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A B S T R A C T

With a huge amount of printed documents nowadays, identifying their source is useful for criminal

investigations and also to authenticate digital copies of a document. In this paper, we propose novel

techniques for laser printer attribution. Our solutions do not need very high resolution scanning of the

investigated document and explore the multidirectional, multiscale and low-level gradient texture

patterns yielded by printing devices. The main contributions of this work are: (1) the description of

printed areas using multidirectional and multiscale co-occurring texture patterns; (2) description of

texture on low-level gradient areas by a convolution texture gradient filter that emphasizes textures in

specific transition areas and (3) the analysis of printer patterns in segments of interest, which we call

frames, instead of whole documents or only printed letters. We show by experiments in a well

documented dataset that the proposed methods outperform techniques described in the literature and

present near-perfect classification accuracy being very promising for deployment in real-world forensic

investigations.
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1. Introduction

The massive use of printers is now giving rise to questions about
authenticity of printed documents. Today, unknown contractual
terms can be added easily and a forged correspondence can be
linked to an innocent. Also, documents related to crimes such as
child pornography photos, fake travel tickets, terrorist plots, fake
money, pirated copies of books and illegal drug selling accounting
are constantly printed everywhere. Identifying the source printer
of these documents is an important clue to pinpoint their owner.

To understand the clues given by these printers and use them to
identify the printer source, it is paramount to understand how they
work. One of the most used printer devices currently is the Laser
Printers (LPs). These devices work by using electromagnetic energy
created by a laser canon onto fix the toner to a paper. As described
by Chiang et al. [1], identifying the source of a printed document
involves two strategies: the first, known as finding the extrinsic

signatures, is an active procedure and involves embedding a
signature on the printed page. This is done by modifying the
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document before it is sent to the printer or by encoding
identification information, such as the device’s serial number.
The second, and most used way of identifying the source printer, is
finding the intrinsic signatures. This is a passive strategy which is
used on a scanned version of the document. It requires an
understanding and modeling of the device mechanism to find clues
in the printing pattern that are present on the scanned image. Most
techniques applied to identification of laser printers take into
account an artifact commonly caused by the printer manufacturing
process: the banding. These techniques investigate how the texture
in letters of text behaves and link it to a specific printer. Most of
them [2–7] select a common letter in the text and describe the
texture on it.

In this paper, we propose three solutions aimed at the
identification of the source printer of a document that explore
these intrinsic signatures. The proposed solutions do not need very
high resolution digital versions of documents and take into account
that this problem requires multidirectional and multiscale
analysis, because of different printing patterns yielded by different
manufacturing processes. The proposed solutions described in this
paper are:

1. Two descriptors, based on multidirectional and multiscale
properties of texture micro patterns. These descriptors are
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Fig. 1. Steps of LP workflow: (A) charging, (B) exposure, (C) development, (D) transfer, (E) fusing, (F) cleaning.
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applied in text letters or regions of interest. These descriptors
are focused on the inner part of printed letters.

2. Another descriptor, here described as the convolution texture
gradient filter (CTGF). The CTGF is built as a histogram of low-
level gradient filtered textures. We use filters of one or more
scales, which are focused on filtering inner and outer parts of
printed letters and figures.

3. The investigation of texture artifacts on segments of a
document, called frames. With this approach, we can recognize
the printing source of a document even if parts of it are
unavailable or with problems. If the whole document is
available, we can use this approach allied with fusion strategies,
which provides even more reliable results.

We perform experiments in a well documented printed document
benchmark, which is a very difficult one containing different letter
sizes, styles and figures.

The dataset was created within the scope of this work and is
freely available through FigShare 1 along with the source code of
the proposed methods available on GitHub. 2

Finally, we show that the presented techniques are very
competitive and have important properties when compared to
other ones in the literature.

2. How laser printers work

To understand the intrinsic signatures and how it can be
detectable for laser printer attribution, the Laser Printer process
must be known first. Laser printers basically use the attraction of
opposite electrical charges in the printing process. The main
component of the LP system is a revolving drum or cylinder. This
assembly is made of photo-conductive material, which is
discharged by light photons of a laser beam. As described by
Chiang et al. [1], Laser Printers works in six steps:

1. Charge: the revolving drum that rotates at a constant angular
velocity is positively charged by a roller or wire having electrical
current moving through it.

2. Exposition: as the drum revolves, the printer uses a laser beam
reflected by a mirror to discharge certain points on the drum,
which will be the letters and images to be printed.
1 http://dx.doi.org/10.6084/m9.figshare.1263501
2 https://github.com/anselmoferreira/printer_forensics_source_code
3. Development: after the pattern has been created on the drum,
the printer coats these areas with positively charged ink (or
toner) particles.

4. Transferring: the printing is done by moving the positive toner
particles on the drum to a sheet of paper negatively charged,
which moves on a belt below it.

5. Fusion: a fuser uses pressure and heat to fuse toner onto the
paper.

6. Cleaning: to print the next page, a blade cleans the drum to
eliminate any residual toner.

Fig. 1 depicts how LPs work.
In black and white printed documents, colors are represented

by grayscale using standard conversion formulas to preserve visual
perception characteristics, such as luminance. As laser printers
have only one ink that is darkest black, grayscale intermediate
tonalities are achieved using density variation from black and
white small areas (above human eyes resolution) using halftones.
Halftones are an old printing technique consisting in black small
dots with different diameters over a white surface, which creates a
grayscale visual illusion. Common halftone algorithms are error
diffusion [8] and clustered dot halftone [9].

As laser printers are electromechanical devices with moving
parts, there are many small physical differences on LPs such as
motor drifting and gear precision that can be seen on printed
pages. These informations patterns can be used as intrinsic
signatures of these devices. The banding [10,11] is an artifact
detectable on scanned printed images that can be used to identify
the source printer. It is defined as nonuniform light and dark lines
perpendicular to direction in which the paper moves through the
printer.

Different printing devices have almost unique banding fre-
quencies, depending of model and brand. To recognize this
property, several techniques proposed in the printer attribution
literature analyze the frequency domain of one dimensional signal
of large halftone regions of the document. Studying the Fourier
transform of the printed material can be useful to identify the
frequencies at which printers work. But those features are only
detected at higher resolutions, where variations on distances of
halftones can be measured properly. In text documents, whereby
only the black color is visible, the absence of halftone areas makes
it difficult to perform the Fourier analysis of a signal. In this case,
the banding can be seen as textures in specific characters and

http://dx.doi.org/10.6084/m9.figshare.1263501
https://github.com/anselmoferreira/printer_forensics_source_code
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happens because of toner variations in the development stage of the
LPs process. This variation is caused by electromechanical
imperfections in LPs. We discuss in the next section techniques
in the literature which aims at identifying the source printer of
documents, using these intrinsic signatures discussed in this
section or by extrinsic signatures, which can be understood as
visible or invisible watermarks on the printed paper.

3. Existing solutions for laser printer attribution

Although our focus here is on discussing Computer Vision
approaches for investigating intrinsic or extrinsic signatures for
laser printer attribution, they are not the only way to identify the
laser printer source of a document. Investigation methods of
questioned documents also include physical, microscopical and
chemical techniques [12]. Physical marks due to traction mecha-
nisms, traces of toner spread on the paper and electrostatic drum
defects create patterns, which can identify specific laser printer
devices. On the other hand, chemical components of toner,
analyzed by chemical methods such as spectroscopy [13,14] and
x-ray [15] provide information about toner manufacturer and also
can be used for comparison with seized evidence materials.
Microscopy can also show some patterns on the toner fusion and
letter borders.

Some of these methods are destructive, as they require the use
of samples extracted from documents on destructive experiments.
Another aspect of those methods is that they normally require
special laboratory devices, equipment, and also experts to prepare,
manipulate and analyze the samples. This does not happen with
the same extent with Computer Vision-based techniques, which
require only a scanned version of the document and little
supervision.

Several computer vision techniques proposed for laser printer
attribution in literature use similar approaches. Some of them are
halftone-based [16,17] and are applied only in color documents,
which often use images. Other techniques are texture-based and are
applied on text documents [2,6,3–5,18], whereby halftones are not
present. There are other techniques which aim at identifying the
printer noise [19–21], among others. Although this section gives a
guided tour on solutions available in the literature for forensic
printer attribution, the reader may also want to refer to
[1,10,22,23] to find other methodologies and review works.

