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∗Federal University of Paraná (UFPR-BR) – {mfbotacin, fjoceschin, gregio, mazalves}@inf.ufpr.br

†University of Campinas (UNICAMP-BR) – {galante, paulo}@lasca.ic.unicamp.br
‡Federal University of Rio Grande do Sul (UFRGS-BR) – {pcssjunior, carro}@inf.ufrgs.br

Abstract—Although malware is a threat for most systems, the
main line of defense against them (AntiViruses, or AVs) are
performance-intensive applications that cause slow down due
to the need of constant target-system monitoring. An effective
alternative for accelerating AVs operation is to move them
from software to hardware, thus eliminating their imposed
performance overhead. Hardware-AVs, in turn, present another
drawback: the update of malicious definitions is essential for
AVs working in constant changing scenarios, but challenging to
be deployed in hardware. In this paper, we propose REHAB
(REconfigurable, Hardware-Assisted Blocker for malware), a
reconfigurable, hardware-based AV that eliminates the perfor-
mance overhead imposed by standard AVs and streamlines
malicious definitions updates. REHAB is based on low-level
features (e.g., branch prediction and cache accesses rates) which
are classified using machine-learning (ML) algorithms (SVM,
Random Forest and MLP) implemented in FPGA to facilitate
components integration. We show that REHAB is a practical,
effective solution for malware detection that also addresses
concept-drift caused by new malware trends, since we are able
to adjust the weights of our hardware-modelled neural network
through software updates, and we also support fine-grained
settings, such as changing the entire ML classifier in runtime
(e.g., from Random Forest to MLP).

I. INTRODUCTION

Malware is a major concern for end-users and system
administrators, as it may cause either financial and image losses.
Besides their significant drawbacks, such as their performance-
intensive cost [3], [17], [30], antivirus solutions (AVs) are the
main line of defense against malware for most users. To protect
their users, AVs need to constantly monitor running processes in
the search for any suspicious signs, which causes the machine
to leverage significant part of its processing power to run the
AV instead of actual users’ processing tasks. Thus, enhancing
AVs not only helps to create more secure environments, but
also more efficient systems.

An enhancement strategy to speed up AVs is to move
them from software to hardware [2], [31], which eliminates
all overhead of running additional AV code among all other
user’s applications. This paradigm shift, however, introduces
two new challenges: (i) identifying new features for malware
classification, as the previously leveraged software features
will not be available in hardware (semantic gap); (ii) allowing
AVs’ malware databases updates, since hardware storage is
much more limited and less flexible in comparison to software.
Recent research on security has addressed the first challenge by

showing that hardware events can be leveraged as features for
malware detection [11]. While the second challenge remains an
open problem in the security field, recent research on computer
architecture enabled circuit logic updates through the use of
reconfigurable hardware for many tasks [13], [22]. However,
none of them addressed the development of domain-specific
security solutions. Therefore, we plan to bridge this gap by
proposing a hardware AV using low-level events, implemented
in a reconfigurable way that facilitates easy updates by software.
On the one hand, we will still benefit from years of AV industry
knowledge on deploying updates for the most recent threats.
On the other hand, our novel solution does not suffer from the
overhead imposed by standard, software-based AVs.

We introduce the REconfigurable, Hardware-Assisted
Blocker for malware (REHAB), an AV modeled as a low-level
mechanism that captures data from Hardware Performance
Counters (HPCs) [20]—the total branch rate, mispredicted
branch rate, total cache access rate, cache miss rate, and
average total instructions—and deploys a classifier that can be
updated by software. In REHAB’s model, the AV company
establishes the classifier setup, so AV updates can both modify
the weights used for classification (allowing for more strict
or lax policies) as well as replace the entire classifier by a
new implementation, thus addressing malware classification
problems, such as concept drift [7], [21].

REHAB was implemented in FPGA and evaluated with
4,077 real Linux malware samples. We show that REHAB can
have its hardware reconfigured, which represents the support
for different in-hardware classifiers able to be updated, and
in therefore be able to identify different classes of malware
broadly. REHAB design achieves detection rates of up to 97%
while demanding heterogeneous hardware resources, requiring
from 1.3K up to 11K Logical Unit Tables (LUTs) and making
use of up to 39 DSPs instances (worst-case).

Our contributions are threefold: 1. we introduce the design
and implementation of REHAB, a reconfigurable, hardware AV
whose goal is to eliminate the overhead of standard software
AVs whereas still allowing updates to be performed from
software; 2. we evaluate REHAB to show its ability to operate
in practical scenarios, including the complete replacement of
the implemented classifier when ML classifier’s concept drift
effects are identified. 3. we present an exploratory design
evaluation to show the impact of reconfiguring logic circuits



aimed to implement distinct ML classifiers, thus providing
support data for future developments.

