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Malware and code-reuse attacks are the most significant threats to current systems operation. Solutions de-
veloped to countermeasure them have their weaknesses exploited by attackers through sandbox evasion and
anti-debug crafting. To address such weaknesses, we propose a framework that relies on modern processors’
branch monitor feature to allow us to analyze malware while reducing evasion effects. The use of hardware-
assistance aids in increasing stealthiness, a key feature for debuggers, since modern software (malicious
or benign) may be anti-analysis armored. We achieve stealthier code execution control by using the branch
monitor hardware’s inherent interrupt capabilities, keeping the code under execution intact. Previous work
on branch monitoring have already addressed the ROP attack problem, but require code injection and/or are
limited in their capture window size. Therefore, we also propose a ROP detector without these limitations.
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1. INTRODUCTION
Malware authors continuously improve their code to thwart detection by evading anal-
ysis environments, such as sandboxes and debuggers. Both legitimate software (for in-
tellectual property protection) and malware (for detection avoidance) may be equipped
with anti-analysis and/or anti-debugging techniques, causing the need for increased
stealthiness to overcome these techniques and so perform more dependable malware
analysis. Along with malware infection, code injection used to be one of the main at-
tack vectors to subvert systems functioning. The adoption of non-executable pages sup-
ported by hardware (No eXecute - NX/eXecute Disable - XD) and data execution pre-
vention (DEP) eliminated this problem in practice. However, attackers found another
way of leveraging control flow deviation by chaining blocks of code (gadgets) through
RET instructions. This is known as Return-Oriented Programming (ROP) and is cur-
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rently the main vector for injection attacks. Recently, techniques based on Control
Flow Integrity (CFI) and code length arose to counter such attacks with reasonable
effectiveness.

Based on the aforementioned issues, we introduce a hardware-assisted solution to
address sandbox evasion and anti-debugging equipped malware in a stealthier way,
and to detect ROP attacks in real time while overcoming limitations of existing state-
of-the-art, hardware-assisted approaches. In summary, we make the following contri-
butions:

(1) Current threats and solutions scenario review: we present a review on the
threat landscape scenario and current countermeasure and analysis tools, dis-
cussing their weaknesses. Specifically, we review transparent analysis solutions
as well as branch-based ones.

(2) Branch monitoring framework: we propose a complete, modular framework
based on hardware monitoring features, allowing for further applications that over-
come current and future state-of-the-art limitations and weak points. The frame-
work solution is open source, being available on Github1. Media is also available,
on Youtube2.

(3) Low-overhead malware analysis: we leverage our framework to build a mal-
ware analysis tool with lower development efforts than the current state-of-the-art
ones. As far as we know, no other malware tracer is based on such kind of monitor-
ing.

(4) Stealthier, granular debugger: we demonstrate how to implement granular de-
bugging based on our framework without using single-step flags, increasing the
stealthiness against evasive malware. Again, we have no knowledge of other de-
bugging solutions based on branch monitors.

(5) ROP attack detector: we present an improved implementation of current ROP
detection heuristics, based on our framework, which does not require code injec-
tion, a limitation on other approaches.

(6) Hardware Improvements: We suggest possible hardware enhancements for
branch monitors based on the challenges we faced when developing our solution.

The remainder of this paper is organized as follows: in Section 2, we define the
threats to be addressed, review the current threat and countermeasure scenario, and
introduce the hardware feature used in our solution; in Section 3, we review the state-
of-the-art solutions and pinpoint their weaknesses; in Section 4, we state the basis for
our framework; in Section 5, we present solutions developed upon our framework; in
Section 6, we discuss our contributions, proposal limitations and future developments;
finally, in Section 7, we present our conclusions.

2. BACKGROUND AND THREAT MODEL
2.1. Malware analysis and evasion
Techniques for malware analysis are usually classified as static or dynamic [Sikorski
and Honig 2012], each one with its own limitations. Static analysis may be suscepti-
ble to both theoretical (e.g., opaque constants [Moser et al. 2007]) and practical (e.g.,
packing, encryption, and obfuscation [Gao et al. 2014]) limitations. Dynamic analysis
is often employed as an additional analysis layer in order to overcome such limita-
tions [Egele et al. 2008], relying on the sample’s execution in a controlled environment
(sandbox). The execution usually happens on an emulator, due to instrumentation is-

1https://github.com/marcusbotacin/BranchMonitoringProject
2https://www.youtube.com/watch?v=BguVzqMt_j0&list=PLVYZ2jULLUDvqFVpU3pCZGlY9gCzYoyXP
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sues, or in a virtualized environment, due to scalability issues. Code execution in a non-
native environment may be used by malware to detect an analysis environment and
thus to hide its malicious intent. Environment detection is performed mainly through
fingerprinting or side-channel effects on instruction execution [Marpaung et al. 2012],
since emulator implementations do not exactly look like physical processors. Currently,
there are tools to automatically detect such side effects [Shi et al. 2014].

Many authors tried to address evasive malware issues, either by detecting their
split personalities under an emulator [Balzarotti et al. 2010] and counter-measuring
its side effects [Vasudevan and Yerraballi 2006b], or by running the sample on a bare
metal environment [Kirat et al. 2014]. Trying to mask execution side effects is an
ineffective solution since it can only assure the execution of samples which employ
known detection tricks. Regarding this scenario, a non-evadable malware analysis tool
should be able to run code in a native processor, which is called transparent execution.

Bare metal systems often present another issue related to detection: their intrusive-
ness over the traced sample. Systems which rely on techniques such as DLL injection
can be detected by hashing sample’s own memory. For this reason, higher-privileged
monitoring tools are required [Rossow et al. 2012]. However, as the operating sys-
tem (OS) evolve, high-privileged instrumentation becomes harder due to new security
mechanism – Windows Kernel Patch Protection (KPP)3, for example, denies kernel
hooking, a frequent approach for API interception. This way, a non-intrusive instru-
mentation is a requirement for bare metal malware analysis on modern OS.

2.2. Debuggers: requirements and implementations
Debuggers can be used to assist malware analysis and reverse engineering, allowing
the investigation of several execution paths. In general, a debugger should provide:

— Small Step Execution: A debugger should allow for region of interest inspection
in a granular way—from single step to function call trace.

— Breakpoint Information: A debugger should assure that the breakpoint region
is known. In other words, it should provide predictability to the execution. The
combination of the two aforementioned requirements matches the context require-
ment [Rosenberg 1996]. Due to the latter, probing approaches are not suitable for
debuggers.

— Context Inspection: Given a breakpoint, the debugger should be able to retrieve
information about the current execution context, such as memory and register val-
ues and/or function called.

Current debuggers are built on top of distinct techniques—OS support, emula-
tion or injection, and hardware support. Most OSs provide interfaces that allow pro-
cess control. Some Unix-like systems, for instance, provide the ptrace API, which
is the base for tools like the strace tracer and the GDB debugger. This solution is
not transparent since the presence of the tool can be discovered with the tool it-
self (if (ptrace(PTRACE_TRACEME, 0, NULL, 0) == -1), then it is detected). Windows
also provides its own debug facilities4. However, they are also not transparent, being
detected by the IsDebuggerPresent API5. Other debug solutions rely on hardware fea-
tures, such as the step-by-step execution defined by setting a trap flag in a debugctl
MSR register, which can be detected by samples through reading that register.

3http://technet.microsoft.com/pt-br/library/cc759759(v=ws.10).aspx
4https://msdn.microsoft.com/pt-br/library/windows/desktop/ms679303(v=vs.85).aspx
5https://msdn.microsoft.com/pt-br/library/windows/desktop/ms680345(v=vs.85).aspx
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2.3. ROP attacks
Code injection used to be one of the main attack vectors to subvert systems function-
ing. The adoption of non-executable pages supported by hardware (NX/XD) and data
execution prevention (DEP) eliminated this problem in practice. However, attackers
found another way of accomplishing control flow deviation by chaining blocks of code
(gadgets) through RET instructions. This is known as Return-Oriented Programming
(ROP) and is currently the main injection vector. This kind of attack is not prevented by
existing mechanisms since the code chains are not composed of any externally-injected
material but perfectly legitimate code in system memory. In a general way, the chains
are composed of a few instructions, which when combined and properly chosen may
satisfy the attacker’s desire to execute specific, arbitrary computation [Göktaş et al.
2014].

Recently, techniques based on Control Flow Integrity (CFI) and code length arose
to counter such attacks with reasonable effectiveness. However, many issues are still
posed by them, such as recompilation or code-injection.

2.4. Performance monitoring
Modern processors have many sensors on their platforms which allow for monitor-
ing performance event indicators. These sensors may also be used for other pur-
poses, such as security ones, as proposed in this work. Each vendor presents their
own set of monitors—Intel [intel 2015], AMD [AMD 2012], and ARM [ARM 2011].
Due to availability issues, this work is based on the Intel platform. It is composed of
two sub systems: PEBS (Precise Event Based Sampling) and LBR/BTS (Last Branch
Record/Branch Trace Store). The first is responsible for collecting information about
general system events, such as instructions retired, cache hit/misses, branches pre-
dicted and so on. The second is responsible for monitoring control flow deviations. It
can store both source and target addresses of deviation instructions. Despite being
called branch monitors, they can monitor any control flow deviation instruction, in-
cluding CALL, RET and exceptions, beside ordinary branch ones (JMP,JNE). For more
details, see Appendix A.

Both schemes have two storage options: register and memory-based. The first option
allows the system to store data in a limited number of specific purpose MSR regis-
ters, whereas the second one provides an unlimited storage in OS memory pages. The
branch monitoring mechanism is named LBR when operating in the first mode and
BTS in the second. Collecting data in MSR registers requires polling, which may cause
data loss in the LBR case. The memory-based approach for PEBS and BTS, in turn,
have the advantage of having the ability to generate an interrupt when a given thresh-
old is reached; this way no data is lost by the capturing mechanism. These schemes are
activated by setting special flags in MSR controls and impose theoretically zero over-
head, since they are processor features. For MSR access, a kernel driver is required. In
addition, as a processor feature, a physical machine is required, since virtual machines
do not emulate such special MSRs. The mechanisms operate in a system-wide manner.
Therefore, no process information is available for filtering. The LBR mechanism, how-
ever, is able to filter deviation types (branch, call or ret). Both LBR and BTS can filter
data capture level—kernel or userland.

2.5. Threat models
The assumptions presented here will guide the solution’s development and evaluation.
We have the following threat model for malware analysis and debug scenario.

— Evasive malware: we target samples with virtual machine detection as the anti-
analysis mechanism.