Ali et al. [2] used the projection of text characters in one
dimension as simple features to identify laser printers. The printed
document is scanned and a one dimension projection (pixel values)
of letters ‘‘I’’ is used as features in a Gaussian mixture model
machine learning classifier. These feature vectors have, by nature,
high dimensionality. Therefore, this solution is tied to a Principal
Component Analysis piece, which is used to reduce the
dimensionality of these feature vectors.

Lee et al. [19,20] proposed texture analysis of noise in the
specific case of color documents containing images. To detect these
noise patterns, printed documents are scanned and converted to
CMYK color space, where the K band is discarded. This color space
was used to minimize distortion and because it is the color space
used by printers. The noise of the CMY image is isolated by
subtracting the original image CMY and CMY filtered by the
Wiener filter. A feature vector is calculated in this noise image
through the computation of statistics in five gray level co-
occurrence matrices proposed by Haralick [24] in this reference
image. These feature vectors are then used to feed a machine
learning classifier. Elkasrawi and Shafait [21] also used the noise
pattern to identify the printer, but their feature vector is based on
statistics of the noise in the row and column directions.

Choi et al. [25] used the forensic analysis of Wavelet transform
statistics in the RGB image and in the image converted to CMYK to
identify the source of color documents. Tsai et al. [26] used a
similar strategy, but the analysis only considers the RGB color
space. Mikkilineni et al. [3,4] proposed the use of texture
descriptors based on statistics of gray level co-occurrence matrices
to identify the source of text documents. In this technique,
documents are scanned at 2400 dpi with eight bits by pixel and
letters ‘‘e’’ are extracted in windows of approximately 180 � 160
pixels. After that, 22 statistics of gray-level co-occurrence matrices
are extracted per character. Each feature vector is classified
individually, using a 5-nearest neighbors classifier. The final
classification uses the majority voting of each character classifica-
tion. This work was extended upon in [5] by using Support Vector
Machines and in [18], whereby the authors proposed a solution
based on clustering and Euclidean distance to identify documents
as resulting from an unknown printer.

Bulan et al. [16] used the correlation between geometric
distortions caused by laser printers to identify them. This artifact is
detected by subtracting the area that a printer should print and the
area that it effectively prints. The technique extracts geometric
signatures by estimating the positions of dots in halftone in
printers on a training set and compared, by correlation, the
positions of points in the test. Wu et al. [17] also used the
geometric distortion to identify source printers. They modeled a
projective transformation, which represents the geometric distor-
tion, by using the center of letters in a scanned document and its
image (TIFF) version. This model is solved by least squares using
singular value decomposition and removal of outliers. A subset of
the model parameters are then used as input feature vectors by a
machine learning classifier.

Tsai et al. [6] combined the statistics of gray level co-occurrence
matrices and sub-bands of wavelet transform. This was used in the
particular case of identifying the laser printer source of a document
which contains Chinese characters. The texture patterns extrac-
tions occur at a specific character of Chinese language after the
documents are scanned. Jiang et al. [27] proposed the extraction of
9-d feature vectors from scanned documents based on Benford’s
law. These features are the first digit probability distribution of
Discrete Cosine Transform coefficients from multi-size blocks.

Ryu et al. [28] proposed a solution to identify the halftone
texture in color documents (or images). These documents are
scanned in very high resolution (2400 dpi) and histograms of
angles from Hough transforms are calculated in each CMYK band.
These histograms are concatenated and yield a feature vector per
document. These features are compared by correlation with
reference patterns of a training set, composed by averaging the
histograms of particular printers. The highest correlation will
identify the source of the document.

Kee and Farid [7] proposed two solutions: the first is to find
whether a document was printed by different printers and the
second is focused on identifying the source of a document. To find
forged documents (printed by more than one printer), they
perform a well known graph-cut based clustering approach: the
Normalized Cut [29]. They used letters of a document as the graph
nodes that are clustered by the technique. To do what they call
ballistics (identification of the source), they first choose a reference
character. Then, similar letters are searched by template matching,
preprocessed by histogram normalization and registered with the
reference letter. The mean character c is calculated and Principal
Component Analysis [30] is performed on the aligned characters.
This yields the top p eigenvectors ei, i 2 [1, p] which are used to
calculate the printer profile, which is P ¼ fc; e1; . . . ; e pg. Given a
test document, its letters and P of each printer are used to calculate
a reconstruction error. The smallest mean error identifies the source
of a printed document.

Gaubatz and Simske [31] proposed an authentication technique
based on the presence of color tiles security deterrents on printed
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text. Deterrents are watermarks (extrinsic signatures) on the
printed paper and were previously proposed as an authentication
methodology by Simske et al. [32]. This technique extracts
statistical features from these deterrents and feeds a machine
learning classifier. Mazzela and Marquis [33] studied text and dot-
quality objective measurements to differentiate printed outputs.

Schreyer [34] used spatial and frequency analysis to identify
source printers. This technique extracts statistical features in the
noise image (mean, standard variation, correlation and mean
squared error), in gradient image (mean and standard variation
from the histogram), in the discrete cosine transformed image
(mean and standard variation of coefficients at certain frequency
sub-bands) and in the multi-resolution wavelet transformed image
(mean and standard variation at different scales) and use them as
feature vectors of machine learning classifiers.

Most of the literature methods presented thus far are limited in
several ways. First, they are application-focused. In other words,
they are applied on documents with text or documents with
images. The second limitation is that they are applied only on text
databases with the same font style and size. These particularities
are not always useful when real-world documents, such as
contractual clauses, are investigated. These documents usually
Fig. 2. Microscope images of three letters in three documents. The last row shows that t

gradient). These are the regions which we aim at proper characterizing with the Conv
have letters with different sizes, configurations (italic, bold, etc.),
styles and also can contain figures. We believe that multidirec-
tional and multiscale approaches are useful to laser printer source
attribution in these cases. Other limitation of most of these
techniques is the lack of a public benchmark for comparison. The
techniques we introduce in the next section aim at solving such
limitations.

4. Proposed methods for laser printer attribution

The techniques proposed in this paper were originated by a
series of microscope analyses of printed documents. We investi-
gated pictures (of same position on original document) of three
letters from three documents, printed by different printers (they
can be seen on Fig. 2). Although borders are more irregular and
show more differences between printed characters, even on
characters of the same printer, it is noticeable that inside the letters
there are micro textures with different sizes and directions.

This investigation enforces our hypothesis that multidirectional
and multiscale texture analyses are useful to identify the source
printer. In documents with different font configurations, sizes,
styles, and figures, the printing patterns are spread over different
he main differences are on the borders and some areas inside the letters (with low

olution Gradient Texture Filter.
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directions. Hence, the contributions of this paper for laser printer
attribution are:

1. The analysis of multidirectional texture patterns captured
through gray-level co-occurrence matrices, which is a set of
statistics calculated over eight gray-level co-occurrence matri-
ces, each one representing one texture direction

2. The multidirectional and multiscale approach, applied again
over gray-level co-occurrence matrices. These two first
approaches are applied inside the printing material (e.g., letters),
which is the area where the micro texture pattern is spread.

3. The convolution texture gradient filter (CTGF). This descriptor is
created as histograms of filtered printing patterns over low-
gradient areas. These areas are located commonly inside the
printing material and close to the borders. We also extend this
proposed approach to take advantage of multiscale filters, which
increases the printing pattern investigated area. We use these
low-gradient areas because they are intentionally created by
printer firmwares to create visual effects not perceptible by the
human eye. Investigating the pattern used by firmwares of
different printers is useful to identify the source printer.

In the next subsections, we discuss the proposed methods in
greater details.

4.1. Texture micro patterns via multidirectional gray-level

co-occurrence matrices

Our first solution is based on statistics of gray-level co-
occurrence matrices (GLCM), a well known micro-texture descrip-
tor. Proposed by Haaralick et al. [24], these matrices are built by
calculating how often two neighbor pixels i and j occur in a given
direction and offset. Each direction will define a GLCM: West/East
(08), Southwest/Northeast (458), South/North (908) and Southeast/
Northwest (1358). Fig. 3 depicts these directions.

