
Model-based Management of Security Services in

Complex Network Environments

João Porto de Albuquerque

Department of Informatics, University of Hamburg

Vogt-Koelln-Str. 30, 22527 Hamburg, Germany

Email: porto@informatik.uni-hamburg.de

Heiko Krumm

FB Informatik

University of Dortmund

44221 Dortmund, Germany

Paulo Lı́cio de Geus

Institute of Computing

University of Campinas

13083-970 Campinas/SP, Brazil

Abstract—The security mechanisms employed in current net-
worked environments are increasingly complex, and their config-
uration management has an important role for the protection of
these environments. Especially in large scale networks, security
administrators are faced with the challenge of designing, deploy-
ing, maintaining and monitoring a huge number of mechanisms,
most of which have complicated and heterogeneous configuration
syntaxes. Consequently, configuration errors are nowadays a
frequent cause of security vulnerabilities. This paper summarizes
results from a doctoral thesis that offers an approach to the
configuration management of network security systems specially
suited to the needs of the complex environments of today’s or-
ganizations. The approach relies upon policy-based management
and model-based management, extending these approaches with
a modeling framework that allows the design of security systems
to be performed in a modular fashion. The model is segmented
into logical units (so-called Abstract Subsystems) that enclose a
group of security mechanisms and other relevant system entities,
offering a more abstract representation of them. In this manner,
the administrator is able to design a security system—including
its different mechanism types and their mutual relations—by
means of an abstract and uniform modeling technique. A software
tool supports the approach, offering a diagram editor for models.
After the model is complete, the tool performs an automated
policy refinement, deriving configuration parameters for each
security mechanism in the system.

I. INTRODUCTION

Current networked IT systems contain a series of heteroge-

neous security services, such as firewalls and secure content

management systems, intrusion detection systems, identity

management, key management and authentication systems,

access control systems, log and audit systems, secure storage

systems, virtual private network and cryptochannel systems.

Services of different application types have different function-

ality and are usually supplied by different vendors. Therefore,

the style, syntax and semantics of their configuration files

differ from each other. Each service has to be configured

according to particular settings; moreover, many services

depend on each other, since they usually have to cooperate

with each other in a consistent manner in order to enforce

global security objectives. Among example scenarios are: the

desired access of a given employee to a certain resource

depending on suitable authentication (access control); packet

filtering at a firewall and VPN connection settings. At least in

large organizations, the settings are subject to frequent changes

and tend to overstrain the IT system administrators. Indeed, a

survey of three large-scale Internet sites concluded that 51%

of all failures were caused by operator errors—configuration

errors being the largest category of errors [1].

Thus, automation and homogenization are highly interesting

challenges. Ideally, there should be one global abstract, high-

level specification describing the objectives in an easy-to-

understand, application-oriented and system independent way.

Furthermore, there should be a tool to process the high-

level specification and to automatically generate the corre-

sponding configuration files. The approaches of policy-based

management [2] and management policy hierarchies [3] yield

a corresponding solution. In accordance with these approaches,

the administrator task should be summarized as obtaining

abstract high-level policies, which can then be refined into

service- and system-dependent low-level policies. Finally, con-

figuration files can be derived from those low-level policies.

Completely automated policy refinement, however, is not

possible if high-level policies are to be kept as the sole input

in the process, since system-specific details have to necessar-

ily be considered during the refinement process. Therefore,

our approach of model-based management (MBM) utilizes

a hierarchically structured system model, which represents

the networked IT systems on three interrelated levels of

abstraction [4]. The high level policies are directly linked

with the highest model layer. The automated policy refine-

ment follows the system layer interrelations, relying upon

the user-defined model in order to obtain the information

necessary for generating the low-level policies. To that effect,

MBM comes along with a modeling tool called Model-Based-

Service-Configuration (MoBaSeC). It supports the interactive

graphical modeling of object-oriented system models and

policy representations in the form of object instance diagrams,

in order to support the comfortable and easily maintainable

definition of system models and high-level policy descriptions.

A library of predefined model element class definitions—

the so-called meta-model—and automated consistency checks

facilitate the model construction. Aggregating folder objects

support the handling of large sets of similar model elements

like user identities and workstations. The modeling of the IT

systems that comprise large organizations, nevertheless, results

in broad models which, from the performance point of view,

can be handled using MBM but, from the administrator’s point

of view, are—particularly on the lower layers—very complex

and difficult to master.

