
Proceedings of the 2004 IEEE
Workshop on Information Assurance and Security
United States Military Academy, West Point, NY, 10–11 June 2004

A Mechanism for Automatic Digital Evidence Collection on High-Interaction
Honeypots

Martim d’Orey Posser de Andrade Carbone, Paulo Ĺıcio de Geus

Abstract—
Honeypots are computational resources whose value re-

sides in being probed, attacked or compromised by invaders.
This makes it possible to obtain information about their
methods, tools and motivations. On high-interaction hon-
eypots this is done, among other ways, by collecting digital
evidence. This collection is traditionally done manually and
statically, demanding time and not always generating good
results.

In this paper, we describe an automatic, dynamic and
transparent mechanism for collecting digital evidence from
the filesystem of honeypots, eliminating the flaws found in
the traditional methods. The mechanism consists of two
modules: an interceptor module, that intercepts some pre-
selected system calls on the honeypot and transmits the ar-
gument data to the honeynet; and a receiver module, that
captures the transmitted data and reconstructs on the hon-
eywall the evidence produced by an intruder during an inva-
sion. A prototype based on the mechanism was implemented
and tested in real intrusion situations. The mechanism’s be-
havior in one of these situations is also described, followed
by an analysis of the results.

I. Introduction

Ever since its proposal in the early 90’s, the concept of
honeypot has become increasingly popular among members
of the IS community, being now recognized as a valuable
tool in fighting blackhats [1], [2].

A honeypot can be defined as a computational resource
whose value resides in being probed, attacked or compro-
mised by invaders [3]. This definition is very broad, and
can encompass anything from large computational envi-
ronments to simple files (as proposed in [4]). In this paper,
nevertheless, we shall consider honeypots as being physi-
cal computers. The value of a honeypot derives from the
fact that it is not used by legitimate users in daily pro-
duction activities. This makes all the activity taking place
on the honeypot naturally suspicious, greatly reducing the
number of false positives.

Although very simple, this idea is extremely powerful
and suitable for a wide variety of goals: attack signature
capture, study of the methods and psychology of blackhats,
study of malicious tools, among others [4], [5], [6], [7].

Just as a honeypot can have different goals, there are
also different types of honeypots, suited for different types
of data one might want to collect [2], [8]. Low-interaction
honeypots have a low level of interaction with the attacker,
limiting the scope of his actions [9]. A port monitor that

works by detecting and logging remote attacks is a classi-
cal example: the interaction between the attacker and the
honeypot is kept restricted to the TCP/IP stack.

On the other end, high-interaction honeypots have a
much higher level of interaction with the attacker, giving
him access to the whole operating system. It’s quite obvi-
ous that this second approach makes it possible to obtain
a much larger and richer quantity of data, if compared to
the low-interaction alternative. This data can have dif-
ferent origins: captured network traffic, operating system
logs, keystrokes, RAM content, filesystem content, among
others. These data are examples of digital evidence, object
of study in computer forensics [10], and constitute the main
source of information in the study of honeypots.

Digital evidence extraction is not a trivial procedure [11],
specially when it involves honeypots. In this case, it be-
comes necessary to create methods that are not only effi-
cient, but also invisible to the blackhat, who must believe
he has actually compromised a production host.

Certain types of digital evidence, however, can be ex-
tracted more transparently than others. Network traffic,
for example, can be captured passively through a simple
traffic logger, without risking alerting the blackhat. There
are other kinds of digital evidence, however, that require a
more active extraction, for they are located inside the hon-
eypot, in places such as the RAM or the filesystem. The
latter is considered by forensic analysts to be the main
source of digital evidence on a system [11], and thus de-
serves focus in the study of honeypots. This paper focuses
on the evidence left inside a honeypot’s filesystem, running
the Linux operating system (kernel version 2.4).

Traditionally, digital evidence extraction from a honey-
pot’s filesystem is done statically and manually, demanding
active human participation. The most common technique
consists of creating an image of the filesystem through the
use of a copying tool, such as the Linux dd program . This
image is then moved to a secure machine, where it is sub-
mitted to a forensic analysis. Sometimes, integrity checkers
(such as tripwire) are used to determine the modifications
inflicted upon the filesystem’s data, thus determining what
changes were made by the intruder [1], [12].

