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Abstract. This paper presents the ADenoIdS intrusion detection sys-
tem (IDS). ADenoIdS takes some architectural inspiration from the
human immune system and automates intrusion recovery and attack sig-
nature extraction. These features are enabled through attack evidence
detection. This IDS is initially designed to deal with application attacks,
extracting signature for remote buffer overflow attacks. ADenoIdS is de-
scribed in this paper and experimental results are also presented. These
results show that ADenoIdS can discard false-positives and extract sig-
natures which match the attacks.

1 Introduction

The Internet was designed to be an open and distributed environment with mu-
tual trust among users. Security issues are rarely given high priority by software
developers, vendors, network managers or consumers. As a result, a considerable
number of vulnerabilities raises constantly. Once explored by an attacker, these
vulnerabilities put government, businesses, and individual users at risk [1, 2].

Intrusion detection systems (IDSs) are useful tools to improve the security
of a computer system and, because of their importance, they have become an
integral part of modern network security technology. An IDS acts by monitoring
events in a computer system or network, analyzing them for signs of security
problems [3]. Several techniques are used to achieve intrusion detection such
as expert systems, state transition approaches, statistical analysis, and neural
networks [3]. More recently, several approaches based on the immune system
were proposed [4–6]. Most of these approaches concentrate on building models
and algorithms for behavior-based detection.

This paper presents the ADenoIdS IDS which is intended to mimic, mainly
at the architectural level, several human immune system features, some of them
little explored in other works. Examples of these features are intrusion tolerance,
attack evidence detection, automated attack signature extraction and system
recovery mechanisms.

One of the most important aspects of this IDS is its assumption that success-
ful attacks are inevitable, and its strongest feature is its ability to deal with such
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situation. Note that this is also the case with the vertebrate immune system.
Some disease-causing agents are successful in invading the organism and caus-
ing harm to it before the immune system can eliminate them. After that, the
immune system learns to cope with this type of agent, and some repair strategy
is taken to recover the damaged parts. In this way, this IDS is more related to a
research in virus identification [7] than previous work in intrusion detection.

ADenoIdS was developed to detect attack evidences in running applications,
restore the system after an attack using a file system undo mechanism, and
extract the attack signature for remote buffer overflow attacks.

In fact, applications that provide publicly available services have been the
most intended targets of attack in the last years [8]. Among several techniques
employed to exploit application vulnerabilities, buffer overflow has been one of
the most explored [8].

ADenoIdS was tested against two datasets and the experimental results are
encouraging. The proposed signature extraction algorithm can find the attack
signature and discard candidate signatures which do not correspond to an attack.

In this paper will not be discussed the immune system features and its analo-
gies with security systems, and the reader is referred to [9] for an introduction
to these issues.

This paper is organized as follows. Sect. 2 presents an overview of the ADe-

noIdS IDS. Sect. 3 describes the main implementation aspects of this IDS and
experimental results are shown in Sect. 4. Sect. 5 concludes the paper.

2 ADenoIdS Overview

ADenoIdS was designed to monitor a single computer in such way to detect
application-level attacks and automate signature extraction for remote buffer
overflow attacks. The attack evidences are detected in running process at the
system call level and the attack signatures are extracted at the network level. Fig.
1 illustrates the ADenoIdS modules and the communication flow between them.
In this figure, a short name for some modules is indicated inside parenthesis.

Some of these modules are well-known intrusion detection building blocks
such as the Console, the Data Source and the Behavior-Based Detector. The
role of each module is as follows:

– Data Source: is not a module by itself but represents the source of all infor-
mation needed for the correct IDS working.

– ADCON: is an interface between the IDS and the system administrator.
– ADEID: is responsible for monitoring the computer in search for events that

indicate a successful attack. Although all modules are designed to work con-
currently, ADEID can initiate an automated response (by activating ADIRA)
and the signature extraction process (by activating ADSIG).

