
Kernel Framework for an Immune-Based Security System: A
Work-In-Progress Report

Martim d’Orey Posser de Andrade Carbone1∗, Paulo Lı́cio de Geus1

1Institute of Computing – State University of Campinas (UNICAMP)
PO Box 6176 – 13083-970 Campinas, SP

{martim,paulo}@las.ic.unicamp.br

Abstract. This report informs on the current status of the project whose goal is to
design, implement and integrate into the 2.6 version of the Linux kernel a generic
framework to support a computer security system inspired in the principles of the
human immune system. A brief introduction to the project is given, followed by a
more in-depth discussion of the framework requirements and its overall architec-
ture. It concludes by pointing out the future research and development stages.

1. Introduction

Modern security threats create the demand for robust and complete models on which secu-
rity systems can be built upon, such as the human immune system. This system is capable
of automatically recognizing and responding to a wide variety of biological and chemical
threats, as well as to learn from those threats and accelerate future responses. It success-
fully integrates prevention, detection, and reaction counter-measures in a fully adaptative
and automatic manner, making it extremely desirable for a computer.

Fundamental steps towards the construction of such a system were made
before by former lab members working at the Imuno project [de Paula et al. 2004,
de Paula et al. 2002]. In this project, we aim to continue their work by implementing a
framework that will allow the integration of that system into the Linux operating system.
This framework will consist mainly of a set of hooks (alongside with its access and man-
agement infrastructure) implemented inside the Linux kernel (version 2.6) to address the
low-level prevention, detection, learning and response needs of the immune modules.

The framework will be implemented as an extension of LSM (Linux Security Mod-
ules) [Wright et al. 2002], an established framework for granular access control support
inside the Linux kernel. The main goal is to generalize LSM’s access control infrastruc-
ture by creating a more sophisticated and dynamic hook management engine, so as to
support other security functionalities, and also complement it with additional hook points.
The CKRM (Class-based Kernel Resource Management) [Nagar et al. 2004] and Netfilter
[Russell and Welte 2002] frameworks will also be used in this project.

This paper is organized as follows: it will first discuss the framework’s require-
ments in Section 2., followed by the first model of its overall architecture, in Section 3..
Finally, Section 4. will conclude with some closing remarks and future steps.

∗Supported by CNPq

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 245

2. Framework Requirements
As stated in Section 1., the framework must support all major security mechanism classes
in order to accommodate a complete artificial immune system. This includes prevention,
detection and response mechanisms, with two additional classes that are particularly im-
portant to this project: self-protection and learning. Requirements are listed below. More
detailed explanation and specific requirements were omitted due to space constraints.

• Prevention: The framework must provide support for complete, granular resource
access control and must be generic enough so that multiple access control models
may be implemented on top of it. The LSM framework already provides a good
implementation of these functionalities, so it will be used as a foundation for access
control in this framework;

• Detection: The framework must provide multiple in-kernel sources of detection
such as system call execution, on and off-memory disk blocks, signals, IPC mes-
sages, memory pages, and network packets (which is where Netfilter fits). These
sources must also be accessible in an efficient manner by the detection modules,
which will reside in userspace;

• Learning: The framework must support the maintenance of a forensic knowledge
base, containing information concerning intrusion signatures, system activity pro-
files and response measures. It must also allow forensic modules to look back into
parts of the system activity history and its present state, so that the analysis has
plenty of data to work with.

• Response: The framework must allow two types of automated response:
– General, non-damaging response, used in the early stage of the response

process. Its goal is to keep the operating system basic functions online,
in spite of a possible intrusion situation, and without causing any perma-
nent, potentially damaging changes. The framework must support several
response techniques such as resource control (disk, memory, processor),
system call delaying, process control and scheduler policy control. This
component will use parts of CKRM [Nagar et al. 2004], a work-in-progress
framework for resource management inside the Linux kernel.

– Specific, targeted response, activated after the threats have been identified
and a proper response has been planned for their elimination. This includes
active measures such as file removal, connection closing, process restora-
tion and filesystem restoration.

• Self-protection: The framework must provide mechanisms to ensure that itself and
the immune system modules stay protected from attacks, even if the attackers have
acquired root privileges on the system.

3. Overall Architecture
The artificial immune system is divided into a userspace and a kernelspace portion. The
userspace portion includes all immune modules, responsible for dictating the policies and
executing the actual algorithms that control the system’s activities. The kernelspace portion
is the framework that has been discussed so far. Modules were chosen to reside in userspace
because of improved mathematical support through libraries (which is important for some
algorithms), IPC support and the possibility of using programming languages other than
C. None of these conveniences are available in kernelspace.

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 246

USERSPACE

KERNELSPACE

Detection
Immune Module

Response
Immune Module sshd

framework interface syscall interface

syscall
handlerFramework Manager

hook
target #1

target #2

SELF-PROTECTION BARRIER

 target function
inclusion/removal

... (other hooks)

... (other modules) ... (other processes)

(other targets)

target pointers

...