This methodology has many drawbacks. Not only it is
manual and slow, but in many cases it also demands that

10-7803-8572-1/04/$20.00 ©2004 IEEE

the honeypot be temporarily deactivated for the image to
be created. This has a negative impact on the quantity
of evidence collected, besides being potentially alertive to
the intruders. Besides, this method operates statically,
meaning that any evidence created and erased between two
checks won’t be detected.

This paper describes a mechanism for automatic, dy-
namic and transparent digital evidence collection from hon-
eypots’ filesystems, eliminating the drawbacks found in the
traditional methodologies.

Initially, in Section II, the honeynet in which the honey-
pot is deployed will be described. Section III will describe
the evidence collection mechanism and Section IV will ex-
pose the empirical results obtained with a prototype of the
mechanism in a real intrusion situation. Finally, Section V
will conclude the paper with the final remarks and possible
improvements and extensions to the mechanism.

II. The Environment

Choosing the environment in which a honeypot will be
located is an important step in its deployment, since it
directly affects the nature, quantity and quality of the col-
lected data [2]. The honeypot studied in this paper resides
in a GenII honeynet [13], like the one illustrated in Figure
1.

A honeynet can be defined as a well delimited and highly
controlled network environment containing one or more
high-interaction honeypots [14]. GenII honeynets consist
of an isolated network segment where a honeywall machine
mediates the network traffic going in and out of the hon-
eypot.

This machine basically works as a reverse firewall, cap-
turing and analyzing the incoming traffic (malicious traffic,
supposedly), and actively controlling outgoing traffic (sup-
posedly generated by an intruder).

Incoming traffic monitoring is done through the Tcp-
dump [15] packet capturer and the Snort [16] intrusion de-
tection system. The latter analyses the traffic in search for
known attack signatures and generates a warning if it finds
an occurrence. On the other hand, outgoing traffic must
be actively controlled in order to prevent the intruder from
using the honeypot as a launch base to attack other hosts
located outside the network perimeter. This control makes
use of several techniques that are outside the scope of this
paper (further details can be found in [2]).

The GenII model makes use of another interesting tech-
nique: transparent bridging [17], activated on the honey-
wall. This technique works by relaying network frames be-
tween two of its NICs (Figure 1), without making any mod-
ifications to the content of the frames. This transparency
makes the honeywall practically invisible to the intruders,
a very important quality in honeypot solutions.

It is also worth mentioning that the honeywall has a third
NIC, connected to the production network (Figure 1). Its

PRODUCTION
NETWORK

Honeywall

Router

Honeypot

HONEYNET

Transparent
bridging

INTERNET

Fig. 1. The honeynet topology

goal is to simplify the honeywall’s administration and the
access to the collected data by making it accessible from the
production network. This configuration does not break the
isolation requirement established before, because the other
two NICs don’t have IP addresses associated with them
(because of the transparent bridging technique), eliminat-
ing the risk of having an intruder breaking into the hon-
eywall and compromising the security of the production
environment.

III. Description of the Mechanism

The mechanism described in this paper is a distributed
application composed by two main modules: an interceptor
module, which operates on the honeypot, and a receiver
module, which operates on the honeywall.

The evidence collection itself is done by the interceptor
module, that dynamically intercepts the kernel system calls
that somehow alter the honeypot’s filesystem and transmits
the context information of each intercepted call to the hon-
eywall, a secure host to which the intruder has no access.
This transmission is done in a covert manner, invisible to
an intruder executing a traffic capture tool, because it com-
municates directly with the NIC driver, never interacting
with the kernel networking subsystem (further details can
be found in Section III-B.4).

On the honeywall, the data sent by the interceptor mod-
ule is passively captured (since the honeywall operates
using transparent bridging) by the receiver module, and
logged locally in a log file. The contents of this file are

20-7803-8572-1/04/$20.00 ©2004 IEEE

HARDWARE

KERNEL

System calls (API)

Proc. 1 Proc. 2 ... Proc. N

Fig. 2. System calls

fed into an evidence processor, which recovers the context
information of each call intercepted on the honeypot and
reproduces them sequentially. As a result, an evidence tree
containing all the evidence left by an intruder on the hon-
eypot’s filesystem, from the beginning of an invasion to its
end, is automatically generated in the honeywall’s filesys-
tem.