ACM Transactions on Privacy and Security, Vol. 21, No. 1, Article 4, Publication date: January 2018.
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— Userland threats: we assume that samples will execute in userland and no kernel
activity is performed. This assures the integrity of our kernel driver, as stated by
Rossow et al. Monitoring userland threats is a frequent assumption on malware
sandboxes. It can be seen in solutions like Cuckoo Sandbox [Guarnieri 2013] and
CWSandbox [Willems et al. 2007].

— Stealthier analysis: we assume that our solution will be running on a physical
machine with performance monitoring support.

— System API usage: we assume that sample-OS interactions are performed through
default system APIs. This allows us to introspect system addresses in order to re-
construct sample flows.

— Modern OS: we assume that the execution environment is a modern OS, where
kernel instrumentation is denied by modern protection mechanisms.

Below, we show the threat model for the ROP scenario.

— Return-based: we assume that attacks are based on return gadgets, ignoring other
forms of code reuse attacks, such as Jump- or Loop-oriented ones.

— Unobtrusive monitoring: we aim to monitor software without any code injection
or emulation.

— No prior information: our solution is aimed to monitor any binary in the system
without additional information about it.

3. RELATED WORK
Transparent malware analysis. Currently, two main kinds of techniques are em-

ployed in transparent malware analysis: HVM (Hardware Virtual Machines) and SMM
(System Management Mode) instrumentation. HVM are systems which rely on virtu-
alization instructions available in modern processors—Intel VT-x and AMD SVM—to
build a transparent environment, since these technologies allow running code on the
physical processor. In addition, they offer instrumentation facilities, such as double
page translation mechanisms. The transitions from root to non-root mode also provide
a way to monitor system events. Systems like the malware tracers Ether [Dinaburg
et al. 2008] and MAVMM [Nguyen et al. 2009] make use of this technique to build
their transparent systems. SMM mode, in turn, is a specific processor mode to manage
the system at a very low level. It consists of an executable portion of code resident in
the system BIOS, triggered by special interrupts called System Management Interrupt
(SMI). This mode is well isolated from other execution modes by address redirection. It
allows transparent execution since it is bare metal based. Systems like MALT [Zhang
et al. 2015] and SPECTRE [Zhang et al. 2013] make use of SMM instrumentation to
transparently monitor systems. One main disadvantage of HVM and SMM approaches
is their development complexity: HVM requires writing an instrumented hypervisor.
In some cases, such as in MAVMM, a hypervisor has to be built from scratch, since a
minimal Trusted Code Base (TCB) is required. SMM, in turn, requires rewriting BIOS
code—a task allowed only on unlocked systems. In addition, such systems cannot rely
on any library, given their low-level placement. Another issue is the overhead imposed
by the instrumentation routines. HVM exits may impose an overhead of the same
magnitude as the system execution’s, such as on Ether’s case [Dinaburg et al. 2008],
therefore being impractical for some uses. Our solution intends to be a lightweight
version in the same line as these approaches, allowing native code execution and low
level inspection but with a significant reduction in overhead and development efforts.

Debugger. Most of the current debugger developments are focused on complex soft-
ware architectures, such as high level constructions [Chiş et al. 2015], distributed sys-
tems [Mäkelä et al. 2013; Schulz and Mueller 2000; Ho et al. 2004], and GPU pro-
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gramming [Sharif and Lee 2008]. However, few efforts were made toward a debugger
more resistant to evasive malware. The closest attempts to build such debugger as
proposed in our work resulted in MALT [Zhang et al. 2015] and HyperDBG [Fattori
et al. 2010], which employ SMM introspection and HVM, respectively. Our work was
intended to be a lightweight version in the same line as these approaches, requiring
smaller costs of development and performance, although it implies on some restric-
tions, such as analysis inside the kernel and therefore requiring protection to avoid
kernel subversion.

ROP attacks. ROP detection approaches can be classified in compilation-time, in-
strumentation, binary-rewriting and run-time. Approaches based on compilation time
such as control flow locking [Bletsch et al. 2011a; Onarlioglu et al. 2010] exploitabil-
ity aim to avoid vulnerable constructions generation, thus reducing ROP exploitabil-
ity. The main disadvantage of this approach is that it cannot be applied to existing
binaries. Instrumentation approaches [Davi et al. 2009; Chen et al. 2009; Graziano
et al. 2016] are applicable to existing binaries without recompilation. These solutions
aim to detect exploitation in real-time. However, they suffer from limitations of the
instrumenting tools they are built on. Binary rewriting solutions [Hiser et al. 2012;
Pappas et al. 2012; Wartell et al. 2012] can also be applied to existing binaries and do
not require instrumentation. They rewrite the binary on first execution, hardening it
against exploitation. The main disadvantage of this approach is its limitation to han-
dle dynamically generated code. A broader approach is to leverage hardware monitors
in order to inspect application flows. This approach can be applied to existing bina-
ries and do not rely on emulated environments. Hypercrop [Jiang et al. 2011], for in-
stance, leverages HVM to identify ROP attacks. However, its overhead is prohibitive.
A lightweight approach to hardware assisted monitoring is to leverage performance
counters. ROPecker [Cheng et al. 2014] and KBouncer [Pappas et al. 2013] make use
of the LBR mechanism to identify and counter ROP attacks. ROPecker and KBouncer
are the closest related to ours in the scope of ROP detection. However, they present
some limitations, such as using the limited LBR instead of the BTS storage and re-
quiring DLL injection. Our work is intended to overcome such limitations.

Branch Monitoring. Distinct solutions have been deployed using performance
monitors in a general way. Beside the ones on ROP detection, they were applied in
other attacks evaluation. [Yuan et al. 2011] relies on performance data provided by
Linux Perf6 in order to identify attacks. [Kompalli 2014] works in a similar way but
its underlying tool is Intel Vtune7. Both solutions, however, are intended to detect sys-
tem misbehavior in a general way, whereas our proposal is to trace specific process
activity. In this sense, the work closest to ours is [Willems et al. 2012], which is able to
rebuild some traces from a program crash. However, this solution is not aimed at Con-
trol Flow Graph (CFG) reconstruction or debugging. It is also limited to using the few
LBR registers. Our work solves it and provides a broader solution to malware tracing.

The usage of LBR and BTS. Most solutions based on branch monitoring make use
of the LBR mechanism instead of the BTS one. This way, many comparisons made in
this work consider only LBR, such as on ROPecker’s and KBouncer’s study cases. CFI-
Mon [Xia et al. 2012], for instance, makes use of BTS to enforce a CFI policy. Unlike
this work, it uses a 2-phase heuristics, which requires binary prior-analysis. This way,
it is not directly comparable to this work, which implements a 1-phase policy, such as
in KBouncer. [Aktas and Ghose 2013] is the only one we are aware which addresses
the specific usage of BTS for security purposes. In such work, BTS is used to validate

6https://perf.wiki.kernel.org
7https://software.intel.com/en-us/intel-vtune-amplifier-xe
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control flow path transitions. The work hereby presented, however, differs from it in
many ways, since our goal is to implement security tools, such as malware tracers and
debugging facilities, whereas the cited work is concerned only with implementing run-
time policy enforcement. Its syscall trace system is more focused on abnormal behavior
detection than on tracing a given binary itself, which is proposed by us. Given these dif-
ferences, we are able to provide more flexible solutions, which allows us, for instance,
to reduce overhead. Moreover, our solution presents the same advantages of the afore-
mentioned approach, such as not requiring binary modifications. [Soffa et al. 2011]
makes use of both LBR and BTS in order to discuss the application of hardware moni-
tors in the context of software engineering. Although this work had already suggested
branch monitor use in order to track executed paths, it can be considered as a first step,
since many aspects needed to be further discussed, such as: i) external library inspec-
tion; ii) branch-capture granularity; iii) process isolation; iv) implementation aspects.
In this scope, the hereby presented work can be considered as a second-step, discussing
these missing points and presenting real-world sample evaluation.

4. PROPOSED FRAMEWORK
The framework is general in nature and can be applied for collecting and evaluat-
ing control flow deviation data, in particular by the applications developed as part
of this work, which implements extensions to the framework in order to apply secu-
rity policies. We are mainly concerned with tracing program paths, so we adopted the
branch monitor subsystem of the performance monitor hardware as our base mech-
anism. Given that it is able to collect the address of executed instructions, we can
reconstruct the whole scenario of code execution over binaries, libraries and function
calls through introspection.

To avoid losing instruction data, we opted for the BTS mechanism instead of the
LBR one. The advantage relies on the ability to make use of interrupts on our sys-
tem, which assures its state is coherent at inspection time. We defined a 1-instruction
threshold; this implies the system will be interrupted at each control flow deviation
instruction, therefore warranting the precise identification of which process is execut-
ing such instruction. This way we can easily and stealthly filter process actions, even
though the BTS system itself is unable to provide such information. Conversely, so-
lutions using LBR require intrusive hooks to provide similar capabilities, such as in
[Akao and Yamauchi 2015].

Our system architecture is designed as a client-server one, in which the kernel driver
is responsible for managing BTS data (server) and the user-land application for apply-
ing policies on the collected data (client). Data collection may be synchronous or asyn-
chronous, in order to best fit a given policy. Data is collected in a system-wide fashion
as it is provided by the BTS mechanism and filtered in the user-land client, so that
distinct policy implementations are allowed, as shown on Figure 1.

The proposed architecture does not require any injection or interaction with the
analyzed process, as data is collected by the processor and processed by distinct, inde-
pendent pieces of software. It also runs in a more hidden way from evasive malware,
since instructions are executed on the real processor. This framework is also easier to
implement than literature-based “transparent” approaches: it requires only a kernel
driver and additional user-land software, without the need of writing a hypervisor or
rewriting the BIOS.

In the next subsections, we cover details about the framework implementation and
the characteristics that make it flexible. It was implemented on 32- and 64-bit versions
of Windows 7 and 8.

ACM Transactions on Privacy and Security, Vol. 21, No. 1, Article 4, Publication date: January 2018.
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Fig. 1: Proposed Architecture. The processor fetches branch instructions from the mon-
itored code, which triggers the BTS threshold. The raised interrupt is handled by an
ISR at a kernel driver. The captured data is sent to the userland framework where
introspection and disassembling are performed and policies are applied.

4.1. Driver: all about the basis
We need to access the debugctl MSR register, thus requiring the deployment of a
driver. This driver is also required for allocating and supplying OS memory pages to
the BTS mechanism, as well as providing the Interrupt Service Routine (ISR) to han-
dle BTS interrupts and the I/O routines which send data from kernel to user-space.
Each of these features are detailed next.