This paper is organized as follows: Section II presents
background information to support our development; Section III
presents the design and implementation of Malware REHAB;
Section IV evaluates the Malware REHAB in actual scenarios;
Section V discuss the impacts and limitations of our proposed
solution; Section VI presents related work to better position
REHAB. Finally, we draw our conclusions in Section VII.

II. BACKGROUND

A. AV Paradigms

Behavior-based Detection is the paradigm most used by the
current AVs. The function calls of each runningapplication
are intercepted by the AV, and their parameters are scanned
by suspicious signs, such as an application exfiltrating user’s
sensitive data via network or process writing code into third
processes (injection). Due to this intercepting characteristic,
AV’s code is always running among application’s code, thus
imposing a permanent monitoring overhead.
Profiling-based Detectors establish profiles about which is
considered normal during system’s operation and detect devi-
ations from these profiles using, for instance, ML classifiers.
Hardware AVs often do not have information about software
function calls (semantic gap), thus profile are usually estab-
lished from processor metadata, such as branch mispredictions
and cache misses rates. This strategy detects malware because
whereas benign software (goodware) are often well-behaved
applications, exploiting temporal and spatial locality, malware
often follow unusual paths to exploit vulnerabilities, thus
leading to high rates of misses as a side effect.

Profile-based AVs operate in two modes: whole-system
and per-process basis. The first considers all applications
which executed within an interval in a single manner for its
decision, thus imposing low overhead at the cost of a smaller
accuracy. The latter considers individual process data, achieving
high accuracy, but imposing greater overhead, as a decision
algorithm runs for each active process. Figure 1 exemplifies
a per-process classifier distinguishing two cases of malware
from goodware executionss.
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Fig. 1. Malware Classification using low level features. The branch misses
rate can be used to separate goodware from malware sample’s execution.

B. ML Classifiers

Support Vector Machine (SVM) considers a geometrical
hyperplane as a decision surface, such that the separation
between the samples is maximal [5]. The algorithm uses
support vectors (samples from both classes) that are closest
to the hyperplane, aiming to maximize the margin from
the training data, resulting in two parameters w and b [9].
Thus, one can use both parameters to predict the class of a
given sample xi using the equation f (x) = ∑

n
i=1 wixi + b. If

f (x) < 0, it belongs to class 0, otherwise, class 1. Figure 2
(left) shows SVM’s working, with the support vectors creating
a hyperplane (vertical line) with maximum separation between
the two classes. Its prediction circuit implementation (right) is
composed by multipliers (that multiply Xi by wi) and adders
(that sum the output of the multipliers with b) responsible for
generating the output that defines the class of the sample..
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Fig. 2. SVM. A hyperplane with maximum separation between two classes
is created and used to predict samples (left). The circuit implemented (right)
multiplies the input (xi) by the learned parameters (wi) and adds b.

Random Forest (RF) consists of a collection (ensemble) of
decision trees (classifiers that create a set of if-then-else rules
to classify new samples, each of them trained on bagged data
using a random selection of features and cast a vote for the
most popular class for a given input [6]. For each decision
tree, a subset of the train set is used, randomly selecting the
features used for that given tree. Then, for each trained tree,
a class is predicted, and the majority one is determined as
the final decision (voting). A single decision tree is shown in
Figure 3 (left), where each node corresponds to a decision for
a given feature xi. The corresponding circuit for this classifier
(right) is composed by comparators (for each feature), whose
output is the input of a MUX that selects the decision path to
follow (true or false).
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Fig. 3. Random Forest. A single decision tree (from the ensemble) is shown
(left) with the corresponding circuit of two nodes (right), with comparators
and a MUX deciding the decision path.

Multilayer Perceptron (MLP) is a feed-forward neural net-
work that is implemented by multiple neurons, called perceptron
(the smallest component of a neural network), which are aligned
in n hidden layers capable of extracting useful information of



the input and generating an output (class prediction). A single
perceptron is composed by a set of weights w and a bias b,
both computed in the training process, and by an activation
function ϕ responsible for determining the shape and intensity
of the output value [18]. Every MLP neuron has its own sets of
weights and bias, which, given an input x, computes its output
using the Equation f (x) = ϕ(∑n

i=1 wixi +b) [18]. The input of
a hidden layer is the combined output of the previous layer,
i.e., a vector containing all the values calculated before (since
MLP is fully-connected). Figure 4 (left) shows an example
of a MLP network with just one hidden layer and the circuit
implementation (right) of a single neuron, which performs the
same function of SVM, but relies on an activation function
before obtaining an output. The main difference between
a single perceptron and SVM is that SVM finds the best
hyperplane possible (with maximum margin), while perceptron
adjusts the hyperplane according to its training process: when
it misclassify a sample, its weights are updated to correct it.
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Fig. 4. MLP. A feed-forward neural network composed by multiple neurons
(left), which circuit implementation (right) is similar to SVM, but using an
activation function to calculate the output.

