
Secure-TWS: Authenticating Node to

Multi-user Communication in Shared

Sensor Networks

Leonardo B. Oliveira1, Aman Kansal2, Conrado P. L.
Gouvêa1, Diego F. Aranha1, Julio López1, Bodhi Priyantha2,

Michel Goraczko2 and Feng Zhao2

1University of Campinas
2Microsoft Research

Email: leob@ic.unicamp.br, kansal@microsoft.com,

{conradoplg,dfaranha,jlopez}@ic.unicamp.br, {bodhip,michelg,zhao}@microsoft.com

Recent works have shown the usefulness of network and application layer protocols

that connect low-power sensor nodes directly to multiple applications and users

on the Internet. We propose a security solution for this scenario. While previous

works have provided security support for various communication patterns in

sensor networks, such as among nodes, from nodes to a base station, and from

users to nodes, the security of communication from sensor nodes to multiple users

has not been sufficiently addressed. Specifically, we explore this design space

and develop a security solution, named Secure-TWS, for efficient authentication

of data sent by a resource constrained sensor node to multiple users, using

digital signatures. We investigate the resource overheads in communication

and computation of four suitable signature schemes – the Elliptic Curve Digital

Signature Algorithm (ECDSA), the (elliptic curve) Schnorr signature, and the

Boneh-Lynn-Shacham (BLS) and Zhang-Safavi-Naini-Susilo (ZSS) short signature

schemes. We implement these schemes on two popular sensor node architectures

(based on AVR ATmega128L and MSP430 processors with 802.15.4 radios) and

experimentally characterize relevant trade-offs.

Wireless Sensor Networks; Security; Cryptography;

Authentication; Digital Signatures.

1. INTRODUCTION

This paper describes the implementation of a security

solution for sensor nodes that are shared by multiple

users. Shared sensor nodes are useful in many scenarios

such as when a common sensing substrate is used by

multiple applications. While the sharing of sensors

over the Internet is not new [1], recent works have

demonstrated the usefulness of methods that connect

low-power sensor nodes directly to applications, locally

and over the Internet, without intermediary gateways,

such as to improve interoperability, deployment re-use,

and reduce costs [2]. Network protocols at the IP layer

[3, 4] and the application layer [2] have shown energy

efficient methods to enable this mode of operation.

Figure 1 shows these communication scenarios.

Implementing such a direct connection from sensor

nodes to multiple clients in practice further entails

providing end-to-end security for data communication.

FIGURE 1. Shared sensor scenario for which security

solution is implemented.

The need for security directly from the source node also

arises in scenarios where the sensor node is deployed by

one entity but it sends its data over a network device

provided by an untrusted entity. For instance, a power

metering node for real time demand-response pricing

may be deployed by the utility company (shown as

Remote Sensor Owner in the figure) in a home and the

The Computer Journal, Vol. ??, No. ??, ????



2 L. Oliveira, A. Kansal, C. Gouvêa, D. Aranha, J. López, B. Priyantha, M. Goraczko, F. Zhao

node may use the home Internet router supplied by the

home owner. The utility company trusts only the sensor

node but not the intermediate network device. The

sensor node must supply authenticated data directly,

rather than relying on the Internet router. The data

may also be accessed by other interested clients such

as the home user locally, or the building landlord

remotely, who may all want authenticated data. Our

implementation complements the network layer and

application layer protocols available for these scenarios

with support for security.

The fundamental communication pattern here is from

a sensor node to multiple users. A first requirement

for security is that multiple users must be able to

authenticate the data they receive from a sensor node.

Authentication is arguably the most important security

property in securing WSN communication [5]. We

describe our implementation to achieve authentication

and provide experimental evaluations that help decide

among key design choices involved. The design is

optimized to provide authentication for node to multi-

user communication from resource-constrained sensor

nodes. We explore the design space and show that a

digital signature-based approach is the most efficient

choice for this scenario, especially since the resource-

constrained sensors may not be able to establish shared

keys with a changing set of multiple users. We

also compare different digital signature schemes for

authenticating node to multi-user communication. The

goal of the paper is not to invent new cryptography

primitives but rather to close the gap between research

and practice by evaluating certain key deign choices

in realizing the security implementation for a shared

sensor scenario.

To sum up, our key contributions are:

1. We demonstrate how node-to-multiuser communi-

cation can be authenticated in WSN’s, as well as

identify and evaluate the design choices involved.

2. We provide a comparison between Boneh-Lynn-

Shacham (BLS) [6] and Zhang-Safavi-Naini-Susilo

(ZSS) [7] short signature schemes with the Elliptic

Curve Digital Signature Algorithm (ECDSA) and

(elliptic curve) Schnorr signature in the context of

WSN’s (note that ours is the first implementation

of short signature schemes on sensor platforms).

3. We provide an authenticated web service commu-

nication solution, named Secure Tiny Web Service

or Secure-TWS, for shared and interoperable sensor

nodes, based on integration of our security imple-

mentation with the Tiny Web Service stack from [2]

along with its underlying IP stack [3].

The remainder of this work is organized as follows.

Section 2 discuss the overall design motivation for

the Secure-TWS security implementation along with

its usage setup. A detailed discussion of the

implementation issues that were evaluated in our

experiments is provided in Section 3 and the evaluation

results are discussed in Section 4. Related work and

conclusions appear in Sections 5 and 6, respectively.

2. AUTHENTICATION FOR SHARED SEN-

SOR SCENARIO

Authentication consists of two properties: i) source

authentication, which ensures a receiver that the

message did in fact originate from the claimed sender;

and ii) data authentication, that guarantees a receiver

that the message received is “fresh” (i.e. it is not a

replay attack) and its content was not changed since

it left the sender. A second aspect of data security

is privacy, typically ensured using data encryption.

The implementation presented in this paper does not

address the privacy aspect; privacy might not even be

needed for many sensors shared over the Internet.

In this section, we identify the key security primitives

that are applicable for providing authentication and

select a small number of appropriate design options

that need to be evaluated for enabling efficient

implementations. The system to provide the required

security features is described. The selected design

options and parameters are then discussed and

evaluated with their implementations in subsequent

sections.

2.1. Design Space

Authentication can be achieved using one of two types

of security primitives: using message authentication

codes (MAC’s) and using digital signatures.

2.1.1. Using Message Authentication Codes

Methods that use MAC’s begin with an initialization

step that involves distributing the shared keys in

a secure manner. Once keys are distributed,

authentication in a pairwise communication pattern is

straightforward: sender uses the shared key to generate

a message authentication code that may be verified

by the receiver. Computation overhead for symmetric

key cryptography is very low [8] and many embedded

processors have hardware support for it, such as a

hardware implementation of AES.

The use of MAC’s for a node to multi-user scenario

is possible, such as demonstrated in µTESLA [8] and

LEAP [9]. The µTESLA scheme was described for

authentication of messages from a base station to

multiple nodes and the LEAP scheme for single hop

communication. Both schemes use a one-way key chain

(a sequence of keys k1, . . . kn, where ki+1 is generated

from ki by applying a one-way hash function f(),

i.e., ki+1 = f(ki)) to achieve authentication. All

The Computer Journal, Vol. ??, No. ??, ????



Secure-TWS: Authenticating Node to Multi-user Communication in Shared Sensor Networks 3

nodes who are supposed to receive the authenticated

messages must be supplied with a group key kn in

a secure manner. This group key is common to all

nodes. In µTESLA all nodes also have to maintain

a synchronization with the sender regarding which

key in the sequence is currently valid. Clearly, these

requirements are not well-suited for our scenario where

a sensor node is shared over the Internet by a changing

set of multiple clients.

The special case of one-to-one communications when

the connection is between a resource-constrained sensor

node and a single client connected via the Internet

was implemented in [10] using SSL, and named Sizzle.

