
0

Who watches the watchmen: A security-focused review on current
state-of-the-art techniques, tools and methods for systems and
binary analysis on modern platforms.

Marcus Botacin, University of Campinas
Paulo Lício de Geus, University of Campinas
André Grégio, Federal University of Paraná

Malicious software, a threat users face on a daily basis, have evolved from simple bankers based on social
engineering to advanced persistent threats (APTs). Recent research and discoveries reveal that malware
developers have been using a wide range of anti-analysis and evasion techniques, in-memory attacks and
system subversion, including BIOS and hypervisors. In addition, code-reuse attacks like Returned Oriented
Programming (ROP) emerge as highly-potential remote code execution threats. To counteract the broad-
ness of malicious codes, distinct techniques and tools have been proposed, such as transparent malware
tracers, system-wide debuggers, live forensics tools and isolated execution rings. In this work, we present
a survey on state-of-the-art techniques that detect, mitigate and analyze the aforementioned attacks. We
show approaches based on Hardware Virtual Machines introspection (HVM), System Management Mode
(SMM) instrumentation, Hardware Performance Counters (HPCs), isolated rings (e.g., Software Guard eX-
tensions), as well as others based on external hardware. We also discuss upcoming threats based on the
very same technologies used for defense. Our main goal is to provide the reader with a broader, more com-
prehensive understanding of recently-surfaced tools and techniques aiming at binary analysis for modern
platforms.

CCS Concepts: rSecurity and privacy→Malware and its mitigation; Software reverse engineering;
Information flow control;

General Terms: Binary Analysis, Malware, Security, HVM, SMM, Introspection

Additional Key Words and Phrases: Binary Analysis, Malware, Security, HVM, SMM, Introspection

ACM Reference Format:
Marcus Botacin, Paulo Lício de Geus, André Grégio, 2017. Who watches the watchmen: A security-focused
review on current state-of-the-art techniques, tools and methods for systems and binary analysis on modern
platforms. ACM Comput. Surv. 0, 0, Article 0 (To appear), 41 pages.
DOI: 0

1. INTRODUCTION
Keeping current systems secure is a task that is both critical and hard to achieve. Cur-
rent attacks go from remote code execution, such as Return Oriented Programming
(ROP), to targeted, sophisticate malware attacks. Reported data shows malware dis-
semination alarming rates: figures exceeding 60 thousand new samples per day [Ash-
ford 2010]; mobile devices growing as targets [Townsend 2016]; losses amounting to
around 200 million dollars in the first quarter of 2016 [Fitzpatrick and Griffin 2016],

This work was supported by the Brazilian National Council of Technological and Scientific Development
(CNPq, Universal 14/2014, process 444487/2014-0) and the Coordination for the Improvement of Higher
Education Personnel (CAPES).
Author’s addresses: Marcus Botacin and Paulo Lício de Geus, Institute of Computing, University of Camp-
inas; André Grégio, Department of Informatics, Federal University of Paraná.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© To appear ACM. 0360-0300/To appear/-ART0 $15.00
DOI: 0

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:2 Botacin et al.

and so on. To handle security incidents generated by these threats, researchers have
proposed plenty of tools to detect/prevent (e.g., Intrusion Detection/Prevention Sys-
tems, packet filters), mitigate (antivirus, vaccines) and analyze (sandboxes) malicious
code. Malware in general have been increasing both in numbers and in complexity,
bypassing filters through polymorphism, evading sandboxes through virtual environ-
ment detection and even subverting whole system operation by taking over control of
hypervisors. Therefore, new approaches are required to address this threat.

The bulk of novel defensive approaches is based on techniques that
stealthily/transparently acquire data from target systems, notably through Sys-
tem Management Mode (SMM) and Hardware-Assisted Introspection. Such analytical
approaches are hardware-supported and run in the most privileged ring, as is desirable
for reliable experiments [Rossow et al. 2012]. As a result, a fine-grained view of ana-
lyzed subjects is possible, even if they make use of evasive actions. In addition, other
approaches have emerged, such as lightweight, performance-counter-based ones and
isolated execution rings, thus preventing payload tampering. Many of the proposed
approaches are still sparsely used, while threats to them are constantly evolving. This
leads to a dangerous scenario of stealthy and Operating System-independent threats.

Therefore, it is important to provide an overview of the current situation, as well as
to present malicious applications built with these underlying techniques and related
work that might guide novel research in the field. Hence, this survey can be seen as a
comprehensive review of current, state-of-the-art techniques for system security based
on recently established and existing hardware-assisted solutions, which aims to better
position them in the security context. In summary, our paper presents the following:

Motivation: many distinct security-related solutions have been arising, noticeably
hardware-supported ones. However, a clear scenario is not established yet, making it
harder to identify which solution best fits each usage scenario. Therefore, we propose
to shed some light on the advantages and limitations of these solutions.

Contribution: our main contribution is to define a panorama of current state-of-
the-art monitoring tools, in order to allow researchers to identify existing development
gaps and so to better position their solutions.

Target: we are mostly focused on x86-based systems, since it is the most deployed
and targeted architecture, which allows us to understand security solutions evolution
over time. We also target, whenever possible, ARM-based systems, since these are
playing a major role in mobile devices and are also quite present in the IoT world.

Article’s outline: in Section 2, we show work closer to ours; in Section 3, we dis-
cuss the properties and requirements for modern security solutions; in Section 4, we
present a background on monitoring technologies used to deploy modern security solu-
tions; in Section 5 we show common challenges faced when implementing security so-
lutions using the presented technologies; in Section 6, we introduce security solutions
implemented using the previously mentioned technologies; in Section 7, we summarize
existing development gaps and research opportunities; finally, in Section 8, we draw
our conclusions.

2. RELATED WORK
In this section, we discuss other surveys on the same topic as our paper. Compared to
these other works, we try to survey the entire field of malware analysis, while others
focus only on works that are closely related to their own approaches.

This way, while referring to ROP attacks for instance, we are not bound to minor
details nor to describe known policies, such as Write⊕Execute [Roemer et al. 2012].
Instead, we try to figure out how such policies can be deployed on modern systems. As
for malware, our aim is not to rehash static analysis limitations [Moser et al. 2007] or
the exhaustive list of existing anti-analysis tricks they employ [Marpaung et al. 2012;

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:3

Gao et al. 2014], but to present distinct technologies and methods of implementing
countermeasures, and to discuss hardware issues as [Pék et al. 2013] did.

In this sense, our work can be considered as an updated, complementary version
of the survey on dynamic analysis [Egele et al. 2008], which presented many system
monitoring implementations, such as DLL injection, SSDT hooking, and so on. How-
ever, we target implementations enabled by modern systems, such as those assisted
by hardware. In this context, the closest work to ours is about Trusted Execution En-
vironments (TEEs) [Zhang and Zhang 2016]. We begin from where they stopped and
cover the topics in a broader way.

3. SECURITY SOLUTIONS REQUIREMENTS
In this section, we provide an overview of properties and requirements that are desir-
able for security solutions, such as malware analysis, forensics and detection systems.

3.1. Transparency
An analysis system should be evasion-resistant, since malware samples often try to
evade analysis environments [Chen et al. 2008a]. Given that most analysis systems
run on top of emulators and/or software-based VMs, malware can detect them by test-
ing instruction behavior, which often differs from the ones presented in a real CPU.
[Martignoni et al. 2009] describes a method of fuzzy-testing a CPU emulator (called
Red Pill) that generates tests for emulator identification (extended in [Shi et al. 2014]).
In addition, [Paleari et al. 2009] developed a way of automatically generating red pills.

Although there are research efforts to overcome these challenges, proposed solutions
are very costly, since they either require execution in multiple environments, such as
BareCloud [Kirat et al. 2014] and Splitmal [Balzarotti et al. 2010], or require a phys-
ical machine, such as Barebox [Kirat et al. 2011]. A more viable approach requires
keeping simpler hardware, which in turn demands a more transparent set of mon-
itoring techniques. In [Dinaburg et al. 2008a]’s definition, transparency is achieved
by meeting the following criteria: (i) higher privilege—the analyzer has to be more
privileged than its subject; (ii) no non-privileged side effects—any instruction that
induces side effects should be handled by an exception able to hide it; (iii) identi-
cal basic instruction semantics—each executed instruction needs to have the same
effect and lead to the same next instruction; (iv) transparent exception handling—
given an exception on a given ith instruction, the exception handler must return to the
i+ 1th instruction; (v) identical measurement of time—the measurement of time
has to be identical within and without the analyzer, but as this requirement is hard to
fulfill (exception handling has not constant time), small differences are tolerable. Most
of these criteria are naturally met by bare-metal systems, such as those based on SMM
and HPC-enabled ones. In addition, HVM may also meet them, since code is allowed
to run on the native processor.

3.2. Live loading
Forensic solutions should be able to load on demand, only collecting data when re-
quested. Thus, no privacy issue would be raised nor performance penalties would be
imposed due to constant monitoring. While built-in solutions are not able to meet this
criteria because they need to be pre-launched, HVM has a late-launch ability.

3.3. Performance
Real time security solutions should not degrade system performance in order to keep
the original application “usable”. In this sense, ordinary monitoring systems such as
software-VMs may be unsuitable, but hardware support improves performance [Op-
sahl 2013].

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:4 Botacin et al.

First-generation performance counters (e.g. LBR and BTS) stored captured data on
a per-branch basis, while the modern processor tracer (PT) uses an efficient encoding
that stores target addresses only for taken branches. Moreover, memory-based systems
can efficiently provide data by relying on snapshots. By using memory management
support, system pages can be flagged as not present, thus causing page faults when
written. In this mode, only the affected pages are supplied to the monitor, since the
others remain unchanged. This mode may be viewed as derived from the copy-on-write
Unix concept, often named as dump-on-write. Such memory support is available on
modern MMU systems.

3.4. Synchronicity
An important project decision for system-integrity checking solutions is how data will
be collected—on a periodic, snapshot basis or in an event-driven one. Most approaches
have a significant drawback regarding their snapshot feature, making them prone to
timing attacks. Also known as transient attacks, timing attacks allow for an attacker
to remain stealthy by executing malicious activities during the interval between two
snapshots. As a result, modern monitoring approaches must be implemented in an
event-driven way to remain unaffected against timing attacks. However, implement-
ing an event-aware monitor requires more introspection, since translating signals into
events demands deeper understanding of the system. In addition, sustained monitor-
ing may create performance bottlenecks for bus snooping approaches.

3.5. Development effort and trusted code base
Any security solution must take into account its development effort and the required
Trusted Code Base (TCB), i.e. the amount of code that must be trusted a priori. Re-
lying on existing libraries and features reduces the development cost, but increases
the trusted code base. For instance, a kernel driver may rely on existing O.S. support
but must restrict its threat model to userland, since the whole kernel must be trusted.
An HVM-based solution, in turn, is able to monitor both kernel and userland, but re-
quires writing a costly hypervisor monitor. The same reasoning is valid for SMM-based
solutions, but in this case, as they operate in the BIOS, even NIC drivers require im-
plementation within this level to support network access.

3.6. Build once, run always
A desired feature for a detection system is that, once developed, it could run without
requiring refactoring/recompilation. However, as signature-based techniques are very
popular, solutions based on such checking do not often meet this criteria. For example,
many solutions are built on top of Dynamic Binary Instrumentation (DBI) tools, which
allows for a fine-grained analysis at the instruction level. DBI’s use in security became
popular due to DynamoRIO [DynamoRIO 2001] and PIN [Intel 2015].

As a downside, execution in a DBI environment may be detected in many ways, such
as by executing an instruction whose translation turns into an abnormal behavior,
and timing and code-cache attacks [Polino et al. 2017]. VAMPIRE [Vasudevan and
Yerraballi 2005] and SPIKE [Vasudevan and Yerraballi 2006b] attempt to solve this
by allowing for stealthy fine-grained tools such as Cobra [Vasudevan and Yerraballi
2006a], thus being able to translate some known failure-prone instructions into surely
successful ones.

However, all known fail-prone instructions require translation, which is not only
impractical [Kang et al. 2009], but also prone to evasion by malware that employ an as
yet unknown “evasion trick”, forcing a recompilation/reinstrumentation to be detected.
To handle modern threats, the monitoring system should be able to natively handle
such cases (e.g. solutions based on HVM or SMM meet this criteria).

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:5

3.7. System-wide view
Each threat model imposes a distinct monitoring level requirement. While application
misbehavior detection may be limited to userland, forensic procedures may require
a system-wide view covering the kernel and even the BIOS. So far, the most used
technique for system-wide monitoring has been traditional virtual machine introspec-
tion (VMI), such as Anubis [Bayer et al. 2006; ISECLAB 2010] on top of QEMU [Bel-
lard 2005] for malware analysis, Danubis [Neugschwandtner et al. 2010] version for
drivers, or Bitblaze [Song et al. 2008] and Virtice [Quynh and Suzaki 2010] built on
top of TEMU. In fact, VMI has become popular to the point of having automatic in-
strumentation tools, such as LibVMI [LibVMI 2015]. However, modern systems have
become more complex: most native software is already virtualized; the BIOS runs crit-
ical code; DMA attacks are widespread; and even the chipset is able to control the
processor. In this scenario, a modern security solution must consider these factors in
its threat model and properly handle such events. In this line of thought, solutions
based on SMM are able to analyze userland, kernel and even the hypervisor.

3.8. Abstraction levels and the semantic gap
Monitoring solutions can be placed on many levels along a modern computer system
stack, providing a solution with a distinct system view: a kernel driver may interpret
a given pointer as a function; hypervisors may understand the same pointer as a CALL
instruction; SMM code may look to that and see only bytes. Views on each level are
named abstraction levels, and those required by the solutions discussed in this paper
(shown in Figure 1) are presented in Figure 2.

Fig. 1: Placement of distinct monitoring
techniques.

Fig. 2: Abstraction levels for distinct mon-
itoring techniques.

For humans, byte information is not very meaningful whereas function names are
easier to interpret. Abstraction levels are classified according to their closeness to hu-
man interpretation: the higher the level, the closer the ability to be interpreted. On
the one hand, it is better that the monitor is far from the monitored object, since it is
less prone to subversion. On the other hand, it incurs in more distance from human-
readable information. This distance is named semantic gap, and the data collected
in a given ring must be enriched with additional data in order to bridge such gap, a
procedure named introspection.

Battle of the rings. Modern processors isolate distinct classes of applications by
hardware-imposed privilege limitations. The privilege levels in the x86 architecture

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:6 Botacin et al.

are known as rings, which are directly related to abstraction levels: userland appli-
cations run on ring 3; the kernel runs on ring 0; other rings were aimed to be used
by dynamic libraries and drivers, but are not used in practice. Recently, as new mon-
itoring mechanisms have been proposed, new ring names were christened in order to
highlight the higher privileges they impose. This way, HVM became known as ring -1,
since it is more privileged than the kernel’s and userland’s, and SMM became known
as ring -2, since it can monitor even hypervisors. Currently, a more privileged sys-
tem mode known as ring -3—the Management Engine (ME)—has been employed to
monitor SMM.

Semantic Gap and Introspection. Semantic gap bridging may be performed in
many ways, each exhibiting advantages and limitations. As presented in [More and
Tapaswi 2014], the techniques may be classified in categories like memory, I/O, syscall
and process. Memory introspection is based on memory views obtained, for instance,
from dumps and consists in interpreting control blocks in memory, such as process
structures. Besides being used in virtual machine introspection, it is largely used in
malware scanner solutions, which search for malicious patterns in system memory.
One way to implement this technique is by using shadow memory pages. I/O intro-
spection uses a similar technique, but applies it to I/O; a straightforward application
is to enforce I/O integrity. Syscall introspection is focused on context information,
such as caller and arguments. Since a process is a high-level construct, its informa-
tion is not available when monitoring at lower levels (e.g. processor and hypervisor).
To identify the calling process, one might use the CR3 register, as it is the page ta-
ble pointer and is unique for each process. In addition, context switches may also be
identified, since CR3 changes accordingly; on HVM-based systems, the CR3 register
may be monitored through VM-EXITS. When handling syscalls, knowledge about other
registers, such as eax, helps to identify the target syscall. Process introspection is
focused on given, specific process information, such as accessed resources, called func-
tions etc. The first proposed mechanisms to implement it relied on hooking, which is
invasive. Recently, Botacin et al. [Botacin et al. 2018] presented a process introspec-
tion mechanism for branch-monitor-collected data with no hooks. The branch instruc-
tion addresses are translated to function call names based on previous enumeration of
loaded libraries and their respective function offsets.