III. DESIGN & IMPLEMENTATION

A. Model & Assumptions

System Model. REHABs aims to eliminate the AV monitoring
load imposed to the CPU and GPGPUs and allow them to be
fully used for processing user’s tasks. We assume that REHAB
is supported by an hybrid CPU-FPGA platform, such as Intel’s
Xeon [29]. We consider that, in the current scenario, unlike
the CPU and even GPGPUs, the FPGA co-processor will be
only eventually used by most user’s applications; hence we
can outsource AV’s processing loads to it without significantly
impacting system’s performance. Moreover, recent research
work has been suggesting that FPGAs can outperform GPGPUs
when operating as co-processors [16].
Threat Model. Malware REHAB is a profiling-based AV
solution which considers low-level events as features for
profiling-based malware detection, thus not requiring any static
signature to operate. Because of this characteristic, REHAB
detects anomalies in kernel and userland, however ensuring
kernels integrity and preventing privilege escalation is out of
REHAB’s scope, since it is not an AV responsibility.
AV Operation Model. REHAB is not supposed to replace
existing AV solutions, but to enhance them by providing a
mechanism for eliminating real-time data collection and analy-
sis overheads. When a given threat is detected at the hardware

level, REHAB raises an interrupt to allow the software-based
AV to proceed with its inspection and block threat’s execution.
Therefore, REHAB benefits from years of AV industry’s
knowledge on detecting malware samples. REHAB’s operation
model expects the AV company to provide classifier definitions
to be applied to the collected data. AV updates can be deployed
by software, thus replacing the previously modeled classifier
by the new definitions leveraging the reconfigurable hardware
capabilities. The circuit reconfiguration might be limited to
changing classifier’s weights, thus enforcing more strict security
policy, or also consider the replacement of the so-far deployed
in-hardware classifier by a new one which outperforms it. We
expect that classifiers definitions and weights will be defined
and delivered by the AV companies according to the threats they
are identifying in the wild for the period covered by the updates.
REHAB design benefits from AV companies knowledge to
reduce its footprint by implementing only classifier’s prediction
steps, leaving model’s training at AV companies’ charge.
B. Design

REHAB comprises three components: (i) an userland AV;
(i) a kernel driver; and (i) a reconfigurable hardware classifier
integrated into the main CPU. The userland component is a
standard AV which will receive malware detection notifications
from the hardware layer and perform infection blocking. It will
also download definition updates from the AV company servers
and demand the hardware layer to deploy them. The second
component is a kernel driver which enables userland-hardware
communication. It works as an interface to the hardware since
CPU control registers should not be directly accessible from
userland to avoid malware tampering. These components are
implemented as standard software pieces and since this work
is focused in hardware aspects, we focus our description on
describing the innovative REHAB hardware component.

The third component, depicted in Figure 5, is the innovative
hardware layer responsible for periodically collecting CPU
events data according to an established sampling rate, attribut-
ing it to a feature vector and classifying it as malicious or
not. The events data can be collected directly from Hardware
Performance Counters (HPCs) available in modern CPUs [20],
Therefore, supported by the driver mentioned above, HPCs can
be accessed via shared mapped memory, thus not requiring any
CPU modification. Once the feature vectors are constructed,
they are classified by the currently deployed ML algorithm,
which raises an interrupt when an execution is deemed
suspicious. This circuit is under continuous operation, thus
monitoring the system execution according to the previously
set sampling rate.

When a definition update is received by the userland AV,
the data is forwarded via the kernel driver that writes it in
REHAB’s memory via memory mapped registers and forces it
to reload its configurations from the externally-written memory
(Figure 6). Upon set with new values, REHAB starts detecting
malware using the new definitions.
C. Implementation

To prototype REHAB, we leveraged a set of independent
tools so that we could easily adjust each parameter. Our



Fig. 5. REHAB Architecture. CPU’s HPC data is used as feature for a
FPGA-based, reconfigurable ML classifier updatable via software.

development consisted of three steps: (i) Data collection; (ii)
Classifier Selection; and (iii) Classifier Prototyping.

