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Abstract—Malicious software (malware) has been extensively
employed for illegal purposes and thousands of new samples are
discovered every day. The ability to classify samples with similar
characteristics into families makes possible to create mitigation
strategies that work for a whole class of programs. In this
paper, we present a malware family classification approach using
VGG16 deep neural network’s bottleneck features. Malware
samples are represented as byteplot grayscale images and the
convolutional layers of a VGG16 deep neural network pre-trained
on the ImageNet dataset is used for bottleneck features extraction.
These features are used to train a SVM classifier for the malware
family classification task. The experimental results on a dataset
comprising 10,136 samples from 20 different families showed that
our approach can effectively be used to classify malware families
with an accuracy of 92.97%, outperforming similar approaches
proposed in the literature which require feature engineering and
considerable domain expertise.

Index Terms—Malicious Software, Classification, Machine
Learning, Deep Learning, Transfer Learning.

I. INTRODUCTION

Over the past years, the number of programs developed
for malicious and illegal purposes has grown at an extremely
high rate. Thousands of new malicious software (malware)
samples are discovered every day. Malware authors often reuse
code to generate different variants with similar characteristics
that can be grouped into one malware family. The ability
to identify samples that belong to the same malware family
makes significantly easier to derive generalized signatures,
implement removal procedures and create new mitigation
strategies that work for a whole class of programs.

Several feature extraction approaches based on static and
dynamic malware analysis have been used to train machine
learning classifiers in order to automate malware classification
task. However, designing a feature extractor able to transform
raw data into a suitable feature vector from which the learning
algorithm can detect patterns requires careful engineering and
considerable domain expertise.

In this work we investigate the use deep learning al-
gorithms [1] to learn good malware representations. Deep
learning are representation learning methods with multiple
levels of representation able to transform the the raw input
into a representation at a higher and more abstract level.
Deep learning’s key aspect is that these feature layers are not

designed by human engineers, rather they are learned from
data using a general purpose learning procedure.

Deep Neural Networks (DNN) have become the standard
approach for many classification tasks within the last few
years, due to the overwhelming performance of DNNs on
image recognition challenges. Tremendous progress has been
made in image recognition, primarily due to the availability
of large-scale annotated datasets and the use of DNNs. Large-
scale well-annotated datasets are crucial to learning more
accurate or generalizable models. The ImageNet [2] is a
dataset containing 1.28 million images of 1,000 classes. By
the use of transfer learning [3], DNN models trained upon this
dataset have been used to significantly improve many image
classification tasks using other datasets in different domains.

In this paper we present an approach for malware family
classification using the DNN proposed by Visual Geometry
Group with 16 layers (VGG16) [4]. First, we represent mal-
ware samples as byteplot images, where each byte corresponds
to one pixel in a grayscale image. Through transfer learning,
we extract the filter activation maps (usually called bottleneck
features) using the convolutional layers of VGG16 pre-trained
on the ImageNet dataset. The bottleneck features are then used
to train a Support Vector Machine (SVM) classifier for the
malware family classification task.

Our hypothesis is that despite the disparity between natural
images and malware byteplot images, VGG16 parameters
may still be transferred to make malware image recognition
tasks more effective. The experimental results on a dataset
comprising 10,136 samples from 20 different malware families
showed that our approach can effectively be used to classify
malware families with an accuracy of 92.97%, outperforming
similar approaches proposed in the literature which require
careful feature engineering and considerable domain expertise.

The remaining of the paper is organized as follows: Sec-
tion II presents malware classification related work. Section III
describes the method proposed in this work in details. Sec-
tion IV presents our experimental results. The conclusions
follow in Section V.

II. RELATED WORK

The use of machine learning for automatically classifying
malware families has been extensively studied in the literature.



Kolter and Maloof [5] extracted byte n-grams from Windows
executables and trained several classifiers. They used a one-
versus-all classification approach and combined the predictions
of the individual classifiers. Shabtai et al. [6] evaluated various
settings of opcode n-gram sizes and classifiers. The authors
concluded that the 2-gram opcodes outperformed the others
and the use of byte n-grams appears to produce less accurate
classifiers than using opcode n-grams.

Some approaches based on the use of visualization tech-
niques have been proposed to support malware analysis with
respect to feature extraction and pattern recognition of mal-
ware samples. Nataraj et al. [7] proposed a method for
classifying malware represented as byteplot grayscale images
using image processing techniques. Using Gabor filters to
extract GIST descriptors from the byteplot grayscale images
and then using a k-nearest neighbors (kNN) classifier, they
obtained an accuracy of 97.18% in a dataset consisting of 25
malware families, totaling 9,458 malware samples.

