Current research at LAS-IC-Unicamp

Paulo Lício de Geus

Laboratory of Systems Administration and Security Institute of Computing University of Campinas Campinas, SP, Brazil

September 28, 2008

Management of security services configuration

Imuno Project

Immune-based computer security

▲ 同 ▶ → ミ ● ▶

Introduction MoBaSeC	Presenting the problem MoBaSeC solution Results
-------------------------	---

- Configuration management of security services
- Dealing with security policies
 - Hierarchical, model-based approach
 - Interactive policy refinement via graphical tool
- Helped by abstract subsystem viewing
- Correctness of config files through object-oriented design
- Being extended to the operating system level

Introduction MoBaSeC	Presenting the problem MoBaSeC solution Results
-------------------------	---

- Configuration management of security services
- Dealing with security policies
 - Hierarchical, model-based approach
 - Interactive policy refinement via graphical tool
- Helped by abstract subsystem viewing
- Correctness of config files through object-oriented design
- Being extended to the operating system level

Introduction MoBaSeC	Presenting the problem MoBaSeC solution Results
-------------------------	---

- Configuration management of security services
- Dealing with security policies
 - Hierarchical, model-based approach
 - Interactive policy refinement via graphical tool
- Helped by abstract subsystem viewing
- Correctness of config files through object-oriented design
- Being extended to the operating system level

troduction Presenting the problem MoBaSeC MoBaSeC solution Results

Typical security administrator design activity

Task

Given a security policy like this:

"Allow Internet surfing"

• Generate config files for all security systems involved.

Then, repeat that for all policies established by management.

Problems

Large variety of security functionalities and implementations Too many paradigms and syntaxes to familiarize Scalability, understandability, need for integrated management

(日) (同) (日) (日)

troduction Presenting the problem MoBaSeC Results

Typical security administrator design activity

Task

Given a security policy like this:

"Allow Internet surfing"

► Generate config files for all security systems involved.

► Then, repeat that for all policies established by management.

Problems

Large variety of security functionalities and implementations
 ▶ Too many paradigms and syntaxes to familiarize
 Scalability, understandability, need for integrated management

・ロト ・同ト ・ヨト ・ヨト

Presenting the problem MoBaSeC solution Results

An iptables set of rules, inside a much larger file

SSH - external <-> dmg for host in SBASTION ; do iptables -A FORWARD -i \$EXT_IF -0 \$DMZ_IF -p tcp -s \$ANY -d \$host --dport ssh -m state --state NEW.ESTABLISHED -j ACCEPT iptables -A FORWARD -i \$EXT_IF -0 \$EXT_IF -p tcp -s \$host --sport ssh -d \$ANY -m state --state ESTABLISHED -j ACCEPT iptables -A FORWARD -i \$UMZ_IF -0 \$EXT_IF -p tcp -s \$host -d \$ANY --dport ssh -m state --state NEW.ESTABLISHED -j ACCEPT iptables -A FORWARD -i \$EXT_IF -0 \$UMZ_IF -p tcp -s \$host -d \$ANY --dport ssh -d \$host -m state --state ESTABLISHED -j ACCEPT done unset host

(日) (同) (三) (三)

troduction MoBaSeC MoBaSeC solution Results

Other filter language examples

Example: permission for an external host to all internal machines 172.16.51.50 \longleftrightarrow 192.168.10.0–255

Cisco's IOS

access-list 101 permit ip 172.16.51.50 0.0.0.0 192.168.10.0 0.0.0.255 access-list 101 deny ip 0.0.0.0 255.255.255 0.0.0.0 255.255.255 interface serial 0 access group 101 in access-list 102 permit ip 192.168.10.0 0.0.0.255 172.16.51.50 0.0.0.0 access-list 102 deny ip 0.0.0.0 255.255.255 0.0.0.0 255.255.255 interface serial 0 access group 102 out

・ロト ・同ト ・ヨト ・ヨト

troduction MoBaSeC MoBaSeC solution Results

Other filter language examples

Example: permission for an external host to all internal machines 172.16.51.50 \longleftrightarrow 192.168.10.0–255

IP Filter

block everything by default block in from any to any block out from any to any # allow something pass in from 172.16.51.50 to 192.168.10.0/24 pass out from 192.168.10.0/24 to 172.16.51.50

・ロト ・同ト ・ヨト ・ヨト

troduction MoBaSeC MoBaSeC solution Results

Other filter language examples

Example: permission for an external host to all internal machines $172.16.51.50 \leftrightarrow 192.168.10.0-255$

flc

```
#define aquele_host 172.16.51.50
#define minha_rede 192.168.10.0
#if defined( cisco )
interface ethernet0;
access-list 101;
#endif
#if defined( ipfilter ) || defined( ipfirewall )
interface le0:
#endif
#if defined(__ipfw__) || defined(__ipfwadm__)
interface 192,168,11,1
#endif
policy block all;
if ( from host aquele_host to minha_rede ) {
log and pass;
}
if ( from minha_rede to host aquele_host ) {
log && pass;
3
block .
end-policy
```