To prototype the data collection procedure, we leveraged
Linux Perf to collect HPCs data periodically, considering whole-
system (10s) and per-process (1s) AV profiling modes, thus
simulating REHAB’s continuous monitoring. REHAB considers
the following HPCs: (i) total branch rate; (ii) mispredicted
branch rate; (iii) total cache accesses rate; (iv) cache misses
rate; and (v) average total executed instructions.

Upon collecting HPCs data, we prototyped multiple REHAB
classifiers by leveraging Python sklearn library. This step
simulates an AV company investigating the best classifier for
the malware active in a given period. We selected the three
classifiers most used in the malware detection literature: (i)
Linear Support Vector Machines (SVM); (ii) Random Forest
(RF); and (iii) Multi-Layer Perceptron (MLP) neural network.

Once classifiers and their parameters were defined, we
prototyped the classifier’s predictors in the Xilinx Artix-7 FPGA
to identify how many resources would be required for actual
implementation, hence evaluating REHAB’s viability.

IV. EVALUATION

To evaluate REHAB’s detection and update capabilities, we
first show why the current behavior-based software AVs are
performance-intensive, as well as the benefits of a paradigm
shift to profile-based AVs. Further, we show the benefits of
a hardware accelerator to mitigate the impact of frequent AV
checks of per-process, profile-based AVs. Finally, we show that
such solution must be reconfigurable to support the frequent
AV updates required for accomplishing high detection rates.

A. Experimental Setup

TestBed. All profiling tests were performed with a fresh
installation of Ubuntu 16.04 LTS desktop x64 running on
a 16GB, i7-7700 @ 3.60GHz computer.

Fig. 6. Excerpt of a ML classifier implemented in FPGA. ML parameters
are loaded from an external memory at startup and can be updated by software
writes to the external RAM memory.

Dataset. For all experiments, we used the binaries of /bin
and /usr/bin directories of a fresh Ubuntu installation as
goodware-labeled samples, and two datasets of real Linux
malware samples: (i) the VirusShare (virusshare.com) dataset
is composed by 2,642 unique samples collected between 2007
and 2010; and (ii) the VirusTotal (virustotal.com) dataset is
composed by 1,435 samples unique samples collected in 2017.
These datasets present a family distribution as shown in Table I.

TABLE I
MALWARE FAMILY DISTRIBUTION IN THE EVALUATED DATASETS.

EXPLOITS ARE PREVALENT.

Family Exploit Virus Backdoor
Prevalence 25% 23% 16%

Family Rootkit Worm Others
Prevalence 11% 15% 10%

B. AV Paradigm Shift

Current AVs operate in a behavioral way by continuously
intercepting application’s API calls, thus imposing them a
significant performance overhead. REHAB operates in a
profiling-way, thus only inspecting system state at a given
sampling rate. To evaluate the impact of the paradigm shift, we
compared the resources usage by a whole-system, sampling-
based AV and a behavior-based AV when monitoring the
execution of the previously described datasets. We considered
ClamSentinel [8] AV for Linux as the behavior-based AV and
implemented ML classifiers predictors to operate as a sampling-
based AV (compiled using GCC -O3).

During ClamSentinel’s monitoring, the system presented an
average CPU usage rate of 37.5% (1.4G inst/s), 20% of all these
instructions (270M inst/s) were spent running AV’s code. For
each global 10s sampling interval, a total of 2.7G instructions
were spent by ClamSentinel. Each ML classifier consumed,
on average, 650M instructions per scan. When considering
the same 10s interval, the sampling AV consumed 650M
instructions instead of 2.7G instructions from the behavior-
based AV, a 4× execution speed up.

C. The Need for Hardware Acceleration

While running a ML classifier costs more than intercepting
function calls and checking parameters, there is a performance
gain resulting from the fact that function calls are constantly
intercepted. However, ML classifiers run only periodically,
since the HPCs perform the profiling data collection. This
trade-off is affected by the security model defined by the AV,
since too long checking intervals might lead to vulnerable
system by attacks occurring between two checks. If an AV
operates in a model in which checks are performed every 1s or
in a per-process-basis (many running processes per second), no
performance gain will be observed. Thus, the paradigm shift to
low-level features is a requirement for overhead elimination,
allowing AVs to not check individual API calls but the general
hardware state, but it is not enough for complete overhead
elimination, thus requiring a hardware accelerator.

Table II shows the difference in executing the software and
the hardware ML prediction algorithm in terms of processing

virusshare.com
virustotal.com


TABLE II
EXECUTION SPEEDUP PER AV CHECK. HARDWARE ACCELERATOR IS

ESSENTIAL FOR OVERHEAD ELIMINATION.