– ADIRA: is responsible for restoring the computer system after an attack.
– ADBID: performs anomaly detection by monitoring incoming network traffic

in search for candidate attack signatures.
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Fig. 1. The ADenoIdS modules. Each module is represented by solid line rectangles.
Solid directed lines indicate information flow and dotted directed lines show control
flow. Each flow occurs between two modules or between one module and all other
modules of the grouping (represented by a dotted line rectangle)

– ADSIG: analyzes the collected candidate signatures in attempt to: 1) discard
false-positives; and 2) extract signatures which match the attack.

– ADFSR: it is only modeled to provide support for manual forensic analysis
by preserving data that cannot be corrupted even after a system restore.

The purpose of the signature extraction process is to enable a more efficient
detection of this attack in the future by using a signature-based IDS like Snort-
inline [10]. This process involves the ADBID and ADSIG modules and a general
algorithm for the signature extraction problem is proposed in Sect. 2.1.

2.1 The Signature Extraction Algorithm

This section proposes a signature extraction algorithm which takes inspiration
from the negative selection process of the human immune system and it is suit-
able for general attacks. The algorithm divides the signature extraction into two
phases: the search for candidate signatures and the maturation of the candidates.

Unlike other works [4, 6] which generate candidate detectors randomly, the
proposed algorithm takes advantage from the evidence detection of ADEID and
selects anomalous events prior the attack to be the candidates.

The proposed approach seems to be more appropriate for searching good
candidates than randomly generation. In fact, the most appropriate use of the
negative selection can be as a filter for invalid detectors, and not for the gener-
ation of effective detectors [11].

The proposed algorithm is as follows. The input is composed of a real number
p ∈ ]0; 1], a set E of events prior the evidence detection and a set N of events
generated by the computer system during normal working, where N ∩ E = ∅.
The output is a set C ⊆ E of events, which are the extracted attack signatures



4 Fabŕıcio S. de Paula and Paulo L. de Geus

with estimated probability less than p of false-positives occurring during further
detection. The steps of this algorithm are as follows:

1. Restore the computer system to a safe state.
2. Select a set C of events to be the candidate signatures, where C ⊆ E.
3. progress← 0.

4. While progress <
⌈

|C|
p

⌉

do:

4.1. Get a new event n ∈ N during the normal computer system working.
4.2. For all ci ∈ C, if ci matches n, then C ← C \ {ci}.
4.3. progress← progress + 1.

5. Return each signature in C. If |C| = 0, return null.

Step 2 involves the search for candidates and Step 4 performs the maturation
of the candidates. The system restoration (Step 1) is provided by ADenoIdS

through the ADIRA module. The set E comprehends the incoming network
traffic prior to ADEID detection and the initial set C is built by collecting the
anomalous traffic detected by ADBID from E. Because ADenoIdS focuses over-
flow attacks, ADBID works by detecting large requests1 in the network traffic.
The set N is built by collecting related incoming network traffic after the sys-
tem restoration. The matching criterion of Step 4.2 takes into account the size
of requests into the network traffic. If a new attack evidence is found during or
soon after the signature extraction process, the algorithm is restarted with the
initial set C, because this new attack can discard relevant events of the prior
attack.

By considering the matching operation to be dominant and m to be the size of

the initial set C, the running time of this algorithm is, in the worst case, O
(

m2

p

)

.

However, it should be noted that the real execution time is also dependent upon
the generation rate of normal events. Therefore, this process may be long and it
is not intended to provide a response in real-time.

3 ADenoIdS Implementation

ADenoIdS was implemented in C over the Linux kernel version 2.4.19. All
information required by this IDS are distributed in two levels: system calls and
network traffic.

The ADCON module is provided through a set of configuration files and a
set of log files. The remaining modules are described as follows.

3.1 ADEID

The ADEID module monitors running applications in the search for events which
violate pre-specified access policies. Each access policy specifies a set of oper-
ations which can be performed by an specific process. The events analyzed by
ADEID are the following:

1 The term “request” is was adopted to refer to both application-level command and
response.
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– Files, directories and links: open, creation, erasing, renaming, truncation and
attribute changing (owner, group and permissions).