After each of these four matrices are built, a set of statistics can
be calculated to describe these textures. The original paper
proposes 14 measures, such as the angular second moment,
contrast, correlation, sum average and so on. For each measure,
there are four values. The authors proposed to use the mean and
range of these four values and, finally, a 28-d feature vector is used
to describe the image.

Several GLCM variations have been proposed in the literature
for printer attribution. We discuss the ones proposed by
Mikkilineni et al. [3–5]. In these papers, the GLCM is calculated
over a set of characters extracted from the printed document. The
GLCM is calculated just in the pixels in a Region of Interest (ROI),
which is the printed area of the rectangular region containing the
letter. The authors use an offset (distance) of two pixels and build
Fig. 3. Neighboring directions used to build the four gray level co-occurrence

matrices proposed by Haaralick et al. [24]: West/East (08), Southwest/Northeast

(458), South/North (908) and Southeast/Northwest (1358).
only one GLCM. The direction used in this case was only the pixels
in the bottom side (2708). After that, 20 statistical features are
calculated from the GLCM and two new metrics are proposed: the
variance and entropy of pixel values in the ROI. At the end, 22
features are used in machine learning classifiers to identify the
source printer. For more details, we refer the reader to A.

Differently from Mikkilineni et al.’s variation and the original
GLCM, in this paper, we start by extending the basic GLCMs to
incorporate eight angles (directions) in each pixel’s neighborhood,
using the original image scale. The eight GLCMs are built in the
following neighboring directions: East (08), Northeast (458), North
(908) Northwest (1358), West (1808), Southwest (2258), South
(2708) and Southeast (3158). After these matrices are built, we
extract the same 22 statistical measures per GLCM proposed in
Mikkilineni’s et al. [3–5] approach. Hence, a 22 � 8 =176-d feature
vector is used to feed a machine learning classifier able to identify
the source printer. Fig. 4 shows the neighboring directions used to
build the proposed GLCMs.

4.2. Texture micro patterns via multiscale multidirectional gray-level

co-occurrence matrices

Another GLCM variation proposed in this paper bears from
the idea that multiple scales of a suspected document might spread
uniquely the texture found in the original scale of each printed
document. We propose a GLCM texture descriptor based on
Gaussian Pyramidal Decomposition of images. The Multiscale

Multidirectional Gray Level Co-occurrence Matrices are built in the
same way as the Multidirectional GLCM presented before. The
difference is the use of multiple scales of the original image in a
Gaussian Pyramidal Decomposition. Using s scales, an 176 � s

feature vector is created.
This approach is, in part, inspired by Siqueira et al.’s work [35],

where Multiscale GLCM descriptors are proposed. The core
differences of our method and theirs are: (1) we do not use
dimensionality reduction in feature vectors in order to preserve
texture micro patterns found in different scales; (2) the data does
not need to be normalized as in their work; (3) we use more
directions (eight) in the GLCM construction in order to capture
more subtleties of texture micro-patterns; (4) we consider s = 4
scales with a very particular configuration: two downscaled
versions, one upscaled version and the original scale of the image.
We chose this configuration because the low frequency compo-
nents at these scales are more interesting for texture description
after analyzing the microscope studies we carried out. Fig. 5
illustrates how the multidirectional and multiscale GLCMs source
printer detector works. Afterwards, a classifier can be trained to
Fig. 4. Proposed multidirectional GLCM. We used statistics over eight matrices as

printer texture signatures. Each matrix represents eight possible directions on each

pixel’s neighborhood: East (08), Northeast (458), North (908) Northwest (1358), West

(1808), Southwest (2258), South (2708) and Southeast (3158).



Fig. 5. Proposed multiscale and multidirectional GLCM. (i) scanned document; (ii) character extraction; (iii) Gaussian pyramidal decomposition; (iv) directions used in the

multidirectional approach; (v) GLCMs construction in each direction at each scale; (vi) GLCMs statistical features extracted per scale and direction; (vii) final feature vector

comprising all statistics extracted across different scales and directions.
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identify a particular printer based on the texture of the printed
material.

The GLCM approaches presented here are applied to inner area
of printed text. These are the areas with multiple directions and
scales micro texture behavior shown in Fig. 2. The Gaussian filter of
a pyramidal decomposition will emphasize these inner areas by
filtering just low frequency components at each scale. We believe
that the analysis of these low level components yields a better
printer attribution approach. Next section presents another
proposed technique that is also applied in multiple directions
and scales and works on areas with low gradient.

4.3. Texture micro patterns via convolution texture gradient filter

Textures on almost flat areas (with small gradient value) are
intentionally generated by the printer firmware by combining near
pixel values below human eye resolution. These textures are
created to give tonalities impression, smoothing of borders,
shadows, roughness, gradient or glossy effect. On the other hand,
effects of mechanical parts can produce texture patterns near
printer resolution, such as motor drift, gear backlash, laser focus,
mirror imperfections, drum surface defects, among others.

Our third approach for laser printer attribution relies on the
analysis of these low-level gradient areas. The proposed descriptor,
the convolution texture gradient filter (CTGF), aims at describing
the texture of low-gradient areas. Given a labeled training set of
documents, CTGF learns a set of n � n pixel patterns (texture) in
low-gradient areas that appear more frequently in a given printer,
but not in others.

Given the scanned printed document S with size r � c, the
following transformations (summarized in Fig. 6) generate the
feature vector of the proposed technique used for the learning and
attribution process.
Fig. 6. Proposed solution for laser printer attributio
4.3.1. Negative

As a pre-processing step, the image pixels in S are inverted.
Thus, values close to zero will mean white pixels and 255, black
pixels. This is made for convenience in the algorithm operations
and yields a negative image N.

4.3.2. Crop borders

In order to eliminate scanning noise at the image borders
generated by external light, folding, among others, the negative
image N is cropped, eliminating 6% of pixels in each border. This
percentage in a letter paper document (216 mm � 279 mm), for
example, corresponds to 12.96 mm � 16.74 mm margins, which
covers areas with no printed information in typical documents. The
negative cropped image is now denoted as matrix R. We still
consider the dimensions of matrix R as r � c for convenience.

4.3.3. Micro texture patterns matrix

Textures with n � n neighbor pixels contained in R are then
represented by two properties, which can be computed in parallel:
their sum and maximum gradient between the central pixel and its
neighbors. Although those two properties do not identify specific
textures, they group textures of interest and allow filtering printer
signatures. The convolution of R with an n � n matrix full of ones O

results in the micro texture patterns matrix C

C ¼ R � O (1)

where � is the discrete convolution operator and

O ¼
1 . . . 1
..
.

} ..
.

1 . . . 1

2
4

3
5

n�n

(2)
n using the convolution texture gradient filter.
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Therefore,
Cði; jÞ ¼
0 if i ¼ 1 or i ¼ r or j ¼ 1 or j ¼ c

R i � n � 1

2

� �
: i þ n � 1

2

� �
; j � n � 1

2

� �
: j þ n � 1

2

� �� �
� O; otherwise

8<
: (3)

3 http://dx.doi.org/10.6084/m9.figshare.1263501
where 0 � C(i, j) � 255 � n2.

4.3.4. Gradient (R)

In this step, we calculate the gradient of each pixel in R in a 3 � 3
area centered at the pixel to create the matrix of gradients G. The
difference of two pixels x and y is calculated as

dx;y ¼ jx � yj: (4)

Given the matrix R calculated previously, the gradient matrix G is
calculated as

Gði; jÞ ¼

0 if i ¼ 1 or i ¼ r
or j ¼ 1 or j ¼ c

max
i � 1 � p � i þ 1
j � 1 � q � j þ 1

ðdRði; jÞ;Rð p;qÞÞ otherwise

8>>><
>>>:

(5)

where 0 � G(i, j) � 255.

4.3.5. Gradient filter

With gradients (G) and pixel sums (C), we filter the textures
with gradients of interest. Two parameters (glow and ghigh) define
the range of gradient range of textures that identify discriminant
features for printer signature. Such parameters are selected from a
training set of documents per suspected printer (which we will
discuss in Section 5.6) for maximum results on the learning
process. The matrix T of texture codes (sums) is then created by
filtering textures that are not in the defined range. Those textures
are the discriminant positions in the printed document. T is
calculated according to Eq. (6).

