
On Scalability and Modularisation in the
Modelling of Network Security Systems

João Porto de Albuquerque1,2,�, Heiko Krumm2, and Paulo Ĺıcio de Geus1

1 Institute of Computing, State University of Campinas, 13083-970
Campinas/SP Brazil

{jporto, paulo}@ic.unicamp.br
2 FB Informatik, University of Dortmund, 44221 Dortmund, Germany

{joao.porto, heiko.krumm}@udo.edu

Abstract. As the use of computers and data communication technolo-
gies spreads, network security systems are becoming increasingly com-
plex, due to the incorporation of a variety of mechanisms necessary to
fulfil the protection requirements of the upcoming scenarios. The in-
tegrated design and management of different security technologies and
mechanisms are thus of great interest. Especially in large-scale environ-
ments, the employment of security services and the design of their con-
figurations shall be supported by a structured technique which separates
the consideration of the system as a whole from the detailed design of
subsystems. To accomplish this goal, this paper presents a scalable ap-
proach for the modelling of large security systems, relying on the concepts
of policy-based management and model-based management.

1 Introduction

The widespread use of computers and data communication technologies, together
with an ever-increasing Internet, requires the adoption of protection measures to
control the risk of network-based attacks. In consonance with these protection
needs, the technology utilised by security systems is growing in complexity. Thus,
to the hardening of operating system configurations associated with the use of
traditional firewalls [1,2], a series of mechanisms and services are incorporated
like Virtual Private Networks (VPNs), end-to-end cryptographic associations
(using, for instance, IPSec), authentication services (like Kerberos), authorisa-
tion services, and diverse monitoring, logging and auditing, as well as automated
intrusion detection systems (IDS).

As those security services and mechanisms are increasingly employed—at-
taining thereby dazzlingly knotty scenarios—importance and costs of security
management escalate. Initially, the management tasks are comprised of the in-
stallation and configuration of security services, followed then, during operation,
by their monitoring, auditing, adaptation and reconfiguration. Proper abstrac-
tion, integration and tool support are thus key factors for easing the management
tasks.
� Scholarship funding by the German Academic Exchange Service (DAAD).

S. De Capitani di Vimercati et al. (Eds.): ESORICS 2005, LNCS 3679, pp. 287–304, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

288 J.P. de Albuquerque, H. Krumm, and P.L. de Geus

Both policy hierarchies [3] and policy-based management [4] approaches can
be profitably used in this context, since they aim at automating management
tasks in complex systems. These two approaches work together as follows: man-
agement policy hierarchies can be built by initially taking a set of high-level
policies and refining them through intermediate levels until reaching mechani-
cally executable policies. Thus, policy-based management uses those relatively
low-level policies with distributed management agents that will communicate
with each other, interpreting and executing policies specifically assigned to cor-
responding management roles.

The Model-Based Management approach [5,6,7], in turn, supports the build-
ing of those policy hierarchies by means of interactive graphical design. It adopts
concepts of object-oriented system design tools and employs a model of the sys-
tem vertically structured into a set of layers. The objects and associations of a
layer represent the system to be managed on a certain abstraction level.

A common problem of these approaches occurs when dealing with larger
systems, since the model tends to lose much of its understandability, getting
obscure due to the great number of components (as attested in [8]). A canonical
way of addressing such problems is to use the principle of divide and conquer;
i.e. the modularisation of a system into smaller segments would allow us to deal
with each of them in detail separately, and to reason about the whole system
through a more abstract view of the interaction of those parts.

In this paper, we apply this principle to achieve an approach based on the
segmentation of a system into Abstract Subsystems. A Diagram of Abstract Sub-
systems constitutes thus a representation of the overall structure of the system
in which the details are hidden and dealt with in the internal specification of
each subsystem. This abstraction permits a decomposition of the processes of
system analysis and design, thereby improving the comprehensibility and scal-
ability of the model. Moreover, this diagram is policy-oriented and provides an
interface between a service-oriented view and the depiction of the actual network
mechanisms. This modelling technique is also assisted by a software tool, which
consists of a graphical editor with additional functions for checking of model-
dependent constraints and guiding the policy refinement through the model’s
hierarchical levels.

As the present work builds upon Model-Based Management, an introduction
to the latter is given in the next section. Subsequently, the concept of Abstract
Subsystem (AS) is presented (Sect. 3), to serve as a basis for the elaboration
on the Diagram of Abstract Subsystems in Sect. 4 and on the modelling of ASs
(Sect. 5). Section 6 discusses results from the application of our modelling tech-
nique to a realistic environment, and Sect. 7 presents the automatic model re-
finement. Lastly, we discuss related work in Sect. 8 and cast conclusions for this
paper in Sect. 9.