The conventional Public Key Cryptography (PKC)

mechanisms used in SSL for exchange of shared keys

were replaced with a resource efficient version of PKC,

based on Elliptic Curve Cryptography (ECC), leading

to a lighter version of SSL suitable for resource-

constrained sensor nodes. Applying Sizzle directly for

node to multi-user communication communication is

inefficient as the sensor node would then have to run

the SSL handshake with every one of its clients on the

Internet, including short term and transient ones. Also,

the data would have to be sent multiple times to each

client since a different session key would be used by

each client, and no multi-cast or sharing of the same

data message would be feasible.

2.1.2. Digital Signature-Based Authentication

The alternative option of using digital signatures leads

to certain advantages over the approach of using MAC’s

in this node to multi-user scenario:

1. When signatures are used, the node is not required

to establish shared secret keys with each client who

wishes to receive authenticated data.

2. Shared keys need not be managed or stored at the

resource-constrained node.

3. The same authenticated message can be sent to

multiple users and forwarded or multi-cast to

other users retaining its authentication properties.

This allows the network layer to optimize service

to multiple simultaneous clients using multi-cast

without requiring the sensor node to send multiple

packets.

The design options for implementing digital signatures

for sensor networks are discussed next.

A digital signature allows a sender (signatory) to

generate a signature on a message. The receiver can

verify the authenticity of the signature to ensure that

the message indeed originated from the claimed sender

and has not been modified since. The signature is

generated using a private key known only to the sender

and verified using a public key known publicly to

everyone including the receivers. An adversary cannot

forge a sender’s signature without the sender’s private

key. Implementing digital signatures thus involves

providing two components – a method to obtain [public,

private] key pairs used for signing and verification, and

efficient computation of the signatures.

The [public, private] key pairs can be obtained

either using certificate-based schemes or certificate-free

schemes. In certificate-based schemes, the key pair is

associated with a particular user by a mutually trusted

entity, sometimes referred to as a certification authority

(CA). The trusted entity signs a user’s credentials using

its own private key and everyone who trusts this entity

can associate the given public key to that user.

Among certificate-free schemes, many are based on

identity-based methods [11]. In this approach, some

unique information that correctly identifies the user

(such as an email address or an IP address) is used

to derive their public key. No certification is thus

needed to bind the public key to the user. The keys

are generated by an unconditionally trusted authority

(TA) for each user. While the identity-based scheme

has lower overheads in managing the issuance and

verification of certificates, it has the drawback that the

TA in this case knows everyone’s private keys and can

impersonate any user. While such a trusted authority

is easy to implement within a single sensor network,

such as when all nodes fully trust the base station [12],

it is not easy to provide in an Internet-based sharing

scenario with many different types of users.

A certificate-free scheme that does not require a

TA has been proposed in [13], named certificateless.

However this scheme has a very high computation

complexity and is not suitable for resource-constrained

sensor nodes. On the other hand, CA’s are already

a part of the existing infrastructure. Note that CA’s

are easier to provide in the Internet since the users

only trust the CA to reliably bind public keys to

themselves, and do not have to allow the CA to be

able to impersonate as themselves. Hence, in our

implementation, we use the certificate-based scheme.

While obtaining the key pair is a one time overhead,

the second component, the computation using the

keys for signing and verification, is involved in every

message exchange. We now consider the computation

and communication overheads of digital signatures, for

optimizing the design of this step. The signature

computation choices available are described below.

Digital Signature Algorithm (DSA): DSA is a

commonly used certificate-based signature scheme

specified by NIST in FIPS 186-3. Its security re-

lies on the Discrete Logarithm Problem (DLP) and

the best known algorithm to solve it has a subexpo-

nential running time. As as result, the parameters

for DSA are rather large, making it ill suited for

The Computer Journal, Vol. ??, No. ??, ????



4 L. Oliveira, A. Kansal, C. Gouvêa, D. Aranha, J. López, B. Priyantha, M. Goraczko, F. Zhao

constrained environments such as sensor nodes.

Elliptic Curve DSA (ECDSA): ECDSA is the el-

liptic curve analogue of DSA. However, its security

relies on the Elliptic Curve DLP which the best

known algorithm to solve it runs in fully exponen-

tial time. As consequence, one can use smaller pa-

rameters with the same security level of DSA. In

addition, small key sizes offer potential reduction

in processing power, memory, bandwidth, and en-

ergy. In TinyECC [14], for example, is shown that

the generation of signatures using ECDSA on an

MSP430-based sensor platform, at the 80-bit secu-

rity level, is only 1.6s. ECDSA’s signature length,

however, is as long as DSA’s. For instance, the

signature schemes DSA-1024 and ECDSA-160, at

80-bit security level, produce a 320-bit signature.

Schnorr Signature: This signature scheme can be

instantiated with the same efficient parameters as

ECDSA, producing signatures of the same bit-

length. The main difference between both is that

Schnorr signatures do not require the computation

of modular inverses for generating signatures. It

is considered the simplest digital signature scheme

to be provably secure in a random oracle model

and is covered by U.S. Patent 4,995,082, which has

already expired.

Boneh-Lynn-Shacham (BLS) Scheme: BLS [6] is

a certicate-based signature generation and verifi-

cation scheme that relies on pairings [15]. It has

the advantage that its signature bit-length is half

that of DSA’s and ECDSA’s for RSA-1024 secu-

rity level. For this reason it is also referred to as a

short signature scheme. Its computation overhead

is asymmetric: heavier computation is needed on

the receiver side but this is not a major concern for

the scenario of interest.

Zhang-Safavi-Naini-Susilo (ZSS) Scheme:

ZSS [7] is another certificate-based signature

scheme relying on pairings. In comparison with

BLS, ZSS requires smaller computation overhead

under the same random oracle hardness assump-

tion. The ZSS scheme is closely related to a

scheme independently proposed by Boneh and

Boyen (BB) [16], but proven secure in a slightly

weaker complexity assumption.3

The resource overheads for the above options are

listed in Table 1. The exact cost may vary by specific

implementation; the table accounts for the fundamental

3It is worth noting that BB has one variant that does not rely
on the random oracle model of a hash function at the expense of
increasing the signature length. We have not employed this one
for efficiency purposes.

steps involved, using specific examples. Examples

of identity-based and certificateless schemes are also

included for completeness, though they are clearly not

strong contenders for our design choices.

The communication overhead is quantified using the

extra bits needed for security, in addition to the data

and protocol headers. The computation overhead

is listed in terms of the computationally intensive

operations involved. A scalar or point multiplication

(denoted using S in the table) is a multiplication

operation of a point, P, on the elliptic curve by a scalar,

k, to obtain Q = kP. This represents P added to itself

k times where the addition is as defined in the elliptic

curve group. A pairing (denoted as P ) is a computable,

non-degenerate function that has a special property

known as bilinearity. Variants of the Tate pairing [15]

are used in our implementation. An exponentiation

(denoted E in the table) is a modular exponentiation.

i.e., a computation of the form ab mod c.

Note that in the above schemes point multiplica-

tion works with 160-bit parameters while the pairings

and exponentiation work with much larger parameters,

making the point multiplication here relatively less com-

putationally intensive than the other two operations.

The parameter sizes come from the underlying problems

of the cryptosystems, for achieving RSA-1024 equiva-

lent security.

2.2. Authentication Setup

Based on the discussion of design options above, we

can now select the overall authentication procedure

for the security scenario of interest. To summarize,

a signature-based scheme is preferred over MAC-based

ones. Among signature-based schemes, a method

based on certificates is preferred over certificate-free

ones. Such an authentication scheme is implemented in

Secure-TWS. It operates in shared wireless sensors as

shown in Figure 2 and described below. Note that the

procedure does not involve any processing at the sensor

that is specific to the client identity and the approach

is hence scalable to any number of short term or long

term users of the sensor node.