4.1.1. Handling Interrupts. Interrupt handling is the most important step of data collec-
tion, because this is where data preservation is effectively performed. As BTS data is
stored in memory pages, we can collect it by simply using a pointer. Installing the ISR,
however, is the hard part: the BTS interrupt mechanism looks into the Local Vector
Table (LVT) to find out how to deliver the interrupt. The LVT defines if it is delivered
through an SMI, NMI or fixed mode (the default option). In the latter case, an entry
into the Interrupt Description Table (IDT) is performed. The ISR address is placed on
the corresponding position of the IDT. On Windows systems, the defined IDT entry
may already be allocated to another portion of the system. Changing the LVT vector
offset could be an option but, in our tests, no IDT entry was available. Hooking IDT is
not an option anymore on newer Windows versions since the Patch Guard mechanism
prevents it.

Hooking the specific performance handler could be an option—it could be done
by calling the _HalpSetSystemInformation() from HalDispatchTable to change the
HalpPerfInterruptHandler—but this may present side effects. A non-hooking solu-
tion is to change the delivery mode on LVT to Non-Maskable Interrupt (NMI), a high
priority interrupt originally aimed at exception checking. As an NMI interruption is
immediately handled, it is a good choice for our monitoring goal. The NMI ISR is reg-
istered using the KeRegisterNmiCallback8 function. When an NMI happens, process
execution is suspended so that we can correctly retrieve its PID. It is performed by us-
ing the PsGetCurrentProcessId9 function. This information, along BTS branch data,
are stored in a queue, detailed below, to be collected by an I/O call. Finally, the ISR is
also responsible for re-enabling the BTS interrupt mechanism, since it is disabled as
soon as an interrupt happens.

8https://msdn.microsoft.com/en-us/library/windows/hardware/ff553116(v=vs.85).aspx
9https://msdn.microsoft.com/en-us/library/windows/hardware/ff559935(v=vs.85).aspx
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4.1.2. Handling Data. When an interrupt occurs, the BTS buffer is full, so we have to
copy its data to some other place in order to free the buffer and re-enable the monitor.
In our solution, BTS buffer entries are copied to a Windows kernel list, pushed in a
FIFO basis, in order to keep proper order. If the event buffer were not saved and the
monitor just re-enabled, entries would be overwritten, thus falling back to the same
effect of using the LBR monitor.

4.1.3. Performing I/O. The client receives data from kernel through I/O routines, with
each application presenting distinct requirements for data collection. Applications that
are intended to provide real time monitoring may require an asynchronous I/O in order
to get results as soon as possible, whereas tracing tools may get delayed data through
synchronous I/O. Each mode is detailed below:

Synchronous I/O. In this mode, ISR collected data is enqueued on a circular kernel
list10 in a FIFO way. Data is transferred to user-mode through IRPs11 generated from a
ReadFile12 call, since the driver handle is opened as a file. The client periodically asks
for more data through polling the ReadFile call. As the queue follows the FIFO rule,
the data corresponds to ordered events. In this mode, BTS data will generate data at a
rate higher than the consumption by the polling client. However, no data is lost since
it is moved from the BTS entry to the kernel list. The driver client, however, should
define a compatible polling frequency in order to not exhaust kernel memory. In our
tests, a second-long interval was enough.

Asynchronous I/O. In this mode, the collected data is not stored in a queue, but on
a single structure, since it is expected to be consumed as soon as it is retrieved. Once
an interrupt occurs, the driver fires a previously cached I/O request in order to alert
user-mode code that the requested data is available. The client is then responsible for
releasing the I/O routine and collecting the stored data. The client should first release
the I/O since an interrupt is intended to be fast, being protected from locking by a timer
watchdog. This collection mode is named Inverted Call, since it is fired from the kernel.
Notice that the client must have distinct threads for immediately handling the kernel
call and processing the data independently, thus not blocking the ISR and preventing
data loss that would otherwise occur due to cumulative BTS data production.

4.1.4. What happens after an interrupt. It is natural to think that interrupts will keep be-
ing raised during the ISR, which would overload the system. However, the BTS mech-
anism has some filtering features which help us deal with this. The main one is the
execution level filter, which allows us to disable interrupts generated by the kernel,
thus no branch generated by the ISR is captured.

4.1.5. Handling monitor branch data. As the BTS captures branches in a system-wide
way, the client-generated branches could also be captured by the client itself. A direct
way of preventing such behavior is to run the client on a core distinct from the one the
monitor is running on. An alternative approach would be to perform PID tracking in
the kernel.

4.2. Clients: where the magic happens
The user-land clients are the active analyzers of our system. They are responsible for
retrieving the data collected from the driver and applying their policies. They can be
built with complete independence from the drivers. To exemplify this claim, we have

10https://msdn.microsoft.com/en-us/library/windows/hardware/ff563802(v=vs.85).aspx
11https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets
12https://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx
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implemented clients both in C and Python. The clients are responsible for keeping sys-
tem information in memory and to use them for the analysis process. The basic infor-
mation processing they perform are introspection and context retrieval mechanisms,
which aim to enrich the raw data collected. We detail both below.

4.2.1. Introspection. The information provided by the BTS mechanism (addresses) have
very little meaning in the context of a program execution. These addresses must be
translated into high level constructs so that analysts could gain more knowledge about
the system state. As instruction addresses point to the main memory, we can identify
which loaded modules are resident in each memory region. The loaded modules may
be the main binary or dynamic library code images; in the latter case, we can dig into
their structure to identify known function addresses/offsets, giving information about
which functions were called and/or what is being executed. The same could be done for
binary images if we had debug symbols, which is not usually the case.

Code images in memory can be enumerated by using the EnumProcessModules13 func-
tion. Each of their base locations can be retrieved with the GetModuleHandle14 function.
However, code images change their placement at every system startup due to the Ad-
dress Space Layout Randomization (ASLR) mechanism (for more details, see Appendix
B). Therefore, as we run on a bare metal system15, which requires rebooting for state
restoring, this code image address enumeration procedure should be repeated at ev-
ery boot, thus being intrinsically ASLR-aware. If the intended usage scenario is not
a sandbox, which requires rebooting, one may just repeat this procedure before every
process invocation in order to get per-process, ASLR-aware data.

Given a BTS-provided address, we can identify the corresponding library it refers to
by looking to the closest base address previously retrieved from module enumeration.
By looking to the difference between the base address of a given library and the ad-
dress pointed to by the BTS, we can compute an offset, which is mapped to a library
internal function, thus leading to a higher level semantic construct. Function offsets
can be obtained by inspecting host libraries through the use of tools like DLL Export
Viewer16 (Appendix C). The whole introspection process is illustrated in Figure 2. It
is important to notice that such offset extraction occurs automatically before analysis
begins by considering a list of module names supplied by the analyst. Once the extrac-
tion is performed, an offset database is created. We are able to reuse such data since,
unlike module addresses, function offsets do not change due to ASLR.

4.2.2. Looking into memory. In addition to looking into what an address represents,
sometimes it is useful to look to the address content—it can be executed instructions,
as directly pointed to by the BTS mechanism, or function arguments, given by an in-
trospection process. Given a memory address, the contents can be retrieved by using
the ReadProcessMemory API17. It is worth to note we are allowed to perform such mem-
ory read since our framework execute with administrative privileges. It is also impor-
tant to notice that memory reads, unlike writes, allow us to decrease the chance that
malware discovers the framework. The ability to read memory allows us to read in-
struction bytes, which can be used to enrich the software analysis. However, the bytes
need to be translated into a higher-level construct in order to be understood, i.e., in-
struction opcodes. Given an instruction address, we can easily get the opcode from

13https://msdn.microsoft.com/pt-br/library/windows/desktop/ms682631(v=vs.85).aspx
14https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683199(v=vs.85).aspx
15By bare metal we mean a physical machine running an actual processor, with no emulation or virtualiza-
tion.
16http://www.nirsoft.net/utils/dll_export_viewer.html
17https://msdn.microsoft.com/pt-br/library/windows/desktop/ms680553(v=vs.85).aspx

ACM Transactions on Privacy and Security, Vol. 21, No. 1, Article 4, Publication date: January 2018.



Enhancing Branch Monitoring for Security Purposes 4:11

Fig. 2: Instrospection mechanism: from raw addresses to functions.

the instruction represented by the first byte of the memory dump by using a simple ta-
ble. For additional details regarding the opcodes, see Appendix D. Notice that the same
opcode may have slightly different meanings according to the following bytes (address-
ing modes). However, our solution does not need to look to these immediate values to
calculate addresses, since the branch monitor provides the already calculated target
addresses. This way, we can only look to the first byte and thus speed up some kind of
instruction interpretation, as is required for the ROP detector through the CALL-RET
CFI policy.

Despite disassembling only one byte, we may also face the scenario in which a block
of code is provided. As x86 instructions are not fixed-size, we need to find out if the fol-
lowing bytes are immediate arguments or a new, following instruction. The disassem-
bly of multiple instructions in our system is performed by two libraries: Pybfd [Ground-
workstech 2016], a Python interface for libopcodes on Linux, is used for offline pro-
cessing whereas Capstone [Capstone 2016], a Windows disassembler, is used for real-
time processing.

Besides knowing how to interpret instructions from a memory dump, we need to
know how to retrieve addresses from branch information. The straightforward dump of
the first byte indicated by some branch data is not able to identify all instructions exe-
cuted. That would require additional data, which can be obtained by looking to two con-
secutive branches. The destination address of the first branch indicates a place where
the execution will start; the source address of a consecutive branch indicates that the
code execution left the block at that point. As no other branch may have occurred, all
intermediate instructions were effectively executed. Therefore, reading memory start-
ing on the first address up to the second leads to all executed instructions. Figure 3
illustrates it with data from Listing 1. The execution flow enters a block of code at the
first branch target address (0x48ff5ab8) and leaves it on the source address of the next
taken branch (0x48ff5ac0). As no other deviation occurred, all instructions stored in
that range were effectively executed. The opcodes of such instructions are identified
through the disassembly of 8-bytes (the exit address minus the entry address) starting
from the entry address.

Fig. 3: 8-byte-block identification from two consecutive branches.
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Listing 1: Block identification—from 0x48ff5ab8 to 0x48ff5ac0

1 PID : 4876 FROM: 0x48ff5ab0 TO: 0x48ff5ab8
2 PID : 4876 FROM: 0x48ff5ac0 TO: 0x48ff5ad0

4.3. Validation
To validate the correct functioning of our framework, we have implemented the same
solution under Intel’s PIN and compared both results (Appendix E).

5. APPLICATIONS
In this section, we present security applications built upon the presented framework.
Each of them makes use of a distinct feature from it, exemplifying distinct ways branch
monitors can be applied for security purposes. For the sake of readability, since cap-
turing data at branch level produces huge amounts of data, we present CG and CFG
reconstruction based on minimal examples. However, the evaluation tests presented
in further sections, such as 5.1.4 and 5.2, are based on real samples. The complete logs
for such samples can be found on the project page 18.