The following sections will detail the internal structure
of the interceptor and receiver modules presented above,
after a brief introduction to Linux system calls.

A. System calls

Linux uses two distinct CPU modes: user mode and su-
pervisor mode [18]. In the former, the processor operates
under restrictions and cannot execute certain privileged in-
structions that directly access the computer’s hardware.
This is done in order to prevent malicious (or badly pro-
grammed) code from causing damage to the system. In the
latter, the processor is under no restrictions, and can ex-
ecute all the instructions, including the ones that directly
access the hardware.

In Linux, the kernel is executed in supervisor mode and
user processes are executed in user mode. That way, the
presence of an application programming interface (API) be-
tween both becomes necessary, in order for the processes to
be able to request to the kernel the accomplishment of priv-
ileged tasks, such as writing a file in the disk, or sending a
packet to the network. System calls provide this interface,
making it possible for the kernel to serve the processes’
needs (Figure 2) [18].

It has already been mentioned that every hardware ac-
cess by a user process must necessarily invoke a system
call, because only kernel code has the necessary privileges
to perform such action. This fact makes system call moni-
toring an attractive technique considering the goals of this
work. This technique will be further detailed in Section
III-B.

B. Interceptor Module

The interceptor module was implemented as a linux ker-
nel module (LKM) [19], that is, an object code dynamically
loaded into kernel space. This is necessary for the module
to be able to manipulate the kernel’s data structures, in-
cluding the system call table.

Once the LKM is loaded into kernel space, it becomes
necessary to disguise its presence, preventing it from being
detected by intruders. In practical terms, this means one
must not let the module appear in the listing provided by
the lsmod command. This measure can be implemented
through the loading of another LKM that removes the node
associated with the interceptor module from the linked list
of loaded modules kept in kernel space.

The interceptor module is an extension of the one imple-
mented in Sebek (version 2.0.1)[20], a honeypot tool that
monitors the sys read system call in order to circumvent
the cryptographic protection provided by the SSH and
SCP tools, commonly used by intruders to encrypt their
communication with the compromised host. The intercep-
tor module extends Sebek because it intercepts not only
one, but all the system calls involved directly or indirectly
in the modification of the filesystem. These are listed be-
low:

• Hard-link creation: sys link();
• Symbolic link creation: sys symlink();
• File creation and opening: sys open(), sys creat();
• Directory creation: sys mkdir();
• File writing: sys write(), sys pwrite();
• Memory mapping: sys mmap();
• File closing: sys close();
• File removal: sys unlink();
• Directory removal: sys rmdir();
• Renaming of files and directories: sys rename();
• File truncation: sys truncate(), sys ftruncate();
• Permissions management: sys chmod(), sys fchmod();
• Ownership management: sys chown(), sys lchown(),
sys chgrp().

For the sake of simplicity, only the system calls sys open,
sys close, sys write, sys rename and sys mkdir calls are
being intercepted in the prototype. With regard to the
sys open call, only the act of file creation is being consid-
ered, leaving aside the act of opening an existent file.

The operation of the module can be divided in four se-
quential steps, detailed in the next sections. The sys open
call interceptor function will be used as an example of the
implementation.

B.1 Step 1: Interceptor functions installation

System call interception is a widely used and well studied
technique [21], [22], [20], [23]. It consists of the alteration
of the pointers stored in the system call table, in order

30-7803-8572-1/04/$20.00 ©2004 IEEE

User
process

Interceptor
function

 Original
function

sys_call_table[]

Call

USER MODE

SUPERVISOR MODE

sys_open

sys_write

sys_mkdir

 (...)

Network frames
containing blocks

Honeynet

Call
Return
code

Return
code

Fig. 3. Sys open system call interception

to execute, before the original code, an interceptor code
(Figure 3). The implementation of this technique for the
sys open call is illustrated below:

int (*old_open)(const char *pathname, int flags, mode_t mode);
asmlinkage int new_open
(const char *pathname, int flags, mode_t mode);

asmlinkage int new_open
(const char *pathname, int flags, mode_t mode)
{

[...]
}

int init_module(void)
{

(unsigned long *)old_open = sys_call_table[__NR_open];
sys_call_table[__NR_open] = (unsigned long *)new_open;

}

In the code above, inside the module’s main function
(init module()), the system call table entry associated with
the sys open call is overwritten with the address of the in-
terceptor function new open. Before that, however, the old
value stored in this position is transfered to the variable
old open, to be used in the invocation of the original func-
tion.