Tði; jÞ ¼ Cði; jÞ if glow � Gði; jÞ � gmax

0 otherwise

�
(6)

4.3.6. Histogram

Counting the number of positions for each texture in T from one
(zero represents a position with no considered texture and is not
used in the histogram) to 255 � n2 generates the histogram vector
with 255�n2 bins, as shown in Eq. (7).

H ¼ HistogramðT; 1 : 255 � n2Þ: (7)

4.3.7. MinMax

The final feature vector V, which represents the histogram of
low-level gradient textures that a printer prints in the document is
generated by applying a MinMax normalization on the histogram
H, scaling the components to the interval [0, 1], as Eq. (8) shows.

u ¼ MinHð jÞðHÞ;
v ¼ MaxHð jÞðHÞ;

Vð jÞ ¼ Hð jÞ � u

v � u
:

(8)
As the final feature vectors are histograms of sums of pixels, they
have 255 � n2 dimensions, where n is the dimension of a squared
sliding window used to calculate the texture.

This new method is based on n � n neighboring textures
working with two basic properties: (1) sum of pixels; and (2)
gradient filtering. The sum of pixels, obtained by a convolution
with an n � n kernel of ones, measures the grayscale tone related to
the visual impression of this region. The gradient is used to
separate flat areas on text and images from the borders, as edge
pixels have larger gradient than the interior of letters and
background areas. Although those two properties cannot uniquely
identify textures, they group textures of interest when used
together, and also allow filtering printer signatures. Fig. 7 depicts
how texture values vary for the same text and picture printed on
different printers.

5. Experimental setup

In this section, we present the dataset and methodology used in
the experiments. We discuss the experimental scenario, which
parts of scanned documents are used in our investigation, metrics
and how we implement the proposed methods and the state-of-
the-art methods used for performance comparison.

5.1. Dataset

To validate the proposed techniques and compare them to the
ones from the literature, we decided to use a dataset projected
and built to provide instances of scanned documents as close as
possible to a real situation. The databases used in prior works are
limited in some way because they always consider fonts of same
size and style, some of them have only text or only figures and
some expect that the scanned documents are available in very
high resolutions. Hence, the datasets in some prior works do not
consider the case where the original document is not available to
be scanned in very high resolution, just an already high-
resolution digitized version of the document is available nor
the computational cost of dealing with very high-resolution
documents. This can possibly affect these approaches perfor-
mance. In addition, for the works we surveyed, the used datasets
are not readily available for download hardening comparisons
using the same setups.

The aforementioned issues do not happen in the proposed
dataset. We printed all or some of the 120 documents on ten LPs
(showed on Table 1) in standard resolutions with Chamex white
letter paper on 75 g/m2 granularity, yielding 1184 TIFF images.
These images are printable versions of Wikipedia documents
converted to pdf with one, two or three pages and contain different
letter sizes, fonts and figures. These documents were later scanned
by a reference scanner (Plustek SO PL2546) at 600 dpi resolution
and are separated by two factors: Language (English or Portuguese)
and Figures (With or Without). The dataset is freely available on
FigShare.3

http://dx.doi.org/10.6084/m9.figshare.1263501


Fig. 7. Textures and filtered textures by gradient filter of (a) text and (b) image from different printers. White = 0, Green [1:765], Red = [766:1530] and Blue = [1531:2295].

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5.2. Methodology

In this section, we discuss the background of the experimental
methodology outlining the used regions of interest considered in
each document, the metrics used, and implementation details
about each method.
The techniques used in the experiments follow the pipeline
presented in Fig. 8. Classifiers are trained with feature vectors yielded
by different description techniques after the documents are printed
and scanned at 600 dpi. Given one scanned printed document for
testing, the classifier predicts its class. We have used the Support
Vector Machines Classifier [36] with linear kernel in this process.



Table 1
Printers and number of documents per printer used in the experiments.

# Printer ID Manufacturer Laser printer model Number of printed

documents

1 B4070 Brother HL-4070CDW 120

2 C1150 Canon D1150 116

3 C3240 Canon MF3240 120

4 C4370 Canon MF4370DN 120

5 H1518 Hewlett Packard CP1518 120

6 H225A Hewlett Packard CP2025A 119

7 H225B Hewlett Packard CP2025B 110

8 LE260 Lexmark E260DN 119

9 OC330 OKI Data C330DN 120

10 SC315 Samsung CLP315 120

Total 1184
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We used the one against one implementation of Support Vector
Machines for multiclass problems. This approach works by
building a set of c(c � 1)/2 binary classifiers, where c is the
number of available classes. Each of these classifiers will train data
from each unique pair of classes. Then, at the end of the
classification step, a voting strategy is performed. Each result of
each binary classifier is considered a vote and the class with the
maximum number of votes will be the classification of the given
sample.

5.3. Sampling approaches

To study the effects of document sampling on the printer
attribution process, we will discuss here the analysis on different
areas of documents. It includes characters, frames and the whole
document.
Fig. 8. Workflow used in the experiments. Firstly, the documents are printed by differen

through the different description techniques. Given an investigated document, the clas
5.3.1. Characters

As texture analysis implies in the investigation of printed areas
and their interactions with paper borders, we start by extracting
specific letters from the digital versions of documents. These
letter images will be the useful version of the dataset used in the
experiments. To extract all letters from a document, we first
implemented an algorithm that searches for connected compo-
nents in graphs. Using thresholding and considering the
neighboring pixels as graph nodes connected by neighbors, we
extract useful masks on the image to capture how the letters look
like.

To distinguish and separate the characters with higher
occurrence (with same size and same font), we used a descriptor
similar to Local Binary Patterns [37]. This descriptor separates a
black and white version of the given image on slices of a
superposed imaginary circle, describing them by counting the
t printers and scanned. After that, a classifier is trained on feature vectors created

sifier will predict its class based on the trained models.
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number of white and black pixels on each slice. The final descriptor
is the counting of black and white pixels or ratios as black and
white pixels density among others. This algorithm, when fed with a
reference character as input, can separate with high hit rates the
letters from the rest of extracted connected components. For this
part, we focused on letters ‘‘e’’ as it is the most common letter in
English documents and were also used before in the literature
[7,3–5]. The final letter dataset has 245,000 extracted characters.

To classify the source of a given investigated printed document
using this approach, the letters ‘‘e’’ are firstly extracted. Then, each
letter is classified by a printer attribution method (e.g., the ones
discussed in this paper), and a majority voting is applied in the end.
The occurrence of each labeled class is counted on these letters and
the most voted class will define the class of a document.

5.3.2. Frames

A letter paper, scanned in grayscale at 600 dpi without
compression, produces a very large file with approximately
31 Mb of size, corresponding to about 5 K by 6.6 K pixels, even
after discarding 6% on each border of the document corresponding
to blank margins carrying external light scanning noise. After
cropping, the remaining number of pixels is still very large (about
4.4 K by 5.8 K pixels). There are also areas inside the document that
are completely blank (without printed ink). As those areas do not
contribute with information about the printer, it is useful to split
the large document in smaller samples, which maintain printer
characteristics and can generate more feature vectors for the
training and testing learning process.

In previous works [7,3–5], character samplings were proposed
to capture texture behavior on printed documents. Letters ‘‘e’’,
Fig. 9. Letter (left) and frame (right) sampling from a scanned document. The red areas id

interpretation of the references to color in this figure legend, the reader is referred to 
which is the most used letter in English texts, are extracted in each
document. A mask of a template letter ‘‘e’’ is used to scan, compare
and cut its copies from the document, capturing its pixels. The
typical letter ‘‘e’’ in documents are inside an area of 40 � 50 pixels.
This process is normally time consuming and not very accurate.

In this paper, we propose to use chunks of letters in regions of
interest from a document, which we call frames. Frames are
rectangular areas inside the document that have sufficient printed
material to keep the characteristics of a printed document. The
process used to obtain frames from the cropped images with 4.4 K
by 5.8 K pixels consists of dividing them in five columns by six
rows of frames, resulting in about 900 by 980 pixels corresponding
to 37 mm (1.500) by 43 mm (1.600).

In order to avoid frames that do not contain enough printed
areas, we state that the minimum accepted ratio between dark
pixels (black and dark gray) and blank ones (blank and light gray)
should be 0.02. This process eliminates frames that are completely
blank or have only a few printed symbols on it. For reference, Fig. 9
shows the same document sampled by frame and character.