2 Model-Based Management

The concept of Model-Based Management was initially proposed by Lück et al. in
[5] and later applied to the configuration of several security mechanisms such as

On Scalability and Modularisation 289

packet-filters [6] and VPNs [7]. This approach aims to support the policy-based
management by the use of an object-oriented model of the system to be managed.
Based upon this model, a policy refinement can be accomplished such that con-
figuration parameters for security mechanisms can be automatically derived.

The structure of the model is shown in Fig. 1 (reproduced from [8]), where
three abstraction levels can be distinguished: Roles & Objects (RO), Subjects &
Resources (SR), and Processes & Hosts (PH). Each level is a refinement of the
superordinated level in the sense of a “policy hierarchy”. The uppermost level
represents the business-oriented view of the network whereas the lowest level is
related to the technical view. The vertical subdivisions differentiate between the
model of the actual managed system (with productive and control elements) and
the policies that regulate this system. This last category encompasses require-
ment and permission objects, each of which refers to the model components of
the same level and expresses security policies.

The uppermost level (RO) is based on concepts from Role-Based Access
Control (RBAC) [9]. The main classes in this level are: Roles in which people,
who are working in the modelled environment, act; Objects of the modelled
environment which should be subject to access control; and AccessModes; i.e.
the ways of accessing objects. The class AccessPermission allows the performer
of a Role to access a particular Object in the way defined by AccessMode.

The second level (SR in Fig. 1) consists of a more complex set of classes.
Objects of these classes represent: (a) people working in the modelled environ-
ment (User); (b) subjects acting on the user’s behalf (SubjectTypes); (c) services
in the network that are used to access resources (Services)—a service has ref-
erences to all resources it is able to access; (d) the dependency of a service on
other services (ServiceDependency); and lastly (e) Resources in the network. The
ServicePermission class allows a subject to use a service to access a resource.

The SR level offers a transition from the business-oriented view, represented
in RO level, to a more technical perspective, which is service-based. This is
accomplished by using a service-oriented management approach to achieve a
relatively abstract view of the management system, which is hence defined from
the standpoint of the services that the system will provide. As such, the system’s
internal structure is not expressed in the SR level, but rather in the third level
(PH) of the model (Fig. 1).

The lowest level (PH) is responsible for modelling the mechanisms that will
be used to implement the security services defined in SR. Therefore, PH will

Fig. 1. Model Overview

290 J.P. de Albuquerque, H. Krumm, and P.L. de Geus

Fig. 2. Tool Interface

have even more classes than before, representing for instance the Hosts, with
their respective network Interfaces, and the Processes, that perform commu-
nicative actions relying on Sockets. ProtocolPermissions allow the transition of
packets between processes. Several other classes are also defined according to the
supported mechanisms. They will not be mentioned here for the sake of brevity.

To support tool-assisted interactive configuration of mechanisms a graphical
tool—whose interface is shown in Fig. 2—is supplied. This tool assists the user
in the modelling of the system by means of a graphical editor with additional
functions for the checking model-dependent constraints.

It can be noted from the previous discussion that the PH level—which shall
depict the entire system, with its processes, hosts, network interfaces etc.—has its
complexity quickly increased as the size of the modelled system grows. This fact
is also illustrated in Fig. 2, which shows the model of a very simple scenario with
only one AccessPermission at the uppermost level: the workers of a company
shall be allowed to access the corporate web server. Despite the simplicity of this
RO level, the model unfolds into a considerable number of objects at the lowest
level (bottom of Fig. 2), in order to represent mechanisms like IP-masquerading,
firewalls and load balancers.

Due to the simpleness of this example, the resulting model is still reasonable;
however, it can be noted that models of larger real environments tend to become
quite confusing. In order to overcome this problem we introduce in the next
section the concept of Abstract Subsystems.

3 Concept of Abstract Subsystem (AS)

An Abstract Subsystem (AS) is an abstract view of a system segment; i.e. a
simplified representation of a given group of system components. As such, an AS

On Scalability and Modularisation 291

Mediators

Target Domain

Actors Targets

Subject Domain

Policies
Obligation

Obligation Policies
Authorization Policies

Fig. 3. Components of Abstract Subsystems

omits much of the detail that is contained inside of it, presenting instead only
the relevant aspects for a global view of the system structure. These aspects are
chosen based on a policy-oriented view of the system, which is depicted in Fig. 3.

In this scheme, three types of elements can be distinguished: actors, mediators
and targets. The first type (actors) stands for groups of individuals in a system
which have an active behaviour; i.e. they initiate communication and execute
mandatory operations according to obligation policies.

