
PRE-FORENSIC SETUP AUTOMATION FOR WINDOWS 2000

Flávio de Souza Oliveira
Institute of Computing
University of Campinas

Brazil
13083-970 Campinas - SP 

flavio.oliveira@ic.unicamp.br

Célio Cardoso Guimarães
Institute of Computing
University of Campinas

Brazil
13083-970 Campinas - SP

celio@ic.unicamp.br

Paulo Lício de Geus
Institute of Computing
University of Campinas

Brazil
13083-970 Campinas - SP

paulo@ic.unicamp.br

ABSTRACT We have developed the tool PFSAF (Pre-Forensic

This work presents a framework for automation of admin-
istrative tasks and deployment of protection mechanisms
to facilitate a future forensic analysis. The main goal is to
disclose and supply measures for a fast configuration of
Microsoft Windows 2000 networks, when deploying inci-
dent response procedures. 

KEY WORDS
Security, Forensics, Incident Response, File Integrity,
Windows 2000, Automation

1- Introduction
Establishing procedures for incident response by compa-
nies interconnected via Internet is considered of vital
importance in order to minimize financial losses when
attacks succeed. Few institutions, however, have adopted
such procedures, due to the high cost involved and techni-
cal difficulties for deployment. [1]

Preparing for a consistent response starts well before
the incident, with the design of procedures and policies,
responsibility assignment and personnel training. Proce-
dures to be adopted during an eventual incident must be
previously tested and rehearsed due to the great pressure
involved when the incident occurs, which may lead to pro-
cedure errors that may render evidences useless and may
impair the progress of the investigation.

An important stage while designing a response proce-
dure is the correct configuration of the networked comput-
ers for an eventual forensic analysis. This is particularly
important on Windows platforms, where default configura-
tions leave very few footprints of user activities.

When a Windows machine is previously configured as
a target for forensic analysis, the search for evidence is
facilitated by correct utilization of resources that allow the
collecting of facts occurred in the recent past of the
attacked machine [2]. It can be extremely laborious, how-
ever, to configure large networks, especially Windows
2000 networks, which has few mechanisms for administra-
tive task automation.

Setup Automation Framework) with the goal of automating
some administrative tasks that may significantly speed up
a possible forensic analysis, and to provide mechanisms
for magnifying footprints of illegal use of resources in
Windows 2000 machines. PFSAF is a GPL software aim-
ing at remote setup of W2k machines for future analysis.

This work aims at presenting relevant aspects of W2k
machine configuration towards a future forensic analysis,
and also at presenting a new framework for automation of
tasks related to this configuration.

1.1- Related Work
While there are several works in the area of administration
of large1 Windows networks, very few focus on the needs
of computational forensics. Furthermore, most tools for
automation of administrative tasks in Windows NT/2000
networks are proprietary commercial tools. 

Despite the scarcity of tools satisfying the needs
described in this work, two works present similarities with
our framework: the set of scripts presented by Harlan
Carvey in [3], with similar features in the nucleus of
PFSAF, such as remote query of shortcuts in the Startup
folder. Those scripts, however, are not scalable to large
networks: the administrator would have to edit and execute
each script on all machines. The second work is DoIt4Me
[4], which is a tool for automation of administrative tools
in large Windows NT networks, but which does not cover
all requirements presented in this work, such as file integ-
rity.

Tripwire, a tool for file integrity verification, is also a
related work. [5]

1.2- Incident Response
Security awareness is nowadays an essential requisite for
the majority of network applications. However, the main
problem to face is: even when all security measures are
taken, security failures may occur, because some non dis-

1. Networks with several hundred or thousands of 
machines.



closed or unknown vulnerability may be exploited by a
new attack. One can not assert, therefore, that no matter
what security apparatus we have (Firewalls, VPNs, etc.),
our system is immune to attacks. This is due to the fact that
such apparatus as services provided through the Internet
are composed of many software components with thou-
sands of lines of code not immune to programming errors. 

Assuming that there is no security scheme immune to
failures, it is necessary to define procedures to be followed
in case of a well succeeded attack, besides the availability
of people to perform these functions (Response Team).
Awareness with such methodologies is still rare within
corporations.

2- Computer Forensics
The advent of the first digital crimes involving the com-
puter environment, made necessary the creation of a new
forensic discipline to act in this new niche, with methodol-
ogies and cumulative knowledge in the acquisition, han-
dling and analysis of digital evidence.

