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Abstract—Malicious programs (malware) cause serious secu-
rity issues to home users and even to highly secured enterprise
systems. The main infection vector currently used by attackers
is the Internet. To improve the detection rate and to develop
protection mechanisms, it is very important to analyze and study
these threats. To this end, several systems were developed to
perform malware analysis, which support operating system (OS)
programs or Web codes, but they all suffer from limitations.
Also, the existing systems focus only on one type of malware,
those that target the OS or that require a Web browser. In this
article, we propose a framework that is able to analyze Web and
OS-based malware, which provides better detection rates and a
broader range of malware types analysis. We have also evaluated
and compared our analysis results to the state-of-the-art systems,
presenting the advantages of the developed framework over them
when regarding Web and OS-based malware.

I. INTRODUCTION

Malicious programs, such as trojans, worms and javascript
exploits, are a great threat to computer security. They cause
several problems to the infected system, its users and to
other computers and networks. Users of infected systems may
have their private data stolen (e.g. credit card numbers and
passwords) and their systems may be remotely controlled to
send spam messages or to launch DDoS attacks.

Currently, the Web is the main vector to install malware
in attacked systems. Web malware, i.e. malicious codes inside
Web pages, exploit the browser or some of its components and
perform drive-by downloads that install malicious programs
on the compromised system. They can also be used to steal
personal cached information and even control the browser.

Two methods are often used to have the victims’ browser
load malicious content, either by injecting malicious codes in
benign pages and waiting for users to unwittingly access it,
or by sending phishing messages containing malicious files
or links. Infecting benign sites is performed through the ex-
ploitation of some vulnerability in the Web application (server-
side), followed by the insertion of the malicious content on that
server. On the other hand, phishing messages are used to lure
victims into executing files or into accessing links (client-side)
that lead them to the malicious content.

To develop and improve protection mechanisms deployed
on the client-side, it is necessary to study and more deeply
understand malicious pages and programs. There are several
systems that perform this kind of analysis, but they are focused
either on Web or operating system (OS) malware.

One of the major problems toward malware analysis is the
use of obfuscation techniques through packers. These packers
change the code in a way that keeps the main functionality,
but turns the manual or static analysis into a very hard task.
Moreover, some packers insert blocks of code inside the
obfuscated file to verify whether they are being executed on an
emulated or virtual environment, thus hiding their malicious
behavior in such cases [1], [2].

In this article, we propose a framework that obtains URLs
and files from spam crawlers and malware collectors, and
transparently analyzes them. This framework is capable of
analyzing both Web and OS-based malware, while its modular
design makes it possible to extend it to other file types or
languages. We deployed a prototype and tested it against actual
malware from our collected dataset, presenting results showing
that our framework has some advantages over the existing
systems that perform Web or OS-based malware analysis.
The evaluation performed using Web malware shows that
our detection rate is much better when compared to existing
systems, due to our more effective selection of attributes
and the dynamic execution of Web pages in a non-emulated
system. Also, due to the way we capture the behavior of
the OS malware, we can deploy the monitoring system in
emulated, virtual or real environments, providing an advantage
over existing malware analysis systems. In summary, the main
contributions of this article are:

• We present a hybrid framework to analyze both Web and
OS-based malware;

• Our tests show that our analysis of Web malware produce
better detection rates than existing systems;

• The deployed OS behavioral monitor can operate in
emulated, virtual or real environments, allowing our
framework to correctly analyze samples that detect virtual
or emulated environments.

II. RELATED WORK

There are several analysis systems designed to monitor the
behavior of Web or OS malware, as described below. However,
each of them focus solely on one of the mentioned malware
types. Below, we present the main systems and techniques that
are used to analyze malware, to produce informative reports
about them and, in the case of Web malware analyzers, to tell
if the analyzed matter is malicious or benign.



A. OS Malware analysis

A malware behavior can be defined by the set of activities
performed on the operating system by the execution of a
malware instance. These activities include modifying files,
writing registry values, performing network connections, cre-
ating processes etc. Malware analysis is the process applied
to a malicious program in order to extract features that can
characterize it.

Malware analysis can be performed in a static way, i.e.
without executing the sample, or dynamically, by monitoring
its execution. The use of packers makes static analysis a
quite difficult and slow [3] process. Therefore, the most used
systems for malware analysis follow a dynamic approach.
Common techniques to dynamically extract malware behavior
are: Virtual Machine Introspection (VMI), System Service Dis-
patch Table (SSDT) Hooking and Application Programming
Interface (API) Hooking.