The second element type encloses Mediators, which intermediate communica-
tions, receiving requests, inspecting traffic, filtering and/or transforming the data
flow according to the authorisation policies. They can also perform mandatory
operations based on obligation policies, such as registering information about
data flows. The Targets, in turn, are passive elements; they contain relevant
information, which is accessed by actors.

Using this scheme as a foundation, we can now redefine an Abstract Sub-
system as a non-directed graph whose edges represent potential (bidirectional)
communication between its nodes. These nodes can be either of one of the three
types mentioned above (actors, mediators and targets) or connectors. This last
type of component has been added to represent the interfaces of one AS with
another; i.e. to allow information to flow from, and to, an AS.

4 Diagram of Abstract Subsystems (DAS)

Relying upon the concepts presented in the preceding section, we now introduce
a new abstraction level into the modelling of security systems: the Diagram of
Abstract Subsystems (DAS). This layer is located immediately below the service-
oriented view of the system (SR level in Fig. 1) and above the PH layer, which
depicts the actual network mechanisms. Its main objective is to describe the
overall structure of the system to be managed in a modular fashion; i.e. to cast
the system into its constituent blocks (ASs) and to indicate the connections
between them. Since these blocks consist of a policy-oriented, abstract represen-
tation of the actual subsystem components (see Sect. 3), the DAS provides a
concise and intelligible view of the system architecture—in a similar sense as the
one proposed in [10]. Moreover, this diagram supports the reasoning about the
structure of the system vis-à-vis the executable security policies, thus making

292 J.P. de Albuquerque, H. Krumm, and P.L. de Geus

��������������
��������������
��������������
��������������

��������
��������
��������
��������

internal network DMZ Internet

public
web server

external
mail server

internal
mail server

workstations

�
�
�
�

�
�
�
�

Fig. 4. Sample Network Scenario

explicit the distribution of the different participants of these policies over the
system.

The DAS is formally a graph, comprised of ASs as nodes and edges which
represent the possibility of bidirectional communication between two ASs, as
shown at the bottom of Fig. 5. Thus, from a top-down perspective (i.e. from
the SR level downwards) this diagram adds four kinds of information to the
precedent model: (a) the segmentation of the users, services and resources into
subsystems; (b) the structural connections amongst elements and subsystems;
and therefore (c) the structural connections amongst the different participants
of a policy (actors, mediators and targets); and lastly (d) mediators that are
not directly related to SR level services but take part in the communication and
filter or transform its data (e.g. firewalls).

In order to make clear the use of the DAS, in the next section we describe
the systematic mapping from a service-oriented view of a system to its repre-
sentation through abstract subsystems, and from this to the modelling of the
actual mechanisms. Each step of this mapping is exemplified by means of a test
scenario.

5 Modelling Abstract Subsystems

The scenario that will be used here relies on a typical network environment, as
illustrated in Fig. 4. To this scenario the following network security policies are
applied: 1) the users are allowed to browse the WWW from the internal work-
stations; 2) the users may send e-mails to the Internet from the workstations;
3) mail from the Internet shall be permitted to get to the external mail server,
which in turn may forward it to the internal mail server; 4) external users us-
ing the Internet may access the company’s public web server; and 5) users are
allowed to fetch e-mails from the internal mail server to the workstations.

The modelling of these policies according to the principles referred in Sect. 2
produces the first two levels of Fig. 5. The basic objects are: the roles “Employee”
and “Anonymous Internet User”, and the Objects “Internal e-mail”, “Website”,
“Internet e-mail” and “Internet WWW”. These objects are associated with Ac-
cesModes by means of five AccessPermissions (at the top, on the right of Fig. 5),
each corresponding to one of the above enumerated policies, which will hence-
forth be referred to as AP1 to AP5. Thus, for instance, the AccessPermission
“allow Internet surfing” models the policy statement (1), associating the role

On Scalability and Modularisation 293

DMZ
Internet

DAS

SR level

RO level

internal network

Fig. 5. Three-layered Model

“Employee” to “surfing” and “Internet WWW”. The other policy statements
are analogously modelled by the remaining AccessPermissions.

The mapping from the SR level to the Diagram of Abstract Subsystems (DAS)
is then executed in three steps: (i) the modularisation of the system in confor-
mance with the respective network scenario—i.e. the segmentation into Abstract
Subsystems (ASs); (ii) the mapping of the elements of the SR level (users, ser-
vices, resources) to components inside each AS; and (iii) the establishment of
structural connections in the DAS, reflecting the associations between elements
inside an AS and those between ASs, which are performed by means of Connec-
tor objects (Sect. 3). Subsequently, each AS can be expanded independently in
order to achieve at the PH level a detailed representation of its mechanisms, and
thereby enabling the generation of the corresponding configuration files. These
steps will be described in turn in the following sections.