However, developing an introspection technique for semantic gap bridging is still
a hard task, since it requires OS internals knowledge and manual work. Despite the
automated techniques proposed in the literature [Fu and Lin 2013; Schneider et al.
2011; Saberi et al. 2014; Dolan-Gavitt et al. 2011], some tasks are still unsolvable,
since there are one-to-many mappings, thus making it harder to infer which high-level
construction a given low-level one refers to. A variating semantic gap problem arises
when a monitoring solution aims to inspect a ring positioned more than one ring above
it, which is called nested/coupled semantic gap. In this case, semantic gap bridging
techniques must be repeatedly applied in order to retrieve views from each level. This
scenario appears in practice when the SMM mode wants to inspect the code running
inside a hypervisor.

3.9. Placement and warning ability
An important decision for a monitoring system is the monitor placement. Internal mon-
itors, such as the ones using existing hardware features, are easy to deploy and have
a smaller semantic gap to be bridged but are, however, more prone to be subverted.
External monitors, such as a bus-connected System-on-a-Chip (SoC), are tamper-proof,
but implementing them may require hardware design knowledge. In addition, external
hardware approaches have the significant disadvantage of being passive tools, leaving

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:7

no possibility of blocking threats. Hence, researchers have yet to propose ways to block
policy violations.

3.10. Integrity and tamper protection
A secure system should keep its own integrity for obvious reasons: it may be turned un-
able to detect attacks; compromised forensic solutions do not meet legal requirements
and provide wrong information etc. Ensuring integrity, however, poses challenges (e.g.
the required TCB) and imposes limitations. Security solutions must also spend time
checking their own integrity (e.g. calculating memory hashes) apart from just monitor-
ing a target system. Another concern is untrusted media: many solutions have to im-
plement their own network packet checkers to prevent attacks against the monitoring
solution, thus invalidating collected data. In addition, as some solutions are intended
to be loaded onto compromised systems, their loading process requires verification.
An example of a modern checking technique is to implement a lie detector—a system
which collects the same data from multiple sources and compares them to check for
tampering at any point. One way to implement it is through collecting data from both
inside and outside a running VM.

3.11. Compatibility and Integration
Security solutions are often built on top of preceeding ones to benefit from available
knowledge. Thus, despite not being a requirement, legacy support is a desirable fea-
ture, since it allows integrating existing solutions to newly developed ones. For in-
stance, many solutions presented in this work, noticeably the debuggers, are inte-
grated with GDB.

4. BACKGROUND ON SECURITY MONITORING TECHNOLOGIES
We present a background and an overview of the most recent technologies used to
deploy security solutions. We also present how each one of them meet the previously
mentioned desirable features/requirements.

4.1. Hardware Virtual Machines
The x86 and x86-64 CPUs have three operating modes: Protected Mode, which is the
processor’s native mode; Real-Address Mode, which extends the previous mode; System
Management Mode, detailed in further sections. Virtualization instructions introduced
by Intel VT-x [Intel 2013] and AMD-v/SVM [AMD 2013] platforms add new operating
modes, extending the CPU instruction set. In this section, we cover the concepts of
HVM operation focused on the x86-64 architecture, with implementations for both
platforms. In these, the two added operating modes—root and non-root—are associated
with hypervisors and guest machines, respectively. Transitions from non-root to root
modes are known as VM-EXIT, which work like an exception/trap able to dynamically
configure the set of spanning actions. After handling these events, the execution is
resumed through VM-RESUME or VM-ENTRY. Figure 3 illustrates a basic scheme
of these new modes and events. During transitions, instrumented hypervisors can log
the exit reasons as well as perform data collection, since CPU registers are directly
accessible.

An important change that comes with using virtualization instructions is in the
memory controller, since HVMs implement the double address translation mechanism.
In a traditional hypervisor, guest virtual addresses are translated into guest physical
ones (same as the host physical addresses). Intel and AMD deployed techniques called
Extended Page Table (EPT) and nested page table (NPT), respectively, that add an
additional translation layer. On these systems, guest virtual addresses are translated
into guest physical ones, but contrary to the previous implementations they are further

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:8 Botacin et al.

Fig. 3: VM operating layers, new modes and special instructions.

translated before getting to the host’s physical address lines. This process can be seen
in Figure 4. Knowledge of this mechanism is important, as the second translation
level could be instrumented to monitor memory accesses through translation-faults.
However, such memory monitoring is not broad enough to cover the system as a whole,
given that these are CPU memory accesses; Direct Memory Accesses (DMA) may also
happen, and those are external to the CPU. DMA monitoring is enabled by another
mechanism called IOMMU that intercepts Input/Output (I/O) actions. More robust
monitoring may be accomplished by following both approaches.

Fig. 4: VM memory operation scheme with and without hypervi-
sor paging.

Despite many instrumentation features enabled by HVM, the main advantage is
the ability of running code directly on the processor, without the need for instruction
translation. This is particularly desirable for malware analysis systems, and often a
drawback of DBI-based systems subject to instruction translation side-effects. Since
this type of analysis system is not susceptible to CPU emulation bugs, malware run-
ning on it would not be able to rely on execution side effects, ones that could help
identify whether it is running inside a virtual environment or not. Therefore, a system
like that achieves a certain degree of transparency.

A Hardware-assisted Virtual Machine (HVM) is configured through special control
structures, named Virtual Machine Control Structure (VMCS) and Virtual Machine
Control Blocks (VMCB) on Intel and AMD systems, respectively. These blocks include
the initial system state, memory allocation and VM-EXITS configuration. Their advan-
tage resides in the system not requiring to be booted up in a virtualized environment: it
may be conveniently moved to another at runtime (late launch). Late launch broadens
the options for security analysts to perform live forensics, since it does not require re-
boot or shutdown. In late launch, the initialization blocks are set to the current system
state, but it does require a driver to set specific registers at a privileged execution level.
When aiming to implement a security framework based on HVM, the usual approach
is to instrument the hypervisor layer in root mode to collect information from non-root
mode, and then send it to an external client. In this case, the abstraction is similar

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:9

to the one used in operating systems: the VM monitor runs in kernelspace while the
analyzer runs in userspace. Even though the external client is stealthy for malware,
the hypervisor itself is not. One should notice that the malicious code could map the
hypervisor’s physical memory as its own, and then launch an attack from within. A
solution for that issue is to put the instrumented framework in a page where malware
cannot access, which is done through the newly presented memory mechanism and its
fault handler. The internal driver that loads the hypervisor can also be detected. To
counter that, a tool may employ rootkit techniques to hide itself from the system, or
else to use the same method to map the HVM-loader driver to a protected physical
page.

The challenges faced when developing HVM-based security solutions vary accord-
ing to their monitoring goal: (i) CPU registers can be directly monitored through hy-
pervisor reads and memory access can be monitored through translation faults and
IOMMU; (ii) system call tracing requires bridging the semantic gap by employing
taint tracking and event analysis; (iii) breakpoints and step-by-step execution require
more sophisticated approaches. Breakpoints may be divided as software and hardware
breakpoints. Software breakpoints are not transparent since they modify instruction
bytes. Hardware breakpoints are limited in number and are shared between host and
guest, and so is step-by-step execution. The way tools overcome these limitations is
to monitor the system by raising periodic exceptions. One might hook the memory
management unit to set a given page as read-only, thus causing a page fault at each
instruction execution, or set performance counter registers to their maximum value,
in order to raise an overflow exception at each running step.

4.1.1. VMI limits. Despite all the benefits HVM can provide, some limitations are
technology-inherent. In this section, we discuss these limitations and how they affect
the development of security solutions.

First of all, we should be aware that the transparency claims made by different au-
thors are not totally supported by processor vendors. According to Pearce et al. [Pearce
et al. 2013], VM transparency would be achieved by accomplishing the three Popek
law requirements: efficiency, resource control and equivalence. Other authors, how-
ever, talk about the unfeasibility of such implementations [Garfinkel et al. 2007]. In
fact, vendors do not make such claims and often do not consider transparency a major
requirement, though a desirable one. This way, an analysis system will be as transpar-
ent as the vendor wants it to be.

Second, HVM-support improvements may affect the HVM effectiveness and the way
different security techniques are applied. [Lengyel et al. 2014] presents common pit-
falls when designing VMI systems and delves into some of these modifications. The
first issue refers to TLB splitting, usually sectioned into data (dTLB) and instructions
(iTLB). Newer CPUs have a third section called sTLB that caches the evicted/flushed
entries from the standard ones, resulting in a considerable performance boost. TLB has
been used in the security context for either defense or attack purposes. Grsecurity [Gr-
security 2013], for instance, employed TLB to implement page execution attributes be-
fore NX was launched, whereas the Shadow Walker rootkit [Sparks and Butler 2005]
achieves its stealthiness through a TLB poison. For this attack, the rootkit remains
stealthy by taking advantage of the fact that “a single virtual address can point to
distinct pages, according to which TLB is being used”. By leveraging this technique, it
could, for example, bypass an AV software, since the latter would be unable to scan the
malware pages.

Lengyel et al. also point out that an effective defense mechanism against such at-
tacks is to periodically flush the TLB, since this reduces the analysis-time opportunity
window. Windows 7 and later versions implement this approach. In addition, sTLB

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:10 Botacin et al.

also makes it harder to detect a stealthy rootkit, as the former “can only store one ver-
sion of the evicted TLB entries”. More importantly, VMI may be employed to skip the
sTLB. By marking pages as execute-only—an EPT feature—data from iTLB and dTLB
will differ and CPU address translation will go through the primed page-tables again,
thus restoring stealthy techniques eventually used. Moreover, newer CPUs rely on
tagged TLB, a mechanism that labels data in order to manage it, resulting in another
performance boost. As the TLB is not flushed anymore, it opens a new opportunity for
stealthy rootkits. Another bypassing possibility refers to the EPT mechanism: when a
VM-Exit occurs, its violation reason (Read, Write, Execute) is asserted. However, only
the start address is specified, thus “an attacker who is able to break the assumption
that the violation happened at exactly the pointer location may evade an analysis”. As
far as we know, Intel is working on such limitation. When building a VMI-based sys-
tem, one should also care about monitor triggering, since a passive monitor (snapshot-
based) may be evaded by a timed execution. [Wang et al. 2015a] presents applications
employing this evasion technique, including stealthy file transfer and backdoor en-
abling.

In summary, despite HVM-based systems having raised the bar against evasive mal-
ware, sandboxes may still be detected by advanced threats [Brengel et al. 2016]. A
complete discussion of HVM evasion is provided in [Pék et al. 2013]. Even though some
evasion tricks have already been mitigated either by introducing new hardware or by
leveraging evasion-aware programming guides, the cited work shows how transparent
machine vendors are implementing these capabilities.

4.2. System Management Mode
The System Management Mode (SMM) is a CPU operating mode that acts as a mech-
anism for implementing system control features like power management. The SMM
operation abstraction is similar to the one presented for HVM: the system under
monitoring executes in ordinary CPU modes (guest-analogous) and the SMM moni-
tor (hypervisor-analogous) in SMM mode. Getting into SMM is triggered by a System
Management Interrupt (SMI) and leaving by executing the RSM instruction. The RSM
exit instruction can only be executed in SMM mode, which protects the code, while the
SMI may be triggered in a variety of ways, e.g. by PCI devices, by directly writing to
CPU pins, with a periodic timer or by ACPI/APIC interrupts. Some events need to be
rerouted in order to trigger an SMI, something that can be done through the chipset or
the Interrupt Descriptor Table (IDT). When an SMI is triggered, the whole execution
context is saved in the System Management RAM (SMRAM), followed by execution of
the corresponding event handler. The SMRAM is protected thanks to its being address-
able only in SMM mode: its address range is rerouted to VGA when running in other
CPU modes. And as all protected data and code is stored in SMRAM, any development
is severely limited to a few KBs.

In SMM mode, the addressing mode provides a direct mapping to physical pages,
i.e. no translation is performed. This is quite different from HVM, since SMM code
developers or system analysts also need the CR3 registers to bridge the semantic gap
of virtual pages. One drawback lies in the fact that memory addressed this way is
restricted to 4GB, even in Physical Address Extension (PAE)-enabled systems: the
transition to other CPU modes with full access to system memory requires exiting the
SMI mode. To overcome this, one may use some kind of subversion or insertion of a
callback instruction directly in the program code. The SMM code is initialized by the
BIOS, therefore requiring its replacement by an instrumented one using, for instance,
Coreboot [CoreBoot 2015] and SeaBios [SeaBIOS 2015].

Building an analyzer in SMM mode is a natural follow-up: this mode is well pro-
tected from the “guest” system, which remains completely unaware of its presence and

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:11

therefore allows composing a strong threat model. Besides, such analyzer would also
run instructions directly on the processor with no address translation, but still having
memory access. One may think of such system as a more fine-grained, bare-metal an-
alyzer. Its architecture also follows a client-server model, with the SMM code playing
a server role and some code on another, network-connected machine playing the client
role. As this system runs in a low-abstraction level with no OS support, all commu-
nication needs to be implemented from scratch, including network drivers and proto-
cols. Additionally, as data is transmitted through an insecure media, cryptography and
error detection/correction also is expected in such communication. Analyzers’ initial-
ization may be done using SMI triggering facilities, such as listening to an external
serial port or using the Intelligent Platform Management Interface (IPMI). Security
features may be implemented by making use of the SMM architecture, according to
the desired requirements, such as data watchpoints, I/O monitoring, step-by-step exe-
cution and so on. They all work similarly, i.e. by triggering an SMI event for a given
action (e.g. breakpoints may be implemented by triggering an overflow event on per-
formance counters).

When building such systems, it is important to reduce the attack surface. Malware
that try guessing whether they are running on an SMM-monitored environment must
be properly handled. Some malware counteractions may include BIOS overwriting,
which may be avoided by employing hardware-assisted Trusted Boot. One must also
realize that kernel malware have access to debug and performance counter registers,
which may be harmful to an analysis process based on such values. This could be mit-
igated by periodically triggering SMI to check their values. Another problem is BIOS
fingerprinting: as BIOS is rewritten, original hash values and strings are changed. As
such, a malware could compare these values to known BIOS-vendor ones to detect the
monitoring environment. An effective way to overcome this problem is to perform on-
line BIOS flashing back to the original one, just after the modified BIOS is loaded in
memory. It does remain as an open problem for systems that do not allow online BIOS
flashing. As for the future, SMM mode will certainly undergo changes, the most signifi-
cant one being the SMM virtualization (STM), which would deny most SMI requests. A
possible solution to this might be rewriting larger parts of BIOS code for earlier event
handling, albeit significantly more complex.

4.3. Management Engine and Secure Processor
The Management Engine (ME) is another management mode present in Intel chipsets,
originally aimed to support Intel’s Active Management Technology (AMT). However,
Intel recently started using it for executing system sensitive applications. ME may be
seen as an embedded processor with its own timer, RAM/ROM memories and DMA. As
this mode cannot address system memory, DMA is used to transfer system data to ME
mode. Similarly to the SMM mode, memory is accessed as physical addresses. As ME
can externally monitor and control the main processor, it can interfere even in SMM
and BIOS codes, besides kernel and userland rings. These capabilities resulted in back-
door suspicions [Wallen 2016]. Despite its capabilities, ME usage for security purposes
is, however, still a limited research field with few published articles or available tools
as compared to other solutions. Academically, ME was investigated in [Ververis 2010],
but a wide range of research still awaits further progress. In addition, environments
like ME are not an exclusivity of Intel: a similar solution is present in AMD processors,
called Secure Processor [AMD 2016].

4.4. Performance Counters
In this section, we introduce performance counters as lightweight alternatives for se-
curity solution implementations. In general, existing counters may be classified in two

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:12 Botacin et al.

groups: sampling-based, which counts the number of occurrences of a given event, and
trace-based, which logs data on a per-event basis.

4.4.1. Sampling-Based. Intel CPUs include the Precise Event Based Sampling (PEBS)
mechanism, a specific-purpose CPU feature that provides detailed information about
hardware and software events, such as cache misses, retired instructions, mispredicted
branches and others. With PEBS, Model Specific Registers (MSRs) are used to define
the monitored events and poll interval/maximum counting value, generating an inter-
rupt if a threshold is reached. In the context of profiling-based solutions, these values
are periodically collected to establish a normal behavior used to detect deviations. In
the context of tracing-based solutions, such values can be set to their maximum ranges,
thus causing overflow at each instruction execution and allowing for step-by-step exe-
cution.

