one cycle to
fetch each offset word (if any), one cycle for each memory read and two cycles
for each memory write. Small constants (−1, 0, 1, 2, 4 and 8) are generated
by using some special registers and do not require offset words when used.
Four addressing modes are available: direct (from registers), indirect (memory
address stored in a register), indexed (address stored in a register, plus an
offset) and indirect with post increment (which automatically increments the
contents of the register holding the address).

Field representation. The same pentanomial f(x) = x271 + x207 + x175 +
x111 + 1 used in the ATmega128 processor was chosen, since the reduction by
f(z) can be computed using 1-bit and 15-bit shifts only, which are cheap in
this platform. Aditionally, square root extraction does not require any shifts.
In software, a field element a(z) is stored as an array of n = 17 16-bit digits.

Arithmetic. Field arithmetic was implemented similarly to the ATmega128
processor. Squaring was implemented using a 512-byte lookup table storing the
square of all 8-bit polynomials in ROM. Multiplication was implemented by
a straightforward adaptation of Algorithm 2 for 16-bit processors processing
the consecutive accmulations in two distinct blocks and employing a rotating
window with 8 registers. For comparison, the Karatsuba method was also
implemented as described in [37]. Some simple but effective optimizations
used were taking advantage of the indirect with post increment addressing
mode, which saves one cycle on each read from the precomputation table;
and computing the required 4-bit shifts in registers, dividing the intermediate
result into four blocks.

5.4 XScale PXA27x 32-bit processor

ARM is an open RISC processor architecture that is the most widely used
in 16/32-bit embedded RISC solutions. Besides typical RISC architecture fea-
tures, ARM includes: an optional embedding of a shift operation in every
data-processing instruction executed by the Arithmetic Logic Unit (ALU);
auto-increment/decrement addressing modes to optimize program loops; and
conditional execution of all instructions to maximize execution throughput.

From the user mode (unprivileged code) point of view, the ARM has 16

13

general-purpose 32-bit registers. Two of these registers have special roles: reg-
ister 15 is the Program Counter (PC) and register 14 is the Link Register (LR)
that holds the address of the next instruction after a Branch and Link (BL)
instruction used to call a subroutine. Software implementation normally uses
R13 as the Stack Pointer (SP).

The Intel XScale PXA family of processors is an implementation of the 5th
generation of the ARM architecture without the floating point instructions.
With a design tailored for wireless and portable multimedia devices, the PXA
family focuses on balancing processing power and battery usage. The target
processor used in this work is the PXA271, a 32-bit ARMv5TE with 32 KB
data cache and 32 KB instruction cache. This family of processors also features
a Wireless MMX (WMMX) coprocessor which executes vector instructions in
64-bit registers. The WMMX instruction set supports 43 SIMD instructions
for orthogonal manipulation of 16 architectural registers that can be treated
as arrays of 32-bit words, four 16-bit halfwords or eight 8-bit bytes.

Field representation. In the ARM implementation we selected the square-
root friendly trinomial f(x) = x271 + x201 + 1 given in [37]. Shift instructions
are flexible in this platform and, under these circumstances, this trinomial
allows fast implementations of modular reduction and square root extraction.
In software, a field element a(z) is stored as an array of n = 9 32-bit words.

Arithmetic. Similarly to the ATmega128 processor, we optimized the im-
plementation with a lookup table in the squaring operations and employed a
rotating register window as in Algorithm 2 in the multiplication operation.
We were able to reserve 9 registers to the accumulator and the multiplication
did not need to be divided as in the 8-bit case. Since a bitwise shift is free in
any data-processing instruction, we embedded most shifts of the arithmetic in
the binary addition instructions (logic XOR operation).

5.5 Performance

In this section we summarize performance numbers. High-level algorithms like
pairing computation and extension field arithmetic were implemented in C,
while finite field arithmetic was implemented in Assembly to allow fine-grained
resource allocation and to avoid inefficiencies introduced by the compiler. Fig-
ures are based on the GCC 4.1.2 compiler with optimization level -O2 and
loop unrolling (GCC 3.2.3 on the MSP430). The timings were measured with
the software AVR Studio 4.14 [46], the cycle-accurate simulator MSPsim [47]
and on a PXA27x Mainstone evaluation board.