5.1 Segmentation into ASs

The subdivision of the system into ASs shall be guided by the structural blocks
of the analysed environment. The abstract components of a DAS are thus ag-
gregated according to the groups of mechanisms that already exist in the real
system, such as departments, workplaces and functions.

An important criterium to be considered is the semantic unity of an AS;
i.e. the group of mechanisms enclosed in an AS must have a common property
that is clearly distinguishable. As such, this property assures the cohesion of
the AS, so that it thereby represents a logical grouping identifiable in the real

294 J.P. de Albuquerque, H. Krumm, and P.L. de Geus

environment (like the ones previously mentioned), instead of only consisting of
a mere agglomeration of heterogeneous elements.

On the other hand, the modularisation criterium of coupling (also a classical
measure in the modularisation techniques of software engineering) should be
taken into account in this context as well. The more the elements enclosed in
the detailed view of an AS are related exclusively to elements of the same AS (and
hence more independent from elements of other ASs), the more concise will be the
abstract representation offered by the DAS, since those internal connections will
be hidden. In this manner, a lower coupling between ASs improve the scalability
of the DAS.

Analysing the scenario illustrated in Fig. 4, the existence of a structural
subdivision in three segments is clear, namely: the internal network, the demili-
tarised zone (DMZ) and the external network (the Internet). Therefore, the DAS
for this example has an AS to each one of these segments.

5.2 Mapping of Actors

An actor will be basically created for each group of hosts/processes (inside a
given AS) which originates communication in order to act in conformance with
a policy—which at the SR level is called service permission. In this manner, the
actor corresponds to the subject domain of this permission, or, more precisely,
to the part of the domain that is located in a given AS.

Nevertheless, actors can be shared by a number of different service permis-
sions, as long as they have the subject domain comprehended by the actor in
common. This contributes to a more compact representation, thus improving
the scalability of the model.

In the SR level, the subject domain of service permissions is represented by
User and SubjectType objects; thus each Actor will be connected to one or more
pairs of these types of objects. In the framework of model-based management,
however, service permissions are not directly modelled by the system designer but
rather are automatically generated from AccessPermission objects located in the
uppermost (RO) level. For this reason, the determination of the system’s actors
must start from an AccessPermission; thus taking the Role that is associated
with it and identifying its corresponding User and SubjectType objects (in the
SR level). Subsequently, one can create an Actor object that will contemplate
the relevant AccessPermission and, consequently, is also related to the service
permission that will be generated from it.

Considering our test scenario, an Actor object “internal web clients” is cre-
ated in the AS “internal network” for the first policy—which is modelled by the
first AccessPermission in Fig. 5, namely “allow Internet surfing” (AP1). Simi-
larly, for the AccessPermission AP3 (“allow sending e-mail”) the Actor “internal
mail clients” is created in the same AS, whereas, in the AS “Internet”, the ac-
tors “external mail sender” and “external web surfer” correspond respectively
to the objects “permit receiving e-mail” (AP2) and “permit access to own web”
(AP4). The AccessPermission “allow fetching e-mail” (AP5) can be covered by
the previously created Actor “internal mail clients”, since its subject domain is
the same as that of AP3.

On Scalability and Modularisation 295

5.3 Mapping of Mediators

As regards to Mediators, two types can be distinguished. Mediators of the first
type are a refinement from services which perform the “middleman functions”
described in Sect. 3, for instance, proxies and mail forwarders. Therefore, they
are achieved by means of a straightforward mapping from those services of the SR
level, positioning them in the appropriate AS. Indeed, a service can be covered
by a number of Mediators, each one residing in a different AS. On the other
hand, a given Mediator object can map more than one service.

In our sample scenario, the “E-mail-Forwarder” Mediator, in the “DMZ” AS,
stands for both services of handling incoming and outgoing e-mails. As for the
“internal network”, the “Web proxy” Mediator maps the “WWWProxyService”.

The second type of Mediators consists of technical mechanisms that are not
modelled in the SR level but are required in order to control the communica-
tion; i.e. they transform and/or filter it according to authorisation policies (like
packet filters, IP-masquerading), or inspect the data according to obligation poli-
cies (e.g. IDS, event monitors). In this manner, the system designer shall create
this type of mediators whenever these functionalities are required; i.e. a Medi-
ator object will then appear wherever a security mechanism like the previously
mentioned ones is to be placed in the respective actual network environment.