Other examples of security services to be configured

- Other packet filter functions NAT/PAT, reverse NAT, transparent proxy
- Proxy servers
- VPNs
- traffic shapers (since they are closely tied to packet filters)
- ad-hoc proxies for common Internet services
- IDSs
- IPSs
- Anti-virus and anti-spam boxes
- tcpwrappers
- DoS detectors and mitigators
- Logging/accounting/auditing structure

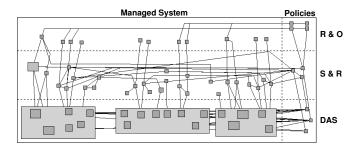
Presenting the problem MoBaSeC solution Results

OpenVPN, squid ...

remote 143.106.1.75 2222
dev tun
ifconfig 10.0.0.1 10.0.0.2
secret /etc/openvpn/lasitautec-key.txt
cipher AES-128-CBC # AES
persist-key
persist-tun
port 2222
proto udp
user nobody
group nobody
route 10.2.1.0 255.255.255.0
verb 3
mssfix

acl ail src 0.0.0.070.0.0.0 acl interno src 10.1.10/255.255.255.0 acl itautec src 10.0.0.0/255.255.255.0 acl localhost src 127.0.0.1/255.255.255.255 acl to_localhost dst 127.0.0.0/8 acl SSL_ports port 443 563 1863 4443 5222 acl Safe_ports port 20 # http acl Safe_ports port 21 # ftp acl Safe_ports port 443 563 # https http_access allow manager localhost http_access deny ISafe_ports http_access deny CoNNECT ISSL_ports http_port 10.1.1.1:8080 cache_peer 10.0.0.2 sibling 8080 3130 cache_peer proxy.unicamp.br sibling 3128 3130 ...

Presenting the problem MoBaSeC solution Results

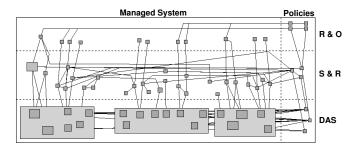

OpenVPN, squid ...

remote 143.106.1.75 2222
dev tum
ifconfig 10.0.0.1 10.0.0.2
secret /etc/openypn/lasitautec-key.txt
cipher AES-128-CBC # AES
persist-key
persist-tun
port 2222
proto udp
user nobody
group nobody
route 10.2.1.0 255.255.255.0
verb 3
mssfix

acl all src 0.0.0.0/0.0.0.0 acl interno src 10.1.1.0/255.255.255.0 acl itautec src 10.0.0.0/255.255.255.0 acl localhost src 127.0.0.1/255.255.255.255 acl to_localhost dst 127.0.0.0/8 acl SSL_ports port 443 563 1863 4443 5222 acl Safe_ports port 80 # http acl Safe_ports port 21 # ftp acl Safe_ports port 443 563 # https http_access allow manager localhost http_access deny !Safe_ports http_access deny CONNECT !SSL_ports http_port 10.1.1.1:8080 cache_peer 10.0.0.2 sibling 8080 3130 cache peer proxy.unicamp.br sibling 3128 3130

Presenting the problem MoBaSeC solution Results

Model-Based Management Approach



- Three-layered model
 - R & O Roles and Objects (RBAC concepts)
 - S & R Subjects and Resources
 - DAS Diagram of Abstract Subsystems (process/hosts)

- Automated building of a policy hierarchy
 - Configuration parameter generation
 - assisted by supporting tool

Presenting the problem MoBaSeC solution Results

Model-Based Management Approach

Three-layered model

R & O Roles and Objects (RBAC concepts)

- S & R Subjects and Resources
 - DAS Diagram of Abstract Subsystems (process/hosts)

< 4 ₽ > < E

- Automated building of a policy hierarchy
 - Configuration parameter generation
 - assisted by supporting tool

Introduction MoBaSeC Results

Diagram of Abstract Subsystems (DAS)

Modular representation of a system's architecture

• Abstract Subsystems (ASs) as building blocks

Types of components

Actors active elements Initiate communication Execute mandatory operations

Mediators inspect, filter and/or transform data flows According to the policies

Targets store relevant information

Connectors communication interfaces between ASs Inert; help with graphing

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction MoBaSeC Results

Diagram of Abstract Subsystems (DAS)

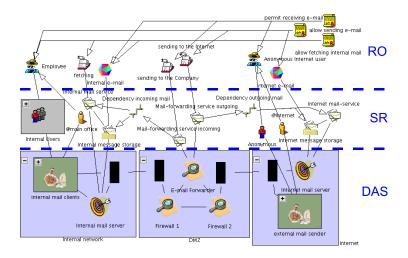
Modular representation of a system's architecture