14

TinyPBC takes only 1.90s to compute pairings on ATmega128L, 1.27s on the
Tmote Sky and 0.14s on a 13MHz Imote2 (Tables 1, 2, 3). That is, it requires
28.6%, 26.3% and 69.8% less than the time of the fastest previous results [37],
which take 2.66s, 1.71s and 0.46s to compute pairings on these platforms. This
is mainly due to our faster finite field multiplication and to some further algo-
rithmic improvements proposed in [48]. The time required to compute binary
field multiplication with our LD implementation, averaged over 1000 trials, is
only 11727 cycles in Table 1, 8706 cycles in Table 2 and 1411 cycles in Table 3.
For the ATmega128 platform, this is 13.5% faster than Karatsuba’s method,
which was employed in [37]. This result is particularly interesting because
it contrasts sharply with results presented in [49], which claims that Karat-
suba’s is the most appropriate method for embedded devices. For the Tmote
Sky, the LD method using blocks resulted in a 13.3% speed improvement; but
Karatsuba may be used to provide a speed/space trade-off, raising the pairing
computation time from 1.27s to 1.38s. For the Imote2 platform, the WMMX
instruction set included in the XScale family of processors provides further
speedups and we achieve an improvement of 71.3% in our implementation of
multiplication.

TinyPBC Szczechowiak et al. [37] Comparison

Algorithm Cycles Cycles Improvement

Squaring 1439 1581 9.0%

Square-root 1182 1730 31.8%

Multiplication 11727 13557 13.5%

Pairing 14× 106 (1.90s) 19.6× 106 28.6%

Table 1
Time costs to evaluate finite field arithmetic and the ηT pairing at the 80-bit security
level on MICA2/MICAz platform (7.3728MHZ ATmega128L) using TinyPBC.

TinyPBC Szczechowiak et al. [37] Comparison

Algorithm Cycles Cycles Improvement

Squaring 889 1363 34.8%

Square-root 769 1644 53.2%

Mult. (Karatsuba) 9647 10147 4.0%

Multiplication 8706 - 13.3%

Pairing (Karatsuba) 11.3× 106 (1.38s) 14.1× 106 19.8%

Pairing 10.4× 106 (1.27s) - 26.3%

Table 2
Time costs to evaluate finite field arithmetic and the ηT pairing at the 80-bit security
level on TelosB/Tmote Sky platform (8MHz MSP430) using TinyPBC.

15

TinyPBC Szczechowiak et al. [37] Comparison

Algorithm Cycles Cycles Improvement

Squaring 187 499 62.5%

Square-root 185 546 66.1%

Multiplication 2025 4926 58.9%

Mult. (wMMX) 1411 - 71.3%

Pairing 2.45× 106 (0.19s) 6× 106 59.2%

Pairing (WMMX) 1.81× 106 (0.14s) - 69.8%

Table 3
Time costs to evaluate finite field arithmetic and the ηT pairing at the 80-bit security
level on Imote2 platform (13MHz PXA27x) using TinyPBC.

5.6 Storage

Table 4 summarizes the storage requirements for TinyPBC. The requirements
for stack and static memory and program size for all platforms are presented.
Note that our approach allocates virtually all the RAM from the stack, which
means that once the pairing is computed, memory is available for other op-
erations. The MSP430 has the smallest ROM space available of the three
platforms; for that reason, the Karatsuba multiplication method can be used
in order to save 6KB of ROM, increasing the pairing computation time by
0.11s in return. We have selected RELIC [12] as our implementation frame-
work because this library was specifically built for memory-contrained devices,
providing several configuration options for reducing program size.

Storage (KB)

Processor Stack RAM ROM

ATmega128L 3.1 0.5 37.9

MSP430 2.8 0.5 30.1

MSP430 (Karatsuba) 2.4 0.5 24.0

PXA27x 8.0 4.7 53.5

Table 4
Memory costs to evaluate the pairings on the target platforms using the fastest
finite field implementations. The RAM column refers to global variables.

