Efficient Certificateless Signcryption

Diego Aranha, Rafael Castro, Julio López, Ricardo Dahab¹

¹ Institute of Computing – University of Campinas (UNICAMP) CEP 13084-971 – Campinas – SP - Brazil

{dfaranha,jlopez,rdahab}@ic.unicamp.br,rafael.castro@gmail.com

1. Introduction

The conventional public key cryptography model includes a central authority that issues certificates and manages a public key infrastructure, requiring significant processing and storage capabilities. Identity-based cryptography (ID-PKC) replaces the traditional public keys with identifiers derived from users' identities. This facilitates public key validation but introduces the key escrow of private keys by the central authority as a side-effect. Certificateless cryptography (CL-PKC) is a novel paradigm where the generated costs are reduced without introducing key escrow of private keys.

A signcryption scheme is a technique that provides confidentiality, authentication and non-repudiation in a single integrated operation. The first concrete and secure CL-PKC signcryption scheme was proposed recently in [1]. We propose an efficient CL-PKC signcryption scheme that supports publicly verifiable signatures and show that it is more efficient than the first protocol. This paper fixes a previous protocol proposed in [2] and cryptanalysed in [3].

2. Bilinear Pairings

Let \mathbb{G}_1 and \mathbb{G}_2 be additive groups of prime order q and \mathbb{G}_T be a multiplicative group of order q. Let P and Q be the generators of \mathbb{G}_1 and \mathbb{G}_2 respectively. An efficientlycomputable map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is an *admissible bilinear map* if the following properties are satisfied:

- 1. Bilinearity: given $(V, W) \in \mathbb{G}_1 \times \mathbb{G}_2$ and $(a, b) \in \mathbb{Z}_q^*$, we have:
 - $e(aV, bW) = e(V, W)^{ab} = e(abV, W) = e(V, abW).$
- 2. Non-degeneracy: $e(P,Q) \neq 1_{\mathbb{G}_T}$, where $1_{\mathbb{G}_T}$ is the identity of the group \mathbb{G}_T .

Different pairing instantiations lead to bilinear maps with distinct performance and functionality features [4]. When $\mathbb{G}_1 = \mathbb{G}_2$ (symmetric pairing), the pairing is called a Type 1 pairing and is implemented using supersingular curves. The case $\mathbb{G}_1 \neq \mathbb{G}_2$ (asymmetric pairing) can be separated into two sub-classes: Type 2 pairings where an efficient homomorphism $\varphi : \mathbb{G}_2 \to \mathbb{G}_1$ is available and Type 3 where such maps are not possible. Asymetric pairings can support a higher embedding degree tending to be faster at high security levels [5, 6].

3. Efficient Signcryption

The proposed signcryption scheme is an extension of an efficient ID-PKC signcryption scheme proposed in [7], inheriting the public verification feature. The scheme is also not restricted to symmetric or asymmetric pairing settings. Our protocol has the following algorithms:

- Setup. Given a security parameter k, the central authority (Key Generation Center KGC) generates a k-bit prime number q, bilinear groups $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T)$ of order q with generators $P \in \mathbb{G}_1$ and $Q \in \mathbb{G}_2$, and an admissible bilinear map e. The KGC also chooses hash functions $H_1 : \{0,1\}^* \to \mathbb{Z}_q^*, H_2 : \mathbb{G}_T \to \{0,1\}^n$ and $H_3 : \{0,1\}^n \times \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{Z}_q^*$, selects at random the master key $s \in \mathbb{Z}_q^*$ and computes $P_{pub} = sP$ and g = e(P,Q). The KGC publishes the system parameters $\langle q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, P, Q, e, g, P_{pub}, H_1, H_2, H_3 \rangle$ and keeps s in secret.
- **Extract.** Let y_E denote $H_1(\mathsf{ID}_E)$. Given identity ID_A , the KGC computes and issues to user A the partial private key $D_A = (y_A + s)^{-1}Q \in \mathbb{G}_2$;
- **Keygen.** User A selects at random $x_A \in \mathbb{Z}_q^*$ as a secret value and computes the private key $S_A = x_A^{-1}D_A \in \mathbb{G}_2$ and the public key $P_A = x_A(y_AP + P_{pub}) \in \mathbb{G}_1$. The resulting key pair is (P_A, S_A) . Observe that $e(P_A, S_A) = g$.
- **Signcrypt.** To signcrypt the message m, user A computes:
 - 1. $r \leftarrow_R \mathbb{Z}_q^*, u \leftarrow r^{-1}, U \leftarrow g^u;$ 2. $c \leftarrow m \oplus H_2(U, P_A, \mathsf{ID}_A);$
 - 3. $h \leftarrow H_3(c, rP_A, uP_B, P_A, \mathsf{ID}_A);$
 - 4. $T \leftarrow (r+h)^{-1}S_A$;
 - 5. Return (c, rP_A, uP_B, T) .

Unsigncrypt. Upon reception of the signcrypted message (c, R, S, T), user B computes:

- 1. $h' \leftarrow H_3(c, R, S, P_A, \mathsf{ID}_A);$
- 2. $V \leftarrow e(R + h'P_A, T);$
- 3. $r' \leftarrow e(S, S_B);$
- 4. $m' \leftarrow c \oplus H_2(r', P_A, \mathsf{ID}_A);$
- 5. If V = g, return m'. Otherwise, return \perp indicating error.