ML algorithm → SVM RF MLP
CPU 220µs 270µs 240µs

FPGA+Comm 124.5ns 111.2ns 158.9ns
Speedup 1.7k× 2.4k× 1.5k×

time. All algorithms in their FPGA implementation run faster
than their software counterparts, since the FPGA provides
dedicated circuits, thus not being affected by general-purpose
hardware issues, such as pipeline stalls and memory latency.
Therefore, each AV scan (for each process or sampling interval)
performed in the FPGA represents a significant speed up.
Moreover, the FPGA execution time is independent of AV
sampling rate, thus resulting in overall performance gains for
a sampling AV. Finally, the FPGA implementation completely
mitigates the overhead of running AV code among other task’s
code, since all AV tasks are outsourced to the accelerator.

D. The Need for Reconfigurable Hardware

We here show that reconfiguring hardware is essential for
AVs keeping up with high detection rates since each ML
classifier presents characteristics more appropriated to detect
malware observed in distinct periods of times and regions. We
considered a per-process profiling AV for all experiments.
AV Detection Baseline We first evaluated whether REHAB’s
proposed AV logic layer was effectively able to distinguish
between malware and goodware execution based on the
collected performance counters data. In practice, distinct
classification algorithms present distinct accuracy rates due to
their intrinsic factors, as following demonstrated for multiple
classifiers trained using the VirusTotal dataset.

Tables III, IV and V show accuracy results for multiple
SVM, MLP and RF parameters when classifying the VirusTotal
dataset. In all cases, classifiers were trained using a 50%-
50% malware/goodware distribution, and accuracy results are
reported considering 10-fold cross-validation procedures.

TABLE III
SVM CLASSIFIER. 1000 ITERATIONS IN A LINEAR KERNEL RESULTS IN THE

BEST ACCURACY FOR THE VIRUSTOTAL DATASET.

Kernel/Iter (#) 1000 10000 100000
Poly 0.2960 0.2960 0.2960
Linear 0.8256 0.7952 0.8088
rbf 0.4793 0.4793 0.4793

TABLE IV
MLP CLASSIFIER. ALPHA AS 100 WITH ADAM SOLVER RESULTS IN THE

BEST ACCURACY FOR THE VIRUSTOTAL DATASET.

Solver/Alpha (#) 0.01 1 100 1000
sgd 0.4997 0.4997 0.4997 0.5003
adam 0.7098 0.7218 0.7433 0.7213
lbfgs 0.4997 0.4997 0.4997 0.4997

We notice that the Random Forest (64,16) classifier presented
the best classification accuracy among all valuated models; thus

TABLE V
RF CLASSIFIER. 16 ESTIMATORS AND A MAX DEPTH OF 64 RESULTS IN THE

BEST ACCURACY FOR THE VIRUSTOTAL DATASET.

Depth/Est (#) 8 16 32 64 128
4 0.9240 0.9172 0.9178 0.9214 0.9199
8 0.9366 0.9366 0.9398 0.9434 0.9403
16 0.9377 0.9455 0.9408 0.9445 0.9429
32 0.9350 0.9439 0.9403 0.9460 0.9445
64 0.9392 0.9466 0.9445 0.9434 0.9445

it should be selected by an AV company to be distributed to
their customers via the Internet.
Weighted Classifier Detection. Classifiers present distinct
detection rates not only due to their inherent characteristics but
also due to parameters configuration. A significant advantage
of deploying a reconfigurable classifier is to adjust classifiers
weights according to the detection needs identified by the AV
company. A typical scenario that requires adjusting classifier’s
weights is when the characteristics observed in samples
collected in-the-wild are significantly distinct from the ones
used to train the classifier. To simulate this scenario, we
also trained our classifiers using the VirusShare dataset and
compared accuracy results to the classifiers trained using the
VirusTotal dataset. Table VI, VII and VIII shows accuracy
results for multiple SVM, MLP and RF parameters, respectively,
when classifying the VirusShare dataset.

TABLE VI
SVM CLASSIFIER. 1000 ITERATIONS IN A LINEAR KERNEL RESULTS IN THE

BEST ACCURACY FOR THE VIRUSSHARE DATASET.

Kernel/Iter (#) 1000 10000 100000
Poly 0.3644 0.4234 0.4234
Linear 0.7705 0.7353 0.7266
rbf 0.5001 0.4759 0.4759

TABLE VII
MLP CLASSIFIER. ALPHA AS 1 WITH ADAM RESULTS IN THE BEST

ACCURACY FOR THE VIRUSSHARE DATASET.

