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Abstract. Malware are persistent threats to computer systems and analysis pro-
cedures allow developing countermeasures to them. However, as samples are
spreading on growing rates, malware clustering techniques are required to keep
analysis procedures scalable. Current clustering approaches use Call Graphs
(CGs) to identify polymorphic samples, but they consider only individual func-
tions calls, thus failing to cluster malware variants created by replacing sam-
ple’s original functions by semantically-equivalent ones. To solve this problem,
we propose a behavior-based classification procedure able to group functions
on classes, thus reducing analysis procedures costs. We show that classifying
samples according their behaviors (via function call semantics) instead by their
pure API invocation is a more effective way to cluster malware variants. We
also show that using a continence metric instead of a similarity metric helps to
identify malware variants when a sample is embedded in another.

1. Introduction

Malware are persistent threats to computer systems security, causing financial and
image losses to public and private organizations. Threats like the WannaCry ran-
somware [Microsoft 2017] caused companies and hospitals to shutdown their opera-
tions [Independent 2017]. To handle malware infections, security professionals rely on
analysis procedures, which help them to gathering binary information such that proper
countermeasures can be developed, such as vaccines [Paleari et al. 2010] and incident
response procedures [Souppaya and Scarfone 2013].
Analysis techniques can be classified as dynamic or static [Sikorski and Honig 2012],
according whether samples are executed during inspection or not. Although these
are distinct in nature, they may produce similar outcomes, such as Call Graphs
(CGs) [Egele et al. 2008], our focus in this work. Whereas analysis procedures are ef-
fective against individual samples, they face a great challenge while handling the growing
number of daily-identified, new samples [Test 2017]. Huge processing capabilities are
required to handle this great volume of malware variants, thus making incident response
procedures slower and more expensive. Despite such great number, in practice, many
samples are variations of an original code [TechNative 2016], created using code mor-
phing procedures or generation kits [TrendMicro 2017], being behaviorally similar, but
statically distinct, which suffices for evading AV detection [Borello et al. 2009].
The similar source sample construction approach can be exploited by analysts by lever-
aging clustering procedures. Analyzing a single sample and extending the result for the
whole family reduces the total analysis time and cost, thus making incident-response pro-
cedures faster and cheaper. The most often used clustering technique regarding CGs



refers to metamorphism and polymorphism identification, taking API functions as fea-
tures. These solutions are effective on clustering polymorphic samples generated by code
reversion or transposition, but cannot assign semantic meaning to them. Therefore, mal-
ware variants exploring this drawback still have to be individually processed, thus raising
costs. To solve this problem, in this work, we propose a clustering approach based on be-
havioral classes, allowing polymorphic malware to be effectively clustered. Our solution
clusters samples which use distinct functions to implement the same behavior (e.g., using
threaded API versions instead of processed ones), thus reducing analysis costs.

The differences of our solution over previous work are threefold: (i) First, unlike pre-
vious solutions, which identified similar code by performing static binary disassembly,
thus being subject to obfuscation, our solution relies on dynamic binary execution in a
hardware-based, transparent sandbox, thus achieving more precise results regarding CG
reconstruction even face to evasive samples; (ii) Secondly, we propose to model malware
samples as a graph of behaviors and not of functions. By associating functions with their
intended behaviors, we can flag samples as similar even when they replace their functions
by others having the same semantic goals; and (iii) Finally, instead of relying on a typical
similarity metric, which is subject to be defeated by samples which pollute execution with
innocuous calls (dead code), we propose comparing samples using a continence metric,
flagging samples as similar when one is embedded in another, despite extra function calls
present in any of them.