The scheme is publicly verifiable, as the computation of V does not depend on private information. If (c, R, S, T) is correct, we can see that the protocol works:

- $V = e(R + hP_A, T) = e((r + h)P_A, (r + h)^{-1}S_A) = e(P_A, S_A) = g.$
- $e(S, S_B) = e(uP_B, x_B^{-1}D_B) = e(ux_B(y_BP + P_{pub}), x_B^{-1}(y_B + s)^{-1}Q) = g^u = U.$

4. Security

In this updated version of the protocol, hash function H_2 , H_3 were changed so both also depends on P_A and ID_A . This modification fixes both attacks presented in [3]. We present below the attacks on the previous version of the protocol and discuss why the new version is not affected.

Attack 1: the first attack requires a Type-I adversary who is capable of replacing public keys but does not have access to the master key s. The attacker forges a valid signeryption on a message m from a legitimate user A to another user B by performing the following steps:

- 1. Choose randomly $r \in_R \mathbb{Z}_q^*$ and compute $u = r^{-1}$;
- 2. Compute $U = g^r$ and set $C = m \oplus H_2(U)$;
- 3. Set $T = r^{-1}Q$, R = rP P and $S = uP_B$;
- 4. Compute $h = H_3(c, R, S)$;
- 5. Replace the public key of A with $P_A = h^{-1}P$.

The forged signcryption on message m is $\sigma = (c, R, S, T)$. It is straightforward to see that the updated function H_3 avoids this attack. If H_3 depends on P_A , it is not possible to replace the public key of A after the signcryption and keep the signature component valid. The hash computed by B with the wrong public key will allow B to reject the message.

Attack 2: the second attack is executed by a Type-I or Type-II adversary on the unforgeability and confidentiality of the scheme. Let $\sigma^* = (c^*, R^*, S^*, T^*)$ be the challenge signcryption on message $m_b, b \in \{0, 1\}$ sent by user A to user B. The adversary generates a new signcryption $\sigma' = (c', R', S', T')$ on m_b from an user C (whose private key is known to the adversary) to the same receiver B by performing the following steps:

- 1. Set $c' = c^*$;
- 2. Choose randomly $r' \in_R \mathbb{Z}_a^*$ and compute $R' = r'P_C$;
- 3. Set $S' = S^*$;
- 4. Compute $h' = H_3(c', R', S')$;
- 5. Set $T' = (r' + h')^{-1}S_C$.

Now the attacker can query the unsigneryption oracle for the unsigneryption of σ' . The oracle will give back the message m_b because σ' is a valid signeryption from C to B on m_b and $\sigma' \neq \sigma$. If H_2 depends on P_A and ID_A , the component c^* is tied to the identity and public key of the original sender A and the attacker is not able to produce a new valid signeryption with C as the sender. The hash computed by the receiver B or the unsigneryption oracle with the wrong public key or identity will turn σ' into the signeryption on a random message from C to B, not providing any useful knowledge to the adversary.

5. Efficiency

The computational costs of the proposed protocol and the scheme from [1] are presented in Table 1. The cost is measured in terms of bilinear pairings (e), exponentiations in \mathbb{G}_T (a^x) , scalar multiplications in \mathbb{G}_1 or \mathbb{G}_2 (kP), inversions in \mathbb{Z}_q^* (a^{-1}) and hash functions (H) computations.

		Operations				
Algorithm	Protocol	e	kP	a^x	a^{-1}	H
Preprocessing	[1]	1	0	0	0	0
	Proposed	0	0	0	0	0
Signcrypt	[1]	0	$3 + \sigma^{\dagger}$	1	0	3
	Proposed	0	3	1	2	2
Unsigncrypt	[1]	4	1	0	0	3
	Proposed	2	1	0	0	2

Table 1. Computational cost of the protocols in operations.

[†] Two of the scalar multiplications can be simultaneous

6. Future work

Future works will be centered on proving the scheme security in a formal setting.

References

- M. Barbosa P. and Farshim. Certificateless signcryption. In ACM Symposium on Information, Computer and Communications Security (ASIACCS 2008), pages 369–372, New York, NY, USA, 2008. ACM.
- [2] D. F. Aranha, R. Castro, J. López, and R. Dahab. Efficient Certificateless Signcryption. In VIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais (SBSEG 2008), pages 257–258, 2008.
- [3] S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Ragan. On the Security of Certificateless Signeryption Schemes. Cryptology ePrint Archive, Report 2009/298, 2009. http://eprint.iacr.org/.
- [4] S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for Cryptographers. *Discrete Applied Mathematics*, 156(16), 2008.
- [5] D. Hankerson, A. Menezes, and M. Scott. Software Implementation of Pairings. In *Identity-Based Cryptography*, chapter 12, pages 188–206. IOS Press, 2008.
- [6] D. F. Aranha, J. López, and D. Hankerson. High-Speed Parallel Software Implementation of the η_T Pairing. In J. Pieprzyk, editor, *Cryptographers' Track at RSA Conference* (*CT-RSA 2010*), volume 5985 of *LNCS*, pages 89–105. Springer, 2010.
- [7] N. McCullagh and P. S. L. M. Barreto. Efficient and Forward-Secure Identity-Based Signcryption. Cryptology ePrint Archive, Report 2004/117, 2004. http://eprint. iacr.org/.