In the last few years, researchers have applied deep learning
techniques to learn patterns in a set of features extracted from
static and dynamic malware analysis in order to classify new
samples. Kolosnjaji et al. [8] used a hierarchical feature ex-
traction architecture that combines convolutional and recurrent
neural network layers for malware classification using system
call n-grams obtained from dynamic analysis. Their evaluation
results achieved an average accuracy of 89.4% in a dataset
containing 4,753 malware samples from 10 different families.

Unlike previous work, our approach does not require any
feature engineering, using raw pixel values of byteplot images
as our underlying malware representation. Additionally, we
employ knowledge transfer from a deep neural network trained
for object detection task on a different dataset to discover good
malware representations, improving the classification results.

III. METHODOLOGY

An overview of the entire method’s pipeline is given in
Figure 1.

In the first step, we convert the malware executable to
a byteplot grayscale image. The byteplot representation of
binary executables can be used for automatic identification
of visual patterns in static malware analysis.

The byteplot grayscale image consists of a variable-
resolution image with only one channel, while our DNN model
requires constant input dimensionality with 3 channels (RGB).
Therefore, in the second step we convert the grayscale image
to RGB and rescale it to a fixed resolution of 224 × 224.
Additionally, we subtract the mean RGB value computed
on the ImageNet dataset from each pixel of the resulting
224 × 224 × 3 image, as suggested by Krizhevsky et al. [9].
These mean-centered raw RGB values of the pixels are used
as input features to our DNN model.

In the third step, we build a Deep Neural Network (DNN)
model by transferring convolutional layers of VGG16 model
pre-trained on the ImageNet dataset to our DNN model. The
transferred convolutional layer’s parameters are used to extract
the bottleneck features.

In the last step, the bottleneck features are used to train
a SVM classifier for malware family classification. This ap-
proach is equivalent to replace the fully-connected layers of
VGG16 by the SVM classifier freezing the parameters of
the convolutional layers during the training process, with the
advantage of a much smaller training time.

Finished the training process, the SVM classifier is stacked
on the top of the convolutional layers and the whole model is
used to classify the test samples.

A. Byteplot Visualization

The byteplot visualization method was initially proposed by
Conti et al. [10] to represent binary data objects as grayscale
images, where each byte corresponds to one image pixel color
rendered as a grayscale (zero is black, 255 is white and other
values are intermediate shades of gray). They presented a
visual reverse engineering system arguing that visual analysis
of binary data presented as grayscale graphical depictions
helps distinguish structurally different regions of data and thus
facilitates a wide range of analytic tasks such as fragment
classification, file type identification, location of regions of
interest and other tasks that require an understanding of the
primitive data types.

Later, Nataraj et al. [7] observed significant visual similari-
ties in image texture for malware belonging to the same family,
as shown in Figure 2, possibly explained by the common
practice of reusing code to create new malware variants.

To transform malware samples into byteplot images, a given
malware binary is read as a vector of 8-bit unsigned integers
and then organized into a 2D array, where the width is
defined by the file size, based on empirical observations made
by Nataraj et al. [7]. The height is allowed to vary depending
on the width and the file size.

B. VGG16 Architecture

The VGG network architecture was initially proposed by
Simonyan and Zisserman [4]. The VGG models with 16 layers
(VGG16) and with 19 layers (VGG19) were the basis of
their ImageNet Challenge 2014 submission, where the Visual
Geometry Group (VGG) team secured the first and the second
places in the localization and classification tracks respectively.

The VGG16 architecture, shown at the top of Figure 1,
is structured starting with five blocks of convolutional layers
followed by three fully-connected layers. Convolutional layers
use 3×3 kernels with a stride of 1 and padding of 1 to ensure
that each activation map retains the same spatial dimensions
as the previous layer. A rectified linear unit (ReLU) activation
is performed right after each convolution and a max pooling
operation is used at the end of each block to reduce the spatial
dimension. Max pooling layers use 2×2 kernels with a stride
of 2 and no padding to ensure that each spatial dimension
of the activation map from the previous layer is halved. Two
fully-connected layers with 4,096 ReLU activated units are
then used before the final 1,000 fully-connected softmax layer.

A downside of the VGG16 model is that it is expensive to
evaluate and use a lot of memory and parameters. VGG16 has



Fig. 1. Overview of proposed method.

Fig. 2. Byteplot visualization of malware samples from six different families.

approximately 138 million parameters. Most of these param-
eters (approximately 123 million) are in the fully-connected
layers, that are replaced by a SVM classifier in our model,
significantly reducing the number of necessary parameters.

C. Transfer Learning

Transfer learning consists in transferring the parameters of
a neural network trained with one dataset and task to another
problem with a different dataset and task [3]. Many deep
neural networks trained on natural images exhibit a curious
phenomenon in common: on the first layers they learn features
that appear not to be specific to a particular dataset or task,
but general in that they are applicable to many datasets and
tasks. When the target dataset is significantly smaller than the
base dataset, transfer learning can be a powerful tool to enable
training a large target network without overfitting.