– Process: creation and execution.
– Kernel modules: creation and deletion.
– Communication: signal sending, TCP connection creation and acceptance,

and UDP datagram sending and receiving.

The monitoring policies must be specified obeying the following structure:

policy_name[/fully/qualified/program/pathname]
{

fs_acl { list of pathnames and access permissions }
can_exec { list of programs which can be executed }
max_children = maximum number of child process
can_send_signal = yes | no
can_manip_modules { list of kernel modules which can be created and deleted }
connect_using_tcp = yes | no
send_using_udp = yes | no
accept_conn_on_ports { list of port ranges which can be used to accept connections }

}

Although the system call policies proposed in [12] can be more powerful,
the ADEID policies make the specification a simpler task. For building a good
monitoring policy it is necessary to know about the Linux file system hierarchy
and the main purpose of the application intended to be monitored. ADEID has
been used to monitor named, wu-ftpd, amd, imapd and httpd applications for
two months. It has demonstrated to be very efficient to detect attacks, being
free from false-positives and false-negatives during the tests.

ADEID is implemented as a kernel patch by rewriting some system calls
which deal with the monitored events. The policies are read from disk and loaded
into kernel memory. Whenever a new process is executed the related monitoring
policy is attached to the process, if any is defined.

By detecting attack evidences, ADEID analyzes only successful system calls.
This feature—which characterizes the evidence detection, unlike [12]—also helps
to reduce the false-positive rate because unauthorized actions will not be ana-
lyzed.

Whenever ADEID detects some attack evidence the ADIRA module becomes
active by calling a kernel procedure and, after, a SIGUSR1 is sent to ADSIG
and information about the attack—current process and violated policy—are also
delivered. For testing purposes an user can disable these activation mechanisms.

Preliminary results show that the performance cost imposed by ADEID is
imperceptible for users. A general benchmark for the most expensive operation—
opening and reading cached files—showed that this cost is, on average, lower than
5% in an Athlon XP 1900+ with 512MB RAM.

3.2 ADBID

ADBID captures packets through pcap library and delivers them to application-
specific procedures. An application-specific procedure decodes the related appli-
cation-level protocol delivering the request to be analyzed.
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Because ADenoIdS focuses on signature extraction for remote buffer over-
flow attacks, ADBID works by building an statistical profile to detect requests
whose length are less probable to be found during normal operation and are
found in overflow attacks. Actually ADBID detects requests whose length is
greater than µ + 2s, where µ is the arithmetic mean of requests length and s is
the standard deviation of requests length. The detection procedure and param-
eters can also be easily changed.

3.3 ADIRA and ADFSR

The ADIRA module is implemented as a kernel patch and works by restoring
the computer system after an attack. This restoration is done through the fol-
lowing steps: 1) block all user processes; 2) restore the file system; 3) restart
the monitored applications; 4) kill attacked process; and 5) unblock all blocked
processes.

The file system restoration is implemented by applying undo techniques
into any file system which can support both, reading and writing data. This
mechanism is activated before the following operations over files, directories and
links can be done: creation, erasing, renaming, writing, truncation and attribute
changing. For each operation is created an specific undo log. This log holds the
necessary information in such way that the operation can be reversed in the
future. Redo logs are created by operations done during the undo process. A
kernel procedure can be called to request a file system undo or redo up to a
defined checkpoint. Actually the checkpoints are inserted automatically during
the system startup. A configuration file states what directories are covered by
this mechanism.

The undo performance depends on the operation to be done. Appending bytes
to a file adds only a fixed-size log. File truncation requires to read the bytes to
be truncated and to write them into the log file. File erasing and the overwrite
operation are also expensive. It should be noted that the default configuration file
includes vital directories which are rarely modified and, therefore, the imposed
cost is very acceptable.

The ADFSR module implements an interface to provide step-by-step redo
by calling redo procedures after a system reboot. In this way, it is enabled the
manual analysis of all file system events done during an attack, if a system
administrator or forensics specialist want to do that.