We evaluated the individual impact of each one of the proposed approaches with real
malware samples and discovered that: (i) Common, benign function calls (e.g., Write-
File) mask similarity measures and removing them from the CG increased matching in
up to 12.5% for Mimail malware samples; (ii) The consideration of a behavior model for
malware execution instead of pure function calls helps identifying common constructions,
such that Mimail malware samples similarity increased from 10% to 40% only by chang-
ing their representation to a behavioral model; (iii) Dead code masks common construc-
tions between two samples, such that our continence metric increased Mimail malware
samples similarity from 60% to 100%, thus showing that all behaviors of one sample are
present in another, despite implementation differences; (iv) We compared our approach to
two other malware clustering solutions [Shang et al. 2010, Carrera and Erdelyi 2004] to
show that our behavioral approach outperforms function-based solutions. The most chal-
lenging Mimail samples to be classified by the related solutions (40% similarity) were
classified as 90% similar by our one; and (v) Finally, we applied our solution to label a
set of in-the-wild collected samples, including injectors, backdoors and ransomware. Our
solution was able to identify six malware variants, a result confirmed by AV labels and
outperforming fuzzy hashing similarity scores.

In summary, our contribution are the following: 1. We propose identifying malware vari-
ants by classifying samples behaviors instead of function calls to avoid misclassifying
similar malware which implement the same behavior using distinct functions; 2. We
propose a new classification for associating function calls to malware behaviors, thus
supporting our solution’s application; 3. We propose a new metric for malware similar-
ity identification which considers whether a sample is embedded in another instead of
how large their intersection is, thus avoiding dead-code issues; 4. We evaluate our solu-
tion with real malware samples collected in the wild and analyzed in a hardware-assisted,
transparent sandbox to show its viability to identify malware variants in practical scenar-



ios; 5. We pinpoint future directions that might be followed by researchers tackling the
malware similarity problem in actual scenarios.

This paper is organized as follows: Section 2 presents related work to better position
our research; Section 3 introduces current solution’s problems regarding data collection
and clustering that limit malware variant identification in practice; Section 4 presents our
proposals for a sandbox solution, behavioral classes and matching metrics to mitigate
the previously presented malware variant detection limitations; Section 5 presents our
solution evaluation against real-world malware samples to demonstrate its advances on
malware variants detection; Section 6 discusses our results, limitations and future work;
finally, we draw our conclusions in Section 7.

2. Related Work
Morphing Code Generation Code mutations, in a general way, are the procedures used
to generate malware variants. Mutations can be classified into either structural and behav-
ioral, or metamorphism and metamorphism. [Borello and Mé 2008] details the possible
transformation which can be applied to binaries, such as code replacement, instruction
swapping, variable changes, dead code insertion and control flow obfuscation. In this
work, we focus on function replacement and permutation.

Morphing Code Identification Many researchers proposed ways of handling graph
similarities for malware representation, each one tackling the problem by a dis-
tinct perspective. A first class of solutions directly targets the Control Flow Graph
(CFG). [Bonfante et al. 2008] presents an architectural solution for detecting meta-
morphic changes on malware samples, combining syntactic and semantic analysis.
[Martins et al. 2014] proposes an identification procedure by analyzing the virtual struc-
tures differentiation on dependence graphs. [Christodorescu et al. 2005] presents algo-
rithms and formal foundations for malware detection from behavioral patterns.

A second class of solutions intends to create an intermediary representation (IR) for fea-
ture description. None of them, however, address the behavioral issue. [Feng et al. 2014]
presents a tainting technique over Android Call Graph (CG) aimed to identify simi-
lar flows. The identification relies on the underlying Inter-Component CG IR.
[Shao and Smith 2009] presents the use of an IR associated to the Latent Semantic Index-
ing technique over the CG to identify malicious portions of code, being able to identify,
for example, bugs or vulnerabilities.

A third class of solutions focus on solving the graph matching problem. Such solutions
can be applied to this work without major modifications. [Kostakis et al. 2011] presents
the use of simulated annealing to identify graph similarity. [Wu et al. 2013] presents
the use of graph-colouring algorithms and cosine-similarity measure to identify malware
variants. Similarly, artificial intelligence-based techniques were also proposed to solve the
matching problem. [Kong and Yan 2013] presents a learning algorithm for the structural
information distance which describes two samples.

A fourth class of solutions focus on developing metrics and interpretations for the
matching samples. Such methods can also be applied to this work. [Jang et al. 2014]
handle graph similarity by applying social metrics. [Faruki et al. 2012] leverages API
CG-grams associated to classification mechanisms for malware detection.