Besides the cryptographic code, a node needs to store its private key and
public parameters in order to run ID-NIKDS. Public parameters are part of
the specification of the pairing and they are already taken into consideration
in our code. A private key, on the other hand, requires a point on an elliptic
curve; that is, an elliptic curve point that, in turn, is represented by coordinates

16

(x, y) from a finite field with 271-bit elements. Given x and a single bit of y,
however, one can easily derive y. So, in addition to the cryptographic code, a
node must be loaded with a private key of 272 bits, i.e., an overhead of only
34 bytes.

6 Related Work

The number of studies specifically targeted to secure WSNs has grown signif-
icantly. Due to space constraints, we first provide a sample of studies based
on symmetric cryptosystems, and then focus on those targeted to efficient
implementation of PKC on sensor nodes.

Many security proposals for WSNs (e.g., [15,16,17,18,19,20,21,22,24,23,25,26])
have focused on efficient key management of symmetric encryption schemes.
Perrig et al. [15] proposed SPINS, a suite of efficient symmetric key-based
security building blocks. Eschenauer et al. [16] looked at random key pre-
distribution schemes, which opened the way to a large number of follow-up
works [21]. In [17] Zhu et al. proposed LEAP, a rather efficient scheme based
on local distribution of secret keys among neighboring nodes.

The studies specifically targeted to PKC have tried either to adjust conven-
tional algorithms (e.g. RSA) to sensor nodes, or to employ more efficient tech-
niques (e.g. ECC) in this resource-constrained environment.

All the seminal papers of Watro et al. [27], Gura et al. [28], and Malan et
al. [29] have targeted the ATmega128L. Watro et al. [27] proposed TinyPK. To
perform key distribution, TinyPK assigns the efficient RSA public operations
to nodes and the expensive RSA private operations to better equipped external
parties.

Gura et al. [28] reported results for ECC and RSA primitives on the AT-
mega128L and demonstrated convincingly that the former outperforms the
latter. Their ECC implementation is based upon arithmetic in the prime fi-
nite field Fp.

Malan et al. [29] have all presented the first ECC implementation over binary
fields F2m for sensor nodes. They used a polynomial basis and presented results
for the ECDH key exchange protocol.

In the literature there are works that make use of identities to distribute keys
in WSNs. Some (e.g Carman et al. [14], Du et al. [23], and Liu et al. [50]) are
based on the symmetric cryptosystems due to Blundo et al. [51] and Blom et
al. [52]. These strategies, however, do not provide perfect resilience, as after

17

a certain percentage of nodes have been compromised, the whole network
can be compromised as well. Others (e.g [53,54,55]) have employed IBC from
PBC. The works of Zhang et al. [53], Doyle et al., [54] and Oliveira et al. [55]
employ IBC to distribute keys between nodes. However, they all use interactive
protocols and therefore nodes are required to exchange messages to agree on
keys.

Software implementation of pairings has also been focus of research. Before
demonstrating the efficiency of PBC on sensor nodes, we first showed its fea-
sibility [56] with an implementation of the Tate pairing. TinyTate, as it is
called, uses TinyECC [50] as the underlying library and also targets the AT-
mega128L. TinyTate, however, takes around 31s to compute pairings and its
level of security, equivalent to RSA-512, is not appropriate for all applications.
We subsequently – in a previous version of TinyPBC [57] – improved these
figures by employing the MIRACL cryptographic library [58] together with
the López-Dahab binary field multiplication method [44]. By using TinyPBC,
we were able to compute the ηT pairing in only 5.45s on the ATmega128L.
The same pairing has been implemented in the work of Ishiguro et al [59] as
well. Their work uses ternary fields and evaluates pairings in 5.79s. Also using
MIRACL, Szczechowiak et al. [60] have shown performance numbers for ECC
operations as well as pairings over binary and primes fields. Their implemen-
tation of ηT uses the Karatsuba multiplication method and takes 10.96s to be
evaluated on the ATmega128L and 5.25s on the MSP430. Further, by trans-
lating critical part of code to Assembly and then by carefully manipulating
registers, Szczechowiak et al. [37] managed to reduce those times to only 2.66s
and 1.71s, respectively. Figure 1 presents a comparison between the execution
times obtained by this work compared to the related work discussed in this
section.