5.1. Malware Tracer
Traces can provide information about malware behavior and its interaction with the
system, which can be used to group similar samples, develop anti-virus vaccines, patch
vulnerabilities, and so on. Our malware tracer follows directly from the data obtained
from the BTS mechanism, as instructions are supplied. We have implemented two
analysis features in our prototype: a call-graph viewer and a Control Flow Graph
(CFG) rebuilder. The first allows for identifying a sample’s behavior whereas the
second can provide granular information about executed instructions, which allows
heuristics development like one based on tainting.

5.1.1. Call Graph. The CG represents function calls and their relationships. To exem-
plify the CG visualization application, we will rely on a simple code whose host pro-
cess was named NewToy.exe: scanf(“%s”,val); printf(“%s\n”,val);. CALL and RET
instructions are directly captured by the BTS mechanism and function identification
is performed by the previously mentioned introspection process. However, the BTS
mechanism has no filter itself, incurring in the capture of the CALL and RET instruc-
tions inside libraries in a given process scope. Following code inside libraries might be
useful in some situations, but not always. So, we provide the ability to skip these in-
structions using a filter in the client. This selection may be understood as debugging’s
Step Into and Step Over navigation.

Step Into. Figure 4 shows an excerpt from the Step-Into CG from the example code,
presenting the analysis of printf function internals. After the binary under analysis
calls the printf entry point, we can find calls to internal functions responsible for the
printf behavior—locks, for instance—which assures I/O ordering, since printf is a
non-reentrant function.

_lock_file+0x90printf+0xe3__iob_funcprintf+0xcaprintfNewToy

Fig. 4: Step-Into call graph, all intermediate calls represented.

18https://sites.google.com/site/branchmonitoringproject/
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Step Over. Figure 5 shows the Step-Over CG from the same code in which only the
called functions appear. The presented excerpt covers the return from the initial scanf
function at the 0x3f offset to our binary (NewToy) and then the call to the entry point of
the printf function, which will print the read value. Internal aspects of both functions
are omitted in this mode.

scanf+0x3f NewToy printf

Fig. 5: Step-Over call graph, only CALL/RET represented.

5.1.2. Control Flow Graph. CFG is the most granular inspection view possible of a code
at the instruction level. By inspecting it, one can perform taint analysis [Schwartz
et al. 2010] or identify malicious payloads [Newsome and Song 2005; Yin et al. 2007].
In order to rebuild the CFG of a given sample, we rely on the disassembly solution pre-
viously presented. We apply it repeatedly so that we could retrieve information about
each block surrounded by two deviation instructions. Similar to CG’s case, the cap-
tured data also contains information about library internals. Here, our sole interest is
about binary information, so we used the same approach of the Step-Over filtering. For
example, the CFG of Figure 6 is result of the following piece of code: scanf("%d",&n);
for(i=0;i<n;i++){ if(i%2==0) a++; else a–; printf("%d",a)}.

Fig. 6: Reconstructed CFG from the presented example code.

We can observe a match between the presented code and the generated CFG, where
the first block is related to set up routines, such as pushing the stack frame. This
block leads to a decision block related to the for statement. If the iteration reached
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its limit, the code proceeds to the left block, where the main function is finished by the
execution of a ret instruction. Otherwise, the execution proceeds to another decision
block, associated to the if statement—we should notice the and eax,0x1 instruction,
associated to the decision calculation. Even values result in the left block being taken
(notice the a++ represented as an inc) and odd ones in the right one (notice the a–-
represented as a dec). The call in the last block is the printf invocation. The execution
iterates through the for backward edge. As the provided branch information is related
to the effectively taken deviation, our solution has the advantage of capturing and
disassembling real instructions; it does not suffer from alignment tricks (often used
for anti-analysis), which is a common problem on static disassembly.

Some may find similarities between the hereby presented approach and the one pre-
sented by Paleari in his Fuzztrace tool19, detailed in a blog post20. In addition to having
distinct purposes, the solutions present other differences. Paleari rebuilds the CFG
based on perf-supplied edges. The presented study case is a heat map of executed
blocks, a task which our solution is also able to perform. Since our framework is mod-
ular, a heat map policy would require writing a few lines of code. Paleari’s solution,
however, is more limited since it does not track external function calls. Our solution,
instead, is able to track and introspect into these functions. In addition, we are able
to choose how deep we dig into these libraries by selecting the step-into and step-over
modes. In the step-into mode, the CFG is rebuilt in the same way as in the viewer tool
from Fuzztrace. In the step-over mode, however, a stack is used to filter out instruc-
tion blocks according to the monitored code (internal or library). All details about our
CFG reconstruction algorithm are presented in the next sections. Additionally, Fuz-
ztrace only provides instruction addresses as tracing data, which requires performing
a static disassembly in order to match addresses and instructions. Conversely, our
solution is able to perform online, dynamic code disassembly, providing the executed
block as tracing data.

Self-Modifying Code. Many malware samples perform in-memory code changes,
also known as Self Modifying Code (SMC) [Xianya et al. 2015; Debray and Patel 2010].
This is a technique often used for packing samples in order to avoid static detection.
Our solution is able to handle packed samples since we can monitor their whole be-
havior, during and after unpacking (intended execution). In case one wants to monitor
the code modification itself, the tracer needs to be run using asynchronous I/O since,
in order to reduce overhead, we have implemented the presented version using syn-
chronous I/O, which causes delayed code memory reads. As an advantage, the SMC
detection can be performed concurrently with the CFG reconstruction, by the same
algorithm, as shown in the next section/paragraph.

The CFG-SMC algorithm. In this section, we detail the CFG reconstruction, cover-
ing the step-over execution and external function calls. We also show how we can use
the same algorithm (Algorithm 1) to perform SMC detection. The algorithm takes as
input a list of instruction blocks and the flags which enable/disable the step-over and
SMC detection modes. The algorithm iterates over the instruction block list (line 6),
updating the current and previous blocks (line 28), adding edges between them when
needed (line 26).

In the step-over mode (line 7), library CALLs (line 9) will be exit nodes from the
graph whereas RETs (line 11) will be entering nodes. In this mode, the instructions in
between are not considered, thus the pass instruction (line 14). As these blocks are
passed, the previous node is kept in the CALL instruction and later edge-linked to the
node coming after the RET. Notice that when the step-over mode is enabled, as the

19https://github.com/rpaleari/fuzztrace
20http://roberto.greyhats.it/2015/02/fast-coverage-analysis-for-binary.html
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libraries are pushed into the stack, the library nodes are printed at a distinct CFG
level. If necessary, one may instrument the pass step to generate the whole CFG for
a given level (the library CFG, for instance). An example of such generation modes is
provided below.

Figure 7 shows the step-into case. As the stack is limited to the first level (binary),
the library internal code, highlighted in the internal bounded box, is inserted as ordi-
nary binary code blocks. Figure 8 shows the step-over case. As the stack changes from
binary to library, these are printed at distinct levels. The two bounded boxes present,
respectively, the binary code (and its library call node) and the library code itself. An
existing corner case is related to branches whose targets are instructions inside other
blocks. In this case (line 19), the existing block has to be split (line 20) in order to keep
the CFG’s definition (set of non-branch instructions limited by a branch).

The same block traverse algorithm can be used as base for SMC detection. In this
case, a shadow memory is used, thus requiring additional memory. When a block node
is created (line 15), its memory content is hashed and stored in a shadow block (line
18). Notice that when a block is split (line 20), block hashes need to be updated (line
22). After the point where the current block is defined, we can check whether the
current block hash matches its shadow (line 24). In case any difference is found, an
SMC code is identified (line 25). The detection routine can be used to immediately
return or update the block hash and keep detecting code changes. Notice that in the
SMC case, distinct CFG visualization modes should be used, since the dynamic block
content makes plotting harder.

Fig. 7: Step-into CFG. Fig. 8: Step-over CFG.

5.1.3. Modular malware. Many malware use modular approaches to deploy the func-
tions required for infection, such as dropping a file or downloading a payload from
the Internet. This way, splitting their maliciousness through many processes actually
presents a lower malicious profile. This effectively achieves a lower malware ranking
among Anti-Virus tools and is currently a common behavior on modern malware sam-
ples. Although our introspection process is able to identify the call to APIs such as
CreateProcess21, we are not able to collect the created process PID and thus not able
to filter its activities. In order to overcome this limitation, we installed a Process call-
back22 which delivers new PIDs to our client to be monitored. This way, the created
process is added to the monitored list plus the initial PID, which could be a suspended

21https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
22https://msdn.microsoft.com/en-us/library/windows/hardware/ff542860(v=vs.85).aspx
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ALGORITHM 1: CFG reconstruction and SMC detection
Data: blocks, StepOver, SMC.Detection
Result: CFG, SMC.Detected

1 Stack = {Binary}
2 CFG = ∅
3 Shadow = ∅
4 create_node(block[0],Stack,CFG)
5 previous = block[0]
/* Iterate over the blocks in an ordered way */

6 for current in blocks[1:n] do
/* Case filtering is enabled */

7 if StepOver then
/* Case it’s a library. Otherwise, run */

8 if Introspection(current) is LIBRARY then
/* CALLs are pushed on the stack */

9 if Instruction(current) is CALL then
10 Stack.push(Library(current))

/* RETs pop data from the stack */
11 elseif Instruction(current) is RET then
12 Stack.pop()

/* Ignore any other internal instruction at the for level */
13 else
14 Pass

/* Instead of passing, one can generate a CFG for the library */
/* Create non-existing nodes in the graph */

15 if not node_exists(current,CFG) then
16 create_node(current,Stack,CFG)

/* Case SMC.Detection is enabled, compute the block hash the first time */
17 if SMC.Detection then
18 shadow[current]=Hash(Instruction(current))

/* Case there’s a branch to the middle of a previous block */
19 elseif not match_first_address(current,CFG) then

/* split the previous block */
20 current, splitted = split_CFG(current,CFG)

/* Update block hashes to include the splitted one */
21 if SMC.Detection then
22 shadow[splitted]=Hash(Instruction(splitted))
23 if SMC.Detection then

/* Check current block has the same content than before */
24 if shadow[current] is not Hash(Instruction(current)) then
25 SMC.Detected()

/* add edges */
26 if not edge_exists(previous,current,Stack,CFG) then
27 create_edge(previous,current,Stack,CFG)
28 previous=current

process, as usual on most sandboxes solutions, or even a running process whose PID is
known.