The solution of a computational mystery can be an
arduous and difficult task. The system must be meticu-
lously examined, in the same way as a detective examines
a crime scene [2]. For this purpose the person making the
analysis must thoroughly know the operating system in
order to identify and understand the cause-effect relation-
ships of all actions taken during the analysis.

Cause-effect relationships are not sufficient, however;
there is the need of more skills in order that a professional
can effectively conduct a forensic analysis. Fortunately,
according to Venema & Farmer [2], many of these skills
are characteristic of programmers, such as logical reason-
ing and an open mind. Such skills are largely used during
the search for the cause of errors in a program. Debugging
a faulty program, however, is far away from the challenge
of forensic analysis, because when someone debugs a pro-
gram he is fighting against himself, while in forensic anal-
ysis one is challenging another programmer who is not
interested in being discovered [2].

2.1- Digital Evidence Manipulation Standards
In this section we present an overview of the present stage
of the computational forensic standardization efforts. The
importance of such efforts is due to the need to guarantee
the integrity of evidence presented to a court, since once
standardized such procedures, it becomes legally impracti-
cal to deny the facts presented assuming that the methodol-
ogy was correctly used while dealing with the proofs.

Despite the existence of several works in this area, we
still note a scarcity of methodologies for the handling of
evidence, at least as compared to other forensic disciplines
[6].

There are some international standards being experi-
mentally used [7]. They were developed by the SWGDE
(Scientific Working Group on Digital Evidence), which is
the American representative in the IOCE (International

Organization on Computer Evidence). These standards
were presented during the International Hi-Tech Crime
and Forensic Conference, in London, 4–7th October 1999.

The standards developed by the SWGDE follow a
unique principle: all organizations dealing with forensic
investigation should keep a high quality level in order to
assure the reliability and precision of evidence. This high
quality level can be achieved through the elaboration of
SOPs (Standard Operating Procedures), whith procedures
for all types of known analysis and techniques, equipment
and materials accepted by the international scientific com-
munity [7].

In Brazil, as an example, there is no standardization in
progress, however, ongoing research in this area, can be
seen in [6] and [8]. Also, there are some works done upon
request of the Federal Police, aimed at non computer pro-
fessionals such as prosecutors and federal judges.

3- W2k Forensic Analysis
It is important to configure machines in a way that takes
into account a possible future forensics analysis. To fully
understand the implications of the latter statement, one
needs to know how an investigation on a W2k machine
should be done. In this section we cite only a few exam-
ples of procedures that might be adopted, since each case
presents its own peculiar needs, which accounts for the
non-viability of defining procedures applicable to all pos-
sible situations that can be found during a security inci-
dent.

3.1- Live Analysis on W2k Machines
A live analysis can be defined as one performed on a sys-
tem victim of a security incident, before any procedure is
taken for shutting it down. This kind of analysis is
extremely important for an investigation, given that it is
the only opportunity to collect a series of volatile informa-
tion, which otherwise would not be available after a
machine restart. Among these are currently active network
connections and programs currently running before initiat-
ing the investigation.

The biggest problem with this kind of analysis is the
lack of control over the machine under analysis, since it
can still be under control of an attacker. That means that a
whole assortment of programs and libraries may be active,
all developed to conceal information and to lure the inves-
tigator. For this reason, it is mandatory for this analysis to
be performed from programs and libraries run from trusted
media (e.g. CD-ROM), so that the examiner may have
assurance of the integrity of the binaries being run.

Another possible problem the investigator is going to
face, during the selection of tools that will make up his
application CD (Response Kit), is how he is going to find
out all library (DLL) dependencies, needed for those pro-
grams to run. One way to do that is through the use of
Dependency Walker (depends.exe). This tool comes with
W2k’s Resource Kit and analyses all the dependency tree



of a given program, giving a break down of functions used
by each library. An alternative is listdlls.exe2, developed
by Mark Russinovich. This tool is capable of listing all
libraries that are currently being used by a process. As
such, it is necessary first to execute the tool being analyzed
and then to use listdlls.exe to obtain the DLL list. It can
also be useful during a live analysis, where it can be used
to analyze a suspect process on a broken-in machine.