However, the benefits of policy hierarchies and MBM still

stand and are clearly the fundamental principles towards a

scalable solution. To tackle the above problems we therefore

came up with a divide-and-conquer approach to the modeling

of network security systems through the so-called Abstract

Subsystems (AS). The modeling of a given network segment

is thereby subdivided into three steps: (1) the detailed defini-

tion of the network mechanisms—in the so-called Expanded

Subsystem; (2) the establishment of an abstract view of those

mechanisms by grouping them into abstract types, i.e. the

Abstract Subsystems; and (3) the definition of the interaction

among Abstract Subsystems in the Diagram of Abstract Sub-

systems (DAS). As such, the model designer must deal with

the mechanisms’ complexity only on a local basis for each

subsystem, i.e. in steps (1) and (2), whereas in step (3) the

system as a whole is considered by means of an understandable

and abstract overall representation of the system’s architecture.

The MoBaSeC tool has been correspondingly extended to

support the definition of DAS and ASs. Moreover, it is able

to refine policies from the DAS layer into different ASs.

The refinement relations that are applied have been formally

verified to ensure that the system behavior resulting from the

generated configuration upholds the abstract policies.

The DAS approach, its modeling principles and their ap-

plications are described in [5]. In [6] the policy support

offered by the approach is analyzed and a formalism for the

model is presented as a basis for achieving results about the

validity of the policy refinement. These results are revised and

further developed in the formal validation approach presented

in [7]. On the other hand, [8] elaborates on the practical

use of DAS in large-scale environments, presenting also the

diagram visualization and manipulation techniques that were

implemented in MoBaSeC to improve the handling of large

models. The doctoral thesis summarized in the present pa-

per [7] consolidates and extends the previous works.

The rest of this paper is organized as follows: Sect. II briefly

discusses related work, while Sect. III describes the modeling

technique of Abstract Subsystems and gives a simple model

example. In Sect. IV the tool support offered is presented and

the automated policy refinement process is discussed. Sect. V

presents in turn experimental results from several case studies

performed. Lastly, Sect. VI casts conclusions for this paper.

II. RELATED WORK

Though many of the firewall commercial products include

configuration tools, they do not seem to have integrated secu-

rity management as a primary concern. Nevertheless, a series

of market product tools in this direction is slowly appearing,

for example, Checkpoint’s INSPECT visual policy editor [9],

and the product-independent Solsoft NP Tool [10].

As for research work, there are some approaches which

draw on logic-based languages to specify security policies

(e.g. [11]). Although such approaches offer advantages in

scalability gains and detailed analysis capabilities, the syntax

used is far from both the administrator’s view of the sys-

tem and the business view of the problem, requiring extra

training for the correct policy specification. The graphical

tool Firmato [12] offers a more intuitive approach, since it

supports an interactive policy design by means of diagrams

and automatically derives the corresponding configurations

for mechanisms. However, this and the other approaches

above proceed bottom-up, starting from the mechanisms to

be configured and achieving representation languages that are

too bound up with the mechanism types initially considered.

On the other hand, there are already some approaches that

turn the problem right side up by starting from convenient ab-

stract models that are able to address the management problem

from a business point of view. The Power prototype [13] is one

such approach that aims at supporting the building of policy

hierarchies by means of a tool-assisted policy refinement based

on templates. The specification of templates is done in a

prolog-like language, thus suffering from the same problems

of the aforementioned logic-based approaches.

In a wider context, Damianou et al. [14] present a set of

tools for the specification, deployment and management of

policies specified in the PONDER language. A further work

by these authors offers an approach to the implementation

and validation of PONDER policies for Differentiated Services

using the DMTF CIM. to model network elements [15]. CIM

concentrates on the modeling of management information (e.g.

device’s capabilities and state) while our model represents

the whole relevant structure of the managed system together

with the management components, producing a graphical

representation understandable to the security administrator.