3.4 ADSIG

This module works exactly as proposed in Sect. 2.1. Once activated by ADEID,
ADSIG reads the delivered information about the violated policy (policy name
and related process) and begins a new signature extraction by loading the can-
didate signatures into a proper data structure. By default, the set E is built by
selecting requests for the last 24 hours prior to ADEID detection. Therefore the
initial set C contains the candidates for the last 24 hours.
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A matching criterion was chosen to discard the candidates which are most
probable to be found during normal operation. In the actual ADSIG implemen-
tation all candidates whose length is lower than or equal to a normal request
length are discarded. This works well for buffer overflow attacks because if a
request is normal—and probably does not overflow a buffer size—a candidate
whose length is at most equal the request length probably will not overflow this
buffer size too and can also be considered normal2. At the end of the signature
maturation process ADSIG outputs the extracted signatures.

3.5 ADenoIdS Self-protection

It is implemented a simple self-protection mechanism, which consists of deny-
ing access to ADenoIdS modules, data and configuration files from the pro-
cesses being monitored. In this way ADenoIdS considers that all possible attack
target—usually server applications—must be monitored.

4 Experimental Results

This section presents experimental results obtained by testing the ADenoIdS

IDS. The main objectives of the tests were to evaluate the ability of evidence-
based detection, behavior-based detection and signature extraction mechanisms.

The test system were customized from a Red Hat Linux 6.2 to provide vul-
nerable named, wu-ftpd, amd and imapd applications over the Linux kernel
2.4.19. All these applications can be successfully attacked through buffer over-
flow exploits collected around the world and these attacks are launched from an
external machine.

The ADEID, UNDOFS and ADFSR modules have been used for two months
whereas the ADBID, ADIRA and ADSIG modules were tested for two weeks.

Each ADEID monitoring policy was built in two steps by observing the re-
ported violations:

1. Initial policy establishment. This step spent about half an hour of intensive
work.

2. Policy refinement. This step spent about two days of sparse work.

After these steps, the ADEID demonstrated to be very efficient to detect
attacks, being free from false-positives and false-negatives during the tests.

The complete ADenoIdS IDS was tested against the 1999 Darpa Offline In-
trusion Detection Evaluation dataset—available at http://www.ll.mit.edu/IST/
ideval/index.html—and against a dataset collected at our research laboratory
(LAS dataset).

The 1999 Darpa Offline IDS Evaluation dataset is composed of training and
test datasets which include network traffic data, event logs and other audited

2 A more complete analysis should consider a different buffer size for each request
type.
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data. Several attack types are present in this evaluation, including buffer over-
flow attacks. ADenoIdS was tested only against named buffer overflow attacks
because this dataset does not provide training data for the imapd overflow and
the vulnerable sendmail daemon was not available. To compensate this, some
buffer overflow attacks in the test data for the wu-ftpd daemon were inserted.
Because ADenoIdS analyzes only events produced by one host the test was
done considering the network traffic destined to hosts separately.

The LAS dataset was collected under normal conditions at our external DNS
server during 43 days. This dataset was chosen by two factors: 1) named is a
very important application and often vulnerable; and 2) DNS queries can be
replayed easily. This dataset was first analyzed before the test phase and was
verified to be free of attacks.

Table 1 summarizes the results for the 1999 Darpa Offline IDS Evaluation
and the LAS datasets. An appropriate label is placed before the beginning of
each dataset results. The first column describes the target daemon being con-
sidered and the second column shows the average number of requests per day
to the considered target host in the whole dataset. The third column presents
the number of requests spent in the ADBID training. The fourth column shows
the number of requests prior to the attack which were captured in the last 24
hours (|E|). Each test was performed by considering an exclusive set of prior
events. For the LAS dataset, it was used a fixed number of 10000 requests prior
to the attack, exceeding the average number of requests per day. The fifth col-
umn shows the number of ADBID candidate signatures extracted (the initial
|C|) from each of these sets. The sixth column presents the number of requests
required by the complete signature extraction process. In some tests the final
ADSIG output can be known by using only 1000 normal events in the matura-
tion process, but to satisfy the p parameter (indicated inside parenthesis) the
process must be continued. The seventh column indicates the number of requests
outputted by ADSIG at the end of the maturation process. Some attacks can
present more than one attack signature and the eighth column indicates if the
main overflow request is found by ADSIG. The last column shows the number
of false-positives after the signature extraction process.