5.1.4. Real malware tests. As our tracing tool is built upon our framework, it allows
malware analysis in a stealthier way. In order to validate such property, we ran some
evasive samples in our environment so as to verify if they executed as expected in
a real, victim machine. The samples choice was based on static analysis tools that
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identify Anti-VM techniques. We selected four samples23 said to employ QEMU tricks
according to PEframe (https://github.com/guelfoweb/peframe) and executed them in
our proposed framework and in our QEMU-based internal sandbox solution [Botacin
et al. 2017]. All of them evaded the execution in the QEMU-based sandbox, not pro-
viding any useful behavior to be analyzed. However, they executed normally under our
proposed malware tracer’s monitoring.

5.2. Debugger Project and Implementation
The malware tracer allows us to understand a great deal of a sample’s behavior
through its execution, but it is not able to suspend the execution at an arbitrary point
in order to provide a deeper introspection view. This could be a useful approach for de-
tecting bugs or complex constructions, especially those with stealth attack intentions.
Extending our framework to provide such facility is a straightforward path.

Goals achievement. In order to achieve the small step execution goal, we rely
on the BTS mechanism. Although it does not allow step-by-step execution, it pro-
vides sequential block-by-block granularity which, with the help of a block disassem-
bler, brings basically the same functionality. The breakpoint information goal is
achieved by relying on introspection during interrupts. Finally, the context inspec-
tion goal is achieved by using system APIs. The data consistency is assured due to the
raised interrupt which precedes API calls.

Debugger working flow. As we need to suspend the process execution to inspect
it, the strategy here is different from the Tracer’s. In addition, the process suspen-
sion must proceed as soon as an interrupt occurs; to accomplish this, we made use of
the inverted I/O call. The debugger working flow is as follows: (i) at a given moment,
the processor fetches a deviation instruction whose source and target addresses are
stored by the BTS mechanism; (ii) an interrupt is then raised since we have defined
a 1-threshold—at this point, the process under analysis is active, but interrupted; (iii)
the ISR routine releases the cached I/O in order to alert the user-mode client, which re-
ceives the alert, suspends the process execution and finishes the I/O routine; (iv) when
the ISR receives the I/O completion signal, the interrupt is released and the process is
now in suspended state; (v) then, all introspection and context retrieval processes take
place; (vi) when the process is resumed in the client, the whole debugging process is
restarted.

Debugger resources. One of the most important resources in a debugger is its in-
spection capabilities. Our solution presents the following ones:

— Process management: our solution is able to create a new suspended process to
be inspected or to attach to an existing one.

— State inspection: our solution is able to identify function execution, loaded li-
braries and to read context registers.

— Step execution: our solution is able to perform branch step execution at the block,
function and library levels.

— Integration: our solution can be integrated to other debugging tools, such as GDB.

5.2.1. Debugger client implementation. Although the client was built upon our frame-
work, some features were implemented in the client itself. The details are given below.

Process management. Processes are created using the CreateProcess API. Pro-
cesses need to be at the suspend state in order to be inspected consistently. There-

23Samples MD5: f03c0df1f046197019e12f3b41ad8fb2, 2b647bdf374a2d047561212c603f54ea,
7a4b29df077d16c1c186f57403a94356, 340573dd85cf72cdce68c9ddf7abcce6
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fore, new processes are created using the CREATE_SUSPENDED flag whereas existing
ones should be suspended by calling a specific API. There are three known methods
for suspending a process: (i) enumerating all threads for a given process and calling
SuspendThread24 to each one, which may lead to a deadlock due to thread desynchro-
nization; (ii) calling DebugActiveProcess25, which is detectable by IsDebuggerPresent;
and iii) using the undocumented API NtSuspendProcess, which was used in our solu-
tion.

Context values. Context values are obtained by using system APIs. We rely on our
framework to perform introspection and disassembly. In addition, register values are
retrieved by using the GetThreadContext26 API.

GDB integration. Although we have our own interface to our debugging solution,
we opted to integrate it with GDB in order to make use of its extensions and facili-
ties. The integration is done using a stub, a small protocol that transfers data from
our back-end to GDB. We based our implementation on seaborn’s27 efforts, porting it
to Windows. The use of our solution with GDB allows an analyst to inspect Windows
systems from distinct platforms and/or over the Internet. The current GDB stub im-
plementation allows for step and info register commands.

5.2.2. Validation test. To evaluate our approach’s stealthiness, we have implemented
some tricks. Our goal is not to provide an exhaustive list of anti-analysis tricks, but to
demonstrate that practical aspects match theoretical ones we have been drawing along
this text. We have evaluated the following anti-debugging tricks: IsDebuggerPresent,
CheckRemoteDebuggerPresent, and OutputDebugString. None of these tricks were able
to detect our solution. For more details, see Appendix G.

We also tested our solution in a real scenario, by inspecting an application protected
with an unknown trick. We inspected the Uplay28 binary, a game-launcher, since games
are usually protected [Woo and Kim 2012]. The application refused to run under an
ordinary debugger but ran under our solution. We were able to perform branch-by-
branch execution and read memory contents. For more information, see Appendix H.

5.3. ROP Detector
Given our solution is based on a mechanism that provides branch data, addressing
the ROP problem is an immediate follow-up. Indeed, other authors have already lever-
aged branch monitors for such purposes, such as KBouncer, ROPecker and CFIMon,
tools that were presented in Section 3. These approaches, however, are not based on
a general framework, as proposed here. Our framework allows inspecting applications
with no code injection while solutions like KBouncer require hooking APIs for each
process aimed to be monitored. Although such injection requirement does not impose
a working restriction for these tools, it restricts the usage scenario. On a general way,
such protections are suitable for known vulnerable, unpatched applications in which
the ROP protector can be injected. On a broader scenario, where no particular appli-
cation should be protected but the whole system instead, such injection must occur on
all running process. On this scenario, our injection-free, system-wide monitoring ap-
proach is a more suitable candidate. In addition, KBouncer and ROPecker make use of
a limited number of LBR entries whereas we can use unlimited memory space as we
rely on BTS instead.

24https://msdn.microsoft.com/pt-br/library/windows/desktop/ms686345(v=vs.85).aspx
25https://msdn.microsoft.com/pt-br/library/windows/desktop/ms679295(v=vs.85).aspx
26https://msdn.microsoft.com/pt-br/library/windows/desktop/ms679362(v=vs.85).aspx
27github.com/mseaborn/gdb-debug-stub
28www.uplay.com
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Implementing ROP policies on our framework is a straightforward task, since it pro-
vides us all required information (branch data) and capabilities (process identification,
introspection and disassembling). The user-land client can store data in its memory
and make use of libraries and data structures, therefore reducing implementation ef-
forts.

In order to assure our approach’s correctness, we opted for not developing any new
ROP heuristic. Instead, we relied on verified ones. More specifically, we implemented
the same two methods used by KBouncer, CALL-RET matching and gadget length. The
CALL-RET policy detects a ROP attack by enforcing that each RET must be preceded by
a CALL instruction. Since ROP attacks are based on RET instruction chaining, they can
be detected.

The gadget length policy is based on the principle that ROP gadgets are usually
smaller than legitimate ones. This policy defines a window of the last executed gadgets
and their lengths, triggering the detection if a specified number of small gadgets occur.
In our solution, we defined the same limits as KBouncer’s. When any of the previous
policies are violated, an alert is raised. For more details, see Appendix F.

To evaluate our ROP detector, we executed some exploits against vulnerable ap-
plications, verifying whether the detection heuristics were triggered or not. The ex-
ploits [Son 2011; Knaps 2015] were successful on exploiting the target, being detected
by the CALL-RET policy. The exploit [Ahrens 2014] crashed during its execution, thus
not activating such policy. However, the Gadget-size policy was activated instead, due
to its small gadgets.

To provide a more qualitative view on ROP detection, we present some more details
about Son’s exploit. Its execution triggered the gadget length policy; a snippet of the
branch window is: first branch target is 0x7c346c0a; the execution leaves the block at
0x7c346c0b and reaches 0x7c37a140; the execution leaves the block at 0x7c37a141. The
instruction disassembly of this code region, from the MSVCR71.dll 7.10.3052.4 - 32bits
library, is presented in Listing 2.

Listing 2: Static disassembly of the MSVCR71.dll library.
1 7c346c08 : f2 0 f 58 c3 addsd %xmm3,%xmm0
2 7c346c0c : 66 0 f 13 44 24 04 movlpd %xmm0,0 x4(%esp )

The static disassembly provides aligned words. The exploit, however, makes use of
an unaligned one, as indicated by the branch to 0x7c346c0a. If we look to the dynamic
disassembly of the corresponding bytes (\x58\xc3), as shown in Listing 3, we identify
the actual executed ROP gadget. As expected, our solution detects even unaligned
branches.

Listing 3: Dynamic disassembly of the MSVC71.dll executed code.

1 0x7c346c0a ( byte=0x58 ) pop rax
2 0x7c346c0b ( byte=0xc3 ) ret

5.4. Anti-Analysis tricks detection
We have implemented a static detector that matches the executed code blocks. Using
this detector, we were able to detect the following tricks: Fake Conditional, Control
Flow Change, Hook Detection, and Hardware Debugger detection (see Appendix I).
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5.5. Execution deviation detection at branch-level
Despite identifying the use of known anti-analysis tricks through a pattern matching
procedure, as previously presented, we can also apply our solution for dynamic trick
identification. When a trick leads to an evasion, a branch is taken in order to not
execute the malicious payload. If this happens on the emulator but not on the bare
metal setup, we can identify the divergence point by comparing the traces. The branch
block which has led to the divergence point may present an anti-analysis trick.

This idea is exemplified in Figure 9. The block 0x2 presents an anti-analysis trick.
When running on bare metal, the execution proceeds to the 0x3 block whereas it pro-
ceeds to the 0x4 block when running on the emulator. For the sake of simplicity, we
assume the execution flow will consolidate onto a single block (0x5). It can be under-
stood as a common cleanup routine, for instance.

Fig. 9: Example of a flow divergence between the code running
on bare metal and on the emulated monitor.

If we assume this property and consider the execution on bare metal as the
groundtruth, we can implement an algorithm for deviation detection, as presented
in Algorithm 2. The first step consists of discarding the base image addresses and
considering just the offsets (line 3), due to ASLR. This way, the traces are now compa-
rable and since they will differ, the second step consists of finding an alignment (line
4) using a global sequence alignment algorithm29. After that, given the expected CFG
structure we have defined, the aligned traces will be aligned in the beginning (blocks
0x1 and 0x2) and in the end (blocks 0x5 and 0x6). This way, the blocks in between
are the deviating ones and the last aligned block is the one possibly having the anti-
analysis trick. The algorithm proceeds by traversing the blocks, taking the bare metal
trace as reference (line 5). When the blocks are aligned (line 6), they are just printed
(line 7). When they are not aligned (line 8), we iterate one of the sides (line 11) in order
to achieve another aligned block (block 0x5) (more details on Appendix J).