Examples of the second type of Mediators are illustrated in Fig. 5 by the
objects “Firewall 1” e “Firewall 2”. They have been introduced into the AS
“DMZ”, precisely in the place where the firewalls are found in the scenario of
Fig. 4.

5.4 Mapping of Targets

Targets are obtained by a quite direct mapping from the pairs of Service and
Resource objects (in the SR level) which encompass a target domain of a service
permission, or a part of this domain that is placed in a given AS. In this way, each
Target object must be connected to at least one pair of Service and Resource in
the SR level, but it can also be shared by different service permissions; in the
latter case, relations with other such pairs would be also present—this sharing
also contributes to the conciseness of the model. Conversely, each pair of Service
and Resource can be mapped to a number of Targets, each one located in different
ASs—similar to the case of Mediators.

Similar to the actors, the target identification must start by considering the
AccessPermissions in the RO level. Here, nonetheless, it is the Object related to
a certain AccessPermission that is considered at first in order to establish then
the corresponding Resource (SR level) and the Service which provides access to
it. Finally, we create a Target to map this pair of objects.

When applying this method to our test scenario, then for the policy AP1
(Sect. 5) the Target object “Internet web sites” is created to refine the pair of
Service and Resource of “Internet webservice” and “Internet web pages”, since
the latter is related to the Object “Internet WWW” (at the level RO) of AP1. It
is worthwhile to note that, in this case, the Service refined from the AccessMode
“surfing” of AP1 , namely “WWW proxy service”, is different from the one

296 J.P. de Albuquerque, H. Krumm, and P.L. de Geus

previously used as target; this only happens when there is a ServiceDependency
between these two Services. Indeed, the “WWW proxy service” cannot provide
access to the Resource “Internet web pages” by itself, but relies on the “Internet
web service” to do it. This dependency is modelled by the object “Dependency
outgoing web” in the SR level (at the centre of Fig. 5).

Proceeding in the same manner, the targets “internal mail server” (“internal
network”), “Internet mail server” (“Internet”) and “Web server” (“DMZ”) map
respectively the policies modelled by AP2, AP3 and AP4. As for AP5, the Target
“internal mail server” can be shared with AP2; as such, there is no need to create
another object.

5.5 Establishment of Structural Connections

In order to complete the model that has been formed thus far by the application
of the procedures of the latter sections, one needs to introduce the associations
between objects of the DAS; i.e. formally speaking, to add the edges of the graph.
Such associations have a different meaning compared to that of the associations
between an element in the SR level and an object of the DAS. While the latter
represent abstraction refinements—in the sense of relating levels of a policy
hierarchy—the former represent structural connections; i.e. the possibility of
communication in the actual system. Despite this, only the connections that
are relevant to the abstract view of the system shall be depicted here; these are
namely the associations that interconnect the different participants of executable
policies: actors, mediators and targets.

Once again, the establishment of these connections starts at an AccessPer-
mission. Each of the objects (in the DAS) that correspond to this permission is
identified and then associations are created in order to construct paths between
the respective actors and targets, traversing the necessary mediators. Whenever
one of these paths enters or leaves an AS, Connector objects are inserted at this
point, representing the communication interfaces of the AS. Thus, the number
of Connectors in an AS corresponds to the number of available physical inter-
faces of the actual system. Proceeding in this manner with our test scenario, the
Connector objects (rectangles) and connection edges (lines) shown in Fig. 5 are
obtained.

5.6 Expansion of ASs

Starting from the model that has been produced thus far (Fig. 5), the next stage
in the model development is to expand each of the ASs separately. This means
that, for each AS, the mechanisms inside it shall be modelled according to the
usual procedure described in [8], resulting in a detailed representation of these
mechanisms; i.e. the PH level. Afterwards, the associations between the PH level
components with the objects in the AS have to be drawn, thus establishing a
relation of abstraction refinement.

Each Actor object of an AS must be then related to its corresponding Process-
and UserID-typed components in the PH level, such that the Actor performs
the association of these components with SubjectType and User objects in the

On Scalability and Modularisation 297

Fig. 6. Expanded ASs

SR level. As noted in Sect. 5.2, an Actor may be used for more than one pair
of SubjectType and User, thereby corresponding to several service permissions.
Hence, to avoid the burden of depicting all of the single associations amongst
the objects (of type User, SubjectType, UserID and Process) connected to each
Actor, a table of 4-tuples containing these associations shall be used to store
them.

The Mediator objects of an AS, in turn, are simply related to one or more
Process-typed components which implement the corresponding functionalities.
With regards to Targets, each of them is related to one or more pairs of Processes
and Objects that provide the corresponding services. Therefore, a Process in the
PH level is related via a Target to a Service in the SR level, whereas an Object
is related in a similar fashion to a Resource.