The ADBID module was very efficient to found the candidate signatures. Its
detection was capable of selecting fewer candidates and the main buffer overflow
request was always inside the candidates’ set.

The ADSIG module has also demonstrated to be very appropriate to dis-
card erroneous candidates. The overflow requests were the only candidates at
the end of the signature extraction process in seventeen out of twenty one at-
tacks analyzed. The wu-ftpd false-positives were probably produced due to a
fewer number of requests in the dataset and, consequently, in the maturation
process. The first named false-positive was not also an overflow, but it looks like
a malformed host name query.

Although some false-positives can happen, the signature generation algorithm
claims that extracted signatures which are valid requests will be probabilistically
rare events in further detection.
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Table 1. Experimental results for the Darpa and LAS datasets

Target Average # of # Reqs # Reqs # Candidates Required # of # Outputted Signature # False-
Daemon Reqs/Day Training (24 hours) (24 hours) Normal Events Requests Found? Positives
Experimental results for the 1999 Darpa Offline IDS Evalutaion dataset

named 174559 50000 58942 6 10000 (p = 0.0001) 1 yes 0

named 174559 50000 267336 11 10000 (p = 0.0001) 1 yes 0
named 174559 50000 266995 8 10000 (p = 0.0001) 1 yes 0

wu-ftpd 1575 2000 1873 29 4342 (p = 0.003) 13 yes 1

wu-ftpd 1575 2000 1603 36 4008 (p = 0.003) 12 yes 0

wu-ftpd 827 2000 918 22 3340 (p = 0.003) 10 yes 0
wu-ftpd 827 2000 795 22 3674 (p = 0.003) 11 yes 1

wu-ftpd 761 2000 670 24 4008 (p = 0.003) 12 yes 0

wu-ftpd 761 2000 1097 38 4008 (p = 0.003) 12 yes 0
Experimental results for the LAS dataset

named 8590 40922 10000 25 10000 (p = 0.0001) 1 yes 0

named 8590 40922 10000 7 10000 (p = 0.0001) 1 yes 0
named 8590 40922 10000 14 21099 (p = 0.0001) 2 yes 1

named 8590 40922 10000 20 10000 (p = 0.0001) 1 yes 0

named 8590 40922 10000 18 10000 (p = 0.0001) 1 yes 0

named 8590 40922 10000 15 10000 (p = 0.0001) 1 yes 0
named 8590 40922 10000 10 10000 (p = 0.0001) 1 yes 0

named 8590 40922 10000 18 10000 (p = 0.0001) 1 yes 0

named 8590 40922 10000 20 20000 (p = 0.0001) 2 yes 1
named 8590 40922 10000 25 10000 (p = 0.0001) 1 yes 0

named 8590 40922 10000 20 11640 (p = 0.0001) 1 yes 0

named 8590 40922 10000 23 30955 (p = 0.0001) 1 yes 0
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5 Conclusions and Future Works

This paper presents the ADenoIdS IDS which takes inspiration from the human
immune system. This IDS is originally intended to deal with application attacks,
extracting attack signatures for remote buffer overflow attacks.

ADenoIdS was tested against the Darpa 1999 Offline IDS Evaluation dataset
and against another collected dataset. The experimental results presented were
very encouraging. The proposed signature extraction algorithm can find the
attack signatures and discard candidate signatures that would only produce
false-positives.

Future work includes new tests considering other vulnerable applications,
correlation of subsequent attacks, and an study about ADenoIdS generalization
capability.

Although the ADenoIdS signature extraction mechanism covers only buffer
overflow attacks it is extensible to other classes of attacks. The ideas described
here can also have straight applications in other areas, such as honeypot au-
tomation and forensic analysis.
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