We have evaluated the proposed approach on real samples, by comparing their exe-
cutions under our solution and others. The compared solutions were our branch mon-
itor solution built upon Intel PIN, presented in Section 4.3, and OllyDbg30. We man-
ually inspected the diverging points in order to find possible anti-analysis tricks. Fig-
ure 10 illustrates a divergence case due to an anti-analysis trick—checking for the
NtGlobalFlag (offset 0x68) in the PEB structure (fs:0x30 offset)—in the instruction
block right before the diverging branch. Some cases, however, are just false positives,
since we could not identify any anti-analysis trick. As an example, Figure 11 shows
a diverging behavior related to some kind of random decision (<rand> call). As future
work, an automated decision mechanism may be implemented.

We analyzed 15 random samples that presented divergent-like behavior in our
dataset. As a general result, some anti-analysis tricks were found (see Appendix K).
The remaining samples turned out to be false positives. The proposed approach does
present limitations, such as the ones related to the CFG format. However, our main

29Python’s alignment library
30http://www.ollydbg.de/
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ALGORITHM 2: Flow deviation detection
Data: Bare Metal trace (BM), Emulated trace (E)
Result: Deviated Block

1 i = 0
2 j = 0
/* Calculate branch offsets */

3 Bare Metal,Emulated = get_offsets(BM,E) /* Align traces */
4 seq1, seq2 = align(Bare Metal,Emulated)
/* Bare Metal trace is reference */

5 while seq1[i] not EOF do
6 if seq1[i]==seq2[j] then
7 emit_aligned(seq1[i],seq2[j])
8 else
9 emit_unaligned(seq1[i])

10 i++
11 while seq1[i]!=seq2[j] do
12 emit_unaligned(seq2[j])
13 j++

Fig. 10: True divergence. Fig. 11: False divergence.

goal is not to fully develop a tool for behavior divergence detection but to suggest how
this kind of solution can benefit from using a branch monitoring-assisted solution—
as execution deviation happens through branches, monitoring them is a natural way
to identify deviating behavior. As an initial approach, our solution could benefit from
other solutions as well as to be used to improve other solutions which already ad-
dressed the deviating behavior problem, such as MalGene [Kirat and Vigna 2015] and
Differential Slicing [Johnson et al. 2011].

6. DISCUSSION, LIMITATIONS, AND FUTURE WORK
In this section, we provide a general overview of our contributions, current limitations
and open opportunities on branch monitoring development.

Framework advances. The proposed solution differs from previous work by not
only looking at specific branch data, but also proposing a complete framework to han-
dle this data. Unlike previous work, our solution makes use of the BTS mechanism
instead of the LBR one, which allows us new constructs, used to develop a complete
analysis framework. This framework is characterized by not requiring any code injec-
tion and as such relies on a less intrusive approach than other monitoring tools. Our
solution is a lightweight alternative to the state-of-the-art ones, since it requires less
development efforts—no BIOS rewriting or hypervisor implementation is required—
and presents a smaller overhead—only the monitored core is interrupted and most ac-
tions can be offloaded to other cores in a current multicore system or processed offline.
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Our implementation does not apply any system patch, being able to run on modern
OSs, even if it has KPP31, for instance.

Bare metal and stealthiness. Requirements for increased stealthiness are ful-
filled by using a physical machine, a way that might look like sufficient. This stealth-
iness is accomplished by not introducing side-effects, a feature which is provided by
bare metal, as well as by not performing code injection/interference. The second re-
quirement comes from the fact that data collection mechanisms usually require inter-
posing binary calls, a task often performed using hooks or debug attachment. Thus,
there are many reported research about anti-hooking and hooking detection [Cloud-
Burst 2016; Roccia 2016; Chailytko and Skuratovich 2016] as well as debugger detec-
tion [Branco et al. 2012; Barbosa and Branco 2014]. In this sense, we have presented
a real example of an interference detection occurrence. The Uplay executable refused
to run under a debugger even on a bare metal machine. In turn, it executed under our
solution, since we addressed the non-injection/non-interference requirement.

Solutions Comparison. Our malware tracer can be directly compared to public
available and state-of-the-art sandbox solutions. When evaluated against solutions
like Cuckoo and CWSandbox, for instance, our solution is more transparent, since no
code injection is performed (these solutions rely on DLL injection for API hooking)—
processor data is used instead—and no virtual machine is used (hypervisor side effects
are often used as analysis environment indicators by evasive samples), since our so-
lution is bare metal based. In this sense, ours is closer to the HVM-based ones, such
as Ether and MAVMM, presented in related work. When compared to these solutions,
ours presents the same level of stealthiness for user land threats, given that in all
approaches the malware code is run on a real processor. Unlike such solutions, our
approach is not able to handle kernel malware. This limitation, however, is due to the
fact that we used a kernel driver to implement our solution and as such we must as-
sure kernel integrity. This implementation choice, however, gives us advantages when
compared to competing solutions: 1) Developing a kernel driver requires less devel-
opment effort than developing a whole hypervisor, which makes our solution simpler
to be implemented; 2) Recompiling a kernel driver is much more portable than re-
instrumenting hypervisors, making our solution much more accessible; 3) Trapping
only branch deviations at kernel level is less costly than trapping each instruction at
hypervisor level, contributing to a much smaller overhead.

Our solution might also be compared to other approaches, such as disassemblers,
like Capstone (used in our framework), Plasma32 and Udis8633. These solutions are
not analyzers by themselves, rather mere translators of given byte sequences into in-
struction opcodes. More importantly, the instruction byte sequence data acquisition
procedure comes first. Although such solutions can be directly applied to original bi-
naries (a naive static approach), they are vulnerable to anti-disassembly techniques,
used by malicious samples to evade analysis [Branco et al. 2012]. Conversely, our dy-
namic instruction address collection solution, by relying on processor branch data, is
able to provide such disassembly tools over unpacked, ready-to-run code, rendering
ineffective most anti-disassembly techniques, such as instruction misalignment.

A commercial disassembly solution which can also be compared in some way to our
solution is IDA Pro34. IDA disassembler performs static code disassembling and also
allows for CFG and CG reconstruction. In order to tackle anti-analysis techniques, it
relies on dynamic emulation of statically unsolvable pieces of code, therefore mitigat-

31Kernel Patch Protection
32https://github.com/plasma-disassembler/plasma
33http://udis86.sourceforge.net/
34https://www.hex-rays.com/products/ida/index.shtml
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ing some of them. In fact, many approaches tried to solve the anti-analysis problem by
relying on rules to defeat known anti-analysis tricks, such as the ones in Cobra [Va-
sudevan and Yerraballi 2006a] and Vampire [Vasudevan and Yerraballi 2005]. The
major drawback of such approaches is that as soon a new anti-analysis trick is discov-
ered, the software has to be updated and/or recompiled. Bare metal-based solutions
like ours, however, are able to handle such new tricks naturally, since the code is ex-
ecuted on a real processor. Nonetheless, running huge amounts of samples on real
machines does not scale well. Besides being a disassembler, IDA Pro also presents a
complete debugger, whose frontend can be attached to GDB, VMWare, QEMU, BOCHS
and others. In this sense, our framework could be extended to provide branch data to
the IDA frontend the same way as the aforementioned tools do.

As for the proposed debugger, our solution can be directly compared to the HVM-
based HyperDbg and the SMM-based MALT, cited in Sec. 3. Our solution presents
the same functionalities of such systems, such as register and memory inspection.
The most notable difference is that our solution operates at the branch level, due to
the branch monitor inherent working characteristic, whereas the other ones operate
at the instruction level. Despite not being able to stop at every instruction, only at
every block, our debugger is able to reconstruct every executed instruction sequence by
making use of the same introspection procedure used for CFG reconstruction. Just like
in the case of the tracer, our debugger is also restricted to the userland level, contrary
to other solutions like HyperDbg that are able to analyze at even the kernel land.
As previously discussed, this implementation choice gives us many advantages when
compared to such solutions. The same discussion is also valid for MALT, as handling
code at BIOS level is more expensive than using a kernel driver. When compared to
the popular solution GDB, ours is better suited to handle anti-debugging software,
since it does not rely on ptrace and also provides the same user friendliness, since it is
integrated to the GDB frontend.

Finally, our ROP detector is directly comparable to KBouncer and ROPecker, since
the same detection heuristics were implemented. The most significant difference is the
way they are implemented, making our usage scenario broader in two ways:

(1) Since we rely on the BTS mechanism instead of the LBR one, we are able to han-
dle larger ROP chains—the BTS mechanism relies on O.S. memory page storage,
which is theoretically unlimited, whereas the LBR one is limited to the number of
MSR registers present in the processor. Our Haswell processor presents 16 of such
registers, which would limit detection to a 16-gadget-length ROP exploit at most;

(2) Our approach does not require code injection, allowing us to monitor the whole
system at a time; competing solutions require injecting DLLs on each specific code
one intends to monitor. It allows us to monitor the whole system without knowing
in advance that a specific application is vulnerable.

Implementation limitations. The main limitation of our solution is the process
context inspection mechanism—notably the memory reading mechanism—which is
implemented as a userland component, making it less protected from subversion than
kernel components. We considered this project decision as acceptable since we are de-
veloping a proof of concept application. If more protection is required, these mech-
anisms can be moved to kernel without significant side effects, apart from the de-
velopment effort. Another limitation of our solution is related to the ROP scenario.
Although we are able to detect its occurrence, we currently cannot block it, since no
active component is injected into the process. An external blocking procedure should
be implemented if the user is concerned about it. This task is eased due to the fact
that our framework is constructed in a modular and independent way, allowing such
kind of extensions. Our solution does not handle some code constructions, such as the
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use of PUSH+RET as a replacement for a CALL instruction. This is a frequent assump-
tion with many monitors due to implementation constraints, although no theoretical
limitation is observed. We also targeted only single-core threats, since they are the
most frequently observed ones. The monitoring platform, however, does not present
any limitation to work on a multi-core scenario. In this case, the framework should
be extended to work with multiple sources of data, since a malicious action could be
spread through many different cores in order to avoid an ordinary pattern matching
process. Currently, to prevent a process from migrating to a different core than the one
where the mechanism was enabled into (which would break data capture), we attach
the process to a specific core by setting processor affinities, an O.S. functionality35.