More recently, Oliveira et al. [61] have shown how short signatures [62] from
pairings can be used to authenticate sensors in a shared WSN scenario and
Galindo et al. [63] have used TinyPBC to make explicit the benefits of using
PBC to solve the key distribution problem in Underwater Wireless Sensor
Networks (UWSNs).

7 Conclusion

In spite of intense research efforts, achieving security in WSNs using cryptog-
raphy is still a challenging problem. On the other hand, the advent of PBC
has enabled a wide range of new cryptographic solutions.

In this work, we first have shown how security in WSNs can be bootstrapped
using ID-NIKDS. Subsequently we have presented TinyPBC, to our knowl-

18

TinyTate [60]

NanoECC [64]

Ishiguro et al. 2008 [63]

Oliveira et al. 2007 [61]

Szczechowiak et al. 2009 [30]

NanoECC [64]

Szczechowiak et al. 2009 [30]

Szczechowiak et al. 2009 [30]

Ti
m

e
(s

ec
)

This work

This work

This work

ATmega128L
30.20

10.96

5.455.80

2.66 1.90

MSP430

5.25

1.71 1.27

PXA27x

0.46 0.14

Figure 1. Timings for pairing computation in several sensor platforms.

edge the most efficient implementation of PBC primitives for 8, 16 and 32-bit
processors found in wireless sensor nodes. TinyPBC is able to compute pair-
ings, the most expensive primitive of PBC, in 1.90s on ATmega128L, 1.27s on
MSP430 and 0.14s on PXA27x and it is based on RELIC [12], an open source
cryptographic library.

Acknowledgements

We would like to thank Kenneth G. Paterson, Paulo S. L. M. Barreto and
Piotr Szczechowiak for their valuable comments on this work, and CAPES
and FAPESP, which support authors L. B. Oliveira and D. F. Aranha (under
grants 4630/06-8, 05/00557-9; and 07/06950-0 respectively).

References

[1] D. Estrin, R. Govindan, J. S. Heidemann, S. Kumar, Next century challenges:
Scalable coordination in sensor networks, in: MobiCom’99, 1999, pp. 263–270.

[2] R. Sakai, K. Ohgishi, M. Kasahara, Cryptosystems based on pairing, in:
Symposium on Cryptography and Information Security (SCIS’00), 2000, pp.
26–28.

[3] A. Joux, The Weil and Tate Pairings as Building Blocks for Public Key

19

Cryptosystems, in: ANTS-V: the 5th Int’l Symposium on Algorithmic Number
Theory, 2002, pp. 20–32.

[4] D. Boneh, M. Franklin, Identity-based encryption from the weil pairing, SIAM
J. Comput. 32 (3) (2003) 586–615, also appeared in CRYPTO ’01.

[5] A. Shamir, Identity-based cryptosystems and signature schemes, in:
CRYPTO’84, Springer-Verlag, 1984, pp. 47–53.

[6] C. Karlof, D. Wagner, Secure routing in wireless sensor networks: Attacks
and countermeasures, Elsevier’s AdHoc Networks Journal, Sp. Issue on Sensor
Network Applications and Protocols 1 (2–3) (2003) 293–315, also in 1st IEEE
Int’l Workshop on Sensor Networks Protocols and Applications.

[7] C. Karlof, N. Sastry, D. Wagner, Tinysec: A link layer security architecture for
wireless sensor networks, in: 2nd ACM SensSys, 2004, pp. 162–175.

[8] C. Boyd, K.-K. R. Choo, Security of two-party identity-based key agreement,
in: Mycrypt, 2005, pp. 229–243.