Solver/Alpha (#) 0.01 1 100 1000
sgd 0.4999 0.4999 0.4929 0.4999
adam 0.7288 0.7614 0.6951 0.7067
lbfgs 0.4999 0.4999 0.4999 0.4997

TABLE VIII
RF CLASSIFIER. 16 ESTIMATORS AND A MAX DEPTH OF 16 RESULTS IN THE

BEST ACCURACY FOR THE VIRUSSHARE DATASET.

Depth/Est (#) 8 16 32 64 128
4 0.9564 0.9569 0.9577 0.9601 0.958
8 0.9644 0.9642 0.9653 0.9644 0.9661
16 0.9626 0.9671 0.9655 0.9639 0.9671
32 0.9644 0.9642 0.965 0.9644 0.9661
64 0.962 0.965 0.9442 0.9653 0.9647

We notice that for MLP and RF, the best results for the
VirusShare dataset are obtained when using distinct parameters
than used for the VirusTotal database, thus showing that
providing AVs with the ability to reconfigure their classifiers
dynamically is essential to increase security coverage. For
the particular case of the RF classifier being deployed by
the AV company, the results indicate that to support such



parameter change, the hardware would be required to reduce
its implemented classifier’s depth from 64 to 16 to achieve the
best accuracy rate in the new scenario, which means skipping
the last classifier stages. This procedure can be implemented in
hardware via either changing multiplexers outputs to consider
the signal from an early circuit phase or by reconfiguring the
whole hardware to implement an smaller classifier version.
Overcoming Classifier Drift. Classifiers handling very diver-
sified data, such as malware samples, after some operation
time may present a natural accuracy reduction due to an effect
known as concept drift [7], [21], when the learned model do
not correspond anymore to the operational scenario because it
changed significantly. In the malware case, it may occur, for
instance, due to the high number of malware variants daily
created. A significant advantage of having a fully reconfigurable
logic layer is that AV solutions can change not only classifier
weights but also the entire classifier when it starts drifting.
To evaluate this possibility, we leveraged classifiers trained
with one dataset to predict the malware samples from another
dataset, which allows simulating the concept drift effect. More
specifically, we considered the six classifiers presenting the best
accuracy results, as previously presented, and leveraged the
three classifiers trained with the VirusTotal dataset to predict
the VirusShare dataset samples and vice-versa. Our evaluation
results are presented in Table IX.

TABLE IX
CLASSIFIER’S CONCEPT DRIFT. WHEREAS THE MLP CLASSIFIER BEST

SCORED IN THE VIRUSTOTAL DATASET, THE RANDOMFOREST CLASSIFIER
WAS THE BEST CHOICE FOR THE VIRUSSHARE DATASET, THUS SHOWING

THE NEED OF HAVING RECONFIGURABLE AV MECHANISMS.

Classifier/Dataset VirusShare VirusTotal
Random Forest 0.9144 0.6953

MLP 0.881 0.9738
SVM 0.9079 0.5728

Although previous experiments demonstrated that Random
Forest is the best classifier to train and predict samples
having the same characteristics and same datasets (Table V
and VIII), it does not hold true when concept drifting is
considered. Whereas Random Forest still presents the best
performance for classifying the VirusShare (oldest) dataset
even when trained with the VirusTotal (newest) dataset, the
MLP classifier outperforms RF in the opposite scenario, when
classifying the VirusTotal (newest) dataset after being trained
with the VirusShare (oldest) dataset. Therefore, an AV company
operating in such dynamic scenario would be required to update
its deployed classifier to achieve the highest possible malware
detection rate, thus reinforcing the need for reconfigurable
hardware AV platforms. From a hardware perspective, the
classifier change implies in completely reconfiguring the FPGA
to reflect a distinct classifier than previously deployed.

E. Implementation Evaluation

After identifying the best parameters for all classifiers, we
prototyped their implementation in FPGA to identify how
large their circuits would become, since the larger the circuit,

the larger the FPGA requirements (e.g., chip area). In our
experiments, all classifiers implementation fit in the FPGA,
thus being feasible to be implemented in actual systems.

Table X shows REHAB’s multiple classifiers implementation
data in contrast to other work implementing the same classi-
fiers in FPGA. Whereas results cannot be directly compared
since classifiers parameters (e.g., depth, number of trees and
perceptrons) depend on the target application (e.g., malware
detection, image classification, etc.), we notice that REHAB
requires less LUTs than these other implementations, thus
ensuring its implementation viability.

There are two main reasons for REHAB’s compactness: (i)
REHAB uses fewer features as input in comparison to the
related work shown in Table X, since it relies on already
very qualified information as input. REHAB considers an
average of HPCs values (temporally rich information) whereas
the related work consider raw image files, which requires
additional hardware circuits to be described in terms of features.
moreover (ii) REHAB only implements the prediction step of
ML algorithms, thus skipping the logical units responsible for
implementing the training step present in similar approaches,
which allows REHAB to use ≈ 50% gates than these.