5.3.3. Document

To consider the scenario with just one frame and to evaluate the
methods when not using any kind of voting scheme, we have also
proposed an approach based on the whole document. Although
there are several ways of describing a document using only one
feature vector (e.g., each character GLCM can be accumulated to
yield a single GLCM, from which one single feature vector can be
extracted), we decided to apply the texture descriptors on the
whole document, similar to some state-of-the-art techniques
[21,27,34].
entify the extracted letters while the cyan areas identify the extracted frames. (For

the web version of this article.)
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5.4. Metrics and statistics

We adopt 5 � 2 cross validation protocol. Using this approach,
five replications of the two-fold cross-validation protocol are
performed. In each one, a set X is divided into X1 and X2 and a
classifier is trained with X1 and tested on X2. Thereafter, training/
testing sets are switched and the process repeated. There are
5 � 2 =10 different executions in the end. This is considered an
optimal benchmarking protocol for learning algorithms [38].

We use a set of known metrics to assess all the algorithms
performance using the above cross validation approach. In a multi-
class problem with c classes, a confusion matrix M is built with c

rows and c columns on each round of the 5 � 2 cross validation.
Main diagonal values of M will show the right hits for each class.
Other values are false hits

accuracy ¼

Xc

i¼1

Mði; iÞ

Xc

i¼1

Xc

j¼1

Mði; jÞ
(9)

The precision of a given class (in this case, a printer) i, is defined as
the fraction of events where the classifier correctly classified i out of
all instances classified as being from that class

PrecisionðiÞ ¼ Mði; iÞPC
j¼1 Mð j; iÞ

(10)

The recall of a given class i is the fraction of events where the
classifier correctly classified i out of all instances of that class

RecallðiÞ ¼ Mði; iÞPC
j¼1 Mði; jÞ

(11)

The f-measure of a given class i considers both the precision and
recall in the analysis. It can be interpreted as the harmonic mean of
precision and recall, where it reaches its best value at 1 and worst
score at 0

f ðiÞ ¼ 2 � PrecisionðiÞ � RecallðiÞ
PrecisionðiÞ þ RecallðiÞ (12)

We perform a series of statistical tests to define if the results are
statistically significant. First, we confirm if all techniques are
statistically different (also known as pre-test). If they are, we check
the techniques pairwise to define which ones are statistically
different when compared to other (also known as post-test). Each
of these steps usually involves a statistical test and a confidence
level for the test. Here we consider a confidence level of 95% for
each test. As pre-test, we consider the Friedmann test. This test is
non-parametric and is used to determine if subjects change
significantly across occasions and conditions. To compare the
techniques pairwise (also known as multi-compare approach), we
use the Tukey–Kramer approach (also known as Honestly
Significant Difference (HSD).

5.5. Baselines

We compare our proposed techniques against four state-of-the-
art methods (presented in Section 3) and also against two well-
known texture descriptors widely used in content-based image
retrieval applications.

The first state-of-the-art technique uses gray-level-co-occur-
rence matrices (which we call GLCM) applied to laser printer
attribution, proposed by Mikkilineni et al. [3,4]. This technique
describes the neighborhood behavior of pixels in a two-dimensional
histogram given an offset, yielding one GLCM in which 22
statistics are calculated. The original GLCM of Mikkilineni et al.
[3,4] uses an offset of dr = 2 and dc = 0 (dr stands for the offset in
the rows while dc stands for the offset in the columns). In our
implementation, we used dr in the interval 1 � dr � 3 and we
found the best as dr = 1. This is explainable because the Regions of
Interest in our database are smaller than the ones in [3,4]
approach. Although this technique was originally proposed to
operate on characters, we also evaluate its performance on
documents and frames directly. The 22 statistics extracted from
the GLCM are discussed individually on Appendix A and are also
used in our proposed GLCM variations.

The second considered method is based on statistics of
Discrete Wavelet Transform (which we call DWT_STATS) from
color bands applied to laser printer attribution, proposed by Choi
et al. [25]. In this implementation, 39 statistical features are
extracted from the HH Discrete Wavelet Transform sub-band per
image. This approach is also applied document-, character-, and
frame-wise.

The third method evaluated was the statistics of printer noise
(which we call NOISE_STATS) in the row and column direction by
Elkasrawi and Shafait [21]. This technique, based on a previous
work of Khanna et al. [39] on scanners, works by first filtering the
printed area with Otsu’s threshold [40]. By binarizing the image
with this threshold, the authors compute the median gray-level
for the foreground as well as the median gray-level for the
background pixels. Hence, a clean image is generated by only
having gray-level values of all foreground and background
pixels set to the median foreground and background calculated.
The noise image is then obtained by subtracting the original image
from the clean image. The mean of rows and columns of this noise
reference image is calculated, yielding two vectors: the correla-
tion between each row of the noise image and the average of all
columns, as well as the correlation between each column and the
average of all rows. Finally, a set of 15 statistics are calculated over
these vectors. This approach is evaluated document-, character-,
and frame-wise.

The last state-of-the-art method implemented was the
technique proposed by Kee and Farid [7] (which we call
RECONST_ ERROR). This technique has three steps: pre-proces-
sing, printer profiling and source identification. In the pre-
processing step, the authors first choose a reference character
(they chose the letter ‘e’). Then, same letters are searched by
template matching, preprocessed by histogram normalization
and registered with the reference letter. In the printer profiling
step, the mean character c per printer is calculated and Principal
Component Analysis (PCA) [30] is performed on these aligned
characters per printer. The printer profile are the PCA top p

eigenvectors ei, i 2 [1, p] and the mean character. In the source
identification step, a test document is given, its letters ‘e’ are
extracted and preprocessed the same way. These letters are used
with the top p eigenvectors and mean character per printer to
calculate a reconstruction error of each printer. The smallest mean
error will identify the source of a printed document. This is the
only method in the literature that does not use a known machine
learning classifier. Therefore, we consider, in the 5 � 2 cross
validation, the printer profiling phase as the training and the
source identification as the testing step. This approach is only
applied on characters.

In addition to the state-of-the-art methods considered herein,
we also assess two well-known texture descriptors widely used in
the literature. The first one is the Local Binary Patterns (LBP) [37]
and the Histogram of Gradients [41] (HOG). The LBP is a histogram
of eight-neighboring pixel relations. HOG consists in histograms of
gradient orientations in localized regions (rectangular or circular)
of an image. We chose these descriptors because they can be
regarded as multidirectional descriptors.
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5.6. Implementation aspects of the proposed methods

We first consider the two proposed GLCM variations: the
multidirectional and the multidirectional and multiscale ones. We
also implement four CTGF variations, three exploring 3 � 3, 5 � 5,
and 7 � 7 filter sizes and a multiscale one exploring all the previous
filter sizes.

The multidirectional GLCM hereinafter referred to as GLCM_MD
consists of 22 statistics calculated on each GLCM built using one
neighboring pixel offset over eight directions, as described in
Section 4.1. The final feature vector has 22 � 8 =176 dimensions.
The multidirectional/multiscale (GLCM_MDMS), in turn, consider
four scales of the image Gaussian pyramidal decomposition: the
original scale, two down-scales and one up-scale. The final feature
vector lies in the 176 � 4 =704 � d space.

CTGF is built as described on Section 4.3 and yields feature
vectors with 32 � 255 = 2295 (n = 3), 52 � 255 = 6375 (n = 5) and
72 � 255 = 12, 495 (n = 7) dimensions. We also evaluate a
combined approach, in which we consider the different scales in
a combined form creating what we call the Multiscale CTGF

(hereinafter referred to as CTGF_MDMS), with 2295 + 6375 + 12,
495 = 21, 165 dimensions. These feature vectors undergo di-
mensionality reduction on each filter window size as we shall
discuss later in this paper.

Finally, we test the complementarity of the proposed methods
by fusing the feature vectors from the CTGF using the 3 � 3 mask
and GLCM_MDMS, creating what we call the CTGF_GLCM_MDMS.