• Abstract Subsystems (ASs) as building blocks

Types of components

Actors active elements Initiate communication Execute mandatory operations

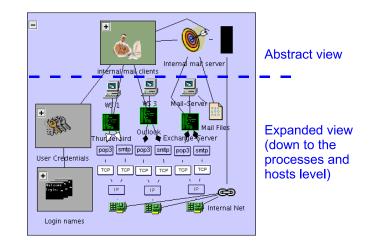
Mediators inspect, filter and/or transform data flows According to the policies


Targets store relevant information

Connectors communication interfaces between ASs Inert; help with graphing

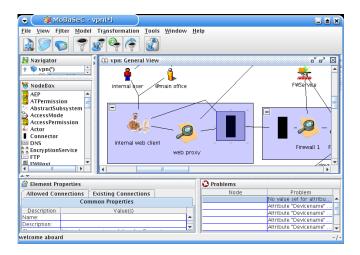
A (1) > A (1) > A

Presenting the problem MoBaSeC solution Results


Simple model example

troduction MoBaSeC Results

Presenting the problem MoBaSeC solution Results


Detailed view of the lowest level

3 x 3

Presenting the problem MoBaSeC solution Results

MoBaSeC interface

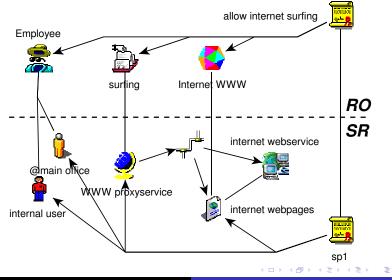
Paulo Lício de Geus Current research at LAS-IC-Unicamp

イロン イボン イヨン イヨン

Supporting tool

- Diagram editor to draw models
- Execution of global and local consistency checks
- Automated generation of service configuration parameters
 - From AccessPermissions, highest to lower levels
 → authorization policies automatically derived
 - Back-end functions translate PH model
 - \rightarrow specific config files (iptables, Kerberos...)
 - Checks and formal validation
 - \rightarrow assure compliance with policies

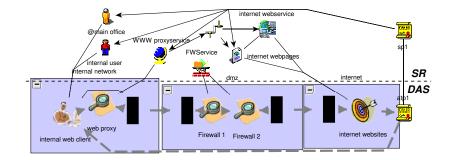
A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A


Supporting tool

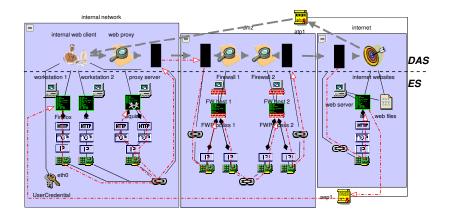
- Diagram editor to draw models
- Execution of global and local consistency checks
- Automated generation of service configuration parameters
 - From AccessPermissions, highest to lower levels
 - \rightarrow authorization policies automatically derived
 - Back-end functions translate PH model
 - \rightarrow specific config files (iptables, Kerberos. . .)
 - Checks and formal validation
 - \rightarrow assure compliance with policies

· < /₽ > < ∃ >

troduction MoBaSeC Results


MoBaSeC refinement process - I

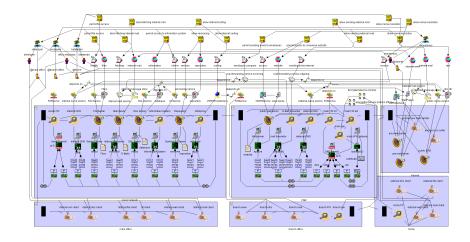
Paulo Lício de Geus Current research at LAS-IC-Unicamp


MoBaSeC Presenting the probl MoBaSeC Results

MoBaSeC refinement process - II

ntroduction MoBaSeC Results

MoBaSeC refinement process - III



(日) (同) (三) (三)

э

Presenting the problem MoBaSeC solution Results

A larger example

<ロ> <同> <同> < 回> < 回>

э

Presenting the problem MoBaSeC solution Results

Figures from case studies

scenario	n ° of policies at	n° of network	n° of DAS
	the RO level	elements (PH/ES)	elements
simple network example	5	95	19
larger network, similar policy	5	540	32
medium-sized network	15	264	49

• Scalability regarding the number of elements

• Policies are the real measure of complexity...

(日) (同) (三) (

Presenting the problem MoBaSeC solution Results

Figures from case studies

scenario	n ° of policies at	n° of network	n° of DAS
	the RO level	elements (PH/ES)	elements
simple network example	5	95	19
larger network, similar policy	5	540	32
medium-sized network	15	264	49

- Scalability regarding the number of elements
- Policies are the real measure of complexity...

< (□) > () =