Initialization: Prior to deployment, such as when

the application code is loaded into the sensor node, a

[public,private] key pair, [ppub(i), ppvt(i)], is generated

for each node x(i). The private key ppvt(i) is loaded

onto the node. The private key may optionally be

stored in a sensor node management database by the

sensor owner but these need not be shared with the

certification authority or anyone else. The public

key, ppub(i), should be provided to a certification

authority. The CA will verify the deploying entity’s

identity and issue a certificate that binds ppub(i) to

x(i). Subsequently, the public key and the certificate

The Computer Journal, Vol. ??, No. ??, ????



Secure-TWS: Authenticating Node to Multi-user Communication in Shared Sensor Networks 5

Signature Computation Communication

Scheme Generation Verification (bytes)

Identity-based[17] 2S 1S + 1P 40

Certificateless[13] 1S + 1P 4P 40

DSA 1E 2E 40

ECDSA 1S 2S 40

Schnorr 1S 2S 40

BLS 1S 2P 20

ZSS 1S 1S + 1P 20

TABLE 1. Signature schemes’s requirements and costs

FIGURE 2. Overview of the authentication procedure

implemented in Secure-TWS.

are uploaded to key servers from where clients may

download them directly as needed. This helps

alleviating the need for nodes to transmit public keys

and certificates themselves.

Connection Setup: Client applications that wish to

use data from a sensor node x(i) may establish a

connection to the sensor node using the Tiny Web

Services stack [2] included in Secure-TWS, or a lower

layer Internet Protocol stack [3, 4]. Multi-cast may

be used to support multiple simultaneous clients when

available.

Authenticated Data Access: The client now down-

loads the sensor node’s public key, ppub(i) and the cor-

responding certificate from a key server. The CA’s

signature on the certificate is verified by the client.

Node x(i) signs the application layer data using one of

the certificate-based signature generation schemes and

sends it to the client. The clients can authenticate the

data using signature verification based on ppub(i).

2.3. Key Design Choices

The certificate-based digital signature scheme in the

Secure-TWS setup described above could be based on

either the DSA, ECDSA, BLS, or ZSS algorithms. DSA

is clearly worse than ECDSA for sensor nodes due to

its large parameter sizes and then we compare ZSS,

BLS, and ECDSA. The computation performed at the

sensor node only involves signature generation since

the verification is performed at the client which is

not resource-constrained. Considering the computation

overhead of signature generation in Table 1, we see

that all three schemes involve one point multiplication.

ZSS and BLS do have a lower communication overhead.

Considering the table, therefore, complexity, i.e, the

order of computation alone, one may expect that ZSS

and BLS are better. However in actual implementation,

it turns out that exact computation costs vary greatly

among the three choices due to the specific computation

and parameter values involved. The choice between

these three options is explored in greater depth in

the next section using actual implementations of the

schemes on two common sensor platforms.

3. SECURE-TWS IMPLEMENTATION

We now discuss in depth the design parameters and

resource overheads that affect the choice of digital

signature schemes for shared sensor node usage. We

also highlight specific implementation issues we faced

in implementing these security primitives on two

commonly used sensor platforms.

3.1. Platform and Software

We utilize two commonly used low-power processors

to implement the Secure-TWS authentication solu-

tion: the MSP430-F2418 (16-bit 16MHz core, 8KB

The Computer Journal, Vol. ??, No. ??, ????



6 L. Oliveira, A. Kansal, C. Gouvêa, D. Aranha, J. López, B. Priyantha, M. Goraczko, F. Zhao

RAM, 116KB ROM) and AVR ATmega128L (8-bit,

7.3728MHz core, 4KB RAM, 128KB ROM). The for-

mer is present on the mPlatform [18] and the latter on

the MICA mote family of nodes [19]. A block diagram

of the software implementation is shown in Figure 3.

FIGURE 3. Block diagram of the security solution

implementation.

As shown, the Secure-TWS implementation has been

integrated with the Tiny Web Service [2] stack along

with its IP stack [3]. This integration has been tested

for the MSP430 processor only.

The key elements of the implementation are the

ZSS, BLS, and ECDSA signature generation methods.

Note that only one of these is required in a specific

instantiation and we only compile the software to

produce the complete system containing one of these

three schemes. Assembly language optimizations have

been included to improve the computation performance

of signature generation.

The finite field arithmetic and big number arithmetic

used for the ECC arithmetic is implemented using the

RELIC library from [20]. RELIC is a publicly available

C library that implements all the arithmetic primitives

required in our implementation and has support for

several popular platforms including the ones used in

our implementation.

Note that the private key is stored locally on the node

as it is used for signature generation. If the node is

compromised, this key may be stolen. However, the

key pair for the node is exclusive to that node itself

and there is no shared key that may compromise other

nodes if this node is compromised.

The application data interface uses C function calls.

It allows using our implementation easily with the

underlying Tiny Web Services stack [2]. Sample usage

is shown in Figure 4, with simply a function call made

for signature generation, followed by commands to send

the message.

Next, we consider the choice of parameter values

required for the various security modules in the

implementation.

3.2. Parameter Choices

In certain sensor network scenarios, where security

is limited to within the network, a 64-bit security

level has sometimes been used [8] to help reduce

security overheads. However, in our scenario, since

the authentication must interface with the Internet, we

choose to use a 80-bit security level (or 1024-bit RSA)

for greater security.

The choice of finite fields and elliptic curves are

crucial for the overall performance of ECDSA and

pairing-based schemes. The most commonly finite

fields used in ECC schemes are the prime field

Fp and the binary field F2m . For some field

operations such as squaring, square-root, addition and

reduction, binary fields present some computational

advantage over prime fields. On the other hand,

for some computational platforms, prime fields can

take advantage of a native multiplication instruction,

for accelerating a field multiplication. Both curves

over prime or binary fields offer some optimizations

for point multiplication; the special family of binary

curves, called Koblitz curves [21], have the property

that a point multiplication can be accelerated by

exploiting the Frobenius endomorphism π : (x, y) →
(x2, y2). For example, the wTNAF [22] method for

point multiplication, replaces the computation of point

doubling 2P by π(P ), a much faster operation; on the

other hand, for certain ordinary elliptic curves defined

over prime fields (p > 3), that have an efficiently-

computable endomorphism, the technique of Gallant,

Lambert and Vanstone (GLV)[23] can be used to speed

// Application data collection and processing

...

// generate signature and signed message

ec sign(msg,sig); //generate signature

strcpy(sigmsg,msg); //copy orig msg

strcat(sigmsg,sig); //append signature

// prepare to send a signed message

s->send data ptr = (char *) sigmsg;

s->send data len = sizeof(sigmsg)-1;

FIGURE 4. Secure-TWS interface usage example

The Computer Journal, Vol. ??, No. ??, ????



Secure-TWS: Authenticating Node to Multi-user Communication in Shared Sensor Networks 7

point multiplication on these curves. We describe this

method in Section 3.4.2 with a small modification to

make it faster in embedded architectures with expensive

division instructions.

For our scenario, we obtain a good performance using

standardized curves for the software implementation

of ECDSA at the 80-bit security level. Our

implementation was based on the binary Koblitz curve

sect163k1 and on the prime curve secp160k1 defined

by [24]. The selection between primary and binary

fields for the pairing-based schemes, however, depends

on numerous aspects and is not so straightforward.