[9] J. L. Hill, D. E. Culler, Mica: A wireless platform for deeply embedded
networks., IEEE Micro 22 (6) (2002) 12–24.

[10] J. Polastre, R. Szewczyk, D. Culler, Telos: enabling ultra-low power wireless
research, in: 4th international symposium on Information processing in sensor
networks IPSN ’05, IEEE Press, Piscataway, NJ, USA, 2005, p. 48.

[11] L. Nachman, R. Kling, R. Adler, J. Huang, V. Hummel, The Intel Mote
platform: a bluetooth-based sensor network for industrial monitoring., in: 4th
IEEE International Symposium on Information Processing in Sensor Networks
(IPSN’05), 2005, pp. 437–442.

[12] D. F. Aranha, RELIC Cryptographic Toolkit, available at http://code.

google.com/p/relic-toolkit (2009).

[13] A. Menezes, S. A. Vanstone, P. C. van Oorschot, Handbook of Applied
Cryptography, CRC Press, Inc., Boca Raton, FL, USA, 1996.

[14] D. W. Carman, P. S. Kruus, B. J. Matt, Constraints and approaches for
distributed sensor network security, Tech. Rep. 00-010, NAI Labs, Network
Associates, Inc. (2000).

[15] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J. D. Tygar, SPINS: Security
protocols for sensor networks, Wireless Networks 8 (5) (2002) 521–534, also
in MobiCom’01.

[16] L. Eschenauer, V. D. Gligor, A key management scheme for distributed
sensor networks, in: 9th ACM conf. on Computer and communications security
(CCS’02), 2002, pp. 41–47.

[17] S. Zhu, S. Setia, S. Jajodia, LEAP: efficient security mechanisms for large-
scale distributed sensor networks, in: 10th ACM conference on Computer and
communication security (CCS’03), ACM Press, 2003, pp. 62–72.

20

[18] R. D. Pietro, L. V. Mancini, A. Mei, Random key-assignment for secure wireless
sensor networks, in: 1st ACM workshop on Sec. of ad hoc and sensor net.
(SASN’03), 2003, pp. 62–71.

[19] H. Chan, A. Perrig, D. Song, Random key predistribution schemes for sensor
networks, in: IEEE Symposium on Security and Privacy (S&P’03), 2003, pp.
197–213.

[20] R. Kannan, L. Ray, A. Durresi, Security-performance tradeoffs of inheritance
based key predistribution for wireless sensor networks, in: 1st European
Workshop on Security in Wireless and Ad-Hoc Sensor Networks (ESAS’04),
2004.

[21] J. Hwang, Y. Kim, Revisiting random key pre-distribution schemes for wireless
sensor networks, in: 2nd ACM workshop on Security of ad hoc and sensor
networks, 2004, pp. 43–52.

[22] S. A. Çamtepe, B. Yener, Combinatorial design of key distribution mechanisms
for wireless sensor networks., in: 9th European Symposium on Research
Computer Security (ESORICS’04), 2004, pp. 293–308.

[23] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, A. Khalili, A pairwise key
pre-distribution scheme for wireless sensor networks, ACM Trans. on Info. and
System Security 8 (2) (2005) 228–58, also in ACM CCS’03.

[24] D. Liu, P. Ning, R. Li, Establishing pairwise keys in distributed sensor networks,
ACM Trans. on Info. and System Security 8 (1) (2005) 41–77, also in ACM
CCS’03.

[25] L. B. Oliveira, H. C. Wong, R. Dahab, A. A. F. Loureiro, On the design of secure
protocols for hierarchical sensor networks, International Journal of Security and
Networks (IJSN) 2 (3/4) (2007) 216–227.

[26] L. B. Oliveira, A. Ferreira, M. A. Vilaça, H. C. Wong, M. Bern, R. Dahab,
A. A. F. Loureiro, SecLEACH– on the security of clustered sensor networks,
Signal Process. 87 (12) (2007) 2882–2895.

[27] R. J. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, P. Kruus, TinyPK:
securing sensor networks with public key technology., in: 2nd ACM Workshop
on Security of ad hoc and Sensor Networks (SASN’04), 2004, pp. 59–64.