This strategy of including all libraries needed to run
Response Kit programs during a live analysis can mini-
mize the use of code originated from the victim machine.
However, this is not enough to guarantee that no DLL from
the victim machine will be used. The reason is that in a
live analysis, the machine is in the state when approached
for the analysis, and as such a number of libraries are
already loaded in memory. Any program that needs an
already loaded library will not have the operating system
load it again (known-to-be-good binary from CD), but
rather use the currently loaded, and possibly compro-
mised, one. This opens a window of opportunity for the
production of false results.[9]

The most appropriate solution to avoid access to inse-
cure dynamically-loaded libraries is to eliminate all
dynamic access through static compilation of all required
tools for the analysis. Nevertheless, due to the commercial
focus of the Windows family, very few tools for this sys-
tem are open source, which pretty much rules out this
approach.

Another possible solution would be the removal of all
DLLs present in memory prior to the analysis, but the col-
lateral effects are hard to predict, since W2k does not
present mechanisms to safely perform this. A possible out-
come would be a number of GPFs (General Protection
Fault) on currently executing processes, which could jeop-
ardize the forensic analysis. One must recall that a funda-
mental principle in such procedure [2] is not to disturb the
system under analysis.

A Windows 2000 live analysis represents a big prob-
lem, due to these problems and to others to be discussed in
Section 3.3.

3.2- W2k Analysis Basis
Most of the main steps toward a computer forensic analy-
sis can be ported to several operating systems. W2k is no
different, with several currently adopted procedures being
originated from other platforms, notably Unix.

After a careful live analysis is done, it may be neces-
sary to shutdown the victim machine for a postmortem
analysis, which may be described as an analysis performed
under a controlled environment. In this, appropriate proce-
dures should be done to act over the system and collect
information from it at a low level, such as:

• File Slack: Microsoft’s operating systems store their
files on disk using fixed-size data blocks called clusters,
however file contents have no restriction in size. Usu-
ally, the last cluster associated to a file is not fully uti-
lized, which allows for data excluded from this and past
files to be later captured and analyzed.

• RAM Slack: Besides data from previous files resident on
disk, the file slack space can also hold sets of bytes ran-
domly selected from RAM memory. This happens
because Windows (as most other operating systems do)
normally writes on disk in 512-byte blocks, called sec-
tors. Since normally the amount of information to be
written is not a multiple of 512, usually the last block of
information will have to be padded to match a sector
size. Windows uses its own memory buffers to get irrele-
vant bytes to do that.

• Alternate Streams: it can be said that every NTFS file
holds another embedded file with no explicit name,
called default stream or unnamed stream, where conven-
tional data like text and programs are stored. Neverthe-
less, one can also create embedded files with different
names, called alternate streams. The problem is that the
detection of these embedded, but named files, cannot be
natively effected by any W2k programs, enabling them
to be easily used to conceal programs and information.
[10]

The analysis must be conducted over image copies of the
original disks from the victim machine, so that there is no
risk of a mistake on the part of the examiner to compro-
mise the integrity of the original files, causing irreparable
damage to the ongoing investigation. This controlled envi-
ronment could be, for instance, a machine with several
operating systems containing adequate tools, such as the
Foundstone Forensic ToolKit3.

By using another machine with a Unix-like operating
system that has support for the NTFS file system, such as
Linux, one can take advantage of powerful tools developed
for the Unix platform, such as TCT4 (The Coroners Tool-
Kit). Also, the media can be mounted read-only, whereas
W2k would normally alter the index files of the partition
during boot. Another advantage of using a platform like
Linux for the postmortem analysis is the possibility of
visualizing the evidence from another point of view.

Unfortunately, Linux’s support for the NTFS filesys-
tem is not complete, so that several data structures, such as
the alternate streams, are ignored. This force at least part
of the procedures to be performed under W2k itself.

As a general rule, one can say that the majority of con-
clusions from a forensic analysis is based on results
obtained from a live analysis, seconded by an analysis of
events registered by EventViewer and trailed by the file
integrity checking. Not always a detailed postmortem over

2. http://www.sysinternals.com/ntw2k/freeware/
listdlls.shtml

3. http://www.foundstone.com/knowledge/prod-
desc/forensic-toolkit.html

4. http://www.porcupine.org/forensics/tct.html



the filesystem is performed, or even needed. Often, it is not
viable to create disk images due to size constraints on stor-
age available in the analysis machine, or even due to the
impact the analysis might impose on running services,
such as stopping them altogether, which may not be
acceptable [11].