6. Results and discussion

We now turn our attention to the actual experiments and
results. We start with a study on dimensionality reduction for the
CTGF method as one could wonder if all its features are really
necessary for attribution. Then, we present the experiments for all
methods considered herein followed by a proper statistical
analysis of the results.
Fig. 10. Filter parameter search for the proposed convolution texture gradient filter. (Fo

version of this article.)
6.1. Convolution texture gradient filter parameters and

dimensionality reduction

The main parameters of CTGF method are (glow, ghigh), which are
defined during training. For that we consider the 5�2 cross
validation protocol discussed in Section 5.4.

We performed two experiment configurations: keeping glow=1
and varying ghigh and keeping ghigh=254 and varying glow. The
experiments were performed frame-wise. For this experiment, we
used the one-against one multiclass SVM with linear kernel and
the CTGF filter window size was set to 3�3. Fig. 10 shows the
results.

Fig. 10 shows that keeping glow as 1 and reducing ghigh from 128
to 16 (solid blue line) produced very close results on the 5 � 2
cross-folding validations. In addition, in such situations, the
classification differences are not statistically significant according
to Friedman statistical tests. When tests are performed keeping
ghigh at 254 and varying glow from 1 to 128, then best results are in
the interval which included gradient values over the interval (1,
32).

The experiment discussed in this paper shows that important
texture information for printer attribution is inside the gradient
interval (1:32) for CTGF. This is explainable by grayscale jitters (i.e.,
grayscale noise) on flat black and white areas of printed document
due to printing variations (positioning, backslash, toner develop-
ment, etc.). It is also important to understand that variations of
gradient in the range (1, 32) on grayscale neighbor pixels are
practically undetectable at normal resolution (600 dpi) for the
human eye. Filtering texture values by a convolution window in
this gradient interval around flat color areas creates a highly
discriminative noise signature.

The result of (glow, ghigh) filtering by the proposed technique
may result in some components that are not significant for the
attribution process and a dimensionality reduction approach can
be applied. We use a simple dimensionality reduction method that
discards dimensions where the distance between its maximum
and minimum values (also known as range) is less than the mean of
r interpretation of the references to color in text, the reader is referred to the web
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the overall components distance, calculated during training. This
yields a binary vector ( KeepVector), which is used to eliminate or
keep features from feature vectors used for classification.

To find the vector KeepVector, we describe a training set of
documents with CTFG and put all the feature vectors V in a matrix
F. Then, we calculate the mean of components range (component
or dimension here can be seen as each column of matrix F). The
range of a component is defined as the subtraction between the
maximum and minimum value of that component (or column of
matrix F). After this, we calculate the mean and build a binary
vector KeepVector with 255 � n2 dimensions. This vector is used in
the feature vector construction, indicating whether a dimension in
a new feature vector will be kept (its range is higher or equal the
mean of dimensions range of matrix F) or not. KeepVector is built as
Eq. (13) shows. Fig. 11 shows an example of the feature vector
dimension reduction process and Fig. 12 shows the mean reduced
feature vectors of some printers used in this work.

KeepVectorðiÞ ¼ 1 if MaxVðiÞðiÞ � MinVðiÞðiÞ � R
0 otherwise:

�
(13)

where

R ¼

X255�n2

i¼1

MaxFð:;iÞðiÞ � MinFð:;iÞðiÞ

255 � n2
(14)
Fig. 11. Feature vector reduction process. The first and second rows show examples of feat

vectors were calculated on the same document subset (which we call frames) printed by

the colored regions indicate what dimensions from the 2295 must be kept. The fourth ro

sixth rows show the reduced feature vectors from the two printers showed on first and 

reader is referred to the web version of this article.)
To validate the proposed dimensionality reduction technique,
we also conducted experiments using 5 � 2 cross-validation
experiments comparing it to PCA. The PCA results are not as good
as the ones obtained with the aforementioned method.

The principal components of the CTGF histogram are more
related to the structure of the image pixels than the intrinsic noise
used to differ printers. Therefore, PCA ends up discarding
components otherwise useful for printer attribution, that is why
it does not perform so well in comparison with the feature
selection method discussed above. Table 2 shows the comparison
of the dimensionality reduction methods tested.

As Table 2 shows, the proposed dimensionality reduction
technique selected the most important dimensions of feature
vectors for classification, achieving a mean accuracy of 94.44%,
against the best PCA best configuration, which achieved a 92.82%
mean accuracy considering the cross-validation procedure
adopted. The results are explainable as the proposed method
eliminates dimensions with small variation in the training stage,
not performing any additional linear transformation on the data.
This dimensionality reduction approach, when applied in CTGF on
frames, keeps 638 dimensions of feature vectors for the CTGF
with a 3 � 3 mask, 2660 dimensions of feature vectors for CTGF
with 5 � 5 mask, 6672 dimensions of feature vectors for the CTGF
with 7 � 7 mask and 638þ2660þ6672=9970 dimensions for
the multidirectional and multiscale CTGF. When applied on
ure vectors calculated using the CTGF approach with a 3 � 3 filter size. These feature

 two different printers. The third row shows the binary vector KeepVector, in which

w shows that the reduced feature vectors must have 638 dimensions. The fifth and

second rows. (For interpretation of the references to color in this figure legend, the



Fig. 12. Printer signatures of some printers using the proposed CTGF with a 3 � 3 filter size and the proposed dimensionality reduction approach.
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documents, it keeps 471 dimensions of feature vectors for the CTGF
with 3 � 3 mask, 2347 dimensions of feature vectors for the CTGF
with 5 � 5 mask, 4842 dimensions for the 7 � 7 mask and
471þ2347þ4842=7660 dimensions for the multidirectional and
multiscale CTGF.
Table 2
Comparison of the proposed dimensionality reduction approach with some PCA variation

dimensions.

Method CTGF_3 � 3_F dimensionality

reduction test results

Feature vector site

(original 2295)

Component (max–min) � Mean (max–min)a 638 

PCA Sum of Eigenvalues = 99.9%b 311 

PCA Sum of Eigenvalues = 100% 2281c

PCA sum of Eigenvalues = 99% 40 

PCA sum of Eigenvalues = 95% 2 

PCA sum of Eigenvalues = 90% 1 

a Means that each selected component has max–min distance � Mean of overall co
b Sum of Eigenvalues = x means that eigenvalues sum of selected components does 

c Components wich eigenvalues = 0 are discarded.
6.2. Laser printer attribution experiments

With the dataset presented in Section 5.1 and methodology
described in Section 5.2 in mind, we now discuss the experimental
results, whereby we validate the proposed approaches against the
s. We used n = 3 for the CTGF filter size, in which the standard feature vector has 2295

Accuracy (%)

Min Mean Max Std. Dev.

93.17 94.44 96.59 1.03

90.29 92.82 95.06 1.48

89.08 91.53 93.19 1.38

88.06 90.49 93.17 1.80

33.56 35.04 36.69 0.95

20.95 23.43 26.07 1.54

mponent max–min distances.

not exceed x.
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state-of-the-art methods. Table 3 shows experimental results
considering the 5 � 2 cross-validation protocol. We applied the
techniques on characters, documents and frames as described in
Section 5.3.

As expected, the worse experiment was DWT_STATS [25]. This
happens because this technique was proposed for color docu-
ments, operating on RGB and CMYK color bands. NOISE_STATS [21]
showed its best accuracy (68.86%) for characters. In this case, the
printer noise is extracted from the letters in a region with small
background perturbation. For frames and documents, this tech-
nique showed worse results (42.26 and 38.81%), as a large
background area is considered hardening the noise estimation.

The RECONST_ERROR [7] was proposed to work only in
characters, then we applied this proposed technique only in the
extracted text letters and it yielded a classification accuracy of
84.86%.
Table 3
Mean Accuracies of 5 � 2 cross validation applying the proposed and state-of-the-art tech

this paper are the ones in bold in the column ‘‘Methods’’.
GLCM [3,4] was the state-of-the-art method which yielded the
best results. Although it was originally proposed to operate on
characters, on frames and documents it also showed decent
classification accuracies (93.62 and 82.56%, respectively). On
characters, it yields the best classification accuracy for a method
proposed in the literature: 94.19%.