B.2 Step 2: Original call invocation and related checks

In the interceptor functions, the first task is the invoca-
tion of the original function with the parameters given by
the process, as can be seen below:

ID system
time

file path
 size

file path mode umask

1 9 10 11 12 X X+1 X+2 X+30 (variable
 size)

(03)

Fig. 4. Block structure for the sys open call

res = old_open(pathname, flags, mode);
if((res != -1) && ((flags & O_CREAT) != 0)){

[...]
}
return res;

}

This invocation is done right in the beginning of the func-
tion so that the interceptor code knows beforehand if the
original function will be successfully executed, before it ex-
ecutes the rest of the intercepting code. In case it is suc-
cessful, the remaining of the intercepting code is executed;
if not, the interceptor function exits and the return value
(stored in the variable res) is returned to the invoking pro-
cess (Figure 3). In the example above, the file opening flags
are also checked. The remaining of the interceptor code is
executed only if the file referenced by pathname is being
created (O CREAT). This is because the prototype will only
consider file creation, ignoring the opening of pre-existent
files. For the other system calls, other verifications are
made.

B.3 Step 3: Additional data retrieval and block assembly

In this step, it is necessary to retrieve all the necessary
data to create a block. A block is a logical data unit that
contains all the data necessary for a system call to be re-
produced on the honeywall. Therefore, not only it must
contain the parameters given to the call, but also process
and system context information.

For the sys open system call, these data include the pro-
cess’ current working directory (to be used in the compo-
sition of the absolute file path), system time, the process’
permission mask, the name of the file given as a parameter
and the creation permissions. Another important informa-
tion is the identifier of the system call. All intercepted calls
are associated to an integer that uniquely identifies them
in a certain block. This identifier is used by the receiver
module to determine the type of system call to which the
block corresponds, so it can interpret the block correctly.
All the blocks associated with the sys open call, for exam-
ple, have an ID number of 03, and other blocks associated
with other system calls have different IDs.

After the retrieval of the data, the block is assembled.
The structure of the block representing an occurrence of a
sys open call is shown in Figure 4.

B.4 Step 4: Ethernet frame creation and transmission

After the assembly of the blocks, they are encapsulated
inside Ethernet frames and sent to the network. In this

40-7803-8572-1/04/$20.00 ©2004 IEEE

sending, Ethernet, IP and UDP are used as data-link, net-
work and transport protocols, respectively.

The frame generation is done by the gen pkt function,
used in Sebek for the same purpose. This function initially
allocates a socket buffer [19] (kernel structure used as a
storage place for network frames), and creates the UDP,
IP and Ethernet headers. The block is then copied to the
socket buffer’s payload area. At first, the content of the
fields of the Ethernet, IP and UDP headers is irrelevant,
since the honeywall’s NICs have no IP addresses associated,
and the network frames must be captured passively. There
must be, however, some method to uniquely identify the
frames generated by the interceptor module, so that the
receiver module can identify them amidst the universe of
frames passing through the honeynet. In this work, the
Destination port field of the UDP header was chosen for
this matter, with the value of 1666.

Generally, there is a biunivocal relation between blocks
and network frames, but there is an exception: the
sys write call. Not rarely, this call manipulates large vol-
umes of data, making it necessary to divide the block into
smaller frames (4KB was the value stipulated). After the
creation of the Ethernet frame, the only remaining task is
to send it to the network, transferring it to the appropri-
ate device driver. This sending is done through the kernel
function hard start xmit.

Because it is self-sufficient in the generation of the Eth-
ernet frames, and talks directly to the NICs device driver
(the same way Sebek does), the sending mechanism goes
around all the hooks existent in the kernel networking sub-
system (netfilter). This makes the transmission invisible to
an intruder executing a packet capturer (such as Tcpdump)
on the honeypot.

C. Receiver Module

The receiver module, shown in Figure 5, operates on
the honeywall as a user process. Unlike the interceptor,
the receiver module is executed on a secure machine, and
therefore does not need to be hidden.