4.4.2. Trace-Based. The first real-time, trace-based counter available on Intel proces-
sors was the Last Branch Record (LBR). LBR is a set of registers organized as a circular
list, which collects source and target addresses of taken branches. LBR allows filter-
ing collected events by branch type (near/far jumps, CALLs, RETs etc.) and by context
(kernel, userland). LBR’s major drawback lies with the data having to be collected by
polling. The Branch Trace Store (BTS) mechanism may be seen as a solution for the lat-
ter, since it allows data to be stored on OS pages, raising an interruption when a given
threshold is reached and so not losing any data. Understandably, the is concern over
BTS generating huge amounts of data. In addition, a common drawback of both LBR
and BTS is their system-wide view, with no process filtering. Recently, Intel released
Processor Trace (PT), which features the ability to collect not only branches, but gen-
eral system events too, with interrupt raising when the threshold is reached. Unlike
BTS, PT is able to filter processes by PID through using the CR3 register. Moreover,
PT employs an efficient encoding mechanism, supplying target branch addresses only
for the taken branches, as not taken ones may easily be obtained from the instruction
pointer.

4.5. Isolated Rings
As more privileged rings have been used for inspection, privacy-concerned applications
had to be moved to where they could not be monitored. As a result, isolated rings/modes
were developed in a system-independent manner so that monitoring could not be done
by other system facilities. The most notable isolation solution nowadays is Intel’s SGX.
Isolated rings like SGX, however, are not exclusive for Intel processors: ARM proces-
sors have a similar ring named Trust Zone [ARM 2009], used for instance on the re-
cently launched Android Nougat [Crowley 2016]. This section covers details of both
solutions.

4.5.1. SGX. Intel Software Guard Extensions (SGX) are hardware features and a set
of instructions that allows software to run in an isolated mode—called enclave. This
mode is OS-independent, with its own API calls and also encrypted memory pages that
are destroyed after use. The SGX underlying crypto systems also allow software veri-
fication and attestation, which aims to offer tamper-proof capabilities. SGX’s integrity
itself is assured by hardware TPM and TXT systems. As SGX is based on a new in-
struction set, programs should be rewritten to include the instructions that allow for
enclave initiation, attestation, execution launch, and destruction. SGX crypto API and
SDK use are detailed in [Aumasson and Merino 2016] and [Mandt et al. 2016]; Jain
et al. provide a research environment for SGX-based applications that is based on a
QEMU extension covering SGX instructions, named OpenSGX [Jain et al. 2016].

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:13

4.5.2. TrustZone. The TrustZone environment exhibits similarities to SGX’s. As SGX-
based systems run applications in and out of enclaves, ARM’s TrustZone also has two
execution modes: the secure one (trusted) and the normal one (rich). Transitions from
the normal to the secure mode are performed by the Secure Mode Call (SMC) instruc-
tion. Like SGX, TrustZone also implements memory protections on the MMU: the nor-
mal mode cannot access secure zones; conversely, the secure mode can access normal
pages. Unlike SGX, TrustZone directly affects peripherals, since Fast Interrupt Re-
quests (FRQ) can only be raised from secure mode.

4.6. Hardware features
Apart from using special processor operating modes and counting on purposely-
developed hardware, system monitoring for security purposes may rely on additional
hardware features, such as general PCI cards, GPU and transactional memories.

4.6.1. PCI Cards. PCI cards are expansion cards present in most computer systems.
Besides performing their specific-purpose actions, such cards are allowed to access the
whole system memory through direct memory access (DMA) in a completely stealthy
manner, thus being good candidates for security-related tasks. PCI-based DMA access
may be implemented through device drivers and/or firmware code. In virtualized sys-
tems, the virtualized PCI cards may also be instrumented, as in Xen’s dom0. As for
limitations, no triggering is available, which suggests this technology is more suitable
for snapshot-based data collection. Furthermore, no context information is available
from this abstraction level, thus making it harder to bridge the semantic gap.

4.6.2. GPUs. GPUs are PCI devices that, beyond their intended graphic purposes,
also enable massive parallel processing. The general programming model of GPU de-
vices is through code offloading, by moving data from main memory to GPU memory
and back. Besides using GPU processing capabilities themselves to implement secu-
rity solutions, analysts can also benefit from GPU memory access capabilities. Since it
is a PCI card, it also has DMA access, thus able to access the whole system memory.
Moreover, the GPU programming model eases memory transfers as they are routinely
done. The existing limitations are the same aforementioned for general PCI cards.

4.6.3. Transactional Memories. Transactional memory is a concurrency control hard-
ware mechanism that allows operations to be executed atomically, applying a concept
similar to database transactions. Transactional memory support is present on modern
system platforms; we discuss here Intel’s TSX solution. TSX is composed by a set of
instructions that adds transactional memory support to the x86 architecture. TSX is
able to monitor a small region of memory so as to verify whether a transaction may be
committed or not. TSX’s use requires code rewriting since new instructions (XACQUIRE,
XRELEASE, XBEGIN, XEND, XABORT and XTEST) should be used. Due to TSX’s monitoring
capabilities, it can be used for security purposes by monitoring specific system regions.
Its efficiency comes from the fact that transactional memory is asynchronously acti-
vated, i.e. it does not need polling. In general, it is also more granular (64 bytes) than
trapping the page-fault mechanism, which is 4K-byte granular.

4.7. External Hardware
External monitors are usually implemented as bus snoopers that collect memory data
for real-time inspection, either on a snapshot basis or in an event-driven way. They can
be deployed using System-On-a-Chip (SoC) in coupled architectures, where a processor
monitors the other. As their buses are connected in a single direction, the monitor is
tamper-proof and thus not affected by the monitored entity. External monitors, how-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:14 Botacin et al.

ever, need to overcome an important challenge related to the semantic gap: as no con-
text information (registers) is available, introspection should be performed in memory.

5. IMPLEMENTATION CHALLENGES AND TECHNIQUES
In this section, we discuss the general challenges faced by the previously presented
technologies and how to overcome them.

5.1. Event triggering
As modern security solutions are event-driven, notification of occurring events is a
critical project decision. HVM hypervisors natively provide ways of identifying past
events, since each VM-EXIT is delivered along the causing exit reason information, such
as CR3-register changes, interrupts, memory writes and so on. SMM-based systems
must redirect ordinary system interrupts to the BIOS, so the SMM code can be called.
can happen on many system Commonly, chipset ports and the APIC controller have
their ports rerouted so interrupts are instead delivered to the BIOS. An interesting in-
terrupt handler is the Performance Monitoring Interrupt (PMI). While delivery in the
ordinary mode is used by HPCs to handle interrupts at the kernel level, its redirection
to SMI delivery mode allows SMM to be called.

5.2. Memory monitoring
Memory monitoring is an essential feature of any monitoring mechanism, since mem-
ory holds state/context. The general way of inspecting memory is to rely on page fault
traps, used by all of the solutions presented in this article. In this technique, a given
page (or all of them) is marked as not present, causing a page fault whenever ac-
cessed. The memory management system is instrumented to perform its monitoring
intent and supply the data. After data is supplied, the page is marked again as not
present, so monitoring may follow on. In addition to be marked as not present, pages
may also be marked as having read, write and/or execute permission. This allows for
selecting which event will page fault and trigger monitoring. Monitoring goals vary:
malware analysis systems, for instance, only log the accessed page whereas debug-
gers can change memory content before supplying the faulting page. A commonly used
technique is called shadow paging and consists of making copies of entire pages or
memory regions, before and after each access. Therefore, page comparisons allow for
state reconstruction, code unpacking etc. myriad of security tasks. The use of page
fault traps or shadow pages in security solutions is not new per se, however modern
MMUs provide ways of performing such instrumentation by leveraging their hardware
capabilities, as seen in HVM-based MMUs.

5.3. Step-by-step
Executing step instructions is an important task when analyzing code, since the ana-
lyst can focus on specific code regions. In general, all of the solutions presented here
make use of either one of the following techniques, instruction page fault or HPC in-
terrupts. The first approach consists in applying the aforementioned page fault trap
technique to instruction pages, by having each executed instruction trigger a page
fault and thus allowing step-by-step execution. The second approach consists in set-
ting hardware counters to their maximum values, thus raising exception overflows at
each executed instruction. Step-by-step execution is accomplished by repeatedly fol-
lowing this approach. It is used by both HVM- and SMM-based solutions. HVM can
natively handle interrupts through VM-EXITS; SMM, in turn, needs redirect overflow
interrupts to SMI delivery mode.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:15

5.4. Instruction handling
A drawback of instruction stepping by fault and exception handling is that check
granularity is limited to entire pages, instead of a single instruction. Additional data
sources must be employed to overcome that. Systems whose register access is direct,
such as HVM, can read the faulting Instruction Pointer (IP) in order to identify the last
executed instruction. This strategy is used by most HVM-based solutions. Other HVM
solutions, as well as SMM ones, may rely on performance counters, mainly branch
monitor, for instruction identification. When a fault occurs, SMM code can look at the
last branch stored in the branch monitor entries and thus identify the executed in-
struction block.

5.5. Breakpoints
Breakpoints are extensions from instruction stepping that, by their very nature, re-
quire previous definition and are therefore limited in number. To achieve real instruc-
tion stepping, breakpoint implementations present some challenges. Breakpoints may
be classified as hardware- and software-based. A hardware-based breakpoint is a hard-
ware facility that allows stopping execution when it reaches a given address. The stop-
ping addresses are stored in CPU registers ans therefore limited in number. Besides
not being so flexible, they are not scalable—given that they shared by host and guest—
and also evadable, as their use is detectable by querying the MSR register. Conversely,
software breakpoints exhibit far more flexibility and scalability, considering that they
are theoretically unlimited. Nonetheless, they do modify original instruction bytes to
include a trap flag, thus being detectable by integrity checks.

In order to implement breakpoints, modern monitoring solutions rely on two main
techniques: step-and-compare and invisible breakpoints. The first consists of stepping
instructions using the previously presented techniques (fault trap and HPC) and com-
paring the current IP to previously stored breakpoint addresses, incurring in consid-
erable overhead. The second comprises hiding the side effects of software breakpoints.
As an example, the pushf instruction needs to be intercepted to hide the trap flag, since
its side effects could allow the monitored code to detect this flag.

5.6. Fallbacks
In addition to event-driven mechanisms, other types of triggering may be required,
such as callbacks and fallbacks. Code callback insertion is present in SMM-based tools:
as the SMM mode is limited to address 4GB, it has to rely on alternative ways to
monitor systems with larger amounts of memory. Monitoring may be performed, for
instance, by inserting code callbacks into high memory addresses, thus triggering SMI
code. To do so, code is injected in mapped pages and EIP is modified—in the State Save
Map (SSM)—to point to the injected code. Once an RSM instruction is executed, EIP is re-
stored from SSM and normal system execution resumes from the custom code. Another
example occurs when the SMM mode is required to monitor a hypervisor. When an SMI
is triggered, the system cannot tell whether the hypervisor is running in VMX Root or
Non-Root modes. However, to handle VMCS data the CPU must be in root mode. To
overcome this challenge, a fallback technique must be employed to “guarantee that the
CPU falls back to VMX root operation”. The technique works by redirecting a perfor-
mance counter overflow interrupt caused by the execution of a fallback code injected
in the SMI handler, thus recovering control over the monitored code.

5.7. Granularity filtering
Modern monitoring technologies enable data collection at a very fine-grained level,
thus generating massive amounts of data. While this kind of technology allows for

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:16 Botacin et al.

more powerful analysis, it may just as well turn simple tasks into more complex ones.
To handle this issue, all presented applications provide ways of filtering captured data.
These filters, called compact modes, may be applied after data capture to show only
desired data, or during data capture to store only some desired events. This is achieved
by making use of breakpoints and specific page fault traps, thus also presenting a
performance speed up as compared to the verbose, original full mode.

5.8. Timing evasion
Despite execution side effects, malware may also evade analysis procedures by iden-
tifying time measurement differences. This comes from analysis procedures imposing
significant performance penalties, since they execute both the sample’s and the extra
monitoring instructions. The first attempts to retrieve system code were based on API
calls, which were easily defeated by analysis solutions through faking responses via
hooks. Currently, an effective way of monitoring elapsed time makes use of the TimeS-
tamp Counter (TSC), a system-wide register that is incremented on a tick basis. As this
counter is system-wide, HVM’s guest code may be able to identify that the register was
incremented a significant number of times while in VM-EXIT, since hypervisor code
execution also increments TSC. To prevent that, all presented HVM- and SMM-based
solutions fake TSC values before resuming execution. Advanced samples could in the-
ory be able to identify obvious fake values (such as zero or constant offsets), which is
usually avoided by randomly incrementing the TSC offset.

5.9. Footprints
The main advantage of the discussed solutions is “transparency” against detection by
execution side effects. However, there are other ways to detect those solutions, such
as through the monitor code. Malware that run inside a VM may try mapping the hy-
pervisor’s physical memory to scan it and possibly detect the hypervisor monitoring
code. To avoid that, hypervisors often mark such pages as not present and block map-
pings from within. Malware may also detect the presence of the driver used to load
hypervisor or SMM code. To address this issue, drivers may use rootkit techniques for
stealthiness and hypervisors, in turn, can also map driver pages as not present. More-
over, malware samples may try to guess if they are running on an SMM-based system
by checking the use of SMI-triggering performance counters and debug registers. As
an evasive measure, they may try to preventively disable such mechanisms. A resilient
monitoring system should be able to periodically check whether these mechanisms are
still active. In SMM systems, this may be done by using a second source of SMIs, such
as a periodic timer.

5.10. Fingerprints
Despite transparency regarding side effects, monitoring solutions may also be evaded
through fingerprinting—the identification of the environment as being under analysis,
given the presence of known strings, drivers, IP addresses etc. Fingerprinting preven-
tion is an open problem and is beyond this survey’s scope. However, the discussed tools
implement certain levels of randomization (such as periodic changes in strings and
serial numbers) to avoid being fingerprinted. Fingerprinting also affects SMM-based
solutions: as the original BIOS is replaced with modified code, samples may detect
unexpected strings and hash values. To hide such modifications, many systems try to
online flash the BIOS with the original code so as to present ordinary values when
probed.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:17

6. APPLICATIONS
In this section we discuss how security solutions can be deployed according to the
previously presented technology support, as well as their limitations.

6.1. General Application
A general approach for developing security solutions is to directly rely on new mech-
anisms as they are launched. Take, for instance, the GPU case, used in several con-
texts for packer detection [Gupta et al. 2014], IDS implementation [Alshawabkeh et al.
2010; Vasiliadis et al. 2011], security log processing [Bellekens et al. 2014], cryptogra-
phy [Vasiliadis et al. 2014], AV parallelism [Vasiliadis and Ioannidis 2010] and code
polymorphism [Vasiliadis et al. 2015].

Another class of applications that directly benefit from an upcoming technology is
the privacy-preserving one, which can be executed within an isolated enclave. The
protected chat [Hoekstra et al. 2013] is an example application that takes advantage
of Intel’s SGX capability: images are processed inside the enclave and therefore pro-
tected against external capture. ARM’s TrustZone [Yalew et al. 2017], too, benefits
from tamper-proofing capabilities provided by isolated enclaves to prevent being it
from being disabled.

6.2. Fuzzing, Bug Detection and Crash analysis
Code analysis is a very important security task and can be performed at distinct life
cycle stages—pre-deployment, deployed (in production), and post-crash. When ana-
lyzing code before deployment, one is mostly focused on checking the program’s cor-
rectness by validating its inputs and behavior. This is mostly done through program
fuzzing [Felderer et al. 2016]. This technique randomizes program inputs in order to
exercise all paths [Tsankov et al. 2013; Li et al. 2017], thus branches are important de-
cision points. Although branch monitoring can be performed using plenty of technolo-
gies, including VMM and SMM, they are usually costly. Branch monitors, in turn, are
more suitable candidates for this task. As an example, Paleari [Paleari 2015] presents
the FuzzTrace tool, which leverages the BTS mechanism for achieving binary cover-
age in an efficient way. He demonstrates that hardware-assisted solutions take only a
quarter of the time that PIN solutions do to perform the same task.

When analyzing deployed code, one is mostly focused on bug detection, since pro-
gram functionality validation is supposed to have been done in previous development
steps [Felderer et al. 2016]. Once a bug is discovered, the program is exercised with the
buggy input in order to pinpoint the bug source—i.e. the code region which makes the
program reach the identified undesired path. The process of following an input flow is
named taint tracking. Similarly to the fuzzing case, taint tracking can be implemented
by leveraging many technologies, such as emulators [Ho et al. 2006] and even compiler
support [Backes et al. 2015]. Branch monitoring, however, is the most suitable choice,
since it is a lightweight, specialized monitor for COTS binaries. As an example, [Arul-
raj et al. 2014] demonstrates how the information provided by the LBR mechanism
can be used to perform root cause analysis on buggy programs.