III. MODELING TECHNIQUE AND APPLICATION EXAMPLE

Our modeling builds upon the Model-based Management

approach [4] and employs a three-layered model whose struc-

ture is shown in Fig. 1. The horizontal dashed lines of the

figure delimit the abstraction levels of the model: Roles &

Objects (RO), Subjects & Resources (SR), and Diagram of Ab-

stract Subsystems (DAS). Each of these levels is a refinement

of the superior one in the sense of a “policy hierarchy” [3];

i.e. as we go down from one layer to another, the abstract

system’s view contained in the upper level is complemented by

the lower-level system representation, which is more detailed

and closer to the real system. As for the vertical subdivision, it

differentiates between the model of the actual managed system

and the security policies that regulate this system.

DAS

S & R

R & O

Managed System Policies

Fig. 1. Model Overview

As the lowest level of the model (DAS) is the focus of the

present work, it is explained in detail in the next section. The

two uppermost levels (RO and SR) have been adopted from

previous work on model-based management, and thus will be

presented briefly.

The RO level is based on concepts from Role-Based Access

Control (RBAC) [16]. The main classes in this level are:

Roles in which people who are working in the modeled

environment act; Objects of the modeled environment that

should be subject to access control; and AccessModes; i.e.

the ways of accessing objects. The class AccessPermission

expresses a security policy, allowing the performer of a Role to

access a particular Object in the way defined by AccessMode.

The second level (SR in Fig. 1) offers a system view defined

on the basis of the services that will be provided, and it

thus consists of a more complex set of classes. Objects of

these classes represent: (a) people working in the modeled

environment (User); (b) subjects acting on the user’s behalf

(SubjectTypes); (c) services in the network that are used to

access resources (Services); (d) the dependency of a service on

other services (ServiceDependency); and lastly (e) Resources

in the network. At this level, security policies are represented

by ServicePermissions objects, each one of which expresses

an authorisation for a SubjectType (on behalf of a User) to

use a Service to access a Resource.

A. Diagram of Abstract Subsystems

The main objective of the Diagram of Abstract Subsystems

(DAS) is to describe the overall structure of the system in a

modular fashion; i.e. to cast the system into its building blocks

and to indicate their interconnections. As such, a DAS is,

formally speaking, a graph comprised of Abstract Subsystems

(ASs) as nodes and edges that represent the possibility of

bi-directional communication between two ASs. An AS, in

turn, contains an abstract view of a certain system segment;

i.e. a simplified representation of a given group of system

components that may rely on the following types of elements:

Actors: groups of individuals which have an active

behavior in a system; i.e. they initiate com-

munication and execute mandatory operations

according to obligation policies.

Mediators: elements that intermediate communication, in

that they receive requests, inspect traffic, filter

and/or transform the data flow according to

the authorization policies; they can also per-

form mandatory operations based on obliga-

tion policies, such as registering information

about data flows.

Targets: passive elements; they contain relevant infor-

mation, which is accessed by actors.

Connectors: represent the interfaces of one AS with an-

other; i.e. they allow information to flow

from, and to, an AS.

Each element of the types Actors, Mediators or Targets

represents a group of system elements that have a relevant

behavior for a global, policy-oriented view of the system. As

internet

internet websites

dmz

Firewall 1 Firewall 2

internal network

web proxy

internal web client

ATPermission

internal network

web proxy

Firefox

IE

Credential
squid

proxy host

internal web clients

ws 1

ws 2

ES

AS

Fig. 2. Example of DAS Fig. 3. Expanded AS

for the Connectors, they are related to the physical interfaces

of an AS (for a detailed explanation on the modeling of

abstract subsystems we refer to [5]). In this manner, a DAS

supports the reasoning about the structure of the system vis-

à-vis the executable security policies, thus making explicit the

distribution of the different participants of these policies over

the system.

Furthermore, in order to model the security policies them-

selves, another object type is also present in a DAS: ATPer-

missions (ATP). An ATP is associated with a path (p) in a

DAS that connects an Actor (A) to a Target (T), possibly

containing a number of Mediators and Connectors along the

way. It expresses the permission for p to be used by A in order

to access T . In this manner, each ATP models an authorization

policy. The ATP objects in the system are not defined by the

modeler, but rather derived automatically in a process that is

explained below.