In the case of VMI, a virtual environment is used to
execute the malware and restore the system after the analysis.
Monitoring is performed in an intermediary layer, called
Virtual Machine Monitor (VMM), which is interposed between
the virtual system and the real one. This approach allows
the extraction of low-level information, such as system calls
and the state of memory. However, it also requires a virtual
environment. Moreover, some types of malware try to realize
whether they are under analysis, through attempts to detect
a virtual environment. Thus, a particular malware instance
might decide not to perform malicious actions [2] if a virtual
environment is detected. VMI is used by the Anubis [4]
system.

SSDT is a Windows kernel structure that contains the
addresses of native functions. SSDT hooking is performed at
kernel level by a specially crafted driver that modifies some
of the SSDT addresses to point to functions inside this driver.
These functions can change both the execution flow and values
returned to programs. This technique can be used either in
virtual, emulated or real environments as its flexibility is linked
to the driver’s mobility. However, there may be some issues
related to rootkits’ analysis, as they also operate at the kernel
level and possess the same privileges of the monitoring driver.
The framework presented in this article uses this technique to
capture malware behavior at the OS level.

Another technique to monitor malware execution behavior
is API hooking. It modifies the binary under analysis to force
the execution of certain functions that are in the monitoring
program before calling selected system APIs. As this technique
is deployed at a level that is closer to the analyzed sample, it
is possible to easily obtain higher-level information. However,
this feature also makes it easy for a malware sample to
detect the monitoring through integrity checking. Furthermore,
malware can issue system calls directly from memory-mapped
addresses, evading this kind of monitoring. This approach is
used by CWSandbox [5].

B. Web malware analysis

Web malware analysis is usually performed through a
component located in the operating system or in the browser.
In both cases, the monitoring system verifies whether the
analyzed Web page contains malicious codes or not and also
provides some information about the captured behavior. The
three most used (and publicly available) systems are JSand,
PhoneyC and Capture-HPC, which are described below.

JSand [6] is a low-interaction honeyclient that uses a
browser emulator to obtain the behavior of the JavaScript code
present in a Web page. Then, the system extracts some features
from the obtained behavior and applies machine learning
techniques to classify the analyzed page as benign, suspicious
or malicious. The main problems related to this approach are
its limitation to JavaScript-only analysis and its inability to
detect attacks that steal information from the browser.

PhoneyC [7] is another low-interaction honeyclient that
uses a browser emulator to process the analyzed Web page
and is able to analyze JavaScript and VBScript codes. To
detect exploits in those codes, it emulates certain vulnerable
components. The limitations are the same of JSand’s, except
for the added VBScript analysis.

Capture-HPC [8] is a high-interaction honeyclient that uses
a full-featured browser and a kernel driver inside a virtual
environment to extract the system calls performed by the
browser as it accesses the analyzed page. Then, it performs
a classification step (benign or malicious) based on these
system calls. Capture-HPC can detect attacks independently of
the script language that is used, but only those that generate
anomalous system calls.

III. SYSTEM DESCRIPTION

A. Architecture

The architecture of our proposed framework can be seen in
Figure 1. Spam crawlers, malware collectors and manual input
are the source of the samples, which are then forwarded to
the Selector module. Selector is responsible for identification
of the sample type and sending it to the appropriate module.
Windows executable files—PE32 and DLL file formats—are
sent to the OS module, whereas Web-related content, such
as URLs, HTML and JavaScript files, are sent to the Web
module. The OS module extracts the sample behavior and
send it to the Parser, which processes it, extracts the high-
level information and produces a report containing the analysis
results. As for the Web module, the extracted behavior is
fed to four different processors, each of them responsible
for one type of malicious behavior detection. The General
classifier collects the results of these four processors and
produces a summarized information report. When the Web
module detects an executable file, for example, due to a drive-
by download, this is forwarded to the OS module, which
returns the corresponding observed behavior.

B. Collection

Apart from manual insertion, malicious content is obtained
by spam crawlers and malware collectors. The spam crawlers
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Fig. 1. Framework’s architecture. Dark lines indicate the analysis flow from the Web related files and URLs whereas dotted lines indicate the analysis flow
of OS executable files.

periodically fetch emails from purposely created accounts on
collaborating sites. When a crawler finds a link or an attached
file, it sends such file to Selector. Malware collectors are low-
interaction honeypots (systems that emulate some vulnerable
services) that collect samples by downloading them after
attempted exploits.

C. OS module

The OS module is based on a Windows kernel driver
and contains a pool of emulated and real environments. The
SSDT hooking technique is used to monitor system calls
performed by the analyzed sample and its children-processes.
The captured actions are related to file, registry, sync (mutex),
process, memory, driver loading and network operations.

When it detects the use of some packer that is known to
cause problems in emulated environments or when the analysis
in the emulated environment finishes with error, the sample is
sent to analysis on a real system, i.e. neither emulated nor
virtual.