The verification process in BLS and ZSS requires the

computation of pairings. This restricts the choice of

parameters to pairing-friendly curves:

• When using binary fields, the only pairing friendly

elliptic curves known are supersingular, whose

embedding degree are at most k = 4. This

requires a 353-bit binary field in order to provide

the required 80-bit level of security, which in

turn increases the signature size to 353 bits. We

conclude that curves over binary fields are not

adequate for implementing BLS or ZSS in this

scenario since they provide worst performance

(which we have demonstrated experimentally)

while requiring larger signatures; this was also

pointed out in [6]. Implementations of pairing-

based key agreement schemes have suggested

using a 271-bit binary field [12], but due to

Coppersmith’s attack [25], the more conservative

choice of 353 bits is a better suggestion for

attaining the 80-bit security level.

• When using prime fields, there is a choice between

supersingular and ordinary curves. Supersingular

prime curves are limited to an embedding degree

of k = 2 (which is too low for the 80-bit level

and would require a 512-bit prime field); therefore,

an ordinary prime curve was chosen. There are

multiple families of pairing-friendly ordinary prime

curves, and for the required security level the MNT

family with k = 6 seems the most appropriate.

However, there are some disadvantages with this

family — namely, it is a sparse family, which

prevents the use of prime modulus with a special

form; and it provides quadratic twists only [26].

An alternative is the BN family, which is specially

appropriate for the 128-bit level of security due

to its embedding degree k = 12 and sextic

twists [27]. While it seems ill-suited for the

80-bit level of security, it actually provides a

faster implementation in this scenario due to

many optimizations tailored for the family [28].

In particular, the use of sparse primes greatly

improves its performance, as will be described

later. We use the BN curve y2 = x3 + 3 with

parameter x = 238 + 25 + 24 + 1 and the Optimal

Ate pairing [29].

3.3. Algorithmic Choices

As mentioned in Table 1, elliptic curve scalar point

multiplication is the most expensive operation in

ECDSA, BLS and ZSS signature generation. However,

the computation complexity of this operation varies

widely between the three candidates.

ECDSA and Schnorr: As mentioned before, there

is no restriction on curve selection, so the most

efficient curves can be used. For this reason,

Koblitz binary curves are employed due to the fast

point multiplication using the wTNAF method.

Furthermore, the point P to be multiplied is a

fixed public parameter that is known a priori. In

this case, point multiplication can be accelerated

significantly using pre-computation at the expense

of some storage overhead. When using the

wTNAF method, for example, 2w−2 − 1 points are

precomputed offline, where w is the number of bits

processed at once. In our ECDSA and Schnorr

implementation, we have used w = 5 resulting

in 7 precomputed points stored in ROM. Each

precomputed value requires 44 bytes for storage

resulting a storage overhead of 308 bytes. Such

an overhead is acceptable in most situations given

the ROM sizes of current sensor platforms.

BLS: In BLS, on the other hand, the point P

value is dependent of the message being signed

and thus assumes a different value each time a

signature is generated. Thus, for the random

point multiplication, we have used a right-to-

left wNAF method, with w = 4, requiring the

online precomputation of 3 points. The reason

for this was that right-to-left approaches are faster

when point doubling is cheaper, as it is the case

with the employed supersingular binary curve.

Over a binary field, it is also possible to use

an optimization know as short exponent [30]:

by using a private key k with 160 bits instead

of the full 353 bits, the security provided stays

the same but the multiplication kP is much

faster. Point multiplication in the prime pairing-

friendly curve was implemented according to the

GLV method [23], with the resulting simultaneous

multiplication computed as the standard left-to-

right interleaving of 4-width NAFs [31].

ZSS: In this scheme, the point multiplication again

involves a fixed basis. However, this point

multiplication is computed in the same pairing-

friendly curves required by BLS, providing a

The Computer Journal, Vol. ??, No. ??, ????



8 L. Oliveira, A. Kansal, C. Gouvêa, D. Aranha, J. López, B. Priyantha, M. Goraczko, F. Zhao

performance middle-ground between the schemes

above. A comb approach [32] with 8 precomputed

points stored in ROM was used for computing the

fixed point multiplication in the binary case, while

a combination of the comb approach and the GLV

method was employed in the prime case. The

implementation could use more precomputation

to accelerate this operation, but for fairness, the

schemes must be evaluated with the same memory

footprint.

3.4. Strategies for Point Multiplication

In the next section, we briefly describe our simple

modifications to the conventional approaches for

computing point multiplication in the pairing-friendly

curves employed.

3.4.1. The Right-to-left approach

Left-to-right window-based approaches for computing

scalar multiplications kP require some amount of

precomputation in the form of small multiples of a

point P depending on the window length w. The

wNAF approach, for example, requires recoding the

integer k such that it can be represented in the

digit set {3, 5, . . . , (2w−1 − 1)P} and also computing

the set of small multiples {3P, 5P, . . . , (2w−1 − 1)P}.
These precomputed points must be represented in affine

coordinates to allow faster mixed-coordinate addition

and minimize storage overhead [31]. A straightforward

way to compute this set of multiples is to double

P as 2P and successively add 2P as 3P = P +

2P, 5P = 3P+2P, . . . , (2w−1−1)P = (2w−1−3)P+2P ,

requiring in total one point doubling and 2w−2 − 1

point additions. In order to minimize the number of

field inversions computed in this precomputation stage,

curve arithmetic can be done in projective coordinates

and the affine coordinates can be recovered through an

expensive simultaneous inversion [33].

If the elliptic curve supports a fast inversion-free

doubling algorithm in affine coordinates, as the pairing-

friendly supersingular binary curves discussed, this can

be avoided with a simple alternate strategy: a set

of accumulators {Q1, Q3, Q5, . . . , Q(2w−1−1)} are used

to accumulate point 2iP in the i-th iteration of the

algorithm. The final result can then be recovered

as Q =
∑(2w−1−1)

j=1 jQj . This strategy will be faster

whenever these final (2w−1 − 1) point additions are

faster than the simultaneous inversion operation and

also allow further savings depending on how efficient is

doubling a point in affine coordinates.

3.4.2. The GLV method

For the ECDSA, BLS and ZSS signatures, it is possible

to exploit the efficient endomorphism φ : E → E

such that φ(P ) = λP for some λ. Using it, the

point multiplication kP can be written as k = k0 +

k1φ(P ), which can be computed more efficiently using

an interleaving method. In order to split k, it is

necessary to solve the equation (k, 0) = β1v1 + β2v2
for β1, β2 where v1 = (v10, v11) and v2 = (v20, v21) are

short vectors precomputed as described in [23]. We can

then write

d = v1,0v21 − v11v2,0

β1 = k
v21
d

β2 = −k v11
d

and then round β1, β2 to the nearest integer. However,

this approach requires a long division by d, which is

costly. In order to avoid it, simply precompute c1 =
2tv21

d and c2 = 2tv11
d , rounded to the nearest integer,

where t is the number of bits of the curve order plus

one. Then, for example, one can compute β1 = kc1
2t ,

since division by 2t is cheap. The last bit discarded in

the right shift by t decides if β1 should be rounded up

or not. This precomputation technique was hinted at

in [31], but not actually described.

While the application of the GLV method for the

ECDSA and BLS protocols is straightforward, it is

not that clear for the ZSS protocol, since it requires

a fixed point multiplication, usually computed with

the comb method [32]. It can be done, however, by

an adaptation of the two-table variant of the comb

method. In this approach, the multiplier k is written as

k = k0+2
|k|
2 k1 and certain multiples of the fixed point P

are precomputed in one table and multiples of 2
|k|
2 P are

precomputed in a second table. This approach is faster

since kP can then be computed with an interleaving

method, halving the number of point duplications, but

it requires twice the storage size. However, when the

GLV method is available, write k = k0+k1φ(P ) as usual

and the elements of the second table can be computed

from the first table using the endomorphism as needed.

Therefore, we achieve a faster multiplication with the

same storage overhead.