Additionally, each AS in a DAS is also associated with

a detailed view of the system’s actual mechanisms, called

Expanded Subsystem (ES). This expanded view encompasses

objects that represent hosts, processes, protocols and network

interfaces of the system and supports the process of automated

generation of configuration parameters (see Sect. IV).

B. Example of DAS

An example of DAS is shown in Fig. 2. This dia-

gram corresponds to a simple network environment with

three ASs: internal network, dmz (demilitarized zone)

and external network. In the internal network,

the object internal web clients is an Actor repre-

senting a group of processes that are authorized to ac-

cess the processes mapped by the Target internet web

sites (in external network) through the Mediator

Web proxy, by the ATP int_clients may surf on

inet_sites.

Figure 3 shows both the abstract and the expanded view

for the AS internal network (leftmost of Fig. 2). Each

object in the abstract view of the AS is then related to the

elements that model the corresponding real entities of the

system; for instance, the Actor internal web clients

is associated with its respective Process-typed objects. This

double representation of an AS provides the designer with a

flexible model of the system that offers not only a more ab-

stract, concise and understandable description of the system’s

structure, but also a detailed view of its mechanisms. It also

constitutes the basis for applying the techniques presented in

the next section.

IV. TOOL SUPPORT AND AUTOMATED REFINEMENT

As explained in Sect. III, in the Model-Based Management

approach, a software tool firstly assists the modeling by

means of a diagram editor, and thereafter it automatically

derives lower-level policies based on the model entities de-

fined. This process is supported by a generic tool called

MoBaSeC (Model-Based Service Configuration). The archi-

tecture of MoBaSeC is defined in such a way so that different

applications of MBM are covered by the same common tool.

The details of each application are defined by means of a

meta-model, i.e. a set of classes that specify the node classes

of each layer, the allowed connections between classes, and the

consistency rules to which each model instance must comply.

As such, the same basic tool (MoBaSeC) can be used to

support the management of an arbitrary application context,

as long as there is a meta-model that defines the structure for

models in that particular context.

A. Model Editing, Visualization and Navigation

MoBaSeC is implemented in Java and basically consists of

an object-oriented graph editor. To define a model instance, the

user simply selects one of the classes available in the meta-

model and creates a new object of this class in a window that

contains a view of the model instance. Connections between

two objects are thus established by dragging-and-dropping

edges to connect the objects. During the modeling, the tool

checks the consistency rules defined in the meta-model in

order to ensure that the model instance is valid.

Furthermore, the tool prototype also implements focus &

context techniques in order to substantially improve the nav-

igation and visualization of large models (for further details

see [8]). Through a combined use of the techniques fisheye

view and semantic zooming associated to the modeling frame-

work developed here, a larger focused area is made possible

even if the context of the model is still visible, which leads to

an optimization of the screen space. This gives the designer

the capability of defining in detail a certain part of the model

without losing sight of the system as a whole.

B. Configuration Process and Automated Policy Refinement

Having as input the abstract policy statements and the

intended network scenario, the configuration development pro-

cess evolves through the following steps:

1) modeling of the abstract policy (RO layer of Fig. 1),

2) definition of the system services and their relations to the

abstract elements of the preceding step (SR layer of Fig.

1),

3) modeling of the relevant system elements by means of

their abstract representations (i.e. the Abstract Subsys-

tems) as well as their relations to the objects of the

service-oriented system’s view,

4) modeling of the Expanded Subsystem for each Abstract

Subsystem in accordance with the real network,

5) automated refinement of the high-level policies at the RO

level through the other abstraction levels, culminating in

the generation of the low-level configuration parameters

for the security mechanisms.

Therefore, after a valid model instance is input, the supporting

tool automatically builds a policy hierarchy by deriving lower-

level policy sets from the policies specified at the most

abstract layer. This process is termed in the literature policy

refinement [3].

In our approach, in the uppermost model level (RO)

authorization policies are represented by AccessPermissions

(Sect. III-A). The set of AccessPermissions is given by the

modeler and acquires in this context a particular meaning.

On one hand it defines the explicit permission for Roles to

access Objects (in the way defined by an AccessMode)—

corresponding to positive authorization policies. On the other

hand, we adopt closed policies, i.e. the default decision of

the reference monitor is denial. This implies that all triples of

Role, Object and AccessMode not belonging to the set of Ac-

cessPermissions are forbidden. They thus implicitly define the

negative authorization policies which the security mechanisms

must as well enforce.