Finally, one can also analyze a program execution after crashing. In this case, more
than just showing a buggy behavior, the program was also unable to recover from an
unintended state. Crash dumps are system information collected during fault execu-
tions which may help bug discovery. Even though there are many existing solutions
for crash analysis, recent research have demonstrated that enriching crash dumps in-
creases bug identification success rates. As in the previous cases, branch information
is well suited, since branches are directly responsible for taken paths. As an exam-
ple, [Xu et al. 2017] presents a system which enriches crash dumps with branch data

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:18 Botacin et al.

from Processor Tracer. The additional data allows for backwards taint analysis, so sim-
plifying bug cause analysis. Its efficacy was demonstrated through discovery of more
than 30 real bugs.

6.3. Malware Analysis
Given the transparency property, the presented environments are suited for malware
analysis in a stealthy way. A deeper understanding of HVM for malware analysis uses
was provided by [Dinaburg et al. 2008b], establishing formal foundations to attain
transparency, from requirements to ways of fulfilling these requirements. The devel-
oped tool, Ether, is implemented as a Xen patch and runs Windows XP guests. Its
instruction monitoring is done through software breakpoints and step-by-step execu-
tion, thus requiring the PUSHF instruction behavior to be modified. Memory is moni-
tored through shadow pages. Ether demonstrates its efficacy on stealthily tracing eva-
sive malware samples and performing code unpack. Despite its results, Ether is not a
perfectly transparent tool, since some ways of fingerprinting it are known [Pék et al.
2011]. However, most of them are overcome by applying patches or by new VM exten-
sions of modern processors. Moreover, Ether was a sound step towards being ahead of
evasion tricks of its time.

CXPInspector [Willems et al. 2012a] is a second step towards HVM-based malware
analyzers. It leverages Intel VT-x support on KVM to perform malware analysis on 64-
bit Windows 7. Analysis challenges faced on 64-bit Windows Kernel include handling
Address Space Layout Randomization (ASLR) and overcoming Kernel Patch Protec-
tions hook limitations, for which VMI is an alternative. In addition to malware anal-
ysis capabilities, CXPInspector is also able to perform application/system profiling by
measuring the execution time spent on each memory page. CXPInspector also presents
a more fine-grained concept for memory handling, named Currently eXecutable Pages
(CXP), which allows for multiple scopes and granularities of the analysis. The three
CXP granularities are: one memory region, a set of memory regions or one single mem-
ory page. By capturing transitions and flows among such CXPs, the system can trace
events. In practice, it is a way of implementing memory traps based on EPT or NPT
facilities. CXP provides case studies of the Purple Haze 64-bit rootkit analysis and a
profile of the Apache web server and its modules.

As an evolution of the idea of analyzing malware on HVM, authors started to care
about developing an ad-hoc malware analyzer, VMM. The motivation was reducing
the Trusted Code Base (TCB), i.e. the code that should be trusted a priori. General-
purpose VMM implements many more features than the one required for malware
analysis, such as virtual devices and plenty of drivers. As is known, the larger the
numbers of code lines, the more bugs there might be and the more opportunities for
malware evasion.

[Nguyen et al. 2009] presented MAVMM, a lightweight, malware analysis VM hyper-
visor. The TCB is reduced to 4K lines of code on MAVMM, a welcome feature when com-
pared to the millions of lines on well-known VMMs like Xen and VMWare. MAVMM
is implemented using AMD-v instructions and runs an Ubuntu Linux as guest sys-
tem. The hypervisor is loaded at boot time, in contrast to the late launch approach
of Ether and others. Memory is protected using nested page technology. The tool is
able to extract different features from the system—such as instructions, syscalls and
memory accesses—by leveraging single-step execution and handling VM-Exits. Trac-
ing granularity is filtered in two operating modes: Compact and Full. Authors pointed
the tool is also transparent since HVM is employed. While this solution is less prone
to subversion by presenting a smaller TCB, it is also more prone to fingerprint-based
evasion, given that it does not implement many usual virtual devices and so is subject
to environment detection.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:19

Beyond just building analysis tools themselves, some authors have employed these
tools for analysis improvements. Quist et al. [Quist et al. 2011], for instance, proposed
using a modified version of the Ether HVM to improve AV detection accuracy. The
work adds to Ether features for “deobfuscation: section and header rebuilding as well
as automated kernel virtual address descriptor import rebuilding”. With these repair
mechanisms, AV showed detection rate improvements as high as 45%.

Notwithstanding its transparency, HVM is an expensive approach. since its imple-
ment is harder than in-guest monitors and imposes a greater performance penalty.
Conversely, emulators and DBTs, despite being easy to instrument, are not transpar-
ent. Therefore, a solution that capitalizes on both would be desirable. Aiming to bridge
this gap, V2e [Yan et al. 2012] presents a combined approach of capturing data on an
HVM and precisely replaying it on an emulator, which is then able to implement analy-
sis techniques in a more flexible way. It is implemented on an HVM-KVM environment
and replayed on TEMU, from both Linux and Windows XP guests.

The most challenging task for this implementation is to achieve a balance between
captured data and replay feasibility (considering speed, precision and costs). To that
extent, authors have introduced a formal definition of how replaying should look like.
For the capture function, the HVM system implementation is based on EPT/TDP/NPT
for partitioning the memory space on mutually exclusive recorder and recorded pages.
Besides, both TSC and DMA accesses are recorded in order to allow deterministic exe-
cution replay.

Additionally, the replayer function featuring a conventional emulator would have a
series of problems as compared to a real CPU. It uses block translation (a paradigm
absent on real CPUs), lazy flag calculation, translated code reuse and TSC redirec-
tion for host values. V2e solves these by disabling lazy flag calculations and replacing
unsupported instructions with NOPs. Moreover, as the same page table mechanism
used for capturing is required for replaying, a software-emulated one, called physical
page container, was developed. Case studies cover adore-ng and 12 other real-world
malware samples.

A similar approach is implemented by [Kang et al. 2009], replaying Ether instruc-
tions on TEMU. This approach allows not only for executing evasive malware but also
for determining the points where behavior differs between reference and emulated
platforms. By analyzing divergence causes, the tool performs a dynamic state modifi-
cation (DSM) that attributes “new values to specified execution state components, such
as registers, memory and so on, which represent a transient alteration to values dur-
ing the samples’ execution”. They use this technique not for removing anti-emulation
checks, rather to ensure the sample will run even with distinct inputs, which enables
a myriad of security analysis.

Apart from HVM, SMM is also a good candidate for a malware tracing tool. Al-
though solutions able to trace binaries in some way had been built on top of it, such as
debuggers, no specific, SMM-based malware tracing solution was developed. The same
reasoning applies to ME/AMT, which was demonstrated capable of inspecting systems,
but no malware tracing solution is available. Leveraging ME/AMT for malware analy-
sis is a development gap to be explored by researchers.

As an alternative to HVM, stealthier malware tracing may also be performed using
performance counters. Their main advantage is reduced overhead, since handling in-
terrupts at kernel level, for instance, is less costly than at hypervisor or BIOS level.
In addition, development efforts are also reduced, since no hypervisor/BIOS code is re-
quired. Unfortunately, single-step execution cannot be done since the available mech-
anisms are branch-granular.

By making use of the LBR mechanism, [Willems et al. 2012b] developed
BranchTrace, a branch monitor able to detect accidental or incorrect behavior of dy-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:20 Botacin et al.

namic analysis in an emulated environment. The approach is motivated due to newly
developed delusion-attacks that are able to detect CPU emulators. They leverage dif-
ferent instruction execution side effects between an emulated and a real machine. The
authors remark that the deviating behavior may be fixed in the emulators, but this
would require special handling for a variety of instructions. Therefore, branch coun-
ters are shown suitable for monitoring bare-metal-based systems.

In BranchTrace, monitoring is triggered at each taken branch, including conditional
and unconditional jumps, calls, interrupts and exceptions. The supplied data is the ad-
dresses of the source and target branch instructions. The authors claim it is still pos-
sible to reconstruct whole contexts from such information. They also suggest extend-
ing the information by using Windows debug symbols and disassembling the nearest
instructions. For a practical evaluation of this approach, they extended a tool called
CWXDetector that is capable of detecting exploitation attempts and extracting shell-
code used during exploitations. It resulted in significant information gain about the
path that led to such exploitations, as demonstrated on a set of 4,869 malicious PDF
documents.

A broad formalization on branch-monitoring-based malware analysis was presented
by Botacin et al. [Botacin et al. 2018], which discusses possible threat models—
restricted to userland when a kernel driver is used to handle interrupts—and imple-
mentation issues. The work presents analysis results considering real samples and
demonstrates how anti-analysis tricks and deviating behavior can be identified.

All of the aforementioned mechanisms can also be applied for malware analysis in
ARM architectures. The work by [Ning and Zhang 2017] presents a solution for mal-
ware analysis which relies on performance counters for data acquisition and the iso-
lated TrustZone for anti-tampering data analysis. Other solutions, such as HVM, may
also be employed. In this sense, the Xen on ARM project [Project 2017] is the best
candidate for framework implementations.

6.4. Program Debugging
Complete debuggers can also be implemented using HVM and SMM tools. Regard-
ing HVM, [Fattori et al. 2010] presents a complete HVM framework which allows for
tools to be built on top of it. Its working mechanisms are very similar to the Ether
tool, such as late launch load, shadow memory monitoring and trap flag hiding. The
framework is implemented using Intel’s VT-x and a client-server architecture, where
low-level server information is translated into high-level semantics using introspec-
tion procedures and delivered through a well-defined API. In the same article, authors
presented HyperDBG, a kernel debugger built on top of that framework. It boasts
the same widespread functions of kernel debuggers, such as breakpoints, register in-
spection and tracebacks, supports guest write access and includes a hypervisor-based
graphical user interface and hotkey support. Due to its self-contained implementation,
HyperDBG is able to debug any kernel component, including components used in its
GUI, such as the keyboard. HyperDBG is a sound step towards transitioning HVM-
based security applications from tracing to debugging.

SPIDER [Deng et al. 2013], a KVM implementation of the concept of hypervisor-
assisted invisible breakpoints for Windows XP and Ubuntu, is a distinct approach for
debugger implementation. It tries to match the flexibility of software breakpoints with
the facilities of a hypervisor MMU, allowing for proper handling of the needed in-
struction changes and control-flow-deviation side effects. This is achieved by splitting
the data and code views, which causes a lower overhead than trapping each instruc-
tion, like Ether does. Code splitting is performed by setting the same virtual pages to
two different physical pages, each one having mutually-exclusive Read/Execution at-
tributes. The data splitting decision is supported by the TLB separation on iTLB and

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:21

dTLB in the x86 architecture, which reduces the number of EPT violations. SPIDER
monitors the system using the monitor trap flag (MTF), which causes a VM-Exit at
each instruction. The SPIDER breakpoint handler checks if the current instruction is
an ordinary (guest-set) or an invisible breakpoint, acting as a pass-through or a break-
point hider, respectively. In the latter case, it will “clear the breakpoint and restore
the first byte of the instruction that had been replaced”. Whenever a write occurs, it
happens in a data page, meaning that self-modifying code is forcibly not allowed. This
could lead to incorrect execution or even to malware evasion. In order to handle this
situation, SPIDER synchronizes data and code pages on writes. Case studies show how
SPIDER improves the tamper-resistance of the BEEP [Lee et al. 2013] attack prove-
nance system. Also, how SPIDER could be used to monitor instant messaging programs
by inspecting them before messages are encrypted.

Regarding SMM-based debuggers, [Zhang et al. 2015] presented MALT, a complete
debugging framework based on SMM which implements basic debugging facilities—
such as breakpoints, CPU register access and memory examination. It is implemented
on a client-server architecture, offering possibilities of communication by using a GDB-
like protocol or through its user-friendly interface. Like other SMM-based solutions,
MALT bridges the semantic gap using the CR3 register and triggering SMI by rerout-
ing events and overflowing performance counters for instruction stepping. Its protec-
tion is achieved by online BIOS flashing and periodically checking MSRs values. MALT
is able to provide four different levels of step-by-step debugging: instruction-level,
branch-level, far control transfer level and near return transfer level. These modes
are shown in the case studies, where complete Windows and Linux kernel crashes are
analyzed.

6.5. Forensics
HVM and SMM also have advantages in comparison to ordinary forensic solutions,
given their transparency and system-wide views. In particular, HVM is a good candi-
date for the development of forensic solutions given its late launch capabilities.

HyperSleuth [Martignoni et al. 2010] is an HVM-based solution which benefits from
the late launch and unload capabilities to implement a complete forensic framework,
for both online and offline inspection. As for analysis tools, the authors implemented
a memory dumper—in a dump-on-write way—and a syscall tracer—performed like
Ether’s by trapping memory pages. Since the system is aimed to be loaded on compro-
mised systems, it has to check whether the procedure was correctly done, given that
a malware running on the target system could subvert the procedure. This is done
through a sequence of challenges and responses, called “lie detector”. It is composed of
two data collection components: an in-guest, ordinary process and a hypervisor intro-
spection mechanism. After collection, both results are compared on the trusted host.
Since the target system changes at runtime, this verification is performed repeatedly
at variable intervals to avoid time measurement attacks. In addition, the framework
also cannot trust the OS network software, so it implements its own network driver in
order to transmit captured data.

SMM may also be leveraged for forensic purposes. Besides presenting the same ca-
pabilities of HVM, it has a deeper system viewer, which allows dumping even VMM
memory. As a drawback, SMM does not have late launch capabilities. To overcome
this, a modified BIOS is preloaded onto the system and SMM mode monitoring is en-
abled on demand through hot keys and/or external interrupts. A notable SMM-based
forensic tool is SMMDumper [Reina et al. 2012]. It is able to acquire volatile mem-
ory contents on running systems and therefore help with digital forensic analysis and
incident response. SMMDumper is composed of two components: a trigger, generated
by modifying the I/O APIC Redirection Table that is responsible to handle SMI and

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:22 Botacin et al.

an external host, which receives collected data. Data transmission is supported by a
system-plugged cryptographic device used for signing data to assure data integrity.
SMMDumper activation is done by pressing a pre-defined key sequence. In order to
implement such functionality, the authors have implemented an SMM-based keylog-
ger. The SMM ISR is responsible for extracting the scancode from the keyboard con-
troller buffer by reading from the I/O port. It also overcomes the SMM-imposed 4GB
barrier—to take whole-memory snapshots—by inserting a callback into the monitored
code. SMMDumper’s evaluation shows it is practical for 6GB dumps.

A slightly different solution is presented by [Wang et al. 2011], which leverages PCI
DMA access to complement the SMM mode: it allows whole-system memory analysis
and bridging the memory/CPU context gap. Analysis may be performed either online
or offline, with the CPU state transmitted from SMM to an external client through
a GDB-compatible protocol. Consistency is guaranteed because during SMM the OS
enters and remains in suspended state. SMI is triggered through IPMI and memory
capture is performed on a dump-on-write way. A limitation of this approach is that PCI
card access to physical RAM memory may be blocked on both Intel and AMD platforms
by using the newly added MMU features, such as Device Exclusion Vector (DEV).

6.6. Security Policy Enforcement
Empowered by HVM system-view capabilities, some solutions were designed to en-
force security policies, particularly badly-formulated I/O policies that are known tar-
gets for information leakage attacks. To this end, [Shinagawa et al. 2009] proposed
BitVisor, a single para-passthrough1 VM that enforces I/O security policies. It consists
of a specific-purpose hypervisor that implements only essential I/O drivers, reducing
the TCB. Bitvisor works on a single VM guest, as authors claim desktop users run
only one system at once. As such, it has no need for VM-isolation, which also helps to
reduce the TCB and the overhead in general. The para-passthrough approach requires
intercepting only essential communications, such as those required for protecting the
hypervisor and to enforce the policy itself.

To correctly enforce I/O policies, Bitvisor has to handle 3 different types of I/O rou-
tines: programmed I/O (PIO), memory mapped I/O (MMIO) and DMA. PIO are the IN
and OUT instructions, handled by the VT-x port bitmap. which allows for intercepting
specified ports. It has also to intercept PCI PIO in order to handle port remapping.
MMIO device registers are mapped on memory regions, in a way shadow pages fit
suitably well. DMA interception is handled by a new technique called shadow DMA.
Modern systems use what is called DMA descriptor, a memory region in which DMA
controls are mapped. However, monitoring this region is not effective since DMA mem-
ory accesses themselves occur in parallel. In order to overcome this situation, Bitvisor
instates a shadow DMA descriptor page, mapping the DMA descriptor in hypervisor
memory. After copying those blocks to the DMA controller buffer, it follows a Man-In-
The-Middle approach against the DMA controller to gain access to all DMA commu-
nication. By using these monitoring processes, the authors present a case study of an
ATA Host Controller, which enforces automatic storage encryption. SMM can also be
used to ensure I/O integrity, which means known ports will not be mapped to other
ones to avoid potential malicious actions. Such integrity is relevant since, after com-
promising an I/O controller, attackers will be able to change memory via DMA or by
compromising I/O devices.