3.5. Implementation on the ATmega128 8-bit

processor

The MICAz Mote sensor node is equipped with an

ATmega128 8-bit processor clocked at 7.3728MHz. The

program code is stored in a 128KB EEPROM chip and

data memory is provided by a 4KB RAM chip [19]. The

ATmega128 processor is a typical RISC architecture

with 32 registers, but six of them are special pointer

registers. Since at least one register is needed to store

temporary results or data loaded from memory, 25

registers are generally available for arithmetic. The

instruction set is also reduced, as only 1-bit shift/rotate

The Computer Journal, Vol. ??, No. ??, ????



Secure-TWS: Authenticating Node to Multi-user Communication in Shared Sensor Networks 9

instructions are natively supported. Bitwise shifts

by arbitrary amounts can then be implemented with

combinations of shift/rotate instructions and other

instructions. In particular, shifts by 1, 4 and 7 bits

can be implemented very efficiently [34]. The processor

pipeline has two stages and memory instructions always

cause pipeline stalls. Arithmetic instructions with

register operands cost 1 cycle and memory instructions

or memory addressing cost 2 processing cycles [35].

Minimizing the number of executed memory operations

in low-level arithmetic is thus an evident necessity.

For the standardized binary field F2163 used in the

ECDSA algorithm, we followed the polynomial-basis

implementation described in [34]. For the binary field

F2353 used in BLS/ZSS, we have selected the square-

root friendly [36] trinomial f(x) = x353 + x69 + 1.

This pentanomial has two important features: modular

reduction only requires shifts by 1, 4 or 7 bits which are

fast in this platform; square-root extraction does not

require expensive shifts in processors with word size of

8 or 16 bits. The implementation of this field closely

follows [12], with the difference that the multiplier now

first features an instance of the Karatsuba algorithm

before the direct López-Dahab method can be used.

This was required due to the increase in parameter size

from 271 to 353 bits, quickly exhausting the number of

registers available for performing arithmetic.

For the prime curve used in BLS/ZSS, multiplication

and squaring were implemented with a hybrid comba

approach as described in [37]. This method

was specifically designed to be implemented in

embedded architectures with expensive memory acess.

The multiple-precision multiplication required for

computing Montgomery reduction [38] was specially

optimized to take into account the sparse form of the

prime modulus, where 6 of the 20 bytes required to

store it are zero, allowing the elimination of several word

multiplications inside the reduction algorithm.

3.6. Implementation on the MSP430 16-bit

processor

The mPlatform provides an MSP430F2418 16-bit

processor clocked at 16 MHz. It contains 116KB of

program flash memory and 8KB of RAM. The MSP430

family provides 12 general purpose registers and a small

instruction set with 27 instructions including 1-bit-

only shifts (it is possible to use up to 4-bit shifts,

but with the same speed of 4 distinct shifts). In

particular, 15-bit shifts can be implemented with the

left-shift/rotate-through-carry instructions. Operands

may be located in registers or in memory. Since there

is no cache, determining the number of cycles taken by

each instruction is simple (with a few exceptions): one

cycle to fetch the instruction, one cycle to fetch each

offset word (if any), one cycle for each memory read and

one cycle for each memory write. Small constants (−1,

0, 1, 2, 4 and 8) are generated by using some special

registers and do not require offset words when used.

In the binary curve used for ECDSA, the standard-

ized pentanomial f(x) = x163 + x7 + x6 + x3 + 1 was

used. Multiplication in F2163 was implemented with the

LD algorithm, while squaring was implemented with

a 512-byte lookup table storing the square of all 8-bit

polynomials in ROM. Field elements are stored as an

array of n = 11 16-bit digits. For the binary curve used

in BLS/ZSS, we have chosen the slightly different tri-

nomial f(x) = x353 + x95 + 1 which allows reduction

with only 1- and 2-bit shifts. Multiplication was imple-

mented with one level of Karatsuba, as described for

the ATmega128.

For the prime curve used in BLS/ZSS, multiplication

was implemented with the Comba multiplication

algorithm, using the MAC operation of the MSP430

hardware multiplier as described in [39]. Modular

reduction was implemented with the Montgomery

algorithm (also using the MAC operation), which avoids

costly divisions. It was also possible to speed up

the reduction by exploiting the format of the prime

modulus, since two of its 16-bit digits are zero. Since

the Montgomery reduction has the same structure of

a multiple precision multiplication (with one of the

operands being the prime modulus), it is possible to skip

the steps involving multiplication by those zero digits.

4. EVALUATION AND RESULTS

This section presents the performance and resource

overheads of the Secure-TWS solution implemented

using the above parameters and compares these

overheads for ZSS, BLS, ECDSA, and Schnorr signature

schemes on the MSP and AVR platforms. Specifically,

the measurements evaluate i) storage, ii) computation,

and iii) communication overheads.

4.1. Storage

Table 2 summarizes storage requirements for the

signature schemes. In general, ZSS requires more ROM

and global RAM, while BLS requires more RAM from

the stack.

Note that virtually all the RAM memory is allocated

from the stack, which means that once cryptographic

operations are completed the memory becomes available

for the sensor applications. Since this RAM is only used

before sending a message, the memory is available for

data collection and processing operations at other times

for the applications.

The ZSS protocol requires the largest global RAM

space due to the precomputation table for the fixed

point multiplication. As a tradeoff, this table

The Computer Journal, Vol. ??, No. ??, ????



10 L. Oliveira, A. Kansal, C. Gouvêa, D. Aranha, J. López, B. Priyantha, M. Goraczko, F. Zhao

Memory Algorithm MSP AVR

Prime Binary Prime Binary

RAM (global)

ZSS 1.804 2.002 2.073 1.968

BLS 1.292 0.818 1.239 1.412

ECDSA 1.390 1.260 1.361 1.492

Schnorr 1.390 1.260 1.361 1.492

RAM (stack)

ZSS 1.438 2.596 1.471 2.280

BLS 2.086 2.830 1.942 2.533

ECDSA 1.923 1.834 1.783 1.326

Schnorr 2.010 1.860 1.811 1.356

ROM

ZSS 32.3 28.3 39.2 35.7

BLS 30.3 25.2 37.6 30.7

ECDSA 27.4 27.3 36.9 34.5

Schnorr 26.9 27.4 36.1 33.6

TABLE 2. Secure-TWS’s memory overheads (KB).

could be moved to ROM. This also applies to the

precomputed constants from the GLV method, which

is the reason ZSS requires more global RAM than

ECDSA. The BLS protocol uses more stack RAM due

to the precomputation table used in random point

multiplication.

The ZSS protocol also requires more ROM in

comparison to BLS due to the inversion modulo n

present in the signature; this routine is fairly large and

is not required for BLS. The same effect appears when

comparing ECDSA and Schnorr.

4.2. Computation and Communication

Signature schemes based on ECC are often referred to as

having similar computation requirements for signature

generation. Theoretically, this is not incorrect: the

computationally intensive step that both schemes

require is a point multiplication which in practice incurs

costs of the same order of magnitude. In practice,

however, costs of the same order are not necessarily

equivalent, especially in resource-constrained sensor

platforms. Having implemented schemes on a real

sensor platform allows measuring these differences in

a more precise manner.

Table 3 shows the computation costs for ZSS, BLS,

ECDSA, and Schnorr signature schemes. In our

implementation, ZSS is faster than BLS due to the

fixed point multiplication using precomputation. ZSS

is not faster than ECDSA since the latter i) makes use

of a special prime enabling fast reduction in the prime

case and ii) uses a smaller finite field in the binary

case. Also, concerning ECDSA, its is worth noting that

the binary case faster than the prime case – due to

the Koblitz curve optimizations –, but BLS and ZSS

are faster in the prime field – due to the smaller field

required. The binary ZSS is much slower than the

binary BLS because it can not use the short exponent

optimization. Schnorr is slightly faster than ECDSA

because the computation of a modular inversion is not

required. Also note that the results for the MSP and for

the AVR are not equivalent, since there are differences

in clock speed and word size that favors the former –

MSP is usually 3 or 4 times faster than AVR.