D. Parser

The Parser processes the behavior extracted by the OS
module and selects only relevant actions to feed into the
analysis report. An action is considered relevant if it either
causes a modification in the system state or incurs in sensitive
data leakage.

E. Web module

The Web module performs its monitoring process through
a Windows library (DLL - Dynamic Link Library) that hooks
some functions from libraries that are required by the Internet
Explorer browser. When one of the monitored functions is
called, the execution flow is changed to a function inside the
monitoring DLL. It then logs all the needed information and
redirects the execution flow back to the original function.

We monitor actions that are executed by JavaScript code due
to its wide usage in attacks as a client-side script language [9].
The monitored actions are related to string, ActiveX, decoding
and array operations, DOM (Document Object Model) modifi-
cations, dynamic code execution and manipulation of personal
information, such as cookies.

The actions that the Web module captures are then sent to
the four detection modules available, each one responsible for
one type of detection. The windows executable files obtained
during the Web module’s monitoring process are sent to the
OS module, which then forwards the returned system calls the
system call signature detector. Its results are used to classify
the analyzed sample.

F. General classifier

Classification is performed in four steps: anomaly detection
of JavaScript behavior, shellcode detection, JavaScript and
system call signatures matching.

1) Anomaly detection: We extract eight features from the
JavaScript behavior and use machine learning techniques to
find malicious patterns. These eight features are the number
and size of string definitions and strings inserted into arrays,
the number of dynamic code execution calls and DOM mod-
ifications, the size of dynamically executed code, the number
and size of possible shellcodes (explained later), the number
of ActiveX objects created and the size of parameters passed
to ActiveX functions.

We use the Weka framework [10]—the metaclassi-
fier ThresholdSelection and the RandomForest classifier
algorithm—to generate the anomaly detection classifier. This
classifier, when used as a detection mechanism, can detect
most of the attacks performed using the JavaScript language,
even when the attack is not successful.

2) Shellcode detection: The results of JavaScript string
operations, the strings embedded in array objects and the
strings returned from decoding operations are verified by
their mime-type. The ones with a mime-type that does not
contain the string text are considered possible shellcodes.
These possible shellcodes are verified using the libemu tool
(http://libemu.carnivore.it) and, if positive, the page is consid-
ered malicious.

3) JavaScript signatures: JavaScript signatures are sets of
regular expressions used to detect certain JavaScript operations
and parameters. These signatures are used to detect known
patterns of malicious actions. In the current version of our
system they are only used to detect information stealing
attacks, such as navigation history information.



4) System call signatures: System call signatures are used
to match actions that should not be performed without the
user’s consent. As the dynamic analysis is performed in an
automated way, without any human interaction, all system calls
that should require user confirmation are considered malicious.

These signatures are formed by regular expressions that
ultimately define whether a system call is considered allowed
or not. This verification can detect successful attacks that result
in malware installation, regardless of the script language used
to carry the attack.

IV. TESTS AND RESULTS

In this section, we present the Web and OS malware analysis
results that validate our approach and compare it to similar
available systems.

A. OS Malware Tests

We performed tests to demonstrate the effectiveness of the
OS module in monitoring malicious behavior. Our module was
compared to Anubis [4] and CWSandbox [5]. We chose those
systems because they use different monitoring techniques,
have a public submission interface and are among the most
used and referenced systems for dynamic malware analysis.

For our tests we used 1,744 malware samples obtained from
the collection mechanisms described earlier. We normalized
the reports to a common format so we could compare them,
as each system formats its results in a different way. The
normalization was accomplished by the generalization of some
parts of the reports and the removal of some actions that
are not relevant to find malicious behavior, such as the
listing containing all processes executing inside the analysis
environment, which is returned by CWSandbox. The similarity
between two reports is then calculated as the percentage of the
smaller report contained in the larger one.

The tests are divided regarding malware that use or not
packers embedded with anti-emulation features. In Figure 2,
we present the similarity between reports for malware samples
that do not make use of anti-emulation packers, whereas in
Figure 3, the comparison is performed on malware that are
packed with the anti-emulation packers tElock!, Armadillo and
ASProtect. The identification of packers was performed with
the PeID tool (http://www.peid.info).

A fast growth of the curves in the figures indicates greater
similarity among the reports. By comparing them, we notice
that our analysis reports are more similar to Anubis’. Also, the
initial value of the Y axis is greater in these cases, indicating
that a larger number of reports presents 100% of similarity.
From the results with malware samples that do not contain
anti-emulation packer, it is not possible to observe which
system (ours or Anubis) has more reports that are similar to
those produced by CWSandbox, because the curves are very
similar.