3.3- W2k Forensic Analysis Problems
The forensic analysis of a proprietary system such as Win-
dows 2000 makes it harder to define fully reliable method-
ologies, once it is not known for sure the exact
consequences of all actions taken during its analysis [10].

Since W2k is an undisclosed-code system, it is not pos-
sible to prove with full certainty that no result contamina-
tion may have happened.

Another problem worth mentioning is that in the Win-
dows environment the GUI culture is praised, which tends
to hide location and treatment given to information being
handled. This rarely happens on open source systems like
Linux and FreeBSD when documentation is not available.
The lack of such information makes it difficult gathering
data from the target system without the use of tools origi-
nally available on the operating system. [2]

4- Pre-Forensic Setup
Despite current security concerns being essential require-
ment for a variety of network services and applications, it
is still very common to find W2k networks with out-of-
the-box configurations. These usually deal only with func-
tional aspects, while security configurations are given a
lower priority.

Take, for instance, the auditing policy configurations,
which are not enabled by default, leaving all security-
related events not to be logged.

The correct configuration of a machine, where a possi-
ble, future forensic analysis is taken into account, can sub-
stantially speed up the response to a security incident, and
also possibly bring its solution closer. This is due to the
fact that a correct configuration will force W2k to supply
many more traces of an attacker’s actions, further enlarg-
ing the collection of evidences that could draw the case to
an end.

Below are discussed some examples of topics whose
configuration or deployment could be of great benefit for
the progress of an analysis:

• Audit Policies: Event auditing is an important part of
network administration. When an administrator selects
events to be audited, through the analysis of log files, he
can later, derive normal system utilization patterns, pos-
sible security problems and observe trends in network
resource utilization. Care, should be taken when choos-
ing what is to be audited, given the large number of
events some activities can generate and the overhead
associated with them [12][8]. Table 1 shows a descrip-
tion of all auditable events on W2k.

• ACLs: NTFS stores an access control list (ACL) with
every file and folder on an NTFS volume. The ACL con-
tains a list of all user accounts and groups that have been
granted access for the file or folder, as well as the type of
access they have been granted. When a user attempts to
gain access to a resource, the ACL must contain an
entry, called an access control entry (ACE), for the user
account or a group to which the user belongs. The entry
must allow the type of access that is requested (for
example, Read access) for the user to gain access. If no
ACE exists in the ACL, the user cannot gain access to
the resource. The ACL setup with a correct audit policy
configuration, can show general tracks of system utiliza-
tion.[13]

• File Integrity Check: It is very difficult to compromise a
system without altering a system file, so file integrity
checkers are an important capability in the search for
evidences and tracks. A file integrity checker computes a
checksum for every critical file and stores this. At a later
time you can compute a checksum again and test the
current value against the stored value to determine if the
file has been modified.[12][5]

5- Pre-Forensic Setup Automation Frame-
work
Contrary to Unix systems, Windows is considered a
“hands-on” system, which requires the administrator’s
presence or actuation on each machine, so that most instal-
lations, configurations and administrative tasks are per-
formed on a network. This makes the administration of a
large Windows network an extremely laborious and unpro-
ductive task.

The administrative hardships imposed by the Windows
platform are a severe obstacle for the deployment of the

Event Category Description

Account logon 
events

Activated when a domain controller receives a 
logon request

Account manage-
ment

Activated when a user account or group is created 
or changed

Directory service 
access

Activated when an Active Directory object is 
accessed

Logon events Activated when a user logs on or logs off

Object access Activated when an object is accessed

Policy change Activated when a policy affecting security, user 
rights, or auditing is modified

Privilege use Activated when a user right is used to perform an 
action

Process tracking Activated when an application executes an action 
that is being tracked

System events Activated when a computer is rebooted or shut 
down or another event occurs that affects security

Table 1: Auditing categories



recommendations on Section 4. They, in fact, cause such
deployment to take quite a long time from the Response
Team. In this section we present a framework implementa-
tion (PFSAF) that seeks to automate the main actions
required to prepare machines on a network for the chance
of a future forensic analysis.

5.1- Structure
PFSAF was structured to allow all necessary configura-
tions from a single machine, and also being able to sched-
ule tasks through Task Scheduler at a more convenient
time for the administrator. This machine (Forensic Station)
must be of restricted access and will be responsible for the
storage of all configuration files and databases generated
by PFSAF (Figure 1).

The machines to be monitored do not need any special
configuration to comply with PFSAF; the only require-
ment is the existence of the W2k default shares.