It works by passively capturing the network frames that
pass through the honeynet, followed by the verification of
the UDP destination port, in order to identify the ones sent
by the interceptor module. The blocks are extracted from
the identified frames and stored sequentially in a block log.
This log contains nothing less than the complete chronology
of the alterations inflicted upon the honeypot’s filesystem,
from its activation to the most recent instant. With these
data at hand, a great myriad of possible types of evidence
reconstruction opens up. One may want, for instance, to
obtain all the files created by an intruder during an in-
vasion. It could also generate a report containing all the
files altered by the intruder, with the content of the alter-
ation. There are some even more exciting possibilities: the
highly temporal granularity of the data allows the creation

Capturer

Logger

Evidence
processor

Network
frames

Block log

Filtered UDP
datagrams

Evidence
tree

Data
blocks

Log of reproduced
system calls

Honeynet

...

Data
blocks

Fig. 5. The Receiver Module

of a timeline, containing the complete evolution of a set of
files (and, why not, the entire filesystem). However, this
last possibility demands the existence of a local copy of
the honeypot’s original filesystem (before it was altered by
the intruder), to be used as an initial state in the evidence
reconstruction.

In all the situations mentioned above, the evidence re-
construction is done by an evidence processor, a part of
the receiver module. Its operation varies depending on the
type of the reconstitution, but in all cases, the basic event
chronology is the same: the received blocks are sequentially
analyzed, its contents interpreted and the system calls rep-
resented are reproduced locally. This reproduction relies
on the identifier field of each block, using it to determine
the system call to which each block refers. Next, the other
fields of the block are passed as arguments to a specific
function that processes them and executes the system call.

All the evidence reconstructed by the evidence processor
is confined to a directory hierarchy (mirroring the honey-
pot’s filesystem hierarchy), whose root is specified in the
receiver module’s configuration. Therefore, this root di-
rectory contains an evidence tree, within which are all the
evidence (files and directories) created by the intruder on
the honeypot and reconstructed by the evidence processor
on the honeywall.

50-7803-8572-1/04/$20.00 ©2004 IEEE

Besides the evidence tree, the evidence processor also
generates a complete record of all the reproduced system
calls. The importance of this record becomes clear if we
consider the situation in which the intruder removes files
or directories. These items would not be included in the ev-
idence tree and, without this record, we would never notice
the removal.

Just as the interceptor module, the prototype’s receiver
module deals only with the sys open, sys close, sys write,
sys rename and sys mkdir calls. Thus, the prototype works
only with the creation and renaming of files and directories,
leaving aside more complex types of evidence reconstruc-
tion.

IV. Experimental Results

The prototype was submitted to an empirical validation
process, through the analysis of its behavior in live intru-
sion situations. The interceptor and receiver modules were
properly installed and activated on the honeypot (running
kernel version 2.4.19) and the honeywall (ditto), respec-
tively. Both machines were confined in a honeynet such
as the one described in Section II. The Sebek’s keylog-
ger was also installed in the honeypot, capturing the in-
truder’s keystrokes in kernel space and covertly sending
them through the network, so as to be captured by the
honeywall.

Twenty days after its deployment, the honeypot was at-
tacked and compromised. The intruder remotely exploited
a vulnerability in the honeypot’s FTP server, and obtained
a shell prompt with root privileges. The occurrence of the
attack was immediately notified by Snort:

1/04-17:24:49.684235 [**] [1:1630:5] FTP EXPLOIT CWD overflow [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]

A few seconds after the exploitation, the traffic logger
loaded on the honeywall started capturing UDP datagrams
originated from the keylogger, containing the shell com-
mands typed by the intruder. The commands follow:

unset $HISTFILE
id
ls
wget
wget ftp://whitez:whiter0x@217.215.111.13/www/vmkit2k.tar.gz
tar xvzf vmkit2k.tar.gz
cd vmkit2k
./install spike68

The intruder started by removing the environment vari-
able $HISTFILE, hoping that the commands he typed
would not be logged by the shell. He then executed the id
command, confirming that he indeed had root privileges.
Following that, he downloaded the file vmkit2k.tar.gz
from a remote server with the wget tool, uncompressed it,
entered the newly created directory vmkit2k and executed
the install program.