The BTS mechanism is configured to capture data only in the userland ring—despite
being able to collect data at the kernel level—since we are targeting only userland pro-
cesses in our threat model. Targeting kernel threats would require a more privileged
ring in order to provide the required isolation for the data collection mechanism. This
choice leads us to lose execution control when a syscall is invoked, which is not a
problem for tracing binaries that only call libraries, but is otherwise a problem when
tracing libraries that do perform such calls36.

Introspection limitations. A sample which employs an external or static library
may bypass our introspection procedure, since function names will not be recovered in
this case. The execution of these libraries, however, will still be logged by the BTS mon-
itor, allowing post-analysis by a human analyst. Another corner case is about function
arguments. As BTS provides only instruction addresses, we are only able to directly
get function calls, not their arguments. This is not a limitation per se, since some
solutions, such as some malware variant detection tools [Zhong et al. 2012], rely on
function call structures. Solutions which require function arguments to enrich their
usefulness may instrument the function calls indicated by our solution, such as in the
modular malware case presented in Section 5.1.3. Notice that, in this case, there will
be an overhead penalty according to the added instrumentation mechanism.

Malware Analysis Limitations. Our malware analysis solution suffers from the
same limitations others do regarding stimulation, which is directly related to the
reached code coverage. In order to overcome such limitation, user interactions can
be simulated by using AutoIT scripts 37 or similar ones. However, in the scope of this
work, we are concerned about reaching code hidden by anti-analysis techniques, for
which stealthier solutions like this play a crucial role. Our solution, as a sandbox, is
also subject to fingerprinting, an open problem for all monitoring systems, thus outside
the scope of this work.

Sandbox Restore. As our approach is bare-metal based, we have to restore the
system to a clean state after running a malicious sample. In virtualized environments,
it is usually done by reverting to a VM snapshot. On a bare metal system, as automatic
snapshots are not available, it has to be manually done. As a way of automating the
task, PXE boot or LVM volumes may be used.

Evasion Scenarios. Every new proposed solution will be targeted by attackers in
order to defeat it and so keep their stealthiness. Our solution, as is, relies on PID
tracking for process filtering, a feature we believe is the most probable target for at-
tackers: by faking a PID, a malware could make the analysis produce no result. As
a countermeasure, we could filter actions not by PID but by the address itself, since
each process is mapped to a unique memory region. This change is straightforward

35https://msdn.microsoft.com/en-us/library/windows/desktop/ms686223(v=vs.85).aspx
36Distinctly from Linux, Windows applications do not call the O.S. directly, rather they use O.S. libraries.
37https://www.autoitscript.com/site/autoit/
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in our solution since the address is exactly the data provided by the BTS mechanism.
Another implementation possibility is to rely on CR3-based introspection techniques.

Solution Portability. An important consideration regarding the proposed solution
is about its application on other systems and architectures. In the first case, the sys-
tem is portable since its main component is a hardware-resource, so we have to port
only the introspection procedure to the target O.S. Porting our system from Windows
to Linux, for instance, would require only changing DLL imports to a system call table
when interpreting target addresses. In fact, this port is a current work-in-progress.
Regarding the architectural support, our solution depends on a branch monitor mech-
anism able to provide source and target address data. Despite relying on Intel’s facil-
ities, we are aware that similar mechanisms are also present in the AMD and ARM
platforms. Further investigation is required to develop a port to these architectures.

Portability and Linux. The Linux kernel provides an interface for accessing many
performance counters, including branch monitors. These interfaces are used by some
tools, such as the perf profiler. The simple, direct use of these interfaces, however,
does not answer many of the stated questions in this work, such as introspection or
code reconstruction. Besides, these interfaces present some limitations, such as being
disabled in the kernel [Soffa et al. 2011]. This way, it is fully justifiable to develop/port
a framework like the one hereby presented to the Linux environment.

ROP Scenario. This solution is not intended to be the definitive one, since new
ways of constructing gadgets have been constantly presented [Schuster et al. 2014]
and new deviation attacks have been developed, such as Jump Oriented Programming
(JOP) [Bletsch et al. 2011b] and Loop Oriented Programming (LOP) [Lan et al. 2015].
In addition, ROP can be seen as only the tip of an iceberg in the code-reuse attack sce-
nario, since other constructions, like for instance the weird machines ([Vanegue 2014;
Bangert et al. 2013; Shapiro et al. 2013]), may arise in the near future as practical and
widespread attacks. However, monitoring ROP will still be a required task for secu-
rity purposes, such as countermeasure development or forensic procedures. Our solu-
tion presented advances by monitoring the whole system without requiring injection
and providing a framework which allows monitoring unorthodox constructs. Therefore,
building tools relying on previous assured characteristics, such as data collection with
minimal fingerprint, is now an easier task.

Overhead. The branch monitor mechanism theoretically presents zero overhead,
since it is a hardware component that runs independently from the main CPU pro-
cessing. Some work, however, suggested some considerable impact [Soffa et al. 2011].
We confirmed a negligible overhead by measuring the activation overhead38—less than
1%—for both LBR and BTS. Despite the low impact of this stage, data collection and
analysis add overhead to the system, since an interrupt is raised and memory access
and I/O are performed. This overhead is application dependent: a delayed collection for
malware tracing adds less overhead than the real-time ROP detection approach. This
way, we opt to split the overhead by tasks.

To do so, we developed a tiny program—compiled with no optimizations—which
takes a million branches and measured its execution on a dedicated core with and
without the running framework, using synchronous I/O. Data collection in the client,
including interrupt and I/O, adds a 14% overhead; the introspection process adds an-
other 26% overhead; the total overhead when both are combined may go up to 43%.
When the introspection handling was moved to the same core as the monitored appli-
cation, the overhead grew up to 75% on the small test program. These results are still
smaller than the related tools Ether and MAVMM, for example, which present, in some
cases, overheads of around 72% and 100%, respectively. Another evaluated scenario is

38With no data handling.

ACM Transactions on Privacy and Security, Vol. 21, No. 1, Article 4, Publication date: January 2018.



4:26 Botacin et al.

changing the delayed execution collection to a real time monitor using asynchronous
I/O. On these tests, we measured overheads of 100%. As a comparison, the PIN tool
used for validation purposes presented overheads of 400% in the same scenario. This
4x higher overhead matches Paleari’s findings on his Fuzztrace solution.

Speeding the monitoring up may be done through moving the analysis to another
core/processor whenever possible, such as in related approaches [Quinn 2012]. As for
disassembly, we can build a disassembly database from relevant and trustable por-
tions of code, such as system libraries, avoiding the cost of a dynamic disassembly.
This approach would be similar to what ROPecker applies to its gadgets. We also eval-
uated the impact of our solution in real scenarios. Benchmark results are presented in
Appendix L.

Apart from these evaluations, we performed some tests to compare BTS and LBR
in distinct scenarios. Firstly, we evaluated the impact of the data collection procedure
on the test program. As mentioned, the BTS use imposed a 14% overhead. When us-
ing a high-rate39, software interrupt-based polling approach for LBR collected data,
the overhead grows to 26%. These results match CERN’s results [Bitzes and Nowak
2014], which reported overheads from 16% to 25%, depending on applications. We tried
to vary the polling interval time from 1ms to 1000ms. The overhead started to decrease
after the 200ms threshold, possibly causing data loss, thus showing our correct choice
for BTS instead. We also performed the same experiment of threshold variation for
the BTS hardware interrupt threshold. We measured a decreased performance impact
only after a 50-instruction threshold, which shows the ISR handling itself as the most
performance-expensive event. We also tried to evaluate the instruction filtering effect
provided by the LBR mechanism. We noticed an overhead decrease of 6% when han-
dling only CALL data compared to the general case. The result was 3% when handling
only JMPs. This impact, however, is application/system-dependent, since it is impacted
by the frequency of such instructions in the executed code. In order to better demon-
strate this point, we implemented the basic handling mechanisms on Linux, so that
we could compare both OSs. The Linux base performance value is 4% lower than on
Windows, which reflects system differences; the same result is seen when handling
the BTS interrupt. The Linux overhead is 6% lower than on Windows. This way, we
conclude that the performance impact should be evaluated in each usage scenario by
considering distinct OSs, applications and architectures.

Hardware-Assisted Approaches for ROP-CFI The main advantage of the pro-
posed branch-monitor-assisted approach when compared to software-dependent so-
lutions is that no recompilation or binary-rewriting is required. However, if it is
not the usage case, other hardware-assisted approaches are alternative candidates.
HAFIX [Davi et al. 2015] extends the instruction set to add CFI instructions which
implement the same CALL-RET policy here presented. As no instruction-level mon-
itoring is required, the overhead is significantly smaller. However, the usage of such
instructions depends on (re)compiling the code with the newly added CFI instructions.
The official proposal to extend the x86 architecture to implement a CFI policy was pre-
sented by Intel in its Control Flow Enforcement technology [Intel 2016], whose CFI
policy is implemented through a shadow stack, a distinct yet related approach to the
ones previously presented.

6.1. Suggestions for Branch Monitoring Improvement
The BTS and LBR mechanisms were originally developed aiming at profiling issues.
However, as researchers tried to turn them onto a security-oriented monitoring plat-

39Using Windows kernel timers
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form, some resource gaps are apparent. In this section, we pinpoint some missing fea-
tures we wish were present on the monitoring platform – focusing on the BTS.

Although BTS supports some kind of filtering, such as userland/kernel capture, it
does not support all the filters of the LBR mode, such as the branch-type-based one.
The implementation of such feature in BTS would allow for more granular policy im-
plementations, such as those which relies on indirect branches (JOP, for instance).

Despite using the same interrupt vector and O.S. pages, the PEBS mechanism sup-
plies richer context information than the BTS one. For instance, PEBS is able to pro-
vide register value information on its data units. If such data were provided also on
BTS units, solutions like our debugger proposal would be easier to implement, since
data acquisition would be straightforward.

Having more context data could also allow for fast data processing. If some process
isolation information were available, the introspection procedure would be simplified.
The concept of an O.S. process is not defined at the processor level, but having register
information, such as the CR340, unique for each process, would ease the filtering task.

We are aware that many of the proposed features might be unfeasible or hard to
implement in a mechanism originally not intended for such tasks, due to either de-
sign constraints or increased costs. As such, developing an independent monitoring
platform which works in a similar way to BTS and LBR might be a better choice for
processor improvement. This kind of proposal tends to look more attractive as com-
puter systems get more complex to instrument. We see Intel’s Processor Tracer [R.
2013] as a first step toward such direction.

6.2. Future Work
An immediate extension of our framework is the implementation of new policies and
monitors, since it provides complete support for such developments. In addition, the
Intel platform brings other opportunities, such as extending our framework to work
with PEBS data, which would allow one to develop distinct policies in the userland
client. These policies include, for instance, malware detection through side effect mea-
surements.