Trusted Platform Modules (TPMs) are able to protect firmware and IOMMU in-
tegrity at boot time, but not at runtime. The Input/Output Memory Management Unit
(IOMMU) tries to protect memory from DMA attacks. However, the root entry table’s

1A minimal interposition mechanism responsible for I/O filtering

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:23

base address and other configuration registers may also be under the attacker’s control
on specific scenarios. Besides, the National Vulnerabilities Database (NVD) [Nist.gov
2017] shows that many firmware vulnerabilities were discovered since 2010, therefore
enlarging the attack surface. As such, authors have proposed I/O Check [Zhang 2013],
a solution which employs SMM to check I/O configurations and firmware integrity by
enumerating all I/O devices. I/O Check assumes the system is supported by a TPM
hardware for its boot and also assures BIOS image integrity. It also assumes that SM-
RAM is locked in the BIOS after loading. Its verification has as base the premise that
the “DMA Remapping ACPI table should never change after booting” and that “the
base address of the configuration tables for the DMA remapping unit should be static”.
Attack detections are notified through audible beeps. It ensures NIC integrity by stor-
ing its original hash value in SMRAM and by periodically reading the NIC’s memory
firmware code, computing the current image’s hash value and comparing it with the
saved value. Trusted Storage, in general, is an issue for all platforms, including mobile
ones. Current solutions [Zhauniarovich et al. 2013], however, do not yet benefit from
existing hardware facilities, thus presenting open development opportunities.

6.7. Attack Detection and Prevention
VMM-based system protection techniques have been known for quite some time: Ker-
nel Guard [Rhee et al. 2009] is a framework for handling dynamic kernel rootk-
its through memory access policies; Lares [Payne et al. 2008] extends Xen dom0
with a new, secure VM TCB providing secure services for an unprotected guest;
Osck [Hofmann et al. 2011] defeats kernel rootkits by checking control-flow integrity;
NICKLE [Riley et al. 2008] leverages mixed-page techniques to ensure trusted-code
execution; Overshadow [Chen et al. 2008b] introduces the concept of multi-shadowing
physical pages to protect applications from untrusted kernels. These approaches, de-
spite being theoretically correct, are not fully transparent. This comes either by the
need to implement all memory and I/O management by software or by a possible mal-
ware evasion through virtualized-system detection. In addition, software implementa-
tions present greater overhead when compared to hardware ones. Thus, as soon as the
HVM extension was launched, VMM approaches migrated to it.

Secvisor [Seshadri et al. 2007] protects the kernel against injections and 0-days by
ensuring that only approved code may run, thanks to memory virtualization. User
memory is marked as executable in user mode but not in kernel mode, in a way Secvi-
sor needs intercepting all transitions in order to adjust flags. Secvisor also ensures
that switching to kernel mode will occur only by setting the IP “to an address within
the approved code”. Likewise, kernel exits should target only user-mode code, avoid-
ing kernel-flow redirections. In addition, Secvisor virtualizes and intercepts MMU and
IOMMU, protecting against DMA and memory writes by using the AMD Device Exclu-
sion Vector (DEV) feature. In order to handle specific actions such as module loading,
kernel code modifications are needed, since these actions may require users’ approval
through a hypervisor call (hypercall). The need for a patch may be considered a limita-
tion by some but allowing users to create their own policies is thought as a justifiable
trade-off.

Other solutions rely on SMM-based implementation. Given SMM transparency and
its hardware protection, it becomes a suitable environment to malware attack anal-
ysis and identification. For this purpose, [Zhang et al. 2013] presented SPECTRE,
an SMM tool that allows memory inspection. Instead of relying on code execution ap-
proval, SPECTRE implements signature-based attack detection by performing a series
of regex-based scans on system memory. It has rules written for heap spray, buffer over-
flow and rootkit (kernel integrity) detection. Shellcode’s NOPs are used as identifiers

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:24 Botacin et al.

for memory overwriting. As a drawback, SPECTRE uses system timers to periodically
generate SMIs, which may facilitate malware evasion if it acts on such time intervals.

Another potential solution for attack detection is presented by POSTER [Stewin
et al. 2011], which suggested using the GPU DMA capabilities in order to detect DMA
malware. The approach consists in trying to identify DMA side-effects in registers
like timestamp counter (TSC) and HPC. Although a preliminary work, it was a first
step towards taking advantage of this possibility. We notice that an approach to detect
DMA malware could also explore the HVM system resources, such as IOMMU moni-
toring, presented in the previous sections. An extension of the GPU DMA monitoring
approach was given in the work by [Koromilas et al. 2016], which leveraged these
capabilities to perform kernel monitoring on a periodic snapshot basis. Finally, mobile
applications can also enforce code execution policies. Existing solutions, however, do
not benefit from underlying hardware support: FireDroid [Russello et al. 2013], for
instance, implements a syscall policy using the well known ptrace support.

Control Flow Integrity. Injection attacks, such as Return-Oriented Programming
(ROP), are one of main threats to current systems. Control Flow Integrity policies
emerge as ways of mitigating the imposed risks by ensuring execution flow returns
only to allowed call sites. In this sense, CFI policies are special cases of the general
attack detection and prevention class. Since this kind of detection policy must take
place on end-users’ machines, lightweight monitoring approaches are required, thus
performance counters are the best candidates for solutions development. In particular,
branch monitors are well suitable due to their ability to follow taken branches, includ-
ing those caused by RET instructions. Most HPC-based solutions apply a CALL-RET pol-
icy, which states a given RET must be preceded by a CALL. Approaches like CFIMon [Xia
et al. 2012], KBouncer [Pappas et al. 2013] and ROPecker [Cheng et al. 2014] use the
branch record mechanism to enforce strict CFI policies. Other approaches [Pierce et al.
2016] address the ROP problem by using the branch misprediction monitor, since ROP
gadgets (their RET targets) are not well distributed in memory and thus cause pre-
diction errors. Another technology that allows CFI implementation is TSX, as pre-
sented in [Muench et al. 2016]. The main advantage of this approach is that the mali-
cious transaction is detected—due to violation of the CFI policy—and blocked—in TSX
terms, not committed—, keeping the system in a secure state. TSX research is still
taking place, but it is easy to imagine security-focused use cases, such as [Birgisson
et al. 2008], which proposes a memory introspection mechanism.

Side-effect Detection. An emerging class of security solutions for attack detec-
tion and prevention is the one based on side-effect detection, i.e. indirect observations.
When an attack happens, the running machine undergoes many architectural events,
e.g. branch prediction misses, cache flushes, pipeline stalls and so on. As these events
are noticeable, profile-based approaches are successful in identifying their occurrence.
For that, a profile (or baseline) of architectural events is generated in a clean system
state and then compared to their values while in production. Its implementation bene-
fits a lot from performance counters. One such implementation is presented by [Kom-
palli and Sarat 2014], in which a Vtune extension was developed to monitor the Branch
Prediction Unit (BPU). Initially, a baseline is defined by running benign applications
on the system as a training set. Afterwards, a modified version of the Win32/Renos
malware was evaluated. Results show that “branch prediction miss rates are below
threshold for a clean system”. However, in infected systems, “BPU produces a high rate
of prediction misses”. The same approach was extended to runtime memory allocation
and usage. An additional extended approach is presented with HPCHunter [Bahador
et al. 2014], which uses HPC data to build a support vector machine (SVM)-based
event feature selection for real-time malicious program detection. Many authors ad-
dressed the latter [Yuan et al. 2011; Demme et al. 2013] and even extended it to the

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:25

kernel [Wang and Guo 2016]. The biggest advantage of the performance monitoring
approach is its lower overhead when compared to other solutions [Malone et al. 2011],
whereas their biggest challenge is feature selection [Tang et al. 2014].

6.8. System Integrity
An important management task is to assure system integrity. Apart from prevent-
ing attacks (security), ensuring system integrity also contributes to proper working
(safety) and avoids execution degradation (performance). Integrity checks implemen-
tation can rely on many technologies: performance counters, for instance, can be used
like in Confirm [Wang et al. 2015b], an approach to validate firmware on embedded
systems. Due to HPCs’ nature, this approach is profile-based. Another possibility is to
rely on TSX, which is efficient performance-wise and can be used to efficiently mon-
itor threads’ memory [Muttik et al. 2014]. Nonetheless, TSX is limited to very small
memory regions. These are emerging approaches and therefore not yet fully developed.
The established way of performing such monitoring is to rely on external hardware. In
summary, these approaches work by collecting system data and then comparing it to
known/expected values, raising alerts when violations are detected.

The first widely-recognized attempt to implement an external, hardware-based se-
curity monitor was Copilot [Petroni et al. 2004]. It aims to assure kernel integrity by
using a PCI card to collect memory data snapshots and analyze them. As dedicated
hardware, it is intrinsically protected against tampering. Its architecture follows the
well-known client-server model, where the monitor is responsible for analyzing the
received data and identifying threats. As an external solution, this approach has the
disadvantage of not getting CPU register values, which limits context comprehension
and introspection. Nevertheless, it was a first step towards overcoming virtual address
translation on approaches using external hardware, achieved by deriving page infor-
mation from the Linux’s System.map file. The developed prototype helps the authors
clearly state their approach’s main benefit: minimal processing overhead; measure-
ments indicated only 1%.

Besides these advantages, Copilot-like approaches have a significant drawback re-
lated to their snapshot characteristic, rendering them susceptible to timing attacks.
To overcome this, [Moon et al. 2012] proposed Vigilare, a System-On-a-Chip (SOC) im-
plementation that snoops the memory bus in order to perform real-time analysis for
kernel integrity evaluation. Aiming at giving a better understanding of the issues re-
lated to transient attacks, the authors implemented two Vigilare versions, each imple-
menting a distinct capture strategy: (i) Snapmon, a snapshot-based, straightforward
implementation of Copilot’s approach; and (ii) SnoopMon, a snoop-based solution. Ex-
perimental results have shown that the snapshot approach, even through the use of
a randomized snapshot interval, is susceptible to transient attacks. Its detection rate
highly depends on luck, whereas SnoopMon, as a snoop-based solution, is able to de-
tect all attempts. As a snoop-based solution, however, Snoopmon faced a significant
challenge: how to handle lots of data at once? If Vigilare could not analyze all the bus
traffic that snooper provided, the results would be compromised. This way, the tool
was designed to have a selective bus traffic filter. which recognizes only meaningful
information while truncating unnecessary data. This approach also allowed snooper to
filter data on traffic bursts.

Vigilare also proposed two ways of protecting its memory content, be it data or in-
structions. Firstly, it uses a separate hardware memory, with no guest access; secondly,
“it implements a memory region controller which specifically drops all memory oper-
ation requests from the host system”. The latter may reduce hardware costs in com-
parison to the former. Despite Vigilare’s effectiveness against static kernel code mod-
ification, it is not capable of handling dynamic kernel modifications, such as process

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:26 Botacin et al.

list changes—a typical rootkit behavior. TO circumvent this, [Lee et al. 2013] proposed
Ki-mon, “an event-triggered verification scheme for mutable kernel objects”. Its mem-
ory acquisition is performed through a structure called Value Table Management Unit
(VTMU) which, besides snooping the bus, is also able to filter its capture and perform
DMA access. It also presents callback verification routines that can be instrumented to
handle specified events. This is named hardware-assisted whitelisting (HAW) and its
registers can be configured to be active in different ways, including a pass-through op-
eration. Callback configuration is performed through a well-defined API. By relying on
it, detection rules were developed and tested with real rootkits to check the solution’s
effectiveness.

As a general summary on hardware approaches, we notice that, although kernel in-
tegrity is an essential issue to be addressed, bus monitoring applications should be
more deeply explored. A natural scenario seems to be extending such data-invariant
checks from kernel to hypervisor integrity monitoring, such as on HyperSentry and
HyperCheck solutions, presented below. Finally, there are other approaches that in-
spect memory traffic by using other hardware features, such as Processor Trace ca-
pabilities. Those, however, follow the same previously-presented working principles;
Kargos [Moon et al. 2016], for instance, is a high frequency snapshot-based solution.

Hypervisor Integrity. In addition to general system integrity, a security solution
for a modern computer stack should also worry about hypervisor integrity, since at-
tacks to these are well known and widely deployed today. [Rutkowska and Wojtczuk
2008], for example, presents an attack to the Xen Hypervisor by redirecting memory
reads/writes from the internal guest to the host. [Sharkey 2016], in turn, presents at-
tacks able to trap special instructions under secure hypervisors. This way, protecting
hypervisors from attacks and corruption is very relevant for security systems. Given
the SMM mode’s nature, it is well suited for this purpose, to the way of being employed
by a variety of tools, with some of which presented below. One of these is HyperSen-
try [Azab et al. 2010], a hypervisor integrity checker for cloud environments. Its ar-
chitecture consists of an agent inside the hypervisor and a client in SMM. The agent
transmits to the client chunks of memory data and hash calculations, which are then
compared to expected values. Despite being able to access memory, Hypersentry has
to overcome the significant challenge of bridging the hypervisor semantic gap from
within the SMM mode. Additionally, in order to inspect hypervisors in root mode, a
fallback technique must be employed. The study presented a case of monitoring the
Xen hypervisor: the authors verified its code integrity using SHA-1, its control flow
pointers in the IDT and whether its physical memory guest isolation was functional.
Implementing this kind of system, however, still presents many challenges in order to
be practical. Hypersentry, for instance, has some limitations: protected registers from
Intel’s TXT platform were not used; cache was not used in order to prevent cache poi-
soning attacks; when in SMM mode, interrupts are disabled, which may lead to a crash
if it lasts too long; in a multiprocessor scenario, when monitoring an event on a spe-
cific core, other cores are frozen to ensure consistency. These are open implementation
challenges to be addressed by the research community. Some improvements were pre-
sented by HyperCheck [Wang et al. 2010], a hypervisor integrity solution which uses
a PCI DMA card to collect memory and SMM collected register data to handle virtual
address translation. The system was implemented using two prototypes: the first is an
NIC emulation on QEMU and the other is a real PCI NIC. The system also has an ana-
lyzer to which data is transferred through the network card. This transfer is protected
using a random hash in order to avoid replay attacks, with the key being locked in SM-
RAM. In order to prevent attacks where a fake device asks for the key, TPM hardware
may be used. In addition, a random-interval scan is performed to avoid timing attacks.
The study case provided was DMA attacks against the Xen Hypervisor, having both

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:27

Linux and Windows XP as guests. However, some kinds of attacks are not detected or
prevented by this technique, such as dynamic function pointers or returned-oriented
attacks.

6.9. Existing and upcoming threats
Although analysts can benefit from the presented solutions, attackers may also em-
ploy the same technology for malicious purposes. For example, given the transparency
and system-wide view of HVM systems, exploiting a system using this technique is
straightforward. It is hard to pinpoint who first proposed this use for HVM, since most
releases happened in underground hacker forums. Undoubtedly, the first famous ap-
proach was the BluePill rootkit [Rutkowska 2006]. Bluepill is implemented on Win-
dows Vista using AMD technology and is able to perform late launch; a network back-
door, with no need for NDIS modification, is shown as use case. Other examples ap-
peared, like the HVM Rootkit [Myers and Youndt 2007], which is AMD-based and tar-
gets Windows XP machines. This tool takes a multi-core approach, setting up each core
for an HVM. Its driver loading routine employs physical page mapping for stealthiness.
In fact, in-guest, ordinary kernel rootkits are stealthy enough against casual analysis,
but to remain stealthy before a specialized forensic procedure requires HVM-based
ones.

In the same way HVM was employed for malicious purposes, SMM has already been
targeted. Its attractiveness comes from the same virtues exhibited by HVM: trans-
parency, system-wide instrumentation capabilities and OS-independency. An SMM
rootkit also has advantages in concealing its memory footprint, given that SMRAM
is hardware-protected, and in surviving reboots and re-installations, since it is BIOS-
stored. Probably the first work referring to an SMM rootkit, [Duflot et al. 2007] showed
a privilege-escalation attack against x86 OpenBSD. In this attack, the authors bypass
secure-level protections by installing their own SMM handlers, allowing unrestricted
access to physical memory. Following that, the practical Phrack magazine highlighted
some work intended to handle SMM for possibly malicious purposes, as in [BSDaemon
et al. 2008] and [Wecherowski 2009].