In the proposed transfer learning approach, we have used
VGG16 as the base model, pre-trained for object detection
task on the ImageNet dataset. We use the convolutional layers
of the VGG16 to extract the bottleneck features of malware
byteplot images, that are used as input to train a SVM
classifier. Then, we replace the fully-connected layers by the

trained SVM classifier in the proposed model.
Our hypothesis is that despite the disparity between natural

images and malware byteplot images, VGG16 parameters
trained on the large-scale well-annotated ImageNet may still
be transferred to make malware image recognition tasks more
effective. Collecting and annotating large numbers of mal-
ware samples still poses significant challenges. Accordingly,
the VGG16 architecture contains millions of parameters to
train and thus requires sufficiently large numbers of labeled
malware samples.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
model and present the experimental results. We applied trans-
fer learning techniques using VGG16 as the base model to
extract the bottleneck features of our malware samples, that
are used as input to train a SVM classifier. To perform a
comparative analysis, we reproduced some approaches used
by similar work proposed in the literature.

A. Dataset

The proposed method has been tested over a dataset created
with samples collected from VirusSign1 from August 1, 2014
to January 18, 2015. We obtained 10,136 malware samples
and submitted them to Virustotal2 service to identify their
antivirus (AV) labels. Using AVCLASS [11] we have obtained
a unique malware family label for each sample. AVCLASS
is an automatic labeling tool that given the AV labels for a
number of malware samples, outputs the most likely family
names for each sample, implementing techniques to address
AV label normalization, removal of generic tokens, and alias
detection, ranking each candidate family name by the number
of AV engines assigned to each sample. The samples are
distributed in 20 malware families.

1Available at http://www.virussign.com
2Available at http://www.virustotal.com



To evaluate the performance of proposed models we used
a stratified 10-fold cross-validation, randomly partitioning the
samples into ten disjoint sets of equal size containing roughly
the same proportions of the class labels in each fold, selecting
one as a testing set and combining the remaining nine to form
a training set. We conducted ten such runs using each partition
as the testing set and reported the accuracy by fold, the average
classification accuracy and the standard deviation.

B. Feature extraction analysis

To perform a comparative analysis of our model with similar
work proposed in the literature, we implemented feature
extraction approaches using Gabor filters to extract GIST
descriptors from the byteplot grayscale images [7], byte n-
grams (n = 1) [5] and opcode n-grams (n = 1) [6].

We are interested in evaluate how good the VGG16 bot-
tleneck features are compared with other feature extraction
methods. To perform a qualitative analysis, we generated
data visualization using the t-Distributed Stochastic Neighbor
Embedding (t-SNE) algorithm [12]. The goal of t-SNE is to
reduce the dimensionality so that the closer two nodes are to
each other in the original high-dimensional space, the closer
they would be in the 2-dimensional space.

Figure 3 provides a t-SNE visualization of the dataset using
different feature extraction approaches. Each node corresponds
to one malware sample and each color represents one malware
family. Note that the t-SNE dimensionality reduction process
is completely unsupervised and the labels are used for coloring
the nodes at plotting time only.

It is possible to observe that the operations performed by
the VGG16 convolutional layers projected the grayscale image
pixels into a better separable feature space, with a degree
of separability comparable to the other feature extraction
techniques. Furthermore, it is possible to observe that samples
of the same malware family are most clustered together in
the VGG16 bottleneck features space, demonstrating that the
VGG16 activation features indeed provide good representa-
tions of malware. Some clustering errors are expected here (as
can be seen in the visualization), since many of these malware
families use parts of code from each other, and the distinction
even among antivirus detections is blurred.

To perform a quantitative analysis of features, we imple-
mented malware classification with a kNN (k = 1) classifier
using as input the same features. The accuracy by fold, the
average accuracy and the standard deviation are presented in
Table I.

VGG16 bottleneck features obtained an average accuracy of
0.9077 (±0.0064), while other feature extraction approaches
obtained lower accuracies.

C. Malware Classification Results

To demonstrate the performance gain provided by the
transfer of convolutional layers of VGG16 pre-trained on the
ImageNet dataset, we have trained a VGG16 from scratch
for the malware family classification task. VGG16 has been
trained with categorical cross-entropy cost function and Adam

(a) (b)

(c) (d)

(e)

Fig. 3. t-SNE visualization of extracted features: (a) grayscale image pixels,
(b) VGG16 bottleneck features, (c) GIST descriptors, (d) Byte 1-gram and
(e) Opcode 1-gram.

optimizer for 100 epochs. The weights have been initialized
using glorot uniform approach and the bias terms were initial-
ized to zero. Figures 4(a) and 4(b) present, respectively, the
average loss and accuracy of VGG16 trained from scratch.