After this sequence of commands, the intruder tried to
connect to the port 15000 TCP, where he presumably had

TABLE I

Histogram of the blocks received during the invasion

Syscall Blocks % Bytes %
sys write 6792 96,38% 6757481 99,68%
sys open 86 1,22% 11192 0,16%
sys close 86 1,22% 9314 0,14%
sys rename 22 0,31% 1152 0,02%
sys mkdir 12 0,17% 337 <0,01%
Total 7047 100% 6779476 100%

installed a backdoor. After checking it, he disconnected
from the honeypot.

As soon as the intruder started transferring the file
vmkit2k.tar.gz, the receiver module began capturing net-
work frames sent by the interceptor module. The first re-
ceived frame follows:
00 02 b3 00 00 00 01 00 00 0f c4 a9 08 00 45 0dE.
00 49 00 50 00 00 01 11 21 2c 0A 0A 0A 01 0A 0A .I.P....!,......
0A 02 06 82 06 82 00 35 29 06 03 00 87 fd a7 3f5)......?
11 b6 09 00 17 00 2f 76 61 72 2f 66 74 70 2f 76/var/ftp/v
6d 6b 69 74 32 6b 2e 74 61 72 2e 67 7a b6 01 12 mkit2k.tar.gz...
00 00 00 ...

The first payload byte (following the initial 42 bytes con-
taining the Ethernet, IP and UDP headers) is 03. This
byte represents the id field of the encapsulated block; in
this case, the sys open system call id number (Figure 4).
As said before, the interceptor module implemented in the
prototype deals only with file creation, thus the frame il-
lustrated above contains a block referring to the creation
of the /var/ftp/vmkit2k.tar.gz file on the honeypot.

After this initial block, many others followed, referring to
the creation, writing and renaming of files and directories.
The block receival statistics are shown in Table I

The received blocks were stored sequentially in the block
log, totalizing 6.46 MB of data. These blocks were then in-
put to the evidence processor, that in turn generated an
evidence tree inside the directory /EVIDENCE of the hon-
eywall’s filesystem. This tree contains every directory and
file created by the intruder on the honeypot, organized in
a way that mirrors the honeypot’s filesystem. This means
that the directory /EVIDENCE/var/ftp of the honeywall
contains the evidence created in the directory /var/ftp of
the honeypot:
root@honeywall / $ ls -l /EVIDENCE/var/ftp
total 1444
drwxr-xr-x 4 root root 4096 Nov 7 20:09 vmkit2k
-rw-r--r-- 1 root root 1467505 Nov 7 20:09 vmkit2k.tar.gz

As expected, the vmkit2k.tar.gz file downloaded by
the intruder was correctly rebuilt. Its integrity and every
other reconstituted file’s integrity was confirmed through
the use of MD5 checksums.

Many other files and directories were rebuilt by the
evidence processor, providing some very interesting data

60-7803-8572-1/04/$20.00 ©2004 IEEE

concerning the tool installed by the intruder. For exam-
ple, inside the directories /usr/bin, /usr/sbin e /sbin
of the honeypot’s filesystem, many system binaries, such
as netstat, sshd, ps, ifconfig, syslogd, among others,
were replaced by new binaries named equally, suggesting
the possibility of a rootkit. The evidence analysis that
followed confirmed this hypothesis, even though we were
unable to identify it precisely (there is evidence suggesting
it is a variant of the Illogic rootkit). A listing of the files
replaced by the rootkit in one of the system’s directories
(/usr/bin) follows:
root@honeywall / $ ls -alR /EVIDENCE/usr/bin
FS1/usr/bin:
total 1100
drwxr-xr-x 2 root root 4096 Mar 4 16:26 .
drwxr-xr-x 4 root root 4096 Mar 2 17:38 ..
-rwxr-xr-x 1 root root 88064 Mar 4 16:26 crontab
-rwxr-xr-x 1 root root 163083 Mar 4 16:26 dir
-rwxr-xr-x 1 root root 123540 Mar 4 16:26 du
-rwxr-xr-x 1 root root 213195 Mar 4 16:26 find
-rwxr-xr-x 1 root root 21765 Mar 4 16:26 killall
-rwxr-xr-x 1 root root 22535 Mar 4 16:26 pstree
-rwxr-xr-x 1 root root 205288 Mar 4 16:26 ssh2d
-rwxr-xr-x 1 root root 67941 Mar 4 16:26 top
-rwxr-xr-x 1 root root 163084 Mar 4 16:26 vdir

Another issue that deserves discussion is the performance
impact created by the presence of the interceptor module
on the honeypot. It’s quite natural to experience an over-
head with system call interception, due to the additional
code that must be executed at each call. On a honeypot,
however, this overhead must be kept under control, in order
not to raise suspicions on the intruder.

