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Abstract. AVX2 is the newest instruction set on Intel Haswell processor that

provides simultaneous execution of operations over vectors of data. This work

presents the advances on the applicability of AVX2 on the development of prime

field arithmetic, which is a building block for the construction of Elliptic Curve

Cryptosystems. Having as a goal the efficient and secure implementation of

prime field arithmetic, we show some advantages that vector instructions offer

compared against 64-bit implementations. In order to validate the results of our

research, we present a benchmark obtained on a Haswell processor.

1. Research context.

Our research is focused on the efficient implementation of prime field arithmetic, we aim

to use the most efficient techniques that can benefit from the capabilities of the recent

micro-architectures. Implementing prime field operations not only involves the correct-

ness of operations, but also efficient and secure processing. The first goal is achieved by

speeding up operations, extracting parallelism over data and/or using a special instruction

set. Nonetheless, in order to meet the security requirement, the implementation requires

a detailed information flow analysis, also to avoid secret-dependent code branching and

avoiding calculations that could reveal fragments of secret data. In this work, we accom-

plish both requirements, the first one through the use of AVX2 vector instructions and the

second one through the development of constant time execution code.

2. The vector instruction set: AVX2.

Observing the trend of contemporary processors, most of them have replicated execution

units to accomplish with out-of-order execution, thus exploiting the instruction level par-

allelism present on programs. Another interesting trend on the micro-architectures design

is the use of SIMD (Single Instruction Multiple Data) processing, i.e. processors are pro-

vided of vector instructions that simultaneously compute an operation on every element

of vector registers. Haswell micro-architecture is an example of this trending, it includes

sixteen 256-bit registers (hereafter referred as YMM registers) and is the first one to support

the AVX2 vector instruction set.

The AVX2 set includes instructions mostly oriented to perform integer arithmetic

operations, variable-shift on registers and permutations of 64-bit words between registers.

The release of AVX2 extends most of the integer arithmetic from 2 to 4 simultaneous

operations per instruction. Instructions for integer arithmetic are so attractive for the

implementation of prime field arithmetic, where usually the size of operands implies the

use of multi-precision arithmetic, i.e. the size of operands is greater than the size of the

native word machine (nowadays 64 bits).
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3. Prime field arithmetic.

Prime fields are denoted as Fp where p is a prime number. Usually, the elements of Fp

are represented by the integers in the set {0, 1, . . . , p − 1}. Addition (ADD), subtraction

(SUB) and multiplication (MUL) of elements are performed modulo p. Modular multi-

plication is processed in two steps: first, the integer multiplication (iMUL) of both inputs

is computed, and secondly a modular reduction (MOD) is performed. The special case of

integer multiplication when both inputs are equal, it is known as integer squaring (iSQR).

We focus on the application of prime fields for the construction of Elliptic Curve

Cryptography (ECC) schemes. ECC is well known to provide stronger security with

shorter key lengths when compared to the RSA cryptosystem. Recently, new propos-

als for selecting parameters of elliptic curves and prime fields were published, such as

[Bernstein 2006, Bos et al. 2014, Aranha et al. 2013]. These proposals claim that such

new parameters will accelerate the execution performance of prime field operations. Ta-

ble 1 shows the prime fields recently proposed and also the prime field currently used in

standardized ECC by NIST1 [Gallagher et al. 2009].

4. The radix-R representation.

Here is presented an efficient representation of prime field elements, called radix-64. In

order to understand what radix-R is, first we will show two examples of commonly used

representations:

1. The size of primes is always greater than 64 bits, which is the size of registers

in commodity processors. We can use an array of 64-bit words to store elements

of the prime field. This kind of approach is commonly used in multi-precision

mathematical libraries and is also known as radix-64 representation.

2. In [Bernstein 2006], author proposes the use of radix-25.5, for which an element

A ∈ Fp is represented by the following polynomial: A(x) =
∑k−1

i=0 aix
i where k

is the number of floating point registers used to represent that element and each ai
is bounded according to the precision of floating point registers.

These representations can be generalized to radix-R representation, thus an el-

ement A ∈ Fp is represented by the following polynomial: A(x) =
∑k−1

i=0 aix
i where

ai ∈ [0, 2R) are integer coefficients and k =
⌈

lg(p)
R

⌉

is the number of R-bit words used to

represent A. Now, we will describe the algorithms used to compute prime field operations

using radix-R representation:

• Addition/Subtraction. Given two elements A and B on radix-R representation

we can compute C = A ± B as ci = ai ± bi for i ∈ [0, k). Notice that these

operations are totally independent and admit a parallel processing.