The automated refinement of authorization policies thus

starts from the analysis of AccessPermissions in the RO

level and their related objects, in order to generate a set

of corresponding permissions in the SR level. Thus, each

triple of Role, AccessMode and Object (r, am, o) related to

an AccessPermission produces a set of 4-tuples (u, st, sv, r),
each of which expresses an authorization for a SubjectType on

behalf of a User to use a Service in order to access a Resource.

Subsequently, the ServicePermissions are refined into AT-

Permission objects (actor-target permissions, ATP for short,

see Sect. III). Since ATPs are paths in the DAS graph,

this refinement phase consists of, for each ServicePermission

(u, st, sv, r), finding the shortest path between each Actor that

is connected to the pair (u, st), and each compatible Target

that is connected to a pair like (svt, res).
The following refinement phase comprises the automated

generation of policies that takes into account the equipment

and security mechanisms defined in the ESs. For this purpose,

the tool generates, for each ATP, a corresponding Allowed

Expanded Path (AEP) that represents an authorized path in the

expanded subsystem views. Each AEP connects a process (that

refines an Actor) to other processes (that refine the Mediators

and the Target) through their related protocol stack, interface,

and network objects.

In the last phase of the refinement process, a special back-

end function for each mechanism type supported is executed.

It analyzes the characteristics of each AEP that passes through

the mechanisms of a type (such as communication proto-

cols, addresses and ports) to produce corresponding low-level,

device-dependent configuration parameters. Clearly, the con-

figuration for a given mechanism must allow only the accesses

corresponding to the AEPs that traverses the mechanism.

C. Refinement Correctness

In an automated policy refinement, only if the policy sets at

the different levels are in perfect harmony, one can trust the

system behavior resulting from the application of the lowest-

level policies to be in conformance with the specified abstract

goals. In pursuing this goal, we have developed a formal

approach to the validation of the policy hierarchies generated

in this work. Following the literature on multi-layered policy

hierarchies and considering the special meanings conveyed

by policies in our approach, two correctness criteria were

selected: a) Completeness, i.e. the desired behavior specified

in an abstract manner is completely implemented at the lower

levels; b) Consistency, i.e. none of the actions enabled at the

lowest level contradict the desired behavior of the highest level

specification. As such, completeness warrants compliance with

the explicit positive policies, whilst consistency makes sure

that the implicit negative policies are enforced.

Based on these criteria, a number of condition sets were

established that concern: i) the relation between elements

of policy sets of two adjacent abstraction levels (refinement

conditions); and ii) system objects at a given abstraction

level as compared both with system objects at the immediate

superior level, and with policies at the same layer (structural

consistency conditions). Such conditions were defined for each

of the refinement phases described above.

Subsequently, in order to be able to reason about the system

behavior that results from the application of the generated

configuration, model representativeness axioms were defined

that formalize the implicit assumptions behind the model.

These axioms state assumptions concerning both the mapping

of real world entities by the model objects (correct modeling)

and the effective application of normative aspects in the model

to the real system (correct implementation). Relying upon

axioms and conditions, we are able to prove two validation

theorems:

• VT1: For each high-level policy, the system enables all

accesses in the real world that correspond to the policy;

• VT2: To each possible access in the real world there is

a corresponding high-level policy.

The two theorems correspond to the elected validation criteria

of completeness and consistency, so that the meaning of the

formal proofs is: once a model complies with the conditions

defined and the axioms hold, the refinement process is correct;

i.e. the generated system configuration is in conformance with

the abstract policies so defined.

The supporting tool checks a group of these validation

conditions on-the-fly as model objects are defined and on

user’s demand whenever s/he chooses the menu option ‘Check

Model’. A second condition group is tested along with the

refinement process, and yet another group is applied after the

refinement. These conditions are thus capable of validating the

multi-layered structural architecture of the system vis-à-vis the

security policies prescribed.

V. CASE STUDIES AND EXPERIMENTAL RESULTS

The approach has shown its practical relevance in a series

of case studies. It has been employed to the integrated con-

figuration management of packet filters and VPN gateways

of realistic network environments with different number of

network elements and growing security policy complexity.