[28] N. Gura, A. Patel, A. Wander, H. Eberle, S. C. Shantz, Comparing Elliptic
Curve Cryptography and RSA on 8-bit CPUs., in: Workshop on Cryptographic
Hardware and Embedded Systems (CHES’04), 2004, pp. 119–132.

[29] D. J. Malan, M. Welsh, M. D. Smith, A Public-Key Infrastructure for Key
Distribution in TinyOS Based on Elliptic Curve Cryptography, in: 1st IEEE
International Conference on Sensor and Ad Hoc Communications and Networks
(SECON’04), 2004, pp. 71–80.

[30] W. Du, R. Wang, P. Ning, An efficient scheme for authenticating public keys
in sensor networks, in: 6th ACM MobiHoc ’05, New York, 2005, pp. 58–67.

21

[31] K. G. Paterson, Cryptography from pairings, in: I. F. Blake, G. Seroussi,
N. Smart (Eds.), Advances in Elliptic Curve Cryptography, Vol. 317 of London
Mathematical Society Lecture Notes, Cambridge Univ. Press, 2005, Ch. X, pp.
215–251.

[32] C. Cocks, An identity based encryption scheme based on quadratic residues, in:
8th IMA Int’l Conference on Cryptography and Coding, Springer-Verlag, 2001,
pp. 360–363.

[33] A. Joux, A One Round Protocol for Tripartite Diffie-Hellman., J. Cryptology
17 (4) (2004) 263–276, also in ANTS’00.

[34] A. Menezes, T. Okamoto, S. Vanstone, Reducing elliptic curve logarithms to
logarithms in a finite field, IEEE Trans. on Information Theory 39 (5) (1993)
1639–1646.

[35] S. D. Galbraith, Pairings, in: I. F. Blake, G. Seroussi, N. Smart (Eds.), Advances
in Elliptic Curve Cryptography, Vol. 317 of London Mathematical Society
Lecture Notes, Cambridge Univ. Press, 2005, Ch. IX, pp. 183–213.

[36] S. Galbraith, K. Paterson, N. Smart, Pairings for cryptographers, Cryptology
ePrint Archive, Report 2006/165 (2006).

[37] P. Szczechowiak, A. Kargl, M. Scott, M. Collier, On the application of pairing
based cryptography to wireless sensor networks, in: WiSec ’09: 2nd ACM
conference on Wireless network security, ACM, 2009, pp. 1–12.

[38] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller,
M. Sichitiu, Analyzing and modeling encryption overhead for sensor network
nodes, in: ACM Int’l conf. on Wireless sensor networks and applications, 2003,
pp. 151–159.

[39] P. S. L. M. Barreto, S. Galbraith, C. O. hEigeartaigh, M. Scott, Efficient
pairing computation on supersingular abelian varieties, in: Designs Codes And
Cryptography, 2006, pp. 239–271.

[40] M. Duursma, H.-S. Lee, Tate pairing implementation for hyperelliptic curves

y2 = xp-x + d, in: 9th ASIACRYPT’03, Springer, 2003, pp. 111–123.

[41] Atmel, 8 bit AVR Microcontroller ATmega128(L) manual, 2467th Edition
(November 2004).

[42] R. M. Avanzi, Another look at square roots (and other less common operations)
in fields of even characteristic, in: Selected Areas in Cryptography, 2007, pp.
138–154.

[43] M. Scott, Optimal irreducible polynomials for GF(2m) arithmetic, Cryptology
ePrint Archive, Report 2007/192 (2007).

[44] J. López, R. Dahab, High-speed software multiplication in GF(2m), in:
Progress in Cryptology - INDOCRYPT’00, 2000, pp. 203–212, Lecture Notes
in Computer Science.

22

[45] K. Fong, D. Hankerson, J. López, A. Menezes, Field Inversion and Point Halving
Revisited, IEEE Transactions on Computers 53 (8) (2004) 1047–1059.

[46] Atmel Corporation, AVR Studio 4, http://www.atmel.com/ (2005).