Table I reveals that the sys write call constitutes the
main bottleneck in the mechanism, due to its fraction in the
received blocks (96,38%) and data (99,68%). The overhead
was measured through experiments consisting of copying
files (a procedure that makes intensive use of the sys write
call) of different sizes (from 100KB to 10MB). The results
showed that, depending on the size of the file, the increase
in the copying time ranges from 70% to 90%. These num-
bers are very acceptable if we consider that, for small and
medium files (<10MB), the total copying time doesn’t take
more than a fraction of a second. This overhead only be-
comes a problem in the writing of large chunks of data (tens
or even hundreds of MB), creating a noticeable delay.

V. Conclusions

This paper described a mechanism based on system call
interception for evidence collection from honeypot filesys-
tems. This mechanism eliminates the flaws found in the
traditional methodologies, providing automatization, dy-
namism and transparency.

In the experiment described in Section IV, the prototype
behaved as expected, generating a tree containing every file
and directory created by the intruder during the invasion.
This process was carried out automatically, saving some
precious time that would otherwise be spent in a forensic
analysis with no guaranteed results. The evidence tree was

submitted to an analysis, which determined that the tool
installed by the intruder was a rootkit.

The potential of this approach, however, goes far beyond
what was shown by the prototype. The dynamism and high
temporal and informational granularity with which the ev-
idence collection is done allows the reconstitution of the
evidence tree at different moments of the invasion, making
it possible to create a complete evidence timeline. There-
fore, even if the intruder is careful enough to erase all the
evidence before disconnecting, the processor module will be
able to rebuild them: it must only travel back in the block
log and process the blocks associated with the creation of
the erased evidence. This temporal overview provides a
unique insight into the intruders modus operandi, that can
be rarely obtained with the traditional methodologies.

Also worth noticing is the mechanism’s transparency. It
intercepts the data, sends the blocks and reconstitutes the
evidence without ever letting the intruder notice it. The
only drawback has to do with the overhead created by the
interceptor module’s presence on the honeypot, that, on
specific situations, can raise suspicion. However, perfor-
mance measures show that this overhead is only notice-
able in the writing of big chunks of data. Nevertheless,
the sys write interceptor’s code optimization constitutes
an important extension to this work.

Another limitation has to do with the integrity of the
system call table. It is widely known that an intruder
can modify it through the installation of an LKM rootkit,
which could result in the neutralization of the intercep-
tor module. Another possible improvement to the mecha-
nism, therefore, would be the creation of a supervisor mod-
ule that, somehow, would keep the integrity of the table.
With the actual security paradigm, however, it is impossi-
ble to build a totally robust solution. This happens because
the intruder generally has root privileges on the honeypot.
With such privileges, the intruder can defeat any surveil-
lance system; switching the kernel, for example, or even
wiping the filesystem clean. Nothing can be done to stop
him. The efforts must be turned to the creation of more
transparent surveillance systems, that do not capture the
intruder’s attention. In this context, the use of virtual ma-
chines represents a great improvement, and the porting of
the mechanism described here to a VM manager, such as
User-Mode Linux [24], constitutes another relevant exten-
sion to this work.

VI. Acknowledgments

The authors would like to thank FAPESP for the finan-
cial aid given to this project, and also the other members of
the Institute of Computing’s System Security and Admin-
istration Laboratory of the State University of Campinas
for their support in achieving the goals of this project.

References

[1] The Honeynet Project, Know Your Enemy: Revealing the Se-

70-7803-8572-1/04/$20.00 ©2004 IEEE

curity Tools, Tactics, and Motives of the Blackhat Communit.
Indianapolis, IN: Addison-Wesley, 2001.

[2] L. Spitzner, Honeypots: Tracking Hackers. Boston, MA:
Addison-Wesley, 2002.