Figure 6 presents the PH level model for the ASs “internal network” and
“dmz” in our example (see Fig. 5). In Fig. 6, the relation from actors, mediators
and targets in the AS (at the top) to objects in the PH level (bottom)—achieved
merely by following the principles previously exposed in this section—is graph-
ically indicated by edges. For instance, the Actors “internal mail clients” and
“internal web clients” in the “internal network” (on the left) are related to PH-
level objects that represent the corresponding processes that run in two different
workstations, as well the user credentials and login names of the users that may
take advantage of these processes. On the other hand, the Mediator “E-mail
Forwarder” and the Target “Webserver” in the AS “DMZ” (on the right) are
correspondingly mapped to processes and resources that implement them. These
PH objects directly assigned to AS entities are in turn related to a series of other
PH objects in order to provide the model with detailed information about the
communication, such as the protocol stack and the network interfaces used (see
bottom of Fig. 6). In this manner, the correspondence between the abstract view
of the system (AS) and its actual mechanisms (PH level) is established.

298 J.P. de Albuquerque, H. Krumm, and P.L. de Geus

6 Application Case and Results

In this section we report about the application of the modelling technique pre-
sented in the previous sections to a realistic large-scale network environment.
This environment (inspired from the one in [8]) consists of an extension of the
simple test scenario of Sect. 5, in order to address an enterprise network, com-
posed of a main office and branch office, that is connected to the Internet.

The employees are allowed to use the computers in the main and branch
offices in order to surf on the Internet and to access their internal e-mail ac-
counts, as well as to send e-mails to internal and external addresses. In addition
to that, they may also retrieve their e-mails from home. As for the ongoing
communication from the Internet, the security system must enable any exter-
nal user to access the corporate’s web site and to send e-mails to the internal
e-mail accounts. Our main goal is then to design the configuration for the secu-
rity mechanisms that are required to enable and control web-surfing and e-mail
facilities for the company’s office employees, namely: three firewalls, three VPN
gateways, and a web proxy.

Figure 7 presents the DAS obtained for this environment. It is composed by
five ASs, representing the logical network segments of the described scenario:
“internal network”, “dmz”, “Internet”, “branch office’s network” and “remote
access point”. The Actors, Targets and Mediators of each of these AS and their
interconnections through Connectors and structural connections are also de-
picted in Fig. 7. Pictures of the model’s overview for the application case and
of the detailed PH-level models for the ASs “internal network” and “dmz” are
given in the Appendix A.

Analysing the model for this realistic application case, one can clearly per-
ceive the advantages brought forth by the DAS. Altough the detailed infor-
mation of the PH level encompasses more than 500 objects—representing, for
instance, 8 hosts and credentials for 30 users in the internal network, 8 hosts

internal network

remote access point

branch office’s network

Internetdmz

Fig. 7. DAS of a complex environment

On Scalability and Modularisation 299

in the branch office’s network and a cluster of 5 web servers in the “dmz” (see
Appendix A)—the abstract representation of the DAS (Fig. 7) consists of only
32 objects alltogether. Therefore, it can be noticed that the modelling through
abstract subsystems offers concrete advantages in the conciseness and under-
standability of the model.

Furthermore, since the environment in this application case is an extension
of the test scenario used in Sect. 5, it is possible to compare them, in order
to identify the growth behaviour of a DAS. The number of PH objects (which
depict the mechanisms of the actual system, and thus reflect the growth of the
system itself) increased from 95 in the simple test scenario to 540 in the realistic
application case (i.e. a growth of almost 470%). The number of DAS elements, in
contrast, rose from 19 (Fig. 5) to 32 (Fig. 7)—i.e. a growth of only less than 69%.
We thus conclude that the size of a DAS does not increase in the same pace as
the number of elements in the PH level (and thus as the system’s mechanisms),
but rather the DAS’s growth is much slower. This makes clear the scalability
gain afforded by the DAS in the support of large models.

Since the number of elements both in the DAS and in the PH levels heav-
ily depend on intrinsic characteristics of the environment modelled (such as the
entities to be modelled and the possibility of subdividing and grouping them),
an unrestricted generalisation of these quantitative results is not possible. Nev-
ertheless, in qualitative terms, similar gains can be expected in the modelling
of other large-scale networked environments; for they are similar to the typical
scenarios presented here.