We also notice that each classifier presents its own char-
acteristics regarding implementation, with simpler algorithms
requiring fewer logic units to be implemented. For instance,
the SVM classifier always requires the same number of LUTs,
as it always performs the same dot product computation to the
input vector, being the implementation which requires fewer
logic units. The MLP also performs the same dot product
computation to the input vector, but its requirements change
according to the number of perceptrons performing this same
operation in parallel. As neural networks are usually composed
of a significantly large number of neurons (and sometimes
layers, depending on the complexity of the problem), the
MLP implementation is often the most costly one. Finally,
the Random Forest classifier implementation varies both
according to the number of the used tree but also according
to the tree characteristics themselves, presenting intermediary
requirements in comparison to SVM and MLP.
Classifiers’ Implementation Tradeoffs. Given the differences
as mentioned earlier, for each classifier implementation and
our goal to reconfigure the matching mechanism from one
classifier to another, we here investigate how much a circuit
change when a reconfiguration is triggered.

As SVM implementation is constant, we first explore the
multiple possible implementation decision for the Random
Forest Classifier. Table XI shows how the amount of hardware
resources changes, in average, when we increased the depth of
each single decision tree from the best trained RF model. We
notice that the decision tree starts growing slow, as the base
case already encompasses multiple logic unities to implement
the necessary “computations”, such as “reading” the input
wires and and ”writing” to output wires, which are reused for
the other layers. After the 7th layer, the decision tree starts
growing significantly, as no reuse is possible and almost the
same number of existing decision nodes are added.



TABLE X
IMPLEMENTATION OF CLASSIFIERS (BEST TO WORST CASES). EACH CLASSIFIER PRESENTS DISTINCT CHARACTERISTICS. REHAB DEMANDS

SMALLER RESOURCES IN AN OVERALL MANNER.

Classifier Work LUTs/REGs/MULs/DSPs Classifier Work LUTs/REGs/MULs/DSPs Classifier Work LUTs/REGs/MULs/DSPs
This 520/196/5/20 This 707/40/0-7.5K/240/0/0 This 170/89/5-11K/690/502/38

SVM [25] 832/–/–/– RF [14] 4k-24K/–/–/– MLP [14] 6.7K/5K/–/–
[23] 748/–/–/– [24] 600-118K/–/–/– [12] 26.8K/4K/–/–

TABLE XI
DECISION TREE GROWTH. INITIAL GROWTH IS SLOW DUE TO

COMPONENT REUSE AND THE “OVERHEAD” CIRCUIT RESPONSIBLE FOR
“READING” AND “WRITING” WIRES.

Depth 1 2 4 7 8 16 32 64
LUTs 63 114 370 570 707 1313 1982 2534

The Random Forest algorithm grows not only by increasing
the tree’s depth but also by adding more trees to the forest.
Table XII shows the average result of adding more decision
trees to a forest. It is possible to notice that whereas adding
more trees to a forest increases the total circuit size, as the
adder tree is increased, the total number of LUTs do not double
because many gates responsible for signals comparison are
reused and only multiplexed to distinct outputs.

TABLE XII
ADDING RANDOM FOREST TREES. ADDING TREES DO NOT DOUBLE THE

TREE SIZE BECAUSE COMPONENTS REUSE WHICH ARE MULTIPLEXED TO
DISTINCT OUTPUTS.

Trees (#) 1 2 3 4 8 16
LUTs 707 908 1132 1411 1708 7511

We have also evaluated how MLP circuits grow when more
perceptron are added, either on different or in the same layers,
as shown in Table XIII. We notice that this circuit fastly grows
since independent multipliers are allocated due to the inherent
parallelism capabilities of the MLP implementation.

TABLE XIII
ADDING MLP LAYERS. THE CIRCUIT SIGNIFICANTLY GROWS DUE TO THE
NEED OF ADDING MULTIPLIERS FOR THE DISTINCT PERCEPTRON’S VALUES.