The network converges quickly to an extremely low average
accuracy of 0.1128 (±0.0434). While in principle VGG16
network is a powerful model, in practice, it is hard to train
properly. The reasons why this model is so unwieldy are the
vanishing and exploding gradient problems.

In the proposed approach, we use the convolutional layers
of VGG16 pre-trained on the ImageNet dataset to extract
bottleneck features which are used to train a SVM classifier
with Radial Basis Function (RBF) kernel for the malware
family classification task. Then, we replace the VGG16 fully-
connected layers by the trained SVM classifier.

The parameters C and gamma of the SVM classifier
have been obtained through a gridsearch process with C ∈[
10−2, 10−1, ..., 1010

]
and gamma ∈

[
10−9, 10−8, ..., 103

]
.

Figure 5 shows the accuracy obtained in gridsearch using
VGG16 bottleneck features.

With C = 100 and gamma = 10−6 we obtained the best
average accuracy of 0.9297 (±0.0063) using VGG16 bottle-



TABLE I
ACCURACY OBTAINED WITH A KNN (K=1) CLASSIFIER.

Features Fold Avg Acc Std Dev0 1 2 3 4 5 6 7 8 9
Grayscale 0.7705 0.7769 0.7765 0.7520 0.7569 0.7587 0.7453 0.7540 0.7664 0.7550 0.7612 0.0108
VGG16 0.9043 0.9090 0.9108 0.8967 0.9075 0.8981 0.9138 0.9077 0.9135 0.9153 0.9077 0.0064
GIST 0.9014 0.8943 0.8961 0.8858 0.8878 0.8912 0.8949 0.8899 0.9016 0.9004 0.8943 0.0057
Byte 1-gram 0.8340 0.8415 0.8363 0.8297 0.8248 0.8437 0.8404 0.8393 0.8380 0.8406 0.8368 0.0058
Opcode 1-gram 0.8799 0.9031 0.8971 0.8996 0.8839 0.8783 0.8890 0.8919 0.8897 0.9014 0.8914 0.0089

(a)

(b)

Fig. 4. VGG16 train/test average (a) loss and (b) accuracy.

Fig. 5. Gridsearch of C and gamma parameters using VGG16 bottleneck
features with SVM classifier.

neck features. Table II presents the comparison of accuracy
obtained with VGG16 trained from scratch and VGG16 with
transfer and SVM.

Figure 6 presents the normalized confusion matrix obtained
with VGG16 trained from scratch and VGG16 with transfer
and SVM.

As shown in the picture, the VGG16 trained from scratch is
able to recognize only four malware families, while VGG16

(a) (b)

Fig. 6. Normalized confusion matrix of (a) VGG16 trained from scratch and
(b) VGG16 with transfer and SVM.

with transfer and SVM is able to identify all families with a
high accuracy.

V. CONCLUSION

In this work we propose a malware classification mechanism
using byteplot malware images and deep learning techniques.
We evaluated our approach on a dataset consisting of 10,136
malware samples from 20 malware families, obtaining an
average accuracy of 92.97%. The experimental results show
that our method achieved a better accuracy compared to similar
work proposed in the literature. Our results confirm that
visual malware similarities can be used for accurate malware
classification.

Whereas many solutions have relied solely on hand-crafting
representations obtained by static and dynamic feature extrac-
tion procedures, the use of deep learning algorithms seems
to be a promising alternative to discover good malware rep-
resentations without laborious feature engineering process.
Moreover, we demonstrated that the knowledge obtained in the
ImageNet classification task can be successfully transferred
to malware classification. In our experiments, the accuracy
obtained with VGG16 using transfer learning and SVM out-
performed VGG16 trained from scratch.

The VGG16 learned feature extractor can still be fine-tuned
to malware classification, backpropagating the errors from the
last layers into the VGG16 transferred convolutional layers
to fine-tune them, possibly improving the performance of the
classifier.



TABLE II
COMPARISON OF ACCURACY OBTAINED WITH VGG16 TRAINED FROM SCRATCH AND VGG16 WITH TRANSFER AND SVM.

Model Transfer Top Fold Avg Acc Std Dev0 1 2 3 4 5 6 7 8 9
VGG16 no fully-connected 0.1377 0.0254 0.1373 0.0846 0.1378 0.1385 0.1388 0.1389 0.0497 0.1394 0.1128 0.0434
VGG16 yes SVM 0.9297 0.9364 0.9333 0.9154 0.9301 0.9268 0.9376 0.9276 0.9264 0.9333 0.9297 0.0063
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