[Embleton et al. 2008] presents the construction of an SMM keylogger by redirect-
ing the keyboard Interrupt Request (IRQ) on the chipset to SMM using the Advanced
Programmable Interrupt Controller (APIC). The pressed keys are logged and trans-
mitted through the network interface. An advantage of this technique over ordinary
keyloggers is that no IDT hooking is employed, since one can have an out-of-band
access through the chipset APIC redirection. As in previously-presented SMM-based
approaches, the network card operation has to be manually implemented, working in
a client-server way on the PCI bus and encapsulating data in UDP packets, which
are then transmitted when buffers are full. Another SMM keylogger is presented
by [Schiffman and Kaplan 2014]. In this implementation, the authors perform an early
USB hijack, which allows for interception to occur before the kernel is aware of the
event. This is achieved by having the USB Host Controller reroute the interrupts to a
USB-PS/2 emulation SMM handler. It constitutes a much stealthier way of hijacking
the keyboard events, since keystrokes could be successfully intercepted, replaced and
injected. As extensions, authors point the approach could be used to hide and perform
Man-In-The-Middle (MITM) attacks against USB devices.

Keyloggers can also be implemented using GPUs, as presented by [Ladakis et al.
2013], in which DMA is remapped to be accessible from the GPU with no hook re-
quired. Once the GPU is aware of the keyboard buffer location, it can retrieve data
directly from the system’s memory pages. Since GPU usage has grown tremendously
in the last few years, we consider this kind of threat as a very relevant aspect to be
considered in security systems. The GPU keylogger works because it can map any

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:28 Botacin et al.

memory address, and this system-view characteristic is what drives most attackers.
Therefore, the more privileged operation modes, such as HVM, SMM and DMA-based
ones, will certainly be abused by attackers. In this sense, SMM has been criticized
for allowing system subversion in many ways, such as attacking the TXT subsystem,
which would allow complete system subversion. A mitigation—SMM virtualization—
was proposed as a way of sandboxing SMI requests. Authors like Rutkowska, however,
claim sandboxing is not enough, since escapes and backdoors are always possible to be
implemented [Rutkowska 2015].

Similar criticism also encompasses AMT/ME. A talk on BlackHAT [Tereshkin and
Wojtczuk 2009] presented the use of the ME mode to implement a system rootkit. In
practice, ME implementation flaws [Hruska 2016] may allow an attacker to take con-
trol of the victim’s machine at a very deep level. Intel’s response was to make available
its CHIPSEC tool [CHIPSEC 2016], intended to assure correct configuration of hard-
ware parameters in order to make the system more secure [CHIPSEC 2014]. Such re-
leases, however, are just steps of a continuous arms-race. Right after such discussion
took place, the first malware which leverages AMT/ME for stealthy data exfiltration
was discovered [Khandelwal 2017].

Since the criticism against these modes relies on the fact they are able to monitor
all previously existing rings, new solutions like isolated rings, e.g. SGX, were pro-
posed that cannot be monitored. This characteristic, however, enables other potential
threats, such as malware samples which cannot be analyzed. [Davenport and Ford
2014] presents the idea of malware attestation, in which the attacker can attest its ma-
licious payload was not tampered with. In addition, Van Prooijen’s work [van Prooijen
2016] illustrates such attestation using SGX. It also points at the hardness of reverse
engineering SGX running code. This scenario is bound to bring about new research in
coming years since it is currently an open question.

Currently, information retrieval from isolated enclaves is possible only through
side-channel attacks. [Schwarz et al. 2017] presented a malicious sample able to re-
trieve RSA keys from co-located enclaves by monitoring cache access patterns. An in-
development alternative is to rely on the branch counter, since SGX shares the same
CPU as ordinary code. [Lee et al. 2017] presents the usage of Processor Trace in order
to infer program behavior inside SGX enclaves.

7. DEVELOPMENT GAPS AND RESEARCH OPPORTUNITIES
In this section, we revisit development gaps presented in the paper and pinpoint ex-
isting research opportunities.

HVM has a great potential for security solutions development as well as many open
issues to be addressed. Among them, the well-known issue of transparency claims that
are not supported by the vendors, but new ones are showing up. An emerging one is
nested virtualization support: questions such as “How do we support a VM inside an-
other one?” and “How do we bridge such coupled semantic gap?” are still unanswered.

We are also aware of a trend on moving to VM: Qubes [Rutkowska 2010] is a mod-
ified Linux OS that isolates each application on a VM; Windows 10 has implemented
the concept of Virtual Secure Machines (VSMs), “loading a microkernel with its own
drivers, called Secure Kernel Mode (SKM) environment” [Ionescu 2015]; the Edge
browser also moved to a micro-VM environment [Dent 2016]; Samsung, in turn, im-
plemented a hypervisor-based approach for kernel protection [Samsung 2017]. If this
trend consolidates as a de facto standard, we will have another turn, since just de-
tecting VM environments will not be enough for malware authors: they will have to
detect the monitoring process itself, which is much harder.

SMM was employed by many security applications, but no specific-purpose, mal-
ware tracer was presented. This the first existing development gap we can point out.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:29

The use of SMM to other applications is depending on implementation issues, since
BIOS rewriting is costly. As new ways of doing so emerge, SMM use will become more
popular. An application class which will benefit from this expansion will be hypervisor
integrity systems. Current solutions are mostly hash-based verifications. As an open
research question, bridging the coupled semantic gap would allow for SMM to inspect
not only the host system but also understand the hypervisor guest semantics.

ME/AMT was presented as a technology able to monitor and control the main pro-
cessor from outside. Despite all the claims, no security-focused, specific-purposed tool
was proposed to benefit from it. Therefore, researchers can leverage ME/AMT for all
security application classes aforementioned. In particular, malware analyzers and de-
buggers are application that might benefit from its transparency.

SGX has been claimed as the solution for privacy issues. Nevertheless, it allows
new threats by malware, since enclaves cannot be monitored. Therefore, proposing
solutions for enclave monitoring is an open research problem. In particular, as it cannot
be done directly, side channel approaches are good candidates.

Performance Counters are another technology that may benefit from side effect
approaches. Profile-deviation based on HPCs were already proposed, but recent ad-
vances in machine learning may boost new deviation detection algorithms.

TSX presents great potential to be explored by security solutions, since it does not
impose significant overhead and is able to not commit data when a given policy is vio-
lated. Currently, it is under-explored, being limited to flow monitoring, but we foresee
its application into a variety of checkpoint-based approaches. As its major limitation,
TSX is able to monitor only a few KB of memory, thus efficient policies should be im-
plemented in order to detect threats based on a small trace of collected data.

DMA monitoring is a powerful approach for system-wide monitoring. The main
drawback is to bridge the semantic gap without having context registers. Although
many advances have been recently presented, introspection, as a whole, is still an open
problem. Also, as DMA allows monitoring for good purposes, it also allows malicious
entities to sniff communication. Therefore, ways of monitoring and blocking DMA re-
quests should be developed. As a challenge, data burst may turn snoop-based memory
monitoring unfeasible.

External hardware devices is another class of under-explored technology for se-
curity solutions implementation. Their tamper-proof characteristics make them strong
candidates for almost any security application, but they are mostly applied to isolated
execution scenarios, such as in Google’s authentication module [Xin 2017]. Therefore,
their development for system monitoring tasks presents many research opportunities.
As the major challenge to be overcome, researchers have to turn passive solutions into
active devices, so that detected threats can be blocked.

Threats will also be developed on top of the presented technologies. While existing
threats are mostly of the keylogger and rootkit kinds, these can be extended to general
threat classes. The study of such threats, known as offensive security, provides ways of
better understanding their workings and then to develop effective countermeasures.
Threats focusing on system monitoring are outside this work’s scope, though they
also pose significant challenges for researchers. While the hereby cited approaches
solve most of the timing problems when transparently analyzing a system, external
approaches still remain effective, such as NTP time measurements over encrypted
connections.

8. CONCLUSION
We presented a complete overview of early-launched monitoring tools for modern sys-
tems. We deeply looked into HVM and its applications, as well as SMM, HPC and iso-
lated rings, including threats and defense mechanisms—a comparison of which is sum-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:30 Botacin et al.

marized in the attached appendix. We do believe that this work will help researchers
improve knowledge in the field, since there are still many unsolved issues.

REFERENCES
Malak Alshawabkeh, Byunghyun Jang, and David Kaeli. 2010. Accelerating the Local Outlier Factor Algo-

rithm on a GPU for Intrusion Detection System. In Proc. 3rd Work. on GP-GPUs. ACM.
AMD. 2013. AMD64 Architecture Programmer’s Manual Volume 2. AMD.
AMD. 2016. AMD Secure Processor (Built-in technology). https://tinyurl.com/yaq2rhmv. (2016).
ARM. 2009. ARM Sec. Technology - Building a Secure System using TrustZone Technology. ARM.
Joy Arulraj, Guoliang Jin, and Shan Lu. 2014. Leveraging the Short-term Memory of Hardware to Diagnose

Production-run Software Failures. SIGARCH Comput. Archit. News 42, 1 (Feb. 2014).
Warwick Ashford. 2010. Malware growth reaches record rate. https://tinyurl.com/y8mxxo3e. (2010).
JP Aumasson and Luis Merino. 2016. SGX Secure Enclaves in Practice: Sec. and Crypto Review. (2016).
Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and Nathan C. Skalsky. 2010. Hyper-

Sentry: Enabling Stealthy In-context Measurement of Hypervisor Integrity. In Proc. 17th ACM Conf. on
Comp. and Comm. Sec. (CCS ’10). ACM.

Michael Backes, Oliver Schranz, and Philipp von Styp-Rekowsky. 2015. POSTER: Towards Compiler-
Assisted Taint Tracking on the Android Runtime (ART). In Proc. of the 22Nd ACM SIGSAC Conf. on
Comp. and Comm. Sec. (CCS ’15). ACM.

M.B. Bahador, M. Abadi, and A. Tajoddin. 2014. HPCMalHunter: Behavioral malware detection using hard-
ware performance counters and singular value decomposition. In 2014 4th Intl. Conf. on Comp. and
Knowledge Engineering (ICCKE).

Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher Kruegel, Engin Kirda, and Giovanni
Vigna. 2010. Efficient detection of split personalities in malware. In NDSS 2010, 17th Annual Network
and Distributed System Security Symp., San Diego, USA. EURECOM, Article -.

U. Bayer, C. Kruegel, and E. Kirda. 2006. TTAnalyze: A tool for analyzing malware. In 15th European Inst.
for Comp. Antivirus Research (EICAR 2006) Annual Conf. EICAR.

Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proc. USENIX Annual Technical
Conf. (ATC ’05). USENIX Association.

Xavier J. A. Bellekens, Christos Tachtatzis, Robert C. Atkinson, Craig Renfrew, and Tony Kirkham. 2014.
GLoP: Enabling Massively Parallel Incident Response Through GPU Log Processing. In Proc. 7th Intl.
Conf. on Sec. of Information and Net. (SIN ’14). ACM.

Arnar Birgisson, Mohan Dhawan, Úlfar Erlingsson, Vinod Ganapathy, and Liviu Iftode. 2008. Enforcing
Authorization Policies Using Transactional Memory Introspection. In Proc. 15th ACM Conf. on Comp.
and Comm. Sec. (CCS ’08). ACM.

Marcus Botacin, Paulo Lício De Geus, and André Grégio. 2018. Enhancing Branch Monitoring for Security
Purposes: From Control Flow Integrity to Malware Analysis and Debugging. ACM Trans. Priv. Secur.
21, 1, Article 4 (Jan. 2018), 30 pages. DOI:http://dx.doi.org/10.1145/3152162

Michael Brengel, Michael Backes, and Christian Rossow. 2016. Detecting Hardware-Assisted Virtualization.
In Proc. 13th Intl. Conf. on Detection of Intrusions and Malware, and Vulnerability Assessment - Volume
9721 (DIMVA 2016). Springer-Verlag New York, Inc.

BSDaemon, coideloco, and D0nad0n. 2008. System Management Mode Hack - Using SMM for "Other Pur-
poses". https://tinyurl.com/jxeao4u. (2008).

Xu Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. 2008a. Towards an understanding of anti-
virtualization and anti-debugging behavior in modern malware. In 2008 IEEE Intl. Conf. on Depend.
Syst. and Net. With FTCS and DCC (DSN). IEEE.

Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Waldspurger, Dan
Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. 2008b. Overshadow: A Virtualization-based Approach
to Retrofitting Protection in Commodity Operating Syst. SIGPLAN Not. 43, 3 (March 2008).

Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Huijie Robert Deng. 2014. Ropecker: A generic
and practical approach for defending against ROP attacks. In Symp. on Net. and Dist. System Sec.
(NDSS). Internet Society.

CHIPSEC. 2014. CHIPSEC Platform Sec. Assessment Framework. https://tinyurl.com/nwxzudm. (2014).
CHIPSEC. 2016. CHIPSEC. https://github.com/chipsec/chipsec. (2016).
CoreBoot. 2015. CoreBoot. http://www.coreboot.org/. (2015).
Paul Crowley. 2016. Pixel Sec.: Better, Faster, Stronger. https://tinyurl.com/y88book8. (2016).

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:31

Shaun Davenport and Richard Ford. 2014. SGX: the good, the bad and the downright ugly. https://tinyurl.
com/z8jlk3s. (2014).

John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman, Simha Sethumadhavan,
and Salvatore Stolfo. 2013. On the Feasibility of Online Malware Detection with Performance Counters.
SIGARCH Comput. Archit. News 41, 3 (June 2013).

Zhui Deng, Xiangyu Zhang, and Dongyan Xu. 2013. SPIDER: Stealthy Binary Program Instrumentation and
Debugging via Hardware Virtualization. In Proc. 29th Annual Comp. Sec. Applications Conf. (ACSAC
’13). ACM.

Steve Dent. 2016. Microsoft’s Edge browser stays secure by acting as a virtual PC. https://tinyurl.com/
z8j3krc. (2016).

Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008a. Ether: Malware Analysis via Hardware
Virtualization Extensions. In Proc. of the 15th ACM Conf. on Comp. and Comm. Sec. (CCS ’08). ACM.

Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008b. Ether: Malware Analysis via Hardware
Virtualization Extensions. In Proc. 15th ACM Conf. on Comp. and Comm. Sec. (CCS ’08). ACM.

Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke Lee. 2011. Virtuoso: Nar-
rowing the Semantic Gap in Virtual Machine Introspection. In Proc. 2011 IEEE Symp. on Sec. and Priv.
(SP ’11). IEEE Comp. Society.

L. Duflot, D. Etiemble, and O. Grumelard. 2007. Using CPU System Management Mode to Circumvent
Operating System Sec. Functions. https://tinyurl.com/y7mlduy9. (2007).

DynamoRIO. 2001. Dynamic Instrumentation Tool Platform. https://tinyurl.com/ybenfvw9. (2001).
Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2008. A Survey on Automated

Dynamic Malware-analysis Techniques and Tools. ACM Comput. Surv. 44, 2 (March 2008).
Shawn Embleton, Sherri Sparks, and Cliff Zou. 2008. SMM Rootkits: A New Breed of OS Independent

Malware. In Proc. 4th Intl. Conf. on Sec. and Priv. in Communication Netowrks (SecureComm ’08). ACM.
Aristide Fattori, Roberto Paleari, Lorenzo Martignoni, and Mattia Monga. 2010. Dynamic and Transpar-

ent Analysis of Commodity Production Syst.. In Proc. IEEE/ACM Int. Conf. on Automated Software
Engineering (ASE ’10). ACM.

Michael Felderer, Matthias Büchler, Martin Johns, Achim D. Brucker, Ruth Breu, and Alexander
Pretschner. 2016. Sec. Testing: A Survey. (2016).

David Fitzpatrick and Drew Griffin. 2016. Cyber-extortion losses skyrocket, says FBI. https://tinyurl.com/
y8ym4q46. (2016).

Yangchun Fu and Zhiqiang Lin. 2013. Bridging the Semantic Gap in Virtual Machine Introspection via
Online Kernel Data Redirection. ACM Trans. Inf. Syst. Secur. 16, 2 (Sept. 2013).

Yuxin Gao, Zexin Lu, and Yuqing Luo. 2014. Survey on malware anti-analysis. In Intelligent Control and
Information Processing (ICICIP), 2014 Fifth Inter. Conf. on.

Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. 2007. Compatibility is Not Trans-
parency: VMM Detection Myths and Realities. In Proc. 11th USENIX Work. on Hot Topics in Operating
Syst. (HOTOS’07). USENIX Association.