Perceptrons 1 2 4 8 16 64 128
LUTs 170 328 520 1446 2816 5196 11004

V. DISCUSSION

Contributions. REHAB moves AV operation from software
to hardware, thus eliminating the overhead imposed by the
constant software monitoring procedures. As an advantage
over previous hardware AVs, REHAB is implemented in a
reconfigurable manner, with its configurations defined via
software requests. Thus, REHAB can be updated by software,
remains compatible with current AVs and the transition to this
new paradigm is transparent to users and vendors.
Limitations. REHAB intends to enhance existing AVs by
adding an efficient matching layer. Thus, it does not replace
existing AVs, which are still required to block and remedy
infections after they are identified by REHAB, and to detect

threats outside REHAB’s scope, such as browser exploitation
or privilege escalation. REHAB also presents a detection delay
when the circuit is reconfigured. We consider this delay as
acceptable since it only happens few times a day, when the
software AV demands a hardware update.
Transition to Practice. REHAB’s operation is supported by
FPGAs, which are currently available in few systems. Despite
that, we believe that REHAB is a promising practical solution,
since newer systems are already natively FPGA-powered (see
Intel’s Xeon [29]), and these may become standard.
REHAB Beyond Traditional Malware. In addition to de-
tecting traditional malware samples (e.g., exploits) via their
introduced side-effects (e.g., processor execution metadata),
REHAB could also be used to detect attacks against the
hardware itself. For instance, by monitoring the performance
counter related to the number of cache flush instructions
(clflush), REHAB would be able to detect rowhammer
attacks [4] due to the abnormal high rate of cache flushes
imposed by this type of attack. In this sense, REHAB could be
reconfigured by AV vendors according the protection offered by
them to their clients, adding or suppressing hardware protection
capabilities on-demand.
Future Work. REHAB was designed as a Proof-of-Concept
to showcase the viability of a reconfigurable hardware AV, and
still has development gaps. As future work, we will investigate
additional low-level features (e.g., memory accesses patterns)
for increased detection capabilities.

VI. RELATED WORK

Hardware-based AVs were proposed by many researchers to
detect attacks to enforce some security policy. Arora et al. [2]
proposed to detect flow violations using a static call graph
model. Zhang et al. [31] also proposed to detect flow violations
using eXecuting Only Memory (XOM). These first generation
approaches, however, cannot be considered as general AVs,
but as attack-specific ones. A second generation of solutions
broadened their operation from strict policies to modelled
behaviors. Das et al. [10] model software behavior as a
Deterministic Finite Automaton (DFA) for malware detection.
The FPGA approach of Rahmatian et al. [27] compresses
signatures as n-grams. Despite more flexible than strict
policies, these approaches are still statically modelled, thus not
easily updatable. REHAB is also relates to research proposing
algorithms for reconfigurable and efficient regular-expression
matching [15], [19], [28], an strategies that might also be
employed by AVs leveraging static signature matching as
detection mechanism. REHAB, in turn, presents a dynamic
detection mechanism specifically aimed to be deployed by AVs.



Profiling-based AVs were proposed by many research in the
hardware-security field. They usually focus on reading HPC
data [11] and classifying them using a ML algorithm. Despite
eliminating data collection overhead, these approaches still
consume CPU processing time for executing the ML step, still
implemented in software. The malware-aware processor [26]
enhances this strategy by implementing the classifier in
hardware. However, as most previous solutions, its classifier
is statically implemented, as their underlying system is not
reconfigurable, a drawback overcome by REHAB.
Reconfigurable Hardware is a growing research field, with
many proposal over the last years. The proposals range from
multiprocessing support [22] to bayesian computing [13].
However, as far as we know, no work proposed leveraging
reconfigurable hardware support for moving AV’s operation
from software to hardware in an updatable manner. We also
highlight that whereas many work proposed implementing ML
algorithms in hardware, as surveyed in [1], they implement
entire classifiers, aiming to also train their models in FPGA and
not only matching, as here proposed. Our lightweight design
reduces implementation efforts, requires small FPGA area and
allows higher clock rates.

VII. CONCLUSION

We introduced the REHAB for malware, a Reconfigurable,
Hardware-Assisted AV aimed at eliminating the overhead of
software AVs while streamlining malware definition updates.
REHAB leverages low-level events directly captured from CPU
HPCs (Hardware Performance Counters), such as cache misses
and branch prediction rates, and use them as features for ML
classifiers implemented in FPGA, which raises an interrupt
to notify the AV when an execution is deemed suspicious.
The FPGA implementation allows the software-based AV
component to update hardware classifier definitions according
to the trends identified by the AV company. REHAB was
evaluated with more than 4K real Linux malware collected
in the wild, which resulted in detection rates up to 97% and
imposed negligible overhead during monitoring (2K times
speed up). REHAB classifiers were updated from RF to MLP
when concept-drift was detected, showing that REHAB is a
practical and effective solution for malware detection in actual,
constant changing threat scenarios.
Reproducibility REHAB code is available at: https://github.
com/marcusbotacin/Reconfigurable-AV
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