7 Tool Support and Automated Refinement

To support our modelling, a software tool is provided. This tool encloses a dia-
gram editor (by means of which Fig. 5, Fig. 6 and Fig. 7 were produced) that
allows the inputing of model objects and their relationships, as well as the assign-
ment of properties to them. In this manner, each step of the modelling explained
in the previous sections is assisted by the tool, which verifies the compliance of
the model with structural constraints in the moment particular objects are in-
puted. Once the modelling is complete, a series of checks are performed to assure
the consistency of the model as a whole.

Though the fully automated derivation of low-level, executable policies from
a set of abstract specifications is, in the general case, not practical [11,12], our
modelling technique makes possible an automation of the building of a policy
hierarchy on the basis of a system’s model that is structured in different abstrac-
tion levels. Thus, the analysis of the system’s objects, relationships and policies
of an abstraction level enables the generation of lower level policies, based on
the system’s model in the lower level and on the relations between the entities
of the two layers1.

1 An extensive elaboration on the policy refinement process and on the consistency
checks that are described in this section is beyond the scope of this paper and can
be found in [13].

300 J.P. de Albuquerque, H. Krumm, and P.L. de Geus

In this process, the support tool firstly derives each one of the given Ac-
cessPermissions (in the uppermost level RO) into one or more ServicePermis-
sions in the SR level (see Sect. 2). Afterwards, a set of ATPathPermission
(ATPP) objects are generated from the ServicePermissions. Each ATPP is a
path in the graph (DAS) that represents the permission for an Actor to reach
a certain Target passing through the required Mediator and Connector objects.
The refinement advances with the automatic generation of ProtocolPermissions
from the ATPPs, using the detailed information contained in the PH level in
order to achieve the security policies for this level. Each ProtocolPermission is
then related to a set of objects, denoting that an initiating process—to which a
user credential can be assigned—may communicate, via its co-located protocol
entity and a remote protocol, with a serving process in order to access a certain
physical resource.

Throughout the above refinement process, a series of conditions are verified
against the model, in order to check the consistency of the different abstraction
levels and the feasibility of enforcing the high-level policies defined by the ad-
ministrator. Our experience also shows that, in practice, the modelled network
systems are frequently not capable of enforcing the given high-level policies. In
this case, the consistency checks cannot be satisfied, and the tool offers indica-
tions to the necessary modifications on the system in order to make it congruous
to the policies.

Finally, for the last step of model-based security service configuration, a
series of back-end modules are executed, where each module corresponds to a
special security service product (e.g. Kerberos, FreeS/WAN, Linux IP tables
etc.). These back-end functions evaluate the ProtocolPermissions and the PH
model in order to generate the adequate configuration files for each of the security
service products. Further details can be found in [6,7,8].

8 Related Work

There are a considerable number of approaches to policy specification both for
security management and policy-driven network management purposes (see [11]
for a survey). However, regarding the tool-assisted building of policy hierarchies
and the automation of the policy refinement process, considerable research re-
mains to be done.

The graphical tool Firmato [14] seems to be the closest available approach
to ours, since it supports the interactive policy design by means of policy di-
agrams and automatically derives the corresponding configuration parameters
for mechanisms such as routers, switches, and packet filters. However, since the
abstraction levels of graphical policy definitions and configuration parameters
are relatively near to each other, its support is restricted to an abstraction level
that is close to the system mechanisms. In this respect, the Power prototype [15]
has a broader scope, aiming to support the building of policy hierarchies by
means of a tool-assisted policy refinement. Nevertheless, Power does not allow a
free graphical definition of policies, relying instead on pre-defined templates and

On Scalability and Modularisation 301

wizard engines. Furthermore, neither Power nor Firmato are concerned with
scalability issues; this fact is reflected by the absence of a modular system’s
representation in these approaches.

9 Conclusion

This paper has presented a modelling technique for the management of security
systems. The modelling achieves scalability by the segmentation of the system
in Abstract Subsystems, which enables the processes of model development and
analysis to be performed in a modular fashion.

The systematic mapping from a service-oriented system view to a Diagram of
Abstract Subsystems was covered in detail, encompassing the choice of elements
to be represented in the abstract view, as well as the correspondence of these
elements to the actual mechanisms of the system. A realistic case study was
presented and the results achieved through our modelling were discussed. We
have concluded that concrete gains in the understandability and scalability of
the modelling of large-scale systems can be expected from the employment of
our technique. Furthermore, the tool-assisted modelling and automated policy
refinement supported by our prototype tool were also briefly described.

Future work could include improving the representation of policies at the
lower levels of the model, in order to ease their handling.

Acknowledgments. We would like express gratitude to Helen Mary Murphy
Peres Teixeira for reviewing.