Currently the main functionalities of PFSAF are:

• Guarantee of critical files integrity: the PFSAF file
integrity module generates cryptographic hashes, regis-
ters the existence and size of alternate streams and stores
the extremely volatile MAC Times (access, modification
and creation times of a file);

• Automatic execution program monitoring: all pro-
grams automatically executed after user logon has its
integrity monitored. Moreover, any change in the num-
ber of programs to be executed or alterations in their
characteristics can be detected;

• Auditing policy configuration: PFSAF can remotely
configure auditing policies and check whether they have
been changed afterwards.

5.2- Implementation
PFSAF was implemented using PERL and it was tested
with the ActiveState5 5.6.1 Build 631 interpreter on a Win-

dows 2000 Server with Service Pack 2, having Windows
2000 Server and Professional clients on a variety of Ser-
vice Pack combinations.

There are basically two configuration files in this
framework: files.cfg and audity.cfg. The file
files.cfg holds filenames to be included in the integ-
rity database (hash.db), which is responsible for the
storage of cryptographic hashes and some extra data which
describe the structure and the state of the target file.

File files.cfg is used for all machines listed in file
audit.cfg, unless there exists a specific file for a given
machine, whose name has the following syntax:
<machine>-files.cfg. In this case, file
files.cfg is neglected under the more specific config-
uration listing.

Names of the machines to be monitored are stored in
file audit.cfg, which also describes which auditing
policies must be applied on each listed machine.

In next section will be discussed implementation
details of each module presented in Section 5.1.

5.2.1- File Integrity Module
The file integrity module uses both PFSAF configuration
files: files.cfg, which is specific to this module and
audit.cfg, which holds the list of machines to be mon-
itored, besides the description of auditing policies for each
machine.

Remote access to each machines’ files is done through
Windows default shares, which, though criticized by
some, have become extremely useful for system adminis-
tration.

For cryptographic hashes, PFSAF uses SHA1 paired
with the HMAC symmetric key primitive [14], also called
HMAC-SHA1. Its use prevents a simple cut-and-paste
attack to the hash.db file, in which the attacker could
substitute a compromised hash for the correct one, there-
fore validating a possible change in the monitored files.

HMAC-SHA1 uses a key to compute the file hashes, so
that it is not possible for anyone not possessing that key to
produce any valid hashes for substitution over the
hash.db file. In the case of PFSAF, a key is required
when generating the database and stored in the passwd
file (also part of PFSAF). The HMAC-SHA1 support in
PERL is given by the Digest::HMAC_SHA1 library.

5.2.2- Startup Integrity Database
The Startup Integrity Module is responsible for monitoring
and ensuring the integrity of all automatically executed
programs after user logon. Its goal is to prevent a mali-
ciously altered program or backdoor from being automati-
cally executed in any of the monitored machines.

There are two ways for a program to automatically exe-
cute when a user logs on a Windows machine: the simplest

Figure 1: File Integrity Module Schema

5. http://www.activestate.com/Products/ActiveP-
erl/



one is through the addition of shortcuts in the Startup
folder, present in all user profiles. To deal with this case,
PFSAF accesses the folder holding all user profiles, again
by using Windows default shares. The shortcut analyses
are made easier thanks to Win32::Shortcut, a very helpful
PERL library. Once the executable pointed to by the short-
cut is known, PFSAF adds two registers to the Startup
Database: one holds the hash and the state of the shortcut
file and the other the executable’s. 

The other way is the addition of proper values in some
registry keys (eg. HKEY_LOCAL_MACHINE\SOFT-
WARE\Microsoft\Windows\CurrentVersion\Run). In this
case the PFSAF stores information about the keys and
about the state of the programs referenced by the values in
these keys.

5.2.3- Audit Policy Module
The goal of the audit policy module is to supply a new
interface for auditing policies configuration, thus allowing
that either PDCs, which do not share domain configura-
tions, isolated machines or Unix servers running SAMBA,
may be quickly configured in an automated way.

Through the use of audit.cfg, the audit policy
module can configure machines listed in it with their cor-
responding policy. This module can also check the current
policy state on each machine and verify that the comply
with current values in audit.cfg.

Access to this kind of configuration is granted by
PERL using the Win32::Lanman library, that works as a
wrapper for the Windows LANMAN API.