The LBP [37] and HOG [41] approaches are general-purpose
texture descriptors but they also showed decent classification
results. HOG yielded a 95.79% accuracy for characters, 74.35% for
frames and 79.66% for documents. LBP yielded 90.20% classification
accuracy for characters, 95.20% for frames and 88.07% accuracy for
documents. These good results have a reason: HOG uses a histogram
of gradients, hence it identifies the printing process artifacts
between the text and background (borders). LBP uses a histogram
of relations between a pixel and its neighbors that also enables the
identification of printer patterns in a muldirectional way.
niques on characters (C), frames (F) and documents (D). The proposed techniques in
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In this paper, we propose to look beyond these simple texture
approaches and analyze the multidirectional and multiscale
properties of textures from printed documents. As Fig. 2 depicts
(Section 4.3), by investigating printed letters in a microscope, we
can see that the texture is spread over multiple directions. Hence,
as expected, the GLCM_MD showed good classification results,
96.99% for characters, 97.15% for frames and 89.30% for
documents. In addition, when considering the multidirectional
and multiscale properties of texture patterns at the same time,
GLCM_MDMS, the method yields the best result for characters:
97.60%. For frames, it also yielded a very good classification
accuracy: 98.38%. For documents, it yielded an accuracy of 88.58%.

The proposed CTGF approaches were used here with filter sizes
of 3 � 3, 5 � 5 and 7 � 7. These filters, when used individually,
analyze the histograms of textures of low-level gradients. These
textures are calculated on a neighborhood given by the filter size.
These descriptors can be regarded as multidirectional filters. The
CTGF with 3 � 3 filter size yielded accuracies of 94.44% for frames
and 83.78% for documents. The 5 � 5 CTGF filter size yielded
accuracies of 87.77% for frames and 80.28% for documents. Finally,
Table 4
F-measure of each technique per printer. The proposed techniques in this paper are th
the 7 � 7 CTGF filter size yielded accuracies of 83.80% for frames
and 76.90% for documents. The multidirectional and multiscale
approach in CTGF results in accuracies of 94.19% for frames and
88.45% for documents.

The fusion of CTGF with the GLCM uses the complementarity of
both techniques. We combined the best proposed CTGF technique
(CTGF_3x3) and the best multidirectional and multiscale tech-
nique (GLCM_MDMS). This last technique better explores the
printing patterns more apparent between the printed material and
background while CTGF explores micro-textures in regions of low
gradient. This fusion yielded the best result of the experiment: a
remarkable 98.47% classification accuracy for Frames. We also
tried this fusion considering the entire document other than on
frames it was not as effective: 91.81%.

Our second discussion on the experiments results is about how
the techniques behave on the classification for each printer. For
that, we show on Table 4 the f-measure as percentages.

As Table 4 shows, the multidirectional approach used by LBP is
useful to identify the texture patterns of printer B4070 in frames,
showing an f-measure of 100%. The voting approach and high
e ones in bold in the column ‘‘Methods’’.



Table 5
Confusion matrix for the best proposed technique: the fusion of the convolution texture gradient filter with 3 � 3 mask and multidirectional and multiscale GLCMs applied on

frames (CTGF_GLCM_MDMS_F). Results shown are in percentages.
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presence of texture in the printed material explain the high f-
measure for this technique for that printer. The f-measure from the
proposed multidirectional and multiscale approaches (GLCM_
MDMS and GLCM_MD) and the fusion of CTGF and GLCM_MDMS
(CTGF_GLCM_MDMS) also present a high f-measure for this
printer. Hence, texture micro patterns explored by these techni-
ques are more important to identify this printer than its noise
signature, explained by the very low f-measure of NOISE_STATS
(45.21%). Another multidirectional approach proposed in this
paper, the GLCM_MD, shows the best f-measure to identify printer
LE260 (100%).

For printer C1150, the multidirectional approach is not totally
discriminative by itself. The highest f-measure for this task was
achieved by the proposed multidirectional and multiscale GLCM
on characters – GLCM_MDMS_C, with an f-measure of 99.04%. The
same behavior is noticed on printers C3240, C4370, H1518, H225A,
H225B. The multidirectional and multiscale texture micro patterns
analyses and also the fusion proposed in this paper showed the
best f-measures (99.16, 99.57, 98.90, 94.59 and 94.76%, respec-
tively). Note also that the proposed methods performed well on
printers H225A and H225B, which are from the same manufacturer
and model, but with few firmware modifications. These are the
most difficult printers to identify (see Table 4).

Printers OC330 and SC315 are easy to identify. Both the
multidirectional and multiscale GLCM and fusion proposed herein
showed an 100% f-measure for printer OC330. The multidirectional
HOG, LBP and the state-of-the-art GLCM also showed an 100% f-
measure for printer OC330. Therefore, any of these techniques is
enough to identify this printer. For printer SC315, both the
multidirectional and multiscale GLCM and the CTGF_GLCM_
MDMS_F fusion yielded 99.62% of f-measure. The multidirectional
Table 6
Confusion matrix for the second best proposed technique: the gray-level co-occurrence m

are in percentages.
GLCM and the state-of the-art GLCM yielded the same f-measure.
Tables 5 and 6 show the confusion matrices for the two best
proposed techniques using percentages.

Finally, we also performed statistical tests to compare all the
techniques. Performing a Friedmann test on f-measure values
yielded a p-value of 2.2262 �10�203, indicating that there is
statistical difference among the techniques. This allows us to
perform the Tukey-HSD pairwise tests. Table 7 shows such results
using the 15 best methods considering the f-measure. Each (line,
column) in this table shows whether a technique wins (line), loses
or draw in the statistical analysis against another technique
(column). The higher the method is in the rows, the better. A
Bonferroni statistical test in this analysis also confirms the
findings.

There are at least two interest aspects to observe in Table 7. The
first one is regarding some of the proposed methods (GLCM_MDMS,
CTGF_GLCM_MDMS and GLCM_MD). The techniques in this cluster
are not statistically significant when compared pairwise with other
members of the cluster. Interestingly, they explore multiscale and
multidirectionality analyses we hypothesized as important for
printer attribution confirming the hypothesis. Also, the two
CTGF_GLCM_MDMS and GLCM_MDMS are the two best performing
techniques. The second one regard the cluster comprising the state-
of-the-art techniques for printer attribution, the two general-
purpose texture descriptors (LBP and HOG) and one variation of the
proposed methods (CTGF 3 � 3 on frames and documents). In this
cluster, most of techniques are statistically significant from most of
others in the same group.

From Table 7, we can see that the multiscale and multidirec-
tional analyses proposed for frames of documents with sufficient
printed material is more effective than the state-of-the-art
atrices multidirectional and multiscale on frames (GLCM_MDMS_F). Results shown



Table 7
Tukey-HSD pairwise statistical test results using f-measures of the 15 best methods present in Table 3. The value 0 means that there is no statistical difference between the

methods. The value 1 means that the method in the corresponding row is statistically better than the method in the corresponding column while �1 means otherwise.
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techniques for the dataset we consider herein (with different letter
sizes, styles and figures). This is noticeable by the two best
techniques ranked in that table, CTGF_GLCM_MDMS_F and
GLCM_MDMS_F.

7. Conclusion

In this paper, we propose new approaches for laser printer
attribution, a problem of paramount importance because they can
be a powerful tool to help solving crimes involving documents. Our
solutions work beyond simple texture approaches as they analyze
how the texture on printed text and figures behave when using
multidirectional and multiscale analysis.

Our first contribution to achieve this task are descriptors based
on statistics of the multidirectional gray-level co-occurrence
matrices (GLCM_MD) and multidirectional and multiscale gray-
level co-occurrence matrices (GLCM_MDMS). The first one
analyzes multiple neighboring directions and the second analyzes
multiple neighboring directions in a pyramidal Gaussian image
decomposition. This can be helpful when texture spreads over
multiple directions and scales. Our second contribution is the
convolution gradient texture filter, which considers low-gradient
micro-texture patterns. This descriptor is also multidirectional as it
calculates textures over a neighborhood with different kernel sizes.
It analyzes the frequency of how a pixel relates to its neighbors on
areas of low-level gradients (i.e., inside printing area) in texts and
figures printed by different printers. We also proposed a fusion
between the analyses made by both of them.
Our last contribution refers to the best place to look at on
printed documents to better investigate printing patterns. By
analyzing areas of text with enough printing material, we can
identify the laser source printer in a better way than just looking at
characters and documents as more printing textures and less
background are available. This technique has the same advantage
of the characters analysis, that is representing a document with
multiple feature vectors, classifying them individually and fusing
the individual classifications in the end. An additional advantage
when compared to a full-document analysis is that this method
can be applied if just parts of the document are available.