Table 4, in turn, shows how signature length affects

the communication energy cost of transmitting the

signature. The cost is higher for binary fields since the

signature size depends on the field size, and pairing-

based protocols need a larger field in the binary case

due to the small embedding degree of the supersingular

binary curves [6]. It is worth noting that the term

“short signatures” is only applicable to ZSS and BLS

when those are implemented under prime fields – in

fact, under binary fields, ZSS’ and BLS’ signature sizes

are larger even than ECDSA’s.

Finally, note that the energy consumption does

not depend solely on the signature length because of

existing radio start-up energy costs. Radio costs are

discussed in more detail in [40].

4.3. Combined Resource Overhead

Overall costs are shown in Table 5. As can be seen from

its data, the computation energy dominates, while the

size of the signature is not a significant issue.

In fact, the cost of computation is so much higher

that even when the transmission of the signed data

to multiple recipients and over multiple wireless hops

is considered, the one time cost of computing the

signature is still dominant for a reasonable number of

clients.

Based on these comparisons, it seems that Secure-

TWS should be used with Schnorr when only time and

overall energy efficiency is required. Whenever there is

the additional requirement of interoperability, ECDSA

must rather be considered since it has also performed

well on the evaluated scenarios and is a standardized

algorithm.

The Computer Journal, Vol. ??, No. ??, ????



Secure-TWS: Authenticating Node to Multi-user Communication in Shared Sensor Networks11

Field Algorithm
MSP AVR

Time (ms) Energy (mJ) Time (ms) Energy (mJ)

prime

ZSS 229 6.8 710 18.0

BLS 302 9.0 1130 25.7

ECDSA 134 4.0 680 17.5

Schnorr 121 3.6 620 14.9

binary

ZSS 703 20.9 2490 59.8

BLS 391 11.6 1180 28.3

ECDSA 128 3.8 370 8.9

Schnorr 114 3.4 330 7.9

TABLE 3. Secure-TWS’s computations costs.

Field Algorithm
MSP AVR

Bit-length Energy (mJ) Bit-length Energy (mJ)

prime

ZSS 161 0.15 161 0.14

BLS 161 0.15 161 0.14

ECDSA 320 0.23 320 0.21

Schnorr 320 0.23 320 0.21

binary

ZSS 354 0.24 354 0.23

BLS 354 0.24 354 0.23

ECDSA 320 0.23 320 0.21

Schnorr 320 0.23 320 0.21

TABLE 4. Communication signature lengths and energy consumption for signature schemes implemented in Secure-TWS

It is worth noting that ZSS and BLS may also be

a good choice despite their results in the evaluated

scenarios. They indeed have smaller signatures

and then are more appropriate for scenarios where

communication dominates energy consumption (e.g. for

underwater sensor networks [41]). Besides, BLS is

able to aggregate signatures [42] and then is also more

adequate for environments where receivers are storage-

constrained.

5. RELATED WORK

Several works have addressed the problem of providing

security in wireless sensor networks. Communication in

WSNs exhibits a number of different patterns. To be

effective and efficient, a solution needs to be tailored

to the particular communication pattern at hand. This

has lead to several methods for security for different

scenarios:

1. Node to node 4 (e.g. [8, 43, 9, 44, 45, 46] among

others);

2. Node to multiple nodes within same sensor network

(e.g. [47]);

3. User to node (e.g.[8])

4. Node to user (e.g.[10]).

5. User to multiple nodes (e.g. [8]);

In this work we consider a communication pattern

from a sensor node to multiple Internet connected users.

4Sometimes, this problem has been addressed indirectly, i.e.,
by providing a key agreement protocol. Keys established can
further be employed to generate message authentication codes

This has not been sufficiently addressed before.

The most closely related works are those in one-to-

many communication within sensor networks. Ma-

jority of these proposals make use of authenticated

broadcasts, based on symmetric cryptosystems, such as

µTESLA [8]. The µTESLA approach has been studied

and improved for specific contexts in follow up works

(e.g [48, 5, 49, 50]). A slightly different approach, specif-

ically targeted to local broadcasts, was proposed by Zhu

et al. [9]. As discussed in Section 2.1.2, those strategies,

albeit very effective for the scenarios they are designed

for, are not adequate for authenticating node to multi-

user interactions.

The authentication in the reverse direction, from a

user to multiple sensor nodes has also been considered

before. Ren et al. [51] have combined Merkle trees,

Bloom filters, and PKC-based signature schemes for

this purpose.

Our implementation makes use of digital signature

schemes based on PKC. PKC has already been shown to

be feasible in resource-constrained sensor nodes [52, 53,

54, 14]). For instance, Gura et al. [52] reported results

for ECC and RSA primitives on the ATmega128L

and demonstrated the advantages of ECC. We use

ECC-based PKC in our implementation. The ECC

implementation in [52] is based upon arithmetic in

prime finite fields. Malan et al. [53], on the other hand,

presented the first ECC implementation over binary

fields for sensor nodes. We have used prime and binary

fields in our implementation, as discussed in Section 3.2.

The Computer Journal, Vol. ??, No. ??, ????



12 L. Oliveira, A. Kansal, C. Gouvêa, D. Aranha, J. López, B. Priyantha, M. Goraczko, F. Zhao

Field Algorithm
MSP AVR

Energy (mJ) Energy (mJ)

prime

ZSS 6.95 18.14

BLS 9.15 25.84

ECDSA 4.23 17.71

Schnorr 3.83 15.12

binary

ZSS 21.14 60.03

BLS 11.84 28.53

ECDSA 4.03 9.11

Schnorr 3.63 8.15

TABLE 5. Energy overhead of different signature schemes in SecureTWS.

Liu et al. [14] have previously demonstrated the

ECDSA signature scheme in resource-constrained

sensor node platforms. We compare the ECDSA

performance to BLS, demonstrate its use for a shared

sensor authentication scenario, and integrate it with

end-to-end network and application layer protocols

from [2, 3].

One of the signature schemes we have used in

our proposal is the BLS, which is based on Pairing-

Based Cryptography (PBC), a relatively recent addition

to ECC. PBC has previously been proposed for use

in WSNs [54, 12] but it has a high computation

overhead of several seconds. Szczechowiak et al. [54]

developed an implementation of pairings over binary

and prime fields. Their implementation uses the

Karatsuba’s multiplication method and takes 10.96s on

an ATmega128L-based platform. This performance has

further been improved in [12], achieving the ηT pairing

computation in 5.5s on the ATmega128L by using

López-Dahab field multiplication [55]. The same ηT
has been implemented in the work of Ishiguro et al [56]

using ternary fields and evaluates pairings in 5.79s.

These works are complimentary to our implementation

as in our approach, the pairings are not required to

be computed on the resource-constrained sensors, thus

avoiding the high computation overhead of PBC on the

sensors.

6. CONCLUSION

We developed a solution, Secure-TWS, for authenti-

cated communication for the scenario of sensor nodes

that are shared as a common deployed substrate

among multiple applications and users both locally and

through the Internet. Our implementation was tested

with existing web service layer and IP layer implemen-

tations for resource-constrained sensor nodes, thus pro-

viding a useful system that can be used for deployment

scenarios where authentication is necessary.

We also discussed the numerous design choices

that were considered in our implementation. We

found that a digital signature-based approach is the

most efficient choice for this type of interaction and

then compared different digital signature schemes for

realizing it. The ZSS, BLS, ECDSA, and Schnorr

schemes were the most desirable ones and were

implemented on two popular sensor platforms. This

implementation provides one of the first experimental

characterization of ZSS’s and BLS’s resource overheads

on resource-constrained sensor nodes. The performance

resource overheads were experimentally measured and

the factors involved in the choice among these schemes

were discussed. The implementation clearly shows

that for this authentication scenario, computation costs

largely dominate over communication, as opposed to

symmetric key-based schemes where communication is

the dominant cost.