5.3- Usage
PFSAF can be used either interactively or automatically. In
the interactive option, the program uses the main.pl
script that provides an interface for using the whole frame-
work, with configuration files prepared beforehand.

The non-interactive use of PFSAF can be done calling
individual modules, separately developed to supply a flexi-
ble interface to the framework and so allowing the execu-
tion of independent modules through Windows Task
Scheduler.

6- Conclusion
The use of tools like PFSAF can promote the creation of
incident response programs by institutions, since their
complex deployment on Windows 2000 based networks
can be greatly reduced through task automation. Also, it
makes basic requirements for this kind of program more
apparent, consequently contributing to spread out the
necessity of deploying such programs.

References
[1] WYK, Kenneth R. van; FORNO, Richard; Incident

Response; O’Reilly; 2001;

[2] FARMER, Dan; VENEMA, Wietse; Forensic Com-
puter Analysis: An Introduction; Dr. Dobb’s Journal;
September 2000; http://www.ddj.com/articles/2000/
0009/0009f/0009f.htm;

[3] CARVEY, Harlan; System Security Administration
for NT; LISA-NT -- The 3rd Large Installation System
Administration of Windows NT Conference; Seattle,
Washington - USA; 2000

[4] AUGUSTO, Alessandro; de GEUS, Paulo L.;
GUIMARÃES, Célio C.; Administration of Large
Windows NT Network with DoIt4Me; The 10th Inter-
national Conference on System Administration, Net-
working and Security; Baltimore, MD, USA; May
2001;

[5] Tripwire Open Source’s Home Page:
Visited in 10/01/2002; <http://www.tripwire.org>;

[6] OLIVEIRA, Flávio de Souza; GUIMARÃES, Célio
Cardoso; REIS, Marcelo; de GEUS, Paulo Lício;
Forense Computacional: Aspectos Legais e Padroni-
zação; Anais do Wseg’2001 - I Workshop de Seg-
urança em Sistemas Computacionais; Florianópolis,
SC - Brazil; pp. 80-85 (in Portuguese);

[7] NOBLETT, Michael G.; POLLITT, Mark M.; PRES-
LEY, Lawrence A.; Recovering and Examining Com-
puter Forensic Evidence; Forensic Science
Communications, Vol. 2 N. 4 October 2000; Federal
Bureau of Investigation;

[8] REIS, Marcelo A.; de GEUS, Paulo L.; Standardiza-
tion of Computer Forensic Protocols and Procedures;
Proc. of the 14th Annual FIRST Computer Security
Incident Handling Conference; Hawaii, USA; June
2002;

[9] BREZINSKI, Dominique; Building a Forensic Toolkit
That Will Protect You From Evil Influences; The
Black Hat Briefings '99; Las Vegas, NV, USA;

[10] OLIVEIRA, Flávio de Souza; GUIMARÃES, Célio
Cardoso; REIS, Marcelo; de GEUS, Paulo Lício;
Metodologias de Análise Forense para Ambientes
Baseados em NTFS; Anais do SSI’2001 - III Simpósio
de Segurança em Informática; São José dos Campos,
SP - Brazil; pp. 83-90 (in Portuguese);

[11] MANDIA, Kevin; PROSISE, Chris; Incident
Response: Investigating Computer Crime; Osborne/
McGraw Hill; 2001;

[12] MICROSOFT, Corp.; Securing Windows® 2000 Net-
work Resources; Microsoft TechNet; Microsoft Cor-
poration; July 2000;

[13] MICROSOFT, Corp.; MCSE Training Kit – Microsoft
Windows 2000 Active Directory Services; Microsoft
Press; 2000;

[14] MENEZES, Alfred J.; van OORSCHOT, Paul C.;
VANSTONE, Scott A.; Handbook of Applied Cryp-
tography; CRC Press; 1996;


	1- Introduction
	1.1- Related Work
	1.2- Incident Response

	2- Computer Forensics
	2.1- Digital Evidence Manipulation Standards

	3- W2k Forensic Analysis
	3.1- Live Analysis on W2k Machines
	3.2- W2k Analysis Basis
	3.3- W2k Forensic Analysis Problems

	4- Pre-Forensic Setup
	5- Pre-Forensic Setup Automation Framework
	5.1- Structure
	5.2- Implementation
	5.2.1- File Integrity Module
	5.2.2- Startup Integrity Database
	5.2.3- Audit Policy Module

	5.3- Usage

	6- Conclusion
	References