7. CONCLUSION
In this paper, we have introduced an extensible framework for software analysis less
prone to fingerprinting, which is based on performance monitoring hardware features.
We have shown how the framework can be applied to convey dynamic malware analy-
sis, debugging facilities and a ROP detector tool. Our work is intended to be a stealth,
lightweight solution compared to other state-of-the-art developments.
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We present in this appendix additional material which was not included on the main
text due to space constraints.

A. THE BRANCH STACK
Branch data is stored on a stacked way, both on LBR and BTS modes. Figure 12, illus-
trates a branch stack. The FROM and to VALUES are instruction addresses. The values
are stored from the upper entries to the lower. When using LBR, these entries are
MSRs whereas these are memory entries when using BTS.

Fig. 12: Example of a Branch Stack.

B. ASLR EFFECT
To illustrate the ASLR effect over code images placement, we have checked libraries’s
addresses after consecutive reboots, as shown in Table I.

Table I: ASLR - Library placement after two consecutive reboots.
Library NTDLL KERNEL32 KERNELBASE
Address 1 0xBAF80000 0xB9610000 0xB8190000
Address 2 0x987B0000 0x98670000 0x958C0000

C. FUNCTION OFFSETS
Our solution relies on address introspection in order to provide information on a higher
semantic level. Table II shows function offsets for the NTDLL library, as an example.
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Table II: Function Offsets from ntdll.dll library.
Function Offset
NtCreateProcess 0x3691
NtCreateProcessEx 0x30B0
NtCreateProfile 0x36A1
NtCreateProfileEx 0x36B1
NtCreateResourceManager 0x36C1
NtCreateSemaphore 0x36D1
NtCreateSymbolicLinkObject 0x36E1
NtCreateThread 0x30C0
NtCreateThreadEx 0x36F1

D. CALL-RET OPCODES
The CALL-RET policy for ROP detection is based on instruction opcodes matching. The
bytes representing the CALL and RET instructions are shown respectively in Table III
and Table IV.

Table III: CALL Opcodes.
Opcode Mnemonic Opcode Mnemonic
0xE8 CALL rel16 0x9A CALL ptr16:16
0xE8 CALL rel32 0x9A CALL ptr16:32
0xFF CALL r/m16 0xFF CALL m16:16
0xFF CALL r/m32 0xFF CALL m16:32

Table IV: RET Opcodes.
Opcode Mnemonic Opcode Mnemonic
0xC3 RET 0xC2 RET imm16
0xCB RET 0xCA RET imm16

E. PIN VALIDATION
In order to validate our framework, we have implemented the same ideas on Intel PIN,
a dynamic binary translator. In the emulated prototype, we considered only branch
data and reconstructed instruction blocks by relying on two consecutive branches, as
shown in Listing 4.

Listing 4: Instruction Instrumentation on PIN.

1 VOID Instruct ion (INS ins , VOID ∗v ) {
2 i f ( INS_IsBranchOrCall ( ins ) )
3 Disasm ( last , current )

We have run sample programs on both solutions and compared the results for each
execution, considering the framework as correct since all of them matched. As an ex-
ample, Listing 5 and Listing 6 present the execution of a given piece of code under PIN
and our solution, respectively. One can verify that the execution of the same block (0x90
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offset)41 resulted on the same number of disassembled instructions (0xc96 - 0xc90 =
0x7).

Listing 5: Sample code running under PIN.
1 From : 0000000077332F89 To : 0x7732ec90 Disasm of 1 instr : c a l l
2 From : 000000007732EC97 To : 0x7732ecab Disasm of 1 instr : jnz
3 Disasm of 0x7 bytes from 000000007732EC90 : 0x48 0x3b 0xd 0x39 0x8e 0xe 0x0

Listing 6: Sample code running under Branch Monitor.
1 Binary Branch . Tester . exe at <0x1ca1> to Binary Branch . Tester . exe at <0x1c90>
2 Binary Branch . Tester . exe at <0x1c96> to Binary Branch . Tester . exe at <0x1c9a>
3 should disasm from 7ff6d6ec1c90 to 7ff6d6ec1c96

F. RAISING ALERTS FOR ROP ATTACKS
When a ROP attack is detected, an alert is raised, as shown in Figure 13.

Fig. 13: Alert raised by our solution when an attack is detected.

G. EVALUATING DEBUGGER’S RESISTANCE AGAINST EVASIVE MALWARE
We present in this section the anti-debugging tricks we have used to check our solu-
tion’s increased stealthiness.

IsDebuggerPresent. It is the default way of checking a debugger’s presence on
Windows. This code (shown in Listing 7) detected the debugger when running under
ordinary debuggers, but not on our system.

Listing 7: Simplest debugger detection code.

1 i f ( IsDebuggerPresent ( ) )
2 pr int f ( " debugged\n " ) ;
3 e lse
4 pr int f ( "NO DBG\n " ) ;

CheckRemoteDebuggerPresent. A way of checking debugger’s presence on a re-
mote host that is also able to detect whether a process is being debugged when attached
to itself. The code (shown in Listing 8) did not detect the debugger on our system.

41Base addresses are changed on distinct executions
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Listing 8: 2nd Simplest debugger detection code.
1 CheckRemoteDebuggerPresent ( GetCurrentProcess ( ) ,& resul t ) ;
2 i f ( resul t )
3 pr int f ( " debugged\n " ) ;
4 e lse
5 pr int f ( "NO DBG\n " ) ;

OutputDebugString. This function is the default way of printing a message in
the debugger. The resulting eax values changes according to whether the debugger is
attached or not, thus allowing the debugger presence detection. This code (shown in
Listing 9) did not detect the debugger’s presence on our system.

Listing 9: 3rd Simplest debugger detection code.

1 OutputDebugStringA (OUTPUT_MSG) ;
2 __asm {mov result , eax ; }
3 i f ( resul t==DEBUGGED)
4 pr int f ( " debugged\n " ) ;
5 e lse
6 pr int f ( "NO DBG\n " ) ;

H. INSPECTING A REAL APPLICATION
We show in this section how a real application behaves under an ordinary debugger
and under our solution. Figure 14 shows how the binary refuses to run under an ordi-
nary debugger, whereas Figure 15 shows the inspection under our solution.

Fig. 14: Uplay execution under an ordinary debugger.

I. DETECTING ANTI-ANALYSIS TRICKS
We have made use of our solution to detect some anti-analysis tricks in practice. We
describe, below, how the detected tricks work.

Listing 10 presents an identified example of the Fake Conditional trick. In order to
confuse solutions that follow the executed paths, this trick tries to purposefully trigger
the path explosion problem [Krishnamoorthy et al. 2010]. Notice that in practice the
branch will always be taken, given the xor instruction always yields zero.
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Fig. 15: Uplay execution under our solution.

Listing 10: Fake Conditional.

1 0x190 xor eax , eax
2 0x192 j z 0x19c

A variation of this technique consists in changing the unconditional jump to a dis-
tinct instruction. Listing 11 shows a trick that changes the control flow by pushing a
value to the stack and then returning to it.

Listing 11: Control Flow Change.

1 0x180 push 0x10a
2 0x185 ret

Some samples try to detect the presence of a hook, which may indicate it is under
analysis. This is done by checking the presence of the JMP instruction (byte 0xe9). A
real example is shown in Listing 12.

Listing 12: Hook Detection

1 0x340 cmp eax ,0 xe9
2 0x345 jnz 0x347

Some samples perform a similar detection in order to detect the presence of a hard-
ware debugger. The example in Listing 13 shows the presence checking of the debugger
register 0 (0x4) inside the debugger context struct (0xc).

Listing 13: Hardware Debugger Detection

1 0x400 QWORD PTR fs :0 x0 , rsp
2 0x409 mov rax ,QWORD PTR [ rsp+0xc ]
3 0x40e cmp rbx ,QWORD PTR [ rax+0x4 ]
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J. DEVIATION DETECTION ALGORITHM OUTPUT
Algorithm 2’s execution, using the inputs for the example presented in Figure 9 (0x1
0x2 0x3 0x5 0x6 and 0x1 0x2 0x4 0x5 0x6, respectively), resulted in the output pre-
sented in Listing 14.

Listing 14: Flow deviation identification by applying the align-
ment algorithm.

1 0x01 | 0x01
2 0x02 | 0x02
3 / \
4 0x03 | 0x04
5 \ /
6 0x05 | 0x05
7 0x06 | 0x06

K. DETECTED TRICKS DUE TO DIVERGENT BEHAVIOR
We detail, in Table V, the tricks detected through using our solution.

Table V: Anti-analysis tricks found due to branch-diverged be-
havior.

# of samples Trick Description
2 PUSH-RET Replacing a CALL by a stack-pushed value
2 Fake Conditional XOR itself to trigger branch-related flags
1 NtGlobalFlag Checking data related to the process heap
1 Hook Detection Check for a JMP instruction
1 Hardware Breakpoint Debugger detection by checking context flags

L. BENCHMARKING
Table VI presents the results of running a benchmark tool42 with and without the
monitor enabled. The Base Value column refers to the values obtained by running
the system without the monitor. The System Monitoring column refers to the values
obtained by running the monitor in a system-wide way, without disassembling instruc-
tions. The Benchmark Monitoring column refers to the data obtained by introspecting
and disassembling benchmark instructions. All results were obtained by using the de-
layed data collection mode and running the monitor on a distinct core, the best usage
scenario possible.

These results show us that unique operations are affected in distinct ways, due to
the unique incidence of branch deviations. An example of such difference is observed
between the floating-point tests and the integer ones. The MD5 calculation is also
affected when the monitor is enabled, since it encompasses many branches due to
algorithm’s inner loops. We also notice the monitor imposes higher overheads when
monitoring specific applications instead of the whole system. This result is expected
since, besides the additional processing, some operations, such as memory read, may
block. Additionally, in this scenario we observe a penalty in disk usage, due to log files
being written.

42https://novabench.com/
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Table VI: Benchmarking the system with and without the moni-
tor.

Task Base value
System

monitoring Penalty
Benchmark
monitoring Penalty

Floating-point
operations (op/s) 101530464 99221196 2.27% 97295048 4.17%

Integer operations
(op/s) 285649964 221666796 22.40% 219928736 23.01%

MD5 Hashes
(hash/s) 777633 568486 26.90% 568435 26.90%

RAM transfer
(MB/s) 7633 6628 13.17% 6224 18.46%

HDD transfer
(MB/s) 90 80 11.11% 75 16.67%

Overall (benchm. pt) 518 470 9.27% 439 15.25%
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