Grsecurity. 2013. Grsecurity. https://grsecurity.net/. (2013).
Neha Gupta, Smita Naval, Vijay Laxmi, M.S. Gaur, and Muttukrishnan Rajarajan. 2014. P-SPADE: GPU

accelerated malware packer detection. In Priv., Sec. and Trust (PST), 2014 Annual Intl. Conf. on. IEEE.
Alex Ho, Michael Fetterman, Christopher Clark, Andrew Warfield, and Steven Hand. 2006. Practical Taint-

based Protection Using Demand Emulation. In Proc. of the 1st ACM SIGOPS/EuroSys European Conf.
on Comp. Syst. 2006 (EuroSys ’06). ACM.

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan Del Cuvillo. 2013. Using
Innovative Instructions to Create Trustworthy Software Solutions. In Proc. 2nd Intl. Work. on Hardware
and Architectural Support for Sec. and Priv. (HASP ’13). ACM.

Owen S. Hofmann, Alan M. Dunn, Sangman Kim, Indrajit Roy, and Emmett Witchel. 2011. Ensuring Op-
erating System Kernel Integrity with OSck. In Proc. 16th Intl. Conf. on Architectural Support for Pro-
gramming Languages and Operating Syst. (ASPLOS XVI). ACM.

Joel Hruska. 2016. Report claims Intel CPUs contain enormous security flaw. https://tinyurl.com/zdlbbvq.
(2016).

Intel. 2013. Intel R© 64 and IA-32 Architectures Software Developer’s Manual. Intel.
Intel. 2015. Pin - A Dynamic Binary Instrumentation Tool. https://tinyurl.com/m685m25. (2015).
Alex Ionescu. 2015. Battle of the SKM and IUM: How Windows 10 Rewrites OS Architecture. https://tinyurl.

com/na375ur. (2015).
ISECLAB. 2010. Anubis - Malware Analysis for Unknown Binaries. https://anubis.iseclab.org/. (2010).

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:32 Botacin et al.

P. Jain, S. Desai, S. Kim, M.-W. Shih, J. Lee, C. Choi, Y. Shin, T. Kim, B. B. Kang, and D. Han. 2016.
OpenSGX: An Open Platform for SGX Research. In Proc. 2016 Annual Network and Distributed System
Sec. Symp. Internet Society.

Min Gyung Kang, Heng Yin, Steve Hanna, Stephen McCamant, and Dawn Song. 2009. Emulating
Emulation-resistant Malware. In Proc. 1st ACM Work. on Virtual Machine Sec. (VMSec ’09). ACM.

Swati Khandelwal. 2017. First-Ever Data Stealing Malware Found Using Intel AMT Tool to Bypass Firewall.
https://tinyurl.com/y7e7kg8v. (2017).

Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. 2011. BareBox: Efficient Malware Analysis on
Bare-metal. In Proc. 27th Annual Comp. Sec. Applications Conf. (ACSAC ’11). ACM.

Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. 2014. Barecloud: Bare-metal Analysis-based Eva-
sive Malware Detection. In Proc. 23rd USENIX Conf. on Sec. Symp. (SEC’14). USENIX Association.

Kompalli and Sarat. 2014. Using Existing Hardware Services for Malware Detection. In Proc. 2014 IEEE
Sec. and Priv. Work.s (SPW’14). IEEE Comp. Society.

Lazaros Koromilas, Giorgos Vasiliadis, Elias Athanasopoulos, and Sotiris Ioannidis. 2016. GRIM: Leverag-
ing GPUs for Kernel Integrity Monitoring. Springer Inter. Publishing.

Evangelos Ladakis, Lazaros Koromilas, Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis.
2013. You Can Type, but You Can’t Hide: A Stealthy GPU-based Keylogger. https://tinyurl.com/cbzp42n.
(2013).

Hojoon Lee, HyunGon Moon, DaeHee Jang, Kihwan Kim, Jihoon Lee, Yunheung Paek, and
Brent ByungHoon Kang. 2013. KI-Mon: A Hardware-assisted Event-triggered Monitoring Platform for
Mutable Kernel Object. In 22nd USENIX Sec. Symposium. USENIX.

Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack Provenance via Binary-
based Execution Partition. In 20th Annual Network and Distributed System Sec. Symp., NDSS 2013,
San Diego, California, USA, February 24-27, 2013. Internet Society.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado. 2017. Infer-
ring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing. In 26th USENIX Sec.
Symposium (USENIX Sec. 17). USENIX Association.

Tamas Lengyel, Thomas Kittel, George Webster, and Jacob Torrey. 2014. Pitfalls of virtual machine intro-
spection on modern hardware. In 1st Work. on Malware Memory Forensics (MMF). ACM.

Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu, and Alwen Tiu. 2017.
Steelix: Program-state Based Binary Fuzzing. In Proc. of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). ACM.

LibVMI. 2015. Introduction to libVMI. https://tinyurl.com/y8d4xbq9. (2015).
Corey Malone, Mohamed Zahran, and Ramesh Karri. 2011. Are Hardware Performance Counters a Cost Ef-

fective Way for Integrity Checking of Programs. In Proc. 6th ACM Work. on Scalable Trusted Computing
(STC ’11). ACM.

Tarjei Mandt, Mathew Solnik, and David Wang. 2016. Demystifying The Secure Enclave Processor. (2016).
J.A.P. Marpaung, M. Sain, and Hoon-Jae Lee. 2012. Survey on malware evasion techniques: State of the art

and challenges. In Advanced Communication Technology (ICACT), 2012 14th Inter. Conf. on.
Lorenzo Martignoni, Aristide Fattori, Roberto Paleari, and Lorenzo Cavallaro. 2010. Live and Trustwor-

thy Forensic Analysis of Commodity Production Syst.. In Proc. 13th Intl. Conf. on Recent Advances in
Intrusion Detection (RAID’10). Springer-Verlag.

Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi. 2009. Testing CPU Em-
ulators. In Proc. 18th Intl Symp. on Software Testing and Analysis (ISSTA ’09). ACM.

Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim, Yunheung Paek, and Brent Byunghoon Kang. 2012.
Vigilare: Toward Snoop-based Kernel Integrity Monitor. In Proc. 2012 ACM Conf. on Comp. and Comm.
Sec. (CCS ’12). ACM.

Hyungon Moon, Jinyong Lee, Dongil Hwang, Seonhwa Jung, Jiwon Seo, and Yunheung Paek. 2016. Architec-
tural Supports to Protect OS Kernels from Code-Injection Attacks. In Proc. Hardware and Architectural
Support for Sec. and Priv. 2016 (HASP 2016). ACM.

Asit More and Shashikala Tapaswi. 2014. Virtual machine introspection: towards bridging the semantic
gap. Journal of Cloud Computing 3, 1 (2014).

Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Limits of Static Analysis for Malware Detec-
tion. In Annual Comp. Sec. Applications Conf. ACM.

Marius Muench, Fabio Pagani, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna, and Davide
Balzarotti. 2016. Taming Trans.: Towards Hardware-Assisted Control Flow Integrity Using Transac-
tional Memory. Springer Inter. Publishing.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:33

Igor Muttik, Alex Nayshtut, and Roman Dementlev. 2014. Creating a spider goat: using transactional mem-
ory support for security. (2014).

Michael Myers and Stephen Youndt. 2007. An Introduction to Hardware-Assisted Virtual Machine (HVM)
Rootkits. https://tinyurl.com/y8wfsye5. (2007).

Matthias Neugschwandtner, Christian Platzer, PaoloMilani Comparetti, and Ulrich Bayer. 2010. dAnubis –
Dynamic Device Driver Analysis Based on Virtual Machine Introspection. In Detection of Intrusions and
Malware, and Vulnerability Assessment, Christian Kreibich and Marko Jahnke (Eds.). Lecture Notes in
Comp. Science, Vol. 6201. Springer Berlin Heidelberg.

Anh M. Nguyen, Nabil Schear, HeeDong Jung, Apeksha Godiyal, Samuel T. King, and Hai D. Nguyen. 2009.
MAVMM: Lightweight and Purpose Built VMM for Malware Analysis. In Proc. 2009 Annual Comp. Sec.
Applications Conf. (ACSAC ’09). IEEE Comp. Society.

Zhenyu Ning and Fengwei Zhang. 2017. Ninja: Towards Transparent Tracing and Debugging on ARM. In
26th USENIX Sec. Symposium (USENIX Sec. 17). USENIX Association.

Nist.gov. 2017. National Vulnerability Database. https://tinyurl.com/yc9lbse8. (2017).
Jan Magnus Granberg Opsahl. 2013. Open-source virtualization : Functionality and performance of

Qemu/KVM, Xen, Libvirt and VirtualBox. Ph.D. Dissertation.
Roberto Paleari. 2015. Fast coverage analysis for binary applications. https://tinyurl.com/y7obk3y5. (2015).
Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi. 2009. A Fistful of Red-

pills: How to Automatically Generate Procedures to Detect CPU Emulators. In Proc. 3rd USENIX Conf.
on Offensive Technologies (WOOT’09). USENIX Association.

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2013. Transparent ROP Exploit Mitiga-
tion Using Indirect Branch Tracing. In Proc. 22Nd USENIX Conf. on Sec. (SEC’13). USENIX Associa-
tion.

Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. 2008. Lares: An Architecture for Secure
Active Monitoring Using Virtualization. In Proc. 2008 IEEE Symp. on Sec. and Priv. (SP ’08). IEEE
Comp. Society.

Michael Pearce, Sherali Zeadally, and Ray Hunt. 2013. Virtualization: Issues, Sec. Threats, and Solutions.
ACM Comput. Surv. 45, 2 (March 2013).

Gábor Pék, Boldizsár Bencsáth, and Levente Buttyán. 2011. nEther: In-guest Detection of Out-of-the-guest
Malware Analyzers. In Proc. 4th Eur. Wksp on System Sec. (EUROSEC ’11). ACM.

Gábor Pék, Levente Buttyán, and Boldizsár Bencsáth. 2013. A Survey of Sec. Issues in Hardware Virtual-
ization. ACM Comput. Surv. 45, 3 (July 2013).

Nick L. Petroni, Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. 2004. Copilot - a Coprocessor-
based Kernel Runtime Integrity Monitor. In Proc. 13th Conf. on USENIX Sec. Symp. - Volume 13
(SSYM’04). USENIX Association.

Cody Pierce, Matthew Spisak, and Kenneth Fitch. 2016. Capturing 0day Exploits with PERFectly Placed
Hardware Traps. https://tinyurl.com/ycrsez3y. (2016).

Mario Polino, Andrea Continella, Sebastiano Mariani, Stefano D’Alessio, Lorenzo Fontana, Fabio Gritti, and
Stefano Zanero. 2017. Measuring and Defeating Anti-Instrumentation-Equipped Malware. Springer.

Xen Project. 2017. Xen ARM with virtualization extensions. https://tinyurl.com/k3o6h63. (2017).
Daniel Quist, Lorie Liebrock, and Joshua Neil. 2011. Improving Antivirus Accuracy with Hypervisor As-

sisted Analysis. J. Comput. Virol. 7, 2 (2011).
Nguyen Anh Quynh and Kuniyasu Suzaki. 2010. Virt-ICE: Next-generation Debugger for Malware Analysis.

https://tinyurl.com/ybszcbxn. (2010).
Alessandro Reina, Aristide Fattori, Fabio Pagani, Lorenzo Cavallaro, and Danilo Bruschi. 2012. When Hard-

ware Meets Software: A Bulletproof Solution to Forensic Memory Acquisition. In Proc. 28th Annual
Comp. Sec. Applications Conf. (ACSAC ’12). ACM.

Junghwan Rhee, Ryan Riley, Dongyan Xu, and Xuxian Jiang. 2009. Defeating Dynamic Data Kernel Rootkit
Attacks via VMM-Based Guest-Transparent Monitoring. 2012 7th Intl. Conf. on Availability, Reliability
and Sec. 0 (2009).

Ryan Riley, Xuxian Jiang, and Dongyan Xu. 2008. Guest-Transparent Prevention of Kernel Rootkits with
VMM-Based Memory Shadowing. In Proc. 11th Intl. Symp. on Recent Advances in Intrusion Detection
(RAID ’08). Springer-Verlag.

Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-Oriented Programming:
Syst., Languages, and Applications. ACM Trans. Inf. Syst. Secur. 15, 1 (March 2012).

Christian Rossow, Christian J. Dietrich, Christian Kreibich, Chris Grier, Vern Paxson, Norbert Pohlmann,
Herbert Bos, and Maarten van Steen. 2012. Prudent Practices for Designing Malware Experiments:
Status Quo and Outlook. In Proc. 33rd IEEE Symp. on Sec. and Priv. (S&P). IEEE.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:34 Botacin et al.

Giovanni Russello, Arturo Blas Jimenez, Habib Naderi, and Wannes van der Mark. 2013. FireDroid: Hard-
ening Sec. in Almost-stock Android. In Proc. of the 29th Ann. Comp. Sec. App; Conf. (ACSAC ’13). ACM.

Rutkowska. 2006. Subverting Vista Kernel For Fun And For Profit. https://tinyurl.com/y86ltylh. (2006).
Rutkowska. 2010. Qubes OS Project. https://www.qubes-os.org/. (2010).
Joanna Rutkowska. 2015. Intel x86 considered harmful. https://tinyurl.com/hnbulmv. (2015).
Joanna Rutkowska and Rafał Wojtczuk. 2008. Preventing and Detecting Xen Hypervisor Subversions. https:

//tinyurl.com/44denv2. (2008).
Alireza Saberi, Yangchun Fu, and Zhiqiang Lin. 2014. Hybrid-bridge: Efficiently bridging the semantic gap

in virtual machine introspection via decoupled execution and training memoization. In Proc. 21st An-
nual Network and Distributed System Sec. Symp. (NDSS’14). Internet Society.

Samsung. 2017. Samsung KNOX. https://www.samsungknox.com/en. (2017).
J. Schiffman and D. Kaplan. 2014. The SMM Rootkit Revisited: Fun with USB. In Availability, Reliability

and Sec. (ARES), 2014 9th Intl. Conf. on. IEEE.
Christian Schneider, Jonas Pfoh, and Claudia Eckert. 2011. A Universal Semantic Bridge for Virtual Ma-

chine Introspection. In Proc. 7th Intl. Conf. on Information Syst. Sec. (ICISS’11). Springer-Verlag.
Michael Schwarz, Samuel Weiser, Daniel Gruss, Clementine Maurice, and Stefan Mangard. 2017. Malware

Guard Extension: Using SGX to Conceal Cache Attacks. https://arxiv.org/abs/1702.08719. (2017).
SeaBIOS. 2015. SeaBIOS. http://www.seabios.org/SeaBIOS. (2015).
Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: A Tiny Hypervisor to Provide

Lifetime Kernel Code Integrity for Commodity OSes. In Proc. 21st ACM SIGOPS Symp. on Operating
Syst. Principles (SOSP ’07). ACM.

Joseph Sharkey. 2016. Breaking Hardware-Enforced Sec. with Hypervisors. https://tinyurl.com/y8fuc3jg.
(2016).

Hao Shi, Abdulla Alwabel, and Jelena Mirkovic. 2014. Cardinal Pill Testing of System Virtual Machines. In
23rd USENIX Sec. Symp. (USENIX Sec. 14). USENIX Association.

Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa Omote, Shoichi Hasegawa, Takashi
Horie, Manabu Hirano, Kenichi Kourai, Yoshihiro Oyama, Eiji Kawai, Kenji Kono, Shigeru Chiba, Ya-
sushi Shinjo, and Kazuhiko Kato. 2009. BitVisor: A Thin Hypervisor for Enforcing I/O Device Sec.. In
Proc. ACM SIGPLAN/SIGOPS Intl. Conf. on Virtual Execution Environments (VEE ’09).

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang, Zhenkai Liang, James
Newsome, Pongsin Poosankam, and Prateek Saxena. 2008. BitBlaze: A New Approach to Comp. Sec. via
Binary Analysis. In Proc. 4th Intl. Conf. on Information Syst. Sec. (ICISS ’08). Springer-Verlag.

Sherri Sparks and Jamie Butler. 2005. Shadow Walker - Raising The Bar For Windows Rootkit Detection.
https://tinyurl.com/yag77m8y. (2005).

Patrick Stewin, Jean-Pierre Seifert, and Collin Mulliner. 2011. Poster: Towards Detecting DMA Malware.
In Proc. 18th ACM Conf. on Comp. and Comm. Sec. (CCS ’11).

Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. 2014. Unsupervised Anomaly-Based Malware
Detection Using Hardware Features. Springer Inter. Publishing.

Alexander Tereshkin and Rafal Wojtczuk. 2009. Introducing Ring -3 Rootkits. https://tinyurl.com/l7qnjpv.
(2009).