[3] L. Spitzner, “Honeypots: Definitions and values.” Available
in: <http://www.tracking-hackers/papers/honeypots.html>
(Accessed on Jan. 2004), May 2003.

[4] L. Spitzner, “Honeytokens: The other honeypot.” Available
in: <http://www.securityfocus.com/infocus/1713> (Accessed
on Jan. 2004), July 2003.

[5] The Honeynet Project and The Honeynet Research Al-
liance, “Know your enemy: A profile.” Available in:
<http://www.honeynet.org/papers/profiles/cc-fraud.pdf> (Ac-
cessed on Jan. 2004), June 2003.

[6] L. Oudot, “Fighting internet worms with
honeypots.” SecurityFocus - Available in:
<http://www.securityfocus.com/infocus/1740> (Accessed
on Jan. 2004), Oct. 2003.

[7] L. Oudot, “Fighting spam with honeypots.” SecurityFocus -
Available in: <http://www.securityfocus.com/infocus/1747>
(Accessed on Jan. 2004), Nov. 2003.

[8] Recourse Technologies, “The evolution of deception technologies
as a means for network defense.” Sans Institute - Available in:
<http://www.sans.org/rr/wp/recourse.pdf> (Accessed on Jan.
2004), Feb. 2002.

[9] N. Provos, “Honeyd: A virtual honeypot daemon,” in 10th DFN-
CERT Workshop, (Hamburg, Germany), Feb. 2003.

[10] M. A. dos Reis and P. L. de Geus, “Standardization of com-
puter forensics protocols and procedures,” in Proceedings of the
14th Annual Computer Security Incident Handling Conference,
(Waikoloa Village, Hawaii), June 2002.

[11] M. A. dos Reis, “Forense computacional e sua aplicação em se-
gurança imunológica,” Master’s thesis, Instituto de Computação
- UNICAMP, Campinas, SP, Brazil, 2003. (In Portuguese).

[12] Honeynet.BR Team, “Honeynet.BR: Desenvolvimento e Implan-
tao de um Sistema para Avaliao de Atividades Hostis na In-
ternet Brasileira,” in Anais do IV Simpsio sobre Segurana em
Informtica (SSI’2002), (So Jos dos Campos, SP, Brazil), nov.
2002. (In Portuguese).

[13] The Honeynet Project, “Know your enemy: Genii honeynets.”
Available in: <http://project.honeynet.org/papers/gen2/>
(Accessed on Jan. 2004), June 2003.

[14] L. Spitzner, “Learning the tools and the tactics of the enemy
with honeynets,” in Proceedings of the 12th Annual Computer
Security Incident Handling Conference, (Chicago, IL), June
2000.

[15] “Tcpdump.” http://www.tcpdump.org.
[16] “Snort.” http://www.snort.org.
[17] A. S. Tanenbaum, Computer Networks. Upper Saddle River,

NJ: Prentice Hall, 4. ed., 2003.
[18] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System

Concepts. New York, NW: John Wiley & Sons, 6. ed., 2002.
[19] D. P. Bovet and M. Cesati, Understanding the Linux Kernel.

Sebastopol, CA: O’Reilly, 2. ed., Dec. 2002.
[20] The Honeynet Project, “Know your enemy: Sebek.” Available

in: <http://www.honeynet.org/papers/sebek.pdf> (Accessed
on Jan. 2004), Nov. 2003.

[21] K. Jain and R. Sekar, “User-level infrastructure for system call
interposition: A platform for intrusion detection and confine-
ment,” in Proceedings of Network and Distributed System Secu-
rity (NDSS 2000), (San Diego, CA), Feb. 2000.

[22] N. Provos, “Improving host security with system call policies,”
Tech. Rep. 02-3, University of Michigan, Nov. 2002.

[23] T. Garfinkel, “Traps and pitfalls: Practical problems in system
call interposition based security tools,” in Proceedings of Net-
work and Distributed System Security (NDSS 2003), (San Diego,
CA), Feb. 2003.

[24] “User-mode linux.” http://user-mode-linux.sourceforge.net.

80-7803-8572-1/04/$20.00 ©2004 IEEE

	MAIN MENU
	Front Matter
	Sessions and Papers (TOC)
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