The comparison also showed that, among the three

schemes, Schnorr is fastest on the AVR and MSP430

processors. In addition to providing a practically usable

system, the implementation effort has also provided

valuable insights into relevant challenges and design

choices.

While this implementation has addressed the

authentication problem, other security aspects such

as privacy may also be relevant in certain shared

sensor node scenarios and end-to-end solutions that

are integrated with sensor node network stack

implementations. These may be addressed in future

work.

7. ACKNOWLEDGMENTS

The authors are grateful to Piotr Szczechowiak, Michael

Scott, and Fredrik Österlind for useful discussions and

helpful tips from their implementation experiences.

REFERENCES

[1] Kansal, A., Nath, S., Liu, J., and Zhao, F. (2007)

SenseWeb: An infrastructure for shared sensing. IEEE

MultiMedia, 14, 8–13.

[2] Priyantha, N. B., Kansal, A., Goraczko, M., and

Zhao, F. (2008) Tiny Web Services: Design and

implementation of interoperable and evolvable sensor

networks. Proceedings of 6th ACM Conference

on Embedded Networked Sensor Systems (Sensys’08),

The Computer Journal, Vol. ??, No. ??, ????



Secure-TWS: Authenticating Node to Multi-user Communication in Shared Sensor Networks13

Raleigh, NC, November, pp. 253–266.

[3] Dunkels, A. (2003) Full TCP/IP for 8-bit architectures.

MobiSys ’03: Proceedings of the 1st international con-

ference on Mobile systems, applications and services,

San Franciso, CA, May, pp. 85–98. ACM.

[4] Hui, J. W. and Culler, D. E. (2008) IP is dead,

long live IP for wireless sensor networks. Proceedings

of the 6th international Conference on Embedded

Networked Sensor Systems ACM Sensys’08, Raleigh,

North Carolina, USA, November. ACM.

[5] Luk, M., Perrig, A., and Whillock, B. (2006)

Seven cardinal properties of sensor network broadcast

authentication. SASN ’06: Proceedings of the fourth

ACM workshop on Security of ad hoc and sensor

networks, New York, NY, USA, October, pp. 147–156.

ACM.

[6] Boneh, D., Lynn, B., and Shacham, H. (2004)

Short signatures from the Weil pairing. Journal of

Cryptology, 17, 297–319.

[7] Zhang, F., Safavi-Naini, R., and Susilo, W. (2004) An

efficient signature scheme from bilinear pairings and its

applications. In Bao, F., Deng, R. H., and Zhou, J.

(eds.), Public Key Cryptography (PKC 2004), LNCS,

2947, pp. 277–290. Springer.

[8] Perrig, A., Szewczyk, R., Wen, V., Culler, D., and

Tygar, J. D. (2002) SPINS: Security protocols for

sensor networks. Wireless Networks, 8, 521–534. Also

in MobiCom’01.

[9] Zhu, S., Setia, S., and Jajodia, S. (2003) LEAP:

efficient security mechanisms for large-scale distributed

sensor networks. 10th ACM conference on Computer

and communication security (CCS’03), New York, NY,

USA, October, pp. 62–72. ACM Press.

[10] Gupta, V., Wurm, M., Zhu, Y., Millard, M., Fung,

S., Gura, N., Eberle, H., and Chang Shantz, S.

(2005) Sizzle: A standards-based end-to-end security

architecture for the embedded internet. Pervasive Mob.

Comput., 1, 425–445. Also appeared in PERCOM’05.

[11] Shamir, A. (1984) Identity-based cryptosystems and

signature schemes. In Blakley, G. and Chaum,

D. (eds.), CRYPTO’84, Santa Barbara, California,

August, pp. 47–53. Springer-Verlag.

[12] Oliveira, L. B., Scott, M., López, J., and Dahab, R.

(2008) TinyPBC: Pairings for authenticated identity-

based non-interactive key distribution in sensor

networks. 5th International Conference on Networked

Sensing Systems (INSS’08), Kanazawa/Japan, pp.

173–180.

[13] Al-Riyami, S. S. and Paterson, K. G. (2003)

Certificateless public key cryptography. In Laih, C.-S.

(ed.), Proceedings of the 9th International Conference

on the Theory and Application of Cryptology and

Information Security ASIACRYPT’03, Taipei,Taiwan,

November, pp. 452–473. Springer.

[14] Liu, A. and Ning, P. (2008) TinyECC: A configurable

library for elliptic curve cryptography in wireless

sensor networks. IPSN ’08: Proceedings of the 7th

international conference on Information processing in

sensor networks, Washington, DC, USA, pp. 245–256.

IEEE Computer Society.

[15] Sakai, R., Ohgishi, K., and Kasahara, M. (2000)

Cryptosystems based on pairing. Symposium on

Cryptography and Information Security (SCIS’00),

Okinawa, Japan, pp. 26–28.

[16] Boneh, D. and Boyen, X. (2008) Short signatures

without random oracles and the SDH assumption in

bilinear groups. Journal of Cryptology, 21, 149–177.

[17] Barreto, P., Libert, B., Mccullagh, N., and Quisquater,

J.-J. (2005) Efficient and provably-secure identity-

based signatures and signcryption from bilinear maps.

In Roy, B. K. (ed.), Advances in Cryptology -

ASIACRYPT 2005, Chennai, December, pp. 515–532.

Springer-Verlag.

[18] Lymberopoulos, D., Priyantha, N. B., and Zhao, F.

(2007) mPlatform: a reconfigurable architecture and

efficient data sharing mechanism for modular sensor

nodes. IPSN ’07: 6th international conference on

Information processing in sensor networks, New York,

NY, USA, pp. 128–137. ACM.

[19] Hill, J. L. and Culler, D. E. (2002) Mica: A wireless

platform for deeply embedded networks. IEEE Micro,

22, 12–24.

[20] Aranha, D. F. and Gouvêa, C. P. L. (2010).

RELIC Cryptographic Toolkit. Available at

http://code.google.com/p/relic-toolkit.

[21] Koblitz, N. (1991) CM-Curves with Good Crypto-

graphic Properties. 11th Annual International Cryptol-

ogy Conference (CRYPTO 1991), Santa Barbara, Cal-

ifornia, August, LNCS, 576, pp. 279–287. Springer.

[22] Solinas, J. A. (2000) Efficient Arithmetic on Koblitz

Curves. Designs, Codes and Cryptography, 19, 195–

249.

[23] Gallant, R., Lambert, R., and Vanstone, S. (2001)

Faster Point Multiplication on Elliptic Curves with Ef-

ficient Endomorphisms. In Kilian, J. (ed.), 21st Annual

International Cryptology Conference (CRYPTO 2001),

Santa Barbara, California, August, LNCS, 2139, pp.

190–200. Springer.

[24] Standards for Efficient Cryptography Group (2000).

Sec 2: Recommended elliptic curve domain parameters.

SECG2.

[25] Coppersmith, D. (1984) Fast evaluation of logarithms

in fields of characteristic two. IEEE Transactions on

Information Theory, 30, 587–593.

[26] Miyaji, A., Nakabayashi, M., and Takano, S.

(2001) New Explicit Conditions of Elliptic Curve

Traces for FR-Reduction. Transactions on

Comm./Elec./Information and Systems, E84A,

1234–1243.

[27] Barreto, P. S. L. M. and Naehrig, M. (2005) Pairing-

Friendly Elliptic Curves of Prime Order. In Preneel,

B. and Tavares, S. E. (eds.), 12th International

Workshop on Selected Areas in Cryptography (SAC

2005), Kingston, Canada, August, LNCS, 3897, pp.