[47] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, T. Voigt, MSPsim – an
Extensible Simulator for MSP430-equipped Sensor Boards, in: Proceedings of
the European Conference on Wireless Sensor Networks (EWSN), Poster/Demo
session, Delft, The Netherlands, 2007.
URL http://www.sics.se/~adam/eriksson07mspsim.pdf

[48] J. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, F. Rodŕıguez-Henŕıquez, A
Comparison Between Hardware Accelerators for the Modified Tate Pairing over
F2m and F3m , in: Pairing ’08, 2008, pp. 297–315.

[49] S. Bartolini, I. Branovic, R. Giorgi, E. Martinelli, Effects of instruction-
set extensions on an embedded processor: a case study on elliptic curve
cryptography over GF(2m), IEEE Transactions on ComputersTo appear.

[50] A. Liu, P. Kampanakis, P. Ning, TinyECC: Elliptic Curve Cryptography for
Sensor Networks (Ver. 0.3), http://discovery.csc.ncsu.edu/software/TinyECC/
(2005).

[51] C. Blundo, A. D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, M. Yung,
Perfectly-secure key distribution for dynamic conferences, in: CRYPTO ’92,
1992, pp. 471–486.

[52] R. Blom, An optimal class of symmetric key generation systems, in:
EUROCRYPT’ 84, 1984, pp. 335–338.

[53] Y. Zhang, W. Liu, W. Lou, Y. Fang, Securing sensor networks with location-
based keys, in: IEEE Wireless Communications and Networking Conference
(WCNC’05), 2005.

[54] B. Doyle, S. Bell, A. F. Smeaton, K. McCusker, N. O’Connor., Security
considerations and key negotiation techniques for power constrained sensor
networks, The Computer Journal 49 (4) (2006) 443–453.

[55] L. B. Oliveira, R. Dahab, J. Lopez, F. Daguano, A. A. F. Loureiro, Identity-
based encryption for sensor networks, in: 5th IEEE Int’l Conference on Pervasive
Computing and Communications Workshops (PERCOMW ’07), 2007, pp. 290–
294.

[56] L. B. Oliveira, D. F. Aranha, E. Morais, F. Daguano, J. López, R. Dahab,
TinyTate: Computing the Tate pairing in resource-constrained nodes, in: 6th
IEEE International Symposium on Network Computing and Applications, 2007,
pp. 318–323.

[57] L. B. Oliveira, M. Scott, J. López, R. Dahab, TinyPBC: Pairings
for authenticated identity-based non-interactive key distribution in sensor
networks, in: 5th International Conference on Networked Sensing Systems
(INSS’08), 2008, pp. 173–180.

23

[58] M. Scott, MIRACL—A Multiprecision Integer and Rational Arithmetic
C/C++ Library, Shamus Software Ltd, Dublin, Ireland, available at
http://indigo.ie/ mscott (2003).

[59] T. Ishiguro, M. Shirase, T. Takagi, Efficient implementation of pairings on
sensor nodes, in: Applications of Pairing-Based Cryptography – NIST, 2008,
pp. 96–106.

[60] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, R. Dahab, NanoECC:
Testing the limits of elliptic curve cryptography in sensor networks, in:
European conference on Wireless Sensor Networks (EWSN’08), 2008, pp. 305–
320.

[61] L. B. Oliveira, A. Kansal, B. Priyantha, M. Goraczko, F. Zhao, Secure-tws:
Authenticating node to multi-user communication in shared sensor networks,
in: The 8th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN’08), 2009, pp. 289–300.

[62] D. Boneh, B. Lynn, H. Schacham, Short signatures from the Weil pairing,
Journal of Cryptology 17 (4) (2004) 297–319.

[63] D. Galindo, R. Roman, J. Lopez, A killer application for pairings: authenticated
key establishment in underwater wireless sensor networks, in: CANS ’08:
Proceedings of the 7th International Conference on Cryptology and Network
Security, Lecture Notes in Computer Science, 2008, pp. 120–132.

24