• Integer multiplication. It computes an intermediate result Ci+j ←
∑

aibj for

i, j ∈ [0, k), here k2 word multiplications are processed. These operations have

no carry dependencies between them.

• Modular reduction. When pseudo-Mersenne primes are used (p = 2m − c),

modular reduction only requires to process Ci = Ci + cCi+k, for i ∈ [0, k).
Notice that for these primes modular reduction can be done faster than for the

NIST’s primes.

1NIST stands for National Institute of Standards and Technology.
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5. Efficient implementation using AVX2.

As one can see, we can benefit from the parallelism presented on the operations . Now, we

will present an efficient and secure implementation of prime field arithmetic in radix-R

representation using AVX2 instructions. A similar work of this implementation is found in

[Bernstein and Schwabe 2012], where NEON vector instructions were used to accelerate

cryptographic primitives using an ARM architecture.

Since a YMM register stores four 64-bit words, our implementation uses t =
⌈

k
4

⌉

YMM registers to store the integer coefficients of radix-64 representation. In order to com-

pute modular addition, the AVX2 instruction set contain the VPADDQ (VPSUBQ for sub-

traction) instruction that computes four simultaneous 64-bit additions. However the last

carry bit of each addition is lost. In order to overcome this issue, we restrict the R param-

eter to be R < 64, so each 64-bit operation has at least an extra available bit to store the

carry bit produced by the addition operation. This restriction also applied to the case of

integer multiplication. In order to compute A×B, one has to add k intermediate products

aibj for i, j ∈ [0, k). To determine a bound for R we have:

k(2R − 1)2 < 264

log2(k) + 2R < 64

log2(log2(p))− log2(R) + 2R < 64

R− 1
2
log2(R) < 1

2
(64− log2(log2(p))). (1)

Then, the larger integer that holds (1) is R = 30, which nicely fits with the interface of

VPMULDQ instruction. This instruction performs four simultaneous 32× 32 bit multi-

plications. Finally, in the computation of the modular reduction, the terms cCi+k are

computed using shifts on vector registers instead of multiplications, and this can be done

easily through the use of VPSLLQ and VPSRLQ instructions.

6. Preliminary results.

In the Table 1, we show the timings for the main operations on prime fields. The radix-64

row refers to the implementation that uses native 64-bit instructions, such as a 64× 64 bit

multiplier (MULX instruction) and a 64-bit adder that computes addition with carry (ADC

instruction). The results of our AVX2 implementation are shown in the vec-radix-30 row.

We highlight that most of our timings using AVX2 instructions are competitive

with the radix-64 implementation, for example, a modular multiplication (MUL) using

the Curve25519’s prime can be computed in 52 clock cycles on radix-64; while using the

AVX2 implementation, it takes only 53 clock cycles, achieving almost the same perfor-

mance. For the case of modular squaring (SQR), when is compared to radix-64 imple-

mentation, our implementation is faster by 4 and 9 clock cycles for the Curve25519 and

Curve1174 prime fields, respectively.

Modular addition and subtraction operations present almost the same performance

8-9 clock cycles. For vector implementation, we have that R < 32, this allows to compute

more than one modular addition before a coefficient reduction be needed. The coefficient

reduction is an operation that reduces each coefficient to the range [0, 2R) propagating the

carries to the next significant coefficient.
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NISTp256 Curve25519 Curve1174

F2256−2224+2192+296−1 F2255−19 F2251−9

iMUL iSQR ADD MOD ADD MOD ADD MOD

radix-64 37 30 14 53 8 15 8 15

vec-radix-30 35 23 9 60 9 18 9 13

Table 1. Clock cycles measured to process each prime field operation on a
Haswell processor Intel Core i7-4770.

The idea behind radix-R representation is to enable parallel computation that

AVX2 vector instructions can take advantage. Our results show that the use of AVX2

is worthwhile on the implementation of prime field arithmetic. However, this represen-

tation also presents some side issues that results on additional operations, such as the

coefficient reduction which takes around 28 clock cycles to be computed.

We keep investigating on optimization techniques for coefficient reduction and

the application of the lazy reduction technique in order to minimize the impact of this

modular operation. In order to compare our results against other implementations we will

make a proof of concept on an elliptic curve cryptography protocol.
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