319–331. Springer.

[28] Pereira, G., Simpĺıcio, M. A., Jr., Naehrig, M., and

Barreto, P. S. L. M. (2011) A family of implementation-

friendly BN elliptic curves. Journal of Systems and

Software, 84, 1319–1326.

The Computer Journal, Vol. ??, No. ??, ????



14 L. Oliveira, A. Kansal, C. Gouvêa, D. Aranha, J. López, B. Priyantha, M. Goraczko, F. Zhao

[29] Vercauteren, F. (2010) Optimal pairings. IEEE

Transactions on Information Theory, 56, 455–461.

[30] Koblitz, N. and Menezes, A. (2005) Pairing-based

cryptography at high security levels. In Smart, N. P.

(ed.), IMA Int. Conf., Cirencester, UK, December,

LNCS, 3796, pp. 13–36. Springer.

[31] Hankerson, D., Menezes, A., and Vanstone, S. (2004)

Guide to elliptic curve cryptography. Springer.

[32] Lim, C. H. and Lee, P. J. (1994) More Flexible

Exponentiation with Precomputation. In Desmedt, Y.

(ed.), 14th Annual International Cryptology Conference

(CRYPTO 1994), London, UK, August, LNCS, 839,

pp. 95–107. Springer.

[33] Montgomery, P. (1987) Speeding the Pollard and

Elliptic Curve Methods of Factorization. Mathematics

of Computation, 48, 243–264.

[34] Aranha, D. F., Oliveira, L. B., López, J., and

Dahab, R. (2010) Efficient implementation of elliptic

curve cryptography in wireless sensors. Advances in

Mathematics of Communications, 4, 169–187.

[35] Atmel (2004) 8 bit AVR Microcontroller ATmega128(L)

manual, 2467m-avr-11/04 edition.

[36] Avanzi, R. M. (2007) Another look at square roots

(and other less common operations) in fields of even

characteristic. In Adams, C. M., Miri, A., and Wiener,

M. J. (eds.), Selected Areas in Cryptography, Berlin,

Heidelberg, March, pp. 138–154. Springer-Verlag.

[37] Scott, M. and Szczechowiak, P. (2007). Optimizing

multiprecision multiplication for public key cryptog-

raphy. Cryptology ePrint Archive, Report 2007/299.

http://eprint.iacr.org/.

[38] Montgomery, P. L. (1985) Modular multiplication

without trial division. Mathematics of Computation,

44, 519–521.

[39] Gouvêa, C. P. L. and López, J. (2009) Software

Implementation of Pairing-Based Cryptography on

Sensor Networks Using the MSP430 Microcontroller.

In Roy, B. K. and Sendrier, N. (eds.), INDOCRYPT,

New Delphi, India, December, LNCS, 5922, pp. 248–

262. Springer.

[40] Lymberopoulos, D., Priyantha, N. B., Goraczko,

M., and Zhao, F. (2008) Towards energy efficient

design of multi-radio platforms for wireless sensor

networks. IPSN ’08: Proceedings of the 7th

international conference on Information processing in

sensor networks, Washington, DC, USA, April, pp.

257–268. IEEE Computer Society.

[41] Cui, J.-H., Kong, J., Gerla, M., and Zhou, S. (2006)

Challenges: Building scalable mobile underwater

wireless sensor networks for aquatic applications. IEEE

Network, Special Issue on Wireless Sensor Networking,

20, 12–18.

[42] Boneh, D. and Gentry, C. (2003) Aggregate and

verifiably encrypted signatures from bilinear maps.

Proceedings of Eurocrypt 2003, Warsaw, Poland, May,

pp. 416–432. Springer-Verlag.

[43] Eschenauer, L. and Gligor, V. D. (2002) A key

management scheme for distributed sensor networks.

9th ACM conf. on Computer and communications

security (CCS’02), Washington, DC, November, pp.

41–47. ACM.

[44] Oliveira, L. B., Wong, H. C., Bern, M., Dahab, R.,

and Loureiro, A. A. F. (2006) SecLEACH – a random

key distribution solution for securing clustered sensor

networks. 5th IEEE International Symposium on

Network Computing and Applications (NCA’06), July.

p. 145-154.

[45] Liu, D., Ning, P., and Li, R. (2005) Establishing

pairwise keys in distributed sensor networks. ACM

Trans. on Info. and System Security, 8, 41–77. Also

in ACM CCS’03.

[46] Du, W., Deng, J., Han, Y. S., Varshney, P. K.,

Katz, J., and Khalili, A. (2005) A pairwise key pre-

distribution scheme for wireless sensor networks. ACM

Transactions on Info. and System Security, 8, 228–58.

Also in ACM CCS’03.

[47] Zhu, S., Xu, S., Setia, S., and Jajodia, S. (2003)

Establishing pairwise keys for secure communication in

ad hoc networks: A probabilistic approach. 11th IEEE

Inter’l Conference on Network Protocols (ICNP’03),

Atlanta, Nov, pp. 326–335. IEEE.

[48] Liu, D., Ning, P., Zhu, S., and Jajodia, S.

(2005) Practical broadcast authentication in sensor

networks. MOBIQUITOUS ’05: 2nd Annual

International Conference on Mobile and Ubiquitous

Systems: Networking and Services, Washington, DC,

July, pp. 118–132. IEEE Computer Society.

[49] Dong, Q., Liu, D., and Ning, P. (2008) Pre-

authentication filters: providing dos resistance for

signature-based broadcast authentication in sensor

networks. WiSec’08: 1st ACM Conference on Wireless

Network Security, New York, NY, USA, March, pp. 2–

12. ACM.

[50] Ning, P., Liu, A., and Du, W. (2008) Mitigating DoS

attacks against broadcast authentication in wireless

sensor networks. ACM Transactions on Sensor

Networks, 4, 1–35.

[51] Ren, K., Lou, W., and Zhang, Y. (2007) Multi-

user broadcast authentication in wireless sensor

networks. SECON’07 4th Sensor, Mesh and Ad Hoc

Communications and Networks, Kiev, Ukraine, July,

pp. 223–232. IEEE.

[52] Gura, N., Patel, A., Wander, A., Eberle, H.,

and Shantz, S. C. (2004) Comparing Elliptic Curve

Cryptography and RSA on 8-bit CPUs. In Marc Joye,

J.-J. Q. (ed.), Workshop on Cryptographic Hardware

and Embedded Systems (CHES’04), Cambridge,MA,

August, pp. 119–132. Springer.

[53] Malan, D. J., Welsh, M., and Smith, M. D. (2008)

Implementing public-key infrastructure for sensor

networks. ACM Transactions on Sensor Networks, 4,

22:1–22:23. Also in SECON’04.

[54] Szczechowiak, P., Oliveira, L. B., Scott, M., Collier,

M., and Dahab, R. (2008) NanoECC: Testing the

limits of elliptic curve cryptography in sensor networks.

European conference on Wireless Sensor Networks

(EWSN’08), Bologne/Italy, February, pp. 305–320.

Springer-Verlag.

The Computer Journal, Vol. ??, No. ??, ????



Secure-TWS: Authenticating Node to Multi-user Communication in Shared Sensor Networks15

[55] López, J. and Dahab, R. (2000) High-speed software

multiplication in GF(2m). In Bimal K. Roy, E. O. (ed.),

Progress in Cryptology - INDOCRYPT’00, London,

UK, December, pp. 203–212. Springer-Verlag. LNCS.

[56] Ishiguro, T., Shirase, M., and Takagi, T. (2008)

Efficient implementation of pairings on sensor nodes.

Applications of Pairing-Based Cryptography – NIST,

pp. 96–106.

The Computer Journal, Vol. ??, No. ??, ????