References

1. Cheswick, W.R., Bellovin, S.M., Rubin, A.D.: Firewalls and Internet Security:
Repelling the Wily Hacker. 2nd edn. Addison-Wesley (2003)

2. Zwicky, E.D., Cooper, S., Chapman, D.B.: Building Internet Firewalls. 2nd edn.
O’Reilly and Associates, Sebastopol, CA (2000)

3. Moffett, J.D., Sloman, M.S.: Policy hierarchies for distributed system management.
IEEE JSAC Special Issue on Network Management 11 (1993)

4. Sloman, M.: Policy driven management for distributed systems. Journal of Network
and Systems Management 2 (1994) 333–360

5. Lück, I., Schönbach, M., Mester, A., Krumm, H.: Derivation of backup service
management applications from service and system models. In R. Stadler, B.S.,
ed.: Active Technologies for Network and Service Management, Proc. DSOM’99.
Number 1700 in Lecture Notes in Computer Science, Heidelberg, Springer Verlag
(1999) 243–255

6. Lück, I., Schäfer, C., Krumm, H.: Model-based tool-assistance for packet-filter
design. In M. Sloman, J. Lobo, E.L., ed.: Proc. IEEE Workshop Policy 2001:
Policies for Distributed Systems and Networks. Number 1995 in Lecture Notes in
Computer Science, Heidelberg, Springer Verlag (2001) 120–136

7. Lück, I., Vögel, S., Krumm, H.: Model-based configuration of VPNs. In Stadtler,
R., Ulema, M., eds.: Proc. 8th IEEE/IFIP Network Operations and Management
Symposium NOMS 2002, Florence, Italy, IEEE (2002) 589–602

302 J.P. de Albuquerque, H. Krumm, and P.L. de Geus

8. Geist, G.: Model-based management of security services: Integrated enforcement of
policies in company networks. Master’s thesis, University of Dortmund, Germany
(2003) in German.

9. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29 (1996) 38–47

10. Porto de Albuquerque, J., de Geus, P.L.: A framework for network security system
design. WSEAS Transactions on Systems 2 (2003) 139–144

11. Sloman, M., Lupu, E.C.: Security and management policy specification. IEEE
Network, Special Issue on Policy-Based Networking 16 (2002) 10–19

12. Wies, R.: Using a classification of management policies for policy specification
and policy transformation. In Sethi, A.S., Raynaud, Y., Fure-Vincent, F., eds.:
Integrated Network Management IV. Volume 4., Santa Barbara, CA, Chapman &
Hall (1995) 44–56

13. Porto de Albuquerque, J., Krumm, H., de Geus, P.L.: Policy modeling and re-
finement for network security systems. In: Sixth IEEE International Workshop on
Policies for Distributed Systems and Networks, Stockholm, Sweden (2005) 24–33

14. Bartal, Y., Mayer, A.J., Nissim, K., Wool, A.: Firmato: A novel firewall manage-
ment toolkit. ACM Transactions on Computer Systems 22 (2004) 381–420

15. Mont, M., Baldwin, A., Goh, C.: POWER prototype: Towards integrated policy-
based management. In Hong, J., Weihmayer, R., eds.: Proc. IEEE/IFIP Network
Operations and Management Symposium (NOMS2000), Hawaii, USA (2000) 789–
802

On Scalability and Modularisation 303

A Models of the Application Case

We present here some of the models obtained for the application case analysed
in Sect. 6. The growth in the complexity of the PH level is made clear from the
comparison of the models of the AS “internal network” in the realistic application
case (Fig. 8) with that in the test scenario (left hand of Fig. 6), and similarly
for the AS “dmz” (compare Fig. 9 with the right hand of Fig. 6).

Fig. 8. PH-model of the AS “internal network”

In contrast, the superior levels of the modelling show a slower growth behav-
iour, and hence more scalability. Figure 10 presents the three-layered model for
the application case (compare with Fig. 5).

Fig. 9. PH-model of the AS “dmz”

304 J.P. de Albuquerque, H. Krumm, and P.L. de Geus

F
ig

.1
0.

T
hr

ee
-l
ay

er
ed

m
od

el
of

th
e

A
pp

lic
at

io
n

C
as

e

	Introduction
	Model-Based Management
	Concept of Abstract Subsystem (AS)
	Diagram of Abstract Subsystems (DAS)
	Modelling Abstract Subsystems
	Segmentation into ASs
	Mapping of Actors
	Mapping of Mediators
	Mapping of Targets
	Establishment of Structural Connections
	Expansion of ASs

	Application Case and Results
	Tool Support and Automated Refinement
	Related Work
	Conclusion
	Models of the Application Case

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