Back-end functions were implemented for the generation of

configuration files of the corresponding mechanisms of the

OpenBSD operating system (pf and isakmpd), successfully

covering the basic functionalities of these mechanisms.

To give a flavor of the models achieved, Figure 4 presents

the DAS model for a network scenario of an enterprise

network, composed of a main office and branch office,

that is connected to the Internet. The DAS is composed

by five subsystems, representing the logical network seg-

ments of the described scenario: internal network, dmz,

Internet, branch office’s network and remote

access point (for further details see [5]).

internal network

remote access point

branch office’s network

Internetdmz

Fig. 4. DAS for a realistic network environment

The model development proposed in our approach can be

used not only in a top-down fashion (starting from the mod-

eling of the most abstract policies and proceeding downwards

to the definition of the actual system elements) but also

in a bottom-up one. Sometimes the existence of a network

element might be the evidence of the need for an additional

policy not yet modeled. Conversely, experience has shown that

in practice the modeled network systems are frequently not

capable of enforcing the given high-level policies. In such

cases, the validation conditions described in Sect. IV-C cannot

be satisfied, and the tool indicates the model elements which

violate the policies. In this manner, by the combined use of

top-down and bottom-up approaches, the modeler receives

valuable information to do the necessary modifications on

the model in order to achieve a system configuration that is

congruous to the high-level policies.

The case studies performed clearly show the advantages

brought forth by the DAS level based on information hiding

and modularisation. Indeed, in Fig. 4 each Abstract Subsystem

hides details about its inner features (i.e. network topology,

hosts, processes, protocols etc.), providing instead a policy-

oriented view of them that allows the administrator to reason

about the distribution of policy participants over the system.

As such, in Fig. 4 the modeler can reason about the system

through a concise view of 32 DAS elements instead of the 540

actual network elements [5].

Furthermore, by comparing the different case studies per-

formed we can reason about the growth behavior of the DAS

level when moving from simpler scenarios to larger and more

complex ones. This comparison has shown that the size of

a DAS does not increase in the same pace as the number

of elements in the ES level does (and thus as the system’s

mechanisms and number of required configuration rules do);

rather, it does so at a much slower rate [5].

As can be derived from the figures above, our model

provides a significant complexity reduction for the security

administration task, since the number of entities to be dealt

with are an order of magnitude or more smaller for these

scenarios. For very large networks, say thousands of network

nodes, the advantages can be even more impressive, as the

number of different security scenarios tends to level out. This

makes clear the scalability gain afforded by DAS in the support

of large and complex models in comparison to previous work.

Since the development of the detailed IT system model,

however, still demands considerable efforts, future work shall

provide for automated modeling based on network exploration

through management protocols, such as SNMP. Nonetheless,

it is anticipated that the modeling effort will be reduced in

applications of the technique to other environments, since the

models already achieved can be used as templates.

VI. CONCLUSION

This work has proposed a design process for the configura-

tion management of network security systems that is especially

concerned with complex environments, aiming to bridge the

gap between high-level security policies and the configuration

parameters of employed mechanisms.

The main contributions of the thesis presented in this paper

can be summarized as follows:

• a modeling technique for the management of security

systems that achieves scalability by the segmentation of

the system in Abstract Subsystems, enabling the process

of model development and analysis to be performed in a

modular fashion;

• tool support for comfortable model editing that im-

plements focus and context techniques to improve the

handling of large models, allowing the designer to define

in detail a certain model part without losing sight of the

system as a whole;

• a multi-layered modeling process in which the abstract

policy representation is gradually brought into a more

concrete system view, bridging the gap between high-

level security policies and real system implementations;

• an automated policy refinement process that suits the

needs of large-scale, complex environments and derives

lower-level policies from the abstract policy set defined

by the modeler, eventually yielding configuration param-

eters for security mechanisms;

• a validation approach for the policy refinement, which

includes a formalism of the model, the establishment of

consistency conditions, and the proof of the refinement

correctness;

• representative case studies that show the practicality and

the concrete advantages brought forth by this work.

As for future work, the scope of the high-level policies pro-

posed here could be broadened to include other requirements,

such as reliability and performance.