Kevin Townsend. 2016. Mobile Malware Shows Rapid Growth in Volume and Sophistication. https://tinyurl.
com/ya7ctfcz. (2016).

Petar Tsankov, Mohammad Torabi Dashti, and David Basin. 2013. Semi-valid Input Coverage for Fuzz
Testing. In Proc. of the 2013 Inter. Symposium on Software Testing and Analysis (ISSTA 2013). ACM.

Jeroen van Prooijen. 2016. The Design of Malware on Modern Hardware. https://tinyurl.com/y8rwfj5t.
(2016).

Giorgos Vasiliadis, Elias Athanasopoulos, Michalis Polychronakis, and Sotiris Ioannidis. 2014. PixelVault:
Using GPUs for Securing Cryptographic Operations. In Proc. 2014 ACM SIGSAC Conf. on Comp. and
Comm. Sec. (CCS ’14).

Giorgos Vasiliadis and Sotiris Ioannidis. 2010. GrAVity: A Massively Parallel Antivirus Engine. In Proc.
13th Intl. Conf. on Recent Advances in Intrusion Detection (RAID’10). Springer-Verlag.

Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. 2011. MIDeA: A Multi-parallel Intrusion
Detection Architecture. In Proc. 18th ACM Conf. on Comp. and Comm. Sec. (CCS ’11). ACM.

Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. 2015. GPU-assisted Malware. Int. J. Inf.
Secur. 14, 3, Article - (June 2015).

Amit Vasudevan and Ramesh Yerraballi. 2005. Stealth Breakpoints. In Proc. 21st Annual Comp. Sec. Appli-
cations Conf. (ACSAC ’05). IEEE Comp. Society.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:35

Amit Vasudevan and Ramesh Yerraballi. 2006a. Cobra: Fine-grained Malware Analysis Using Stealth
Localized-executions. In Proc. 2006 IEEE Symp. on Sec. and Priv. (SP ’06). IEEE Comp. Society.

Amit Vasudevan and Ramesh Yerraballi. 2006b. SPiKE: Engineering Malware Analysis Tools Using Un-
obtrusive Binary-instrumentation. In Proc. 29th Australasian Comp. Science Conf. - Volume 48 (ACSC
’06). Australian Comp. Society, Inc.

Vassilios Ververis. 2010. Sec. Evaluation of Intel’s Active Management Technology. Ph.D. Dissertation. KTH
Information and Communication Technology.

Jack Wallen. 2016. Is the Intel Management Engine a backdoor? https://tinyurl.com/j8s2uaa. (2016).
Gary Wang, Zachary J. Estrada, Cuong Pham, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. 2015a. Hy-

pervisor Introspection: A Technique for Evading Passive Virtual Machine Monitoring. In 9th USENIX
Wksp on Offensive Technologies (WOOT 15). USENIX Association.

Jiang Wang, Angelos Stavrou, and Anup Ghosh. 2010. HyperCheck: A Hardware-assisted Integrity Monitor.
In Proc. 13th Intl. Conf. on Recent Advances in Intrusion Detection (RAID’10). Springer-Verlag.

Jiang Wang, Fengwei Zhang, Kun Sun, and Angelos Stavrou. 2011. Firmware-assisted Memory Acquisition
and Analysis Tools for Digital Forensics. In Proc. 2011 6th IEEE Intl. Wksp on Systematic Approaches
to Digital Forensic Engineering (SADFE ’11). IEEE Comp. Society.

Xueyan Wang and Xiaofei Guo. 2016. NumChecker: A System Approach for Kernel Rootkit Detection and
Identification. https://tinyurl.com/yc5svs9m. (2016).

Xueyang Wang, Charalambos Konstantinou, Michail Maniatakos, and Ramesh Karri. 2015b. ConFirm: De-
tecting Firmware Modifications in Embedded Syst. Using Hardware Performance Counters. In Proc.
IEEE/ACM Intl. Conf. on Comp.-Aided Design (ICCAD ’15). IEEE Press.

Filip Wecherowski. 2009. A Real SMM Rootkit: Reversing and Hooking BIOS SMI Handlers. https://tinyurl.
com/knoms4t. (2009).

Carsten Willems, Ralf Hund, Andreas Fobian, Dennis Felsch, Thorsten Holz, and Amit Vasudevan. 2012b.
Down to the Bare Metal: Using Processor Features for Binary Analysis. In Proc. of the 28th Annual
Comp. Sec. Applications Conf. (ACSAC ’12). ACM.

Carsten Willems, Ralf Hund, and Thorsten Holz. 2012a. CXPInspector: Hypervisor-Based, Hardware-
Assisted System Monitoring. Technical Report. Horst Gortz Institute for IT Sec.

Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. 2012. CFIMon: Detecting Violation of Control Flow
Integrity Using Performance Counters. In Proc. 2012 42nd Annual IEEE/IFIP Intl. Conf. on Depend.
Syst. and Net. (DSN) (DSN ’12). IEEE Comp. Society.

Xiaowen Xin. 2017. Lock it up! New hardware protections for your lock screen with the Google Pixel 2.
https://tinyurl.com/yb5pejys. (2017).

Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping Chen, and Bing Mao. 2017. Postmortem Program Anal-
ysis with Hardware-Enhanced Post-Crash Artifacts. In 26th USENIX Sec. Symposium. USENIX.

S. D. Yalew, G. Q. Maguire, S. Haridi, and M. Correia. 2017. T2Droid: A TrustZone-Based Dynamic Analyser
for Android Applications. In 2017 IEEE Trustcom/BigDataSE/ICESS.

Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang, and Heng Yin. 2012. V2E: Combining Hardware
Virtualization and Softwareemulation for Transparent and Extensible Malware Analysis. In Proc. 8th
ACM SIGPLAN/SIGOPS Conf. on Virtual Execution Environments (VEE ’12).

Liwei Yuan, Weichao Xing, Haibo Chen, and Binyu Zang. 2011. Sec. Breaches As PMU Deviation: Detecting
and Identifying Sec. Attacks Using Performance Counters. In Proc. 2nd Asia-Pacific Work. on Syst.
(APSys ’11). ACM.

Fengwei Zhang. 2013. IOCheck: A framework to enhance the security of I/O devices at runtime. In 2013
43rd Annual IEEE/IFIP Conf. on Depend. Syst. and Net. Wksp (DSN-W).

F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun. 2015. Using Hardware Features for Increased Debug-
ging Transparency. In 2015 IEEE Symp. on Sec. and Priv. IEEE.

Fengwei Zhang, Kevin Leach, Kun Sun, and Angelos Stavrou. 2013. SPECTRE: A Depend. Introspection
Framework via System Management Mode. In Proc. 43rd Annual IEEE/IFIP Intl. Conf. on Depend.
Syst. and Net. (DSN) (DSN ’13). IEEE Comp. Society.

Fengwei Zhang and Hongwei Zhang. 2016. SoK: A Study of Using Hardware-assisted Isolated Execution
Environments for Sec.. In Proc. Hardware and Architectural Support for Sec. and Priv. (HASP). ACM.

Yury Zhauniarovich, Olga Gadyatskaya, and Bruno Crispo. 2013. DEMO: Enabling Trusted Stores for An-
droid. In Proc. of the 2013 ACM SIGSAC Conf. on Comp. & Comm. Sec. (CCS ’13). ACM.

Received Date 1; revised Date 2; accepted Date 3

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:36 Botacin et al.

Appendix for the paper: Who watches the watchmen:

Marcus Botacin1, Paulo de Geus2, André Grégio3,
(1) University of Campinas

Email: marcus@lasca.ic.unicamp.br
(2) University of Campinas

Email: paulo@lasca.ic.unicamp.br
(3) Federal University of Paraná

Email: gregio@inf.ufpr.br

In this section, we show an overview of the presented technologies, tools, and solu-
tions, aiming to ease comparison among them. As the tabulated items are themselves
related in two distinct ways—by the employed technology and by the solution goal—we
present both, so a given solution may appear more than once.

Table I presents the HVM-based tools and solutions.
Table II presents the SMM-based tools and solutions.
Table III presents the privileged rings-based tools and solutions.
Table IV presents the hardware-based tools and solutions.
Table V presents the performance counters-based tools and solutions.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:37

Table I: Summary of HVM-based tools and solutions.

Tool Purpose Target OS Technology Hypervisor Resources

BluePill offensive Windows
Vista

AMD SVM – network backdoor

HVM
Rootkit

offensive Windows XP AMD SVM – –

Ether malware
analysis

Windows XP – Xen syscall tracer, unpacker

CXPInspector malware
analysis

Windows 7
x64

Intel VT-x KVM memory tracking,
profiling

MAVMM malware
analysis

Ubuntu
Linux

AMD SVM own
hypervisor

syscall tracer, unpacker

HyperDBG debugging Windows XP Intel VT-x – kernel debugger,
graphical user interface

SPIDER debugging Windows XP
Ubuntu
Linux

– KVM trap flag hider,
unlimited breakpoints

V2E execution
replay

Linux
Windows XP

HVM DBT TEMU transparent collection,
execution replay,
emulated instruction
changes,
emulated page table
translator

Kang et al.
2009

execution
replay

Windows XP HVM DBT Ether
TEMU

transparent collection,
execution replay,
dynamic state
modifications

BitVisor policy en-
forcement

Windows XP
Windows
Vista Linux

Intel VT-x – para-passthrough,
I/O policy, DMA MITM

SecVisor attack
prevention

– AMD DEV – code execution policy,
code authorization,
kernel-userland flow
integrity

HyperSleuth forensics Windows XP Intel VT-x – syscall tracer,
dump on write,
lie detector

Quist et al
2001

unpacking Windows XP Intel Vt-x Ether binary section and header
rebuilding,
VAD import rebuilding,
AV submission

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:38 Botacin et al.

Table II: Summary of SMM-based tools and solutions

Tool Purpose Target system Trigger Resources

Duflot et al.
2007

offensive OpenBSD — unrestricted physical
memory access

Embleton et
al. 2008

offensive – keyboard IRQ on
APIC chipset

keylogger

Schiffman
and Kaplan
2014

offensive Linux USB-PS2
emulation handling
rerouted from
USBHC

keylogger, UDP
transmission

MALT debugging Windows,
Linux

performance
counter overflow

register access,
memory inspection,
step-by-step,
BIOS flashing,
GDB integration

SMMDumper forensics – APIC-redirected
known key-pressed
sequence interrupt

memory dump, UDP
packets, code callbacks

Wang et al.
2011

forensics – IPMI memory dump,
consecutive snapshots,
PCI DMA,
SMM-based semantic gap
bridging,
BIOS NIC driver

SPECTRE attack
detection

Windows,
Linux

periodic timer memory pattern matching,
BIOS NIC heartbeat

I/O Check I/O
integrity

– – APIC remapping check,
NIC firmware hash check

HyperSentry hypervisor
integrity

Intel VT-x,
Xen Hypervisor

IPMI, performance
counter overflow

hash-based integrity check,
SMM-based semantic gap
bridging,
root-non-root transition
bridging

HyperCheck hypervisor
integrity

QEMU,
real NIC,
Xen hypervisor,
Linux,
Windows

– SMM-based semantic gap
bridging,
hash-based integrity check

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:39

Table III: Summary of privileged rings-based tools and solutions.

Solution
Class

Ring Underlying
Technology

Capabilities Limitations

HVM -1 extended processor
instruction set

attack: hypervisor attacks,
defense: kernel/userland
monitoring

hypervisor rewriting,
semantic gap, considerable
overhead

SMM -2 system BIOS attack: boot attacks,
defense: kernel, userland
and hypervisor monitoring

BIOS rewriting, semantic
gap,
locked BIOS

AMT -3 Chipset attack: whole system view,
defense: kernel, userland,
hypervisor and BIOS
monitoring

chipset dependent,
semantic gap

SGX – Processor Enclave attack: malware integrity
check,
defense: running software
cannot be monitored

API-dependent code

hardware – physical external
hardware

attack: –,
defense: tamper-proof
monitoring

hardware development
efforts, bus monitoring
rate, semantic gap

performance
counter

– processor feature attack: side-channel
detection,
defense: low-overhead
tracing and profiling

no process isolation,
kernel mechanism
configuration

GPU – PCI Card attack: DMA snooping,
defense: DMA monitoring

semantic gap,
DMA blocking

TSX – concurrency
control hardware

attack: –,
defense: commit-based
control flow

limited block size

Table IV: Summary of hardware-based tools and solutions.

Tool Technology Data
Collection

Filtering Vulnerabilities

Copilot PCI Card snapshot No timing,
dynamic state modification

SnapMon SOC snapshot no timing,
dynamic state modification

SnoopMon SOC snooping yes –

Ki-Mon SOC snooping yes
(Hardware-Assisted
Whitelisting)

–

Kargos – snapshot – –

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:40
B

otacin
etal.

Table V: Summary of performance counters-based tools and so-
lutions.

Tool Class Type Vendor Purpose Intel. Intro. Tools Underlying
Solution

Injection Limits

Branch
Trace

branch
monitor

— — delusion
attacks,
ROP

root cause
analysis,
CALL-
RET CFI

Windows
debug
symbols

shellcode
extrac-
tor, ROP
detector

CWXDetector — no CG or CFG
generated

CFIMon branch
monitor

KBouncer branch
monitor

LBR Intel ROP de-
tector

CALL-
RET CFI

– process
blocking

– yes LBR
gadget-length,
code injection

ROPecker branch
monitor

LBR Intel ROP de-
tector

CALL-
RET CFI

– — — — LBR
gadget-length,
static code
database

Pierce et
al. 2016

events
monitor

— — ROP de-
tector

baseline

Kompali
and Sarat
2014

events
monitor

– Intel abnormal
behavior

baseline N/A CPU us-
age, mem
usage,
cache
usage,
branch
prediction

Vtune – no process
information,
Vtune limits

HPCHunter events
monitor

– – abnormal
behavior

baseline +
SVD/SVM

Yuan et al.
2011

Demme et
al. 2013

Wang and
Guo 2016

Malone et
al. 2011

Tang et al.
2014

Confirm

A
C

M
C

om
puting

Surveys,V
ol.0,N

o.0,A
rticle

0,P
ublication

date:
To

appear.

Who watches the watchmen 0:41

Table VI presents protection mechanisms employed by the presented solutions.

Table VI: Protection mechanisms used by overviewed solutions.

Solution Class Mechanism Protection

HVM trap flag exception handler

HVM loader driver rootkit hider technique

HVM hypervisor code page fault handler trap

HVM timing TSC change

SMM BIOS change online BIOS flashing

SMM timing TSC change

performance counter MSR disabling periodic kernel checking

DMA DMA blocking device exclusion vector

Table VII presents a comparison of solutions according to their purposes.
Table VIII presents a comparison of solutions according to their overhead.
Table IX presents a comparison of solutions according to their required development

effort.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

0:42 Botacin et al.

Table VII: Comparison of solutions according to their purposes.

Purpose Technology Advantages Disadvantages

offensive HVM late launch –

offensive SMM – BIOS locking

offensive SGX remote attestation –

malware analysis HVM late launch hypervisor rewriting,
overhead, semantic gap

malware analysis SMM – BIOS rewriting/locking, semantic gap

malware analysis performance
counter

low overhead limited data capture,
limited process information

malware analysis GPU low overhead limited to DMA data, DMA blocking,
semantic gap

debug HVM easy register access

debug SMM limited to SMI

attack detection HVM – vulnerable to hypervisor attacks

attack detection SMM inspect hypervisors have to implement network support

attack detection GPU low overhead DMA-limited

attack detection PCI-card low overhead DMA-limited

attack detection hardware tamper-proof no active component

policy enforcement HVM IOMMU –

integrity check HVM kernel monitoring hypervisor attacks

integrity check SMM hypervisor check coupled semantic gap

integrity check DMA low overhead timing attacks

side effects event counter low overhead limited process isolation

ROP branch
monitor

runtime code
monitor

increased overhead

ROP event monitor side effects detection limited process information

Table VIII: Comparison of solutions according to their overhead.

Technique Overhead Reason/Limitation

HVM high single-step trap at hypervisor level

SMM high single-step trap at BIOS level

performance counter medium-low branch-step trap at kernel level

GPU DMA near-zero GPU blocked for other calculations

dedicated PCI DMA near-zero specific purpose

external hardware zero no interruption/interference

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

Who watches the watchmen 0:43

Table IX: Comparison of solutions according to development ef-
fort.

Technique Development effort Reason/Limitation

HVM high hypervisor rewrite

SMM high BIOS rewrite

external hardware high hardware project

dedicated PCI DMA medium device driver

performance counter medium ordinary kernel driver

GPU DMA low GPU program

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: To appear.