(report system
calls)

(delay 100
jiffies)

Figure 1. Overall framework architecture

The framework basically consists of various in-kernel hooks. These are generic
invocation commands that point to certain target functions implemented by external mod-
ules. Classical hooks execute them and act based on what these functions return. In this
framework, hooks are the means through which the immune modules will actually control
the prevention, detection and response activities of the immune system.

Nevertheless, the hook architecture proposed here is much more sophisticated than
the one used in frameworks such as LSM. In LSM, hooks have a purely restrictive nature,
that is, they simply allow or disallow a certain action to be performed based on what a target
function returns. Moreover, hooks are used statically, which means that their target pointers
are not designed to be changed very often, in a real-time basis. And finally, LSM-based
modules reside in kernelspace, which makes management much simpler. The architecture
proposed here expands LSM’s, making it support multiple targets by hook and a dynamic
target inclusion/exclusion mechanism in which a single hook can perform a wide variety
of activities and its targets be changed in real-time. The hook targets are uploaded from
userspace by the immune modules using a framework interface. The key elements of this
architecture are portrayed in Figure 1’s example.

It illustrates one of the framework’s hooks, placed at the system call handler func-
tion. Classically, this hook would be used only for a unique and specific purpose such as
reporting system call executions. In this architecture, however, it can perform a myriad of
activities, being a truly multi-functional hook. For example, an intrusion detection module
may upload from userspace a target function that reports system call executions, in order
to monitor the behavior of one or more user processes (sshd, in Figure 1). This target is
attached to the hook by the framework manager. Simultaneously, a response module may
want to use that same hook to command all open() system call executions to be delayed by
100 jiffies1. The targets are executed sequentially. The response module may, at a certain
point, decide that it wants to increase the delay by 50 jiffies, so it commands the manager to
modify the time delay parameter, in real time. And finally, it may decide to disable delay-
ing, so it commands the manager to delete that particular target function. Target functions

1A jiffy is the unit of time equal to one clock tick of the system’s timer.

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 247

may also send data back to the modules through the framework’s interface.

Figure 1 also depicts a self-protection barrier that isolates the immune system com-
ponents from the rest of the system. Since it is hard to create a robust implementation
of this requirement working with a non-trusted computer architecture, our implementation
will follow the simplest and most effective software-based alternative, which consists of
kernel memory isolation. This implicates in disabling common interfaces between user-
mode and kernel-mode such as module loading and special device files, like /dev/kmem.
Once the kernel is protected, it then becomes a matter of extending this protection to the
userspace immune modules. This policy can be enforced through LSM.

4. Conclusion and Future Steps
This report briefly introduced and summarized the main steps that have been fully or par-
tially concluded in our work towards the implementation of a kernel framework for an
immune-based security system. These steps included the framework requirements list and
a first model of its overall architecture.

Future steps include the detailing of the architecture model, particularly the precise
definition of where the hooks will be placed; and subsequent implementation and integra-
tion into the Linux kernel. We plan to make use of several established design and im-
plementation techniques already being used in other open-source kernel security projects.
Finally, we plan to have the framework tested for correctness and efficiency by using real
and/or stub immune modules and performance diagnostic programs such as LMBench2.

It should also be noticed that the broad definition and generic architecture of our
framework should allow it to support not only an artificial immune system, but also a wide
variety of security applications such as access controllers, host-based IDSs, IPSs, forensic
tools, antivirus software, firewalls, resource control tools, among others, thus making it a
truly generic kernel security framework.

References
de Paula, F. S., de Castro, L. N., and de Geus, P. L. (2004). An Intrusion Detection Sys-

tem Using Ideas from the Immune System. In Proceedings of the IEEE Congress on
Evolucionary Computation, Portland, Oregon, USA.

de Paula, F. S., dos Reis, M. A., de Assis Monteiro Fernandes, D., and de Geus, P. L.
(2002). ADENOIDS: A Hybrid IDS Based on the Immune System. In Proceedings of
the 9th International Conference on Neural Information Processing, Singapore.

Nagar, S., van Riel, R., Franke, H., Seetharaman, C., Kashyap, V., and Zheng, H. (2004).
Improving linux resource control using CKRM. In Proceedings of the 2004 Ottawa
Linux Symposium.

Russell, R. and Welte, H. (2002). Linux netfilter hacking HOWTO. Disponı́vel em
http://www.netfilter.org/documentation/HOWTO//netfilter-hacking-HOWTO.letter.ps
(Junho de 2005).

Wright, C., Cowan, C., Smalley, S., Morris, J., and Kroah-Hartman, G. (2002). Linux
Security Modules: General Security Support for the Linux Kernel. In Proceedings of
the 11th USENIX Security Symposium.
2http://www.bitmover.com/lmbench

 V Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 248