REFERENCES

[1] D. Oppenheimer, A. Ganapathi, and D. Patterson, “Why do internet
services fail, and what can be done about it,” in 4th USENIX Symposium

on Internet Technologies and Systems (USITS’03), 2003, pp. 1–16.
[2] M. Sloman, “Policy driven management for distributed systems,” Journal

of Network and Systems Management, vol. 2, no. 4, pp. 333–360, 1994.
[3] J. D. Moffett and M. S. Sloman, “Policy hierarchies for distributed sys-

tem management,” IEEE JSAC Special Issue on Network Management,
vol. 11, no. 9, pp. 1404–1414, December 1993.

[4] I. Lück, S. Vögel, and H. Krumm, “Model-based configuration of
VPNs,” in Proc. 8th IEEE/IFIP Network Operations and Management

Symposium NOMS 2002, R. Stadtler and M. Ulema, Eds. Florence,
Italy: IEEE, 2002, pp. 589–602.

[5] J. Porto de Albuquerque, H. Krumm, and P. L. de Geus, “On scalability
and modularisation in the modelling of security systems,” in Computer

Security - ESORICS 2005, 10th European Symposium on Research in

Computer Security, ser. Lecture Notes in Computer Science, S. D. C.
di Vimercati, P. F. Syverson, and D. Gollmann, Eds., vol. 3679. Berlin
Heidelberg, Germany: Springer-Verlag, September 2005, pp. 287–304.

[6] ——, “Policy modeling and refinement for network security systems,”
in 6th IEEE International Workshop on Policies for Distributed Systems

and Networks (POLICY 2005). Washington, DC, USA: IEEE Computer
Society, 2005, pp. 24–33.

[7] J. Porto de Albuquerque, “Gerenciamento baseado em modelos da
configuração da segurança de ambientes de rede complexos [model-
based management of the security configuration in complex network
environments],” Ph.D. dissertation, Institute of Computing, University
of Campinas. Available at: http://www.ic.unicamp.br/∼jporto/research.
html, Campinas, Brazil, September 2006.

[8] J. Porto de Albuquerque, H. Isenberg, H. Krumm, and P. L. de Geus,
“Improving the configuration management of large network security
systems,” in Ambient Networks: 16th IFIP/IEEE International Workshop

on Distributed Systems: Operations and Management, DSOM 2005, ser.
Lecture Notes in Computer Science, J. Schönwälder and J. Serrat, Eds.,
vol. 3775. Berlin Heidelberg, Germany: Springer-Verlag, October 2005,
pp. 36–47.

[9] Check Point Software Revolutionizes Internet Security Management,
Check Point Software Technologies Ltd., Redwood City, Calif., January
2000.

[10] Solsoft NP: Putting security policies into practice. White Paper, En-
terprise Management Associates, 2000, http://www.solsoft.com/library/
ema profiler.pdf.

[11] J. D. Guttman, “Filtering postures: local enforcement for global poli-
cies,” in SP ’97: Proc. of the 1997 IEEE Symposium on Security and

Privacy. Washington, DC, USA: IEEE Computer Society, 1997, p. 120.
[12] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool, “Firmato: A novel

firewall management toolkit,” ACM Transactions on Computer Systems,
vol. 22, no. 4, pp. 381–420, November 2004.

[13] M. Mont, A. Baldwin, and C. Goh, “POWER prototype: Towards
integrated policy-based management,” in Proc. IEEE/IFIP Network

Operations and Management Symposium (NOMS2000), J. Hong and
R. Weihmayer, Eds., Hawaii, USA, 2000, pp. 789–802.

[14] N. Damianou, N. Dulay, E. Lupu, M. Sloman, and T. Tonouchi,
“Tools for domain-based policy management of distributed sys-
tems,” in IEEE/IFIP Network Operations and Management Symposium

(NOMS2002), Florence, Italy, 2002, pp. 213–218.
[15] L. Lymberopoulos, E. Lupu, and M. Sloman, “Ponder policy implemen-

tation and validation in a CIM and differentiated services framework,”
in IFIP/IEEE Network Operations and Management Symposium (NOMS

2004), Seoul, Korea, April 2004.
[16] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-

based access control models,” IEEE Computer, vol. 29, no. 2, pp. 38–47,
1996.