In Figure 3, we observe that the curves that involve
CWSandbox are different in their initial portion. Most of those
100% similar reports between Anubis and CWSandbox are
due to malware packed with tElock!. Thus, in Figure 4 we see
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Fig. 2. Comparison using malware with no anti-emulation packers
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Fig. 3. Comparison using malware with anti-emulation packer

the similarity between reports related to malware packed only
with tElock!. Also, most of the reports are in the 90–100%
zone. We manually verified these reports and realized that
Anubis did not correctly analyze them, i.e. there was only one
action reported, representing a mutex creation, after which the
analysis crashed. Only one of those Anubis reports produced
extra information beyond the mutex creation; that was also
present in the equivalent report from our module and from
CWSandbox.

With this comparison tests, we showed that in cases in
which malware samples do not contain anti-emulation packers,
our OS module produced results similar to Anubis’. However,
if the malware samples were packed with tElock!, Anubis
could not successfully analyze them, whereas our module and
CWSandbox produced valid results. Furthermore, CWSandbox
produces very noisy reports, i.e. containing a great amount of
irrelevant information toward analyzing malicious behaviors.

B. Web Malware Tests

We compared our Web module to three of the most widely
used and publicly available honeyclients—JSand, PhoneyC
and Capture-HPC— so as to demonstrate its effectiveness.
In this test, we used 1,400 malicious HTML files and 6,781
benign URLs. We obtained the malicious files from domains
hosting Web malware lists and from the VxHeaven database
(http://vx.netlux.org). The benign URLs were obtained from
the Alexa (http://www.alexa.com) site. Furthermore, we sent
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Fig. 4. Comparison using malware with the tElock! packer

TP FP TN FN P R Hm
Our approach 76.6 0.4 99.6 23.4 99.4 76.6 86.6
JSand 17.1 2.2 97.8 76.2 88.5 18.3 30.3
PhoneyC 11.3 0 100 88.7 100 11.3 20.3
CaptureHPC 5.8 0.20 99.8 94.3 96.6 5.8 10.9

TABLE I
RESULTS OF THE TEST USING THREE WEB MALWARE ANALYSIS SYSTEMS

AND OUR WEB MODULE, SHOWING TRUE-POSITIVES (TP),
FALSE-POSITIVES (FP), TRUE-NEGATIVES (TN), FALSE-NEGATIVES (FN),

PRECISION (P), RECALL (R) AND THE HARMONIC MEAN (HM), ALL IN
PERCENTAGE (%)

the benign URLs to Google’s safe browsing service and those
reported as malicious were removed from the dataset.

We divided the malicious and benign datasets into “training”
and “testing”. The training datasets were used to train the
anomaly detection engine, whereas the testing ones were
used for classification. The ten-fold cross-validation of the
training dataset resulted in 1.08% of false-positives (benign
samples classified as malicious) and 22.83% of false-negatives
(malicious samples classified as benign).

As it is hard to evaluate the systems based solely on the
false-positive, false-negative, true-positive and true-negative
rates, we also calculated the harmonic mean for quality mea-
suring purposes. The harmonic mean considers the precision
and the recall of the result. The precision represents the
amount of samples classified as malicious that are really
malicious and is calculated by P = TP

(TP+FP ) . The recall
represents the amount of samples previously classified as
malicious that were correctly classified by the system and is
calculated by R = TP

(TP+FN) . Finally, the harmonic mean is
calculated by F-measure = 2×R×P

R+P . The results are presented
in Table I and they show that our Web module has a much
superior quality when compared to the other evaluated sys-
tems. Our harmonic mean value is about five times closer to
the ideal 100% than the second highest scored system’s. We
credit most of the benefits in our approach to the use of more
than one detection method and of a real browser, as emulated
browsers can be easily detected and evaded [11].

V. CONCLUSION AND FUTURE WORK

The analysis of Web and OS malware is very important to a
better understanding of these threats and to the development of
counter-measures. To this end, many systems were developed,
but they all have some problems and do not analyze both
types of malware. In this article, we proposed a framework
that is able to analyze both traditional OS-based and Web-
based malware, whose test results show the effectiveness of
the approach against existing systems over the same malware
samples.

The framework’s Web module was compared to three of the
most popular Web malware analysis systems. The results of
this test showed that our module has a very good detection rate,
several times closer to the ideal result than the second place’s.
In addition, our OS module was compared to two of the most
popular malware analysis systems and the results showed that
it produces reports that are more similar to Anubis’ results
in case of malware that are not equipped with anti-emulation
packers. Moreover, our module can capture more behavioral
information in cases of malware samples packed with tElock!.

We plan to expand the Web module to monitor other script
languages, such as VBScript, and also to expand the OS
module to analyze rootkits in a more adequate fashion.
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