We compared the proposed approaches against some state-of-
the-art and some general purpose texture descriptors in Wikipedia
scanned documents and showed their effectiveness when the
characterization occurs in characters, frames and documents. The
techniques proposed herein yielded the first and second best
classification accuracies when applied on the proposed frames.
They were the best to identify 90% of the printers and results are
statistically different when compared with the state-of-the-art
counterparts. The take-home lesson is that the multidirectional
analysis is crucial for laser printer attribution, specially when
combined with multiscale image decomposition.

From our experience, it is important to highlight that laser
printer attribution is a very difficult problem in which many
variables play a role. First of all, the reference scanner used in the
scanning process when defining the training samples and
analyzing an investigated document must be the same as we do
not want intrinsic scanning features to play a key role in the printer
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attribution problem. When using the same scanner for training and
investigated documents, we rule out this effect. The scanning
process inserts intrinsic features in the documents, which can be
used to identify the scanning device. This is known as Scanner
Attribution in the literature and there are very good work on this as
references [42,43] show.

This is not a major problem for the forensic expert because our
application here is to identify the printer source of a document. So,
the scanner variable can be fixed. There are some situations where
different scanners have very similar variables (resolution and
noise), but we cannot guarantee that in all practical scenarios.
Therefore, we recommend that the scanner used for acquiring the
investigated documents should be the same as the one used for
training the classifier. As just a few documents are necessary for
training the classifiers, this is straightforward. This procedure is
also used in other devices attribution (cameras and scanners).
When a suspect camera is investigated, the classifier must be
retrained with data acquired with that camera [44–46].

Second, it is advisable to use, as much as possible, similar paper
to the one collected for investigation. If the investigated document
for printer attribution is a white office Letter with 75 g/m2, it is
recommended to use a similar paper in the training (acquisition of
training documents from the suspect printers). If we use training
data considering photographic reflective paper, for instance, which
are very different from the investigated printed document, it is
likely the proposed methods and their counterparts in the
literature using vision-based approaches will fail.

In addition, the good results presented in this paper must come
with a salt of grain as well. We are not claiming to have solved the
printer attribution problem. The almost 99% classification accuracy
is an important and unrivaled result. However, each real case will
have its specificities. The forensic expert must be aware that
vision-based approaches are an initial, non-destructive and cheap
analysis. However, it must be used, whenever possible, with other
techniques in order to provide the most accurate results as
possible. The vision-based techniques can also be combined to
improve the quality of the attribution.

Finally, we envision at least two research paths for extending
this research. First, an in-depth study of the analyzed techniques
on color documents with proper adaption of the methods for this
scenario is worth exploring. Second, an investigation of more
complementarity approaches of the methods proposed would be
interesting to check if classifier and decision-level fusion could
push the classification results even further.
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Appendix A. Gray-level co-occurrence matrices features

The work of Miklineni et al. [3] proposed a set of features

calculated on top of gray-level co-occurrence matrices. We use this

same set of features in this work.

Before the features are calculated a set of definitions are extracted

from the image: (1) Number of pixels R in a Region of Interest (ROI),

which is the set of all pixels within the printed area of the character;

(2) The gray-level co-occurrence matrices glcm(n, m), which are two-

dimensional histograms per neighborhood direction (dr, dc) showing

the occurrence of pixels n and m in a given distance (dr, dc); (3) The
number of neighboring ROI pixels distant by a (dr, dc) offset Rglcm; (4)

GLCM probability estimates pglcm; (5) marginal probability densities

in the row and column directions pr and pc; (6) histograms of

differences D(k); (7) histograms of sums S(k) and its mean mS; (8)

Mean pixel of a ROI and (9) density of a ROI. Eqs. (A.1)–(A.11)

formalize these calculations.

R ¼
X

ði; jÞ 2 ROI

1 (A.1)

glcmðn; mÞ ¼
X

ði; jÞ;ðiþdr; jþdcÞ 2 ROI

1fIði; jÞ¼n;Iðiþdr; jþdcÞ¼mg (A.2)

Rglcm ¼
X

ði; jÞ;ðiþdr; jþdcÞ 2 ROI

1 (A.3)

pglcmðn; mÞ ¼ 1

Rglcm
glcmðn; mÞ (A.4)

prðnÞ ¼
X255

m¼0

pglcmðn; mÞ (A.5)

pcðmÞ ¼
X255

n¼0

pglcmðn; mÞ (A.6)

DðkÞ ¼
X

0 � n � 255
0 � m � 255
jn � mj ¼ k

pglcmðn; mÞ (A.7)

SðkÞ ¼
X

0 � n � 255
0 � m � 255

n þ m ¼ k

pglcmðn; mÞ (A.8)

mS ¼
X510

k¼0

kSðkÞ (A.9)

mROI ¼
1

R

X
ði; jÞ 2 ROI

Iði; jÞ (A.10)

pROIðkÞ ¼ 1

R
1fIði; jÞ¼kg (A.11)

Eleven features are calculated from the data in Eqs. (A.1)–(A.6). The
first four are marginal means and variances defined in Eqs. (A.12)–
(A.15).

mr ¼
X255

n¼0

n prðnÞ (A.12)

mc ¼
X255

m¼0

m pcðmÞ (A.13)

s2
r ¼

X255

n¼0

n2 prðnÞ � m2
r (A.14)

s2
c ¼

X255

m¼0

m2 pcðmÞ � m2
c (A.15)

The next seven features are the energy of the normalized GLCM,
three entropy measurements, the maximum entry in the GLCM,
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and two correlation metrics.

E ¼
X255

n¼0

X255

m¼0

p2
glcmðn; mÞ (A.16)

Hrc1 ¼ �
X255

n¼0

X255

m¼0

pglcmðn; mÞlog2ð prðnÞ pcðmÞÞ (A.17)

Hrc2 ¼ �
X255

n¼0

X255

m¼0

prðnÞ pcðmÞlog2ð prðnÞ pcðmÞÞ (A.18)

Hglcm ¼ �
X255

n¼0

X255

m¼0

pglcmðn; mÞlog2ð pglcmðn; mÞÞ (A.19)

Pmax ¼ maxf pglcmðn;mÞg (A.20)

r1 ¼
X255

n¼0

X255

m¼0

ðn � mrÞðm � mcÞ pglcmðn; mÞ
srsc

(A.21)

r2 ¼
X255

n¼0

X255

m¼0

jn � mjðn þ m � mr � mcÞ pglcmðn; mÞ (A.22)

Four features, Eqs. (A.23)–(A.26), are obtained from the difference
histogram D(k) defined by Eq. (A.7). They are the energy, entropy,
inertia, and local homogeneity of D(k) respectively.

ED ¼
X255

k¼0

D2ðkÞ (A.23)

HD ¼ �
X255

k¼0

DðkÞlog2DðkÞ (A.24)

ID ¼
X255

k¼0

k2DðkÞ (A.25)

hD ¼
X255

k¼0

DðkÞ
1 þ k2

(A.26)

Five features, Eqs. (A.27)–(A.31), are obtained from the sum S(k)
histogram defined by Eqs. (A.8) and (A.9). They are the energy,
entropy, variance, cluster shade, and cluster prominence of S(k),
respectively.

ES ¼
X510

k¼0

S2ðkÞ (A.27)

HS ¼ �
X510

k¼0

SðkÞlog2SðkÞ (A.28)

sigma2
S ¼

X510

k¼0

ðk � mSÞ
2SðkÞ (A.29)

A ¼
X510

k¼0

ðk � mr � mcÞ
3SðkÞ

ðs2
r � s2

c þ 2srscÞ3=2
(A.30)

B ¼
X510

k¼0

ðk � mr � mcÞ
4SðkÞ

ðs2
r � s2

c þ 2srscÞ2
(A.31)

The last two features use data in Eqs. (A.10) and (A.11). These are

the ROIs variance and entropy, as shown in Eqs. (A.32) and (A.33).

sigma2
ROI ¼

1

R

X
ði; jÞ 2 ROI

ðIði; jÞ � mROIÞ
2 (A.32)
HROI ¼ �
X255

k¼0

pROIðkÞlog2 pROIðkÞ; (A.33)

which completes the set of 22 GLCM features considered.
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