Finally, among all CG-based approaches, [Shang et al. 2010] presents a matching algo-
rithm for malware variation detection which is the closest to ours. However, besides being
limited to static disassembling, their work also does not handle the case where distinct
functions implement the same behavior, as our work does.

Behavioral Classification Classifying samples according their behaviors is an often
employed strategy by malware analysts, being extensively described in the literature.
[Grégio et al. 2015], for instance, proposes a malware taxonomy based on dynamic anal-
ysis results, labeling each sample according defined behavior classes. This kind of work
differs from the hereby proposed because we do not intend to classify whole-samples be-
havior but its internal parts, making the classification procedure more granular. In a simi-
lar way, [Paleari et al. 2010] proposes a high-level feature identification approach aiming
to infection remediation. We leverage such kind of classification to allow CG clustering.

3. Current Solutions’ Limitations

In this section, we revisit current solution’s implementations, highlighting their drawbacks
and pinpointing possible mitigations for them. We focused on two major implementation
aspects: (i) the CG extraction; and (ii) the evasion problem due to function replacement.

Feature Extraction A critical step of any analysis procedure is data collection, because
it gathers the data which will be the input of some analysis algorithm. Generic binary
clustering solutions rely on static disassembly procedures for extracting function calls
and instructions from the analyzed binaries. However, when analyzing malware, such
solutions face the challenge of handling evasive samples able to apply anti-disassembly
techniques, which can lead to low detection rates. [Branco et al. 2012] presents a series
of anti-disassembly techniques which can fool both linear sweep as well as recursive
traversal disassemblers. An incorrect disassembly can omit important function calls as
well as include fake calls on the resulting trace.

Considering this scenario, an efficient feature extraction procedure is essential for prop-
erly clustering malware samples. A way of achieving coherent data extraction is to rely on
a dynamic, transparent sandbox solution, such as the one presented in the following Sec-
tion. By using such kind of solution, one can ensure the correctness of extracted features.
Besides, it gives one the ability to analyze even evasive samples. This is particularly im-
portant because a malware variant can be only an armored version of a previously existing
“plain” malware sample.

Same-Behavior Function Replacement A general graph modeling technique for mal-
ware applications is to consider each malware function as a graph vertex and relations
among the functions, either data-dependency or temporal relations, as edges. An usual
way of matching graphs is the strict vertex matching, on which same-label vertices (same
function names) are considered as valid matches. Malware creators can bypass such kind
of matching by replacing the original functions by others of equivalent behavior. As an
example of such kind of replacement, Figure 1 and Figure 2 show CGs of two samples
which make the same actions on the system, but using distinct API calls. We highlight
that despite of using distinct O.S. abstractions, such as processes and threads, the same
basic idea is deployed by both samples: adding a new code piece to the system.
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Figure 1. Original
sample’s CG.
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Figure 2. Variant sam-
ple’s CG.
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File System Change
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Figure 3. Behav-
ioral graph from
both samples.

On the usual approach, the strict similarity between the two graphs would be null, be-
cause no common functions were found. This false negative detection would require both
samples to be analyzed independently by a second step analysis routine, which raises costs
and the processing required. Such additional process would be avoided if a semantic-
aware approach were adopted, such as considering the behavioral impact of each function
instead of simply their labels (names). Figure 3 illustrates how a behavioral model of both
samples would look like, thus resulting in a 100% matching. In the following section, we
present a proposal for malware behavioral modelling.

4. Malware Variant Identification Proposal

In this section, we introduce our proposal for behavioral malware similarity matching.
First, we present the feature extraction solution that we used to generate inputs for the
matching algorithm. Second, we present the classes that we defined to model any sample
execution. Finally, we discuss graph comparison metrics to evaluate sample’s similarity.

Sandbox Solution Our sandbox solution [Botacin et al. 2018] is bare-metal-based, run-
ning on physical machines with Intel processors, which allows us to collect binary in-
formation at a lower level, using the processor branch monitoring unit (Branch Trace
Store—BTS). This way, our solution does not required injecting any code into the mon-
itored object, thus not being detected by malware samples checking for emulation side-
effects or virtual-machine detection techniques. The solution captures system wide con-
trol flow deviation information (RET,CALL,JMP) using the BTS and stores then on a
OS-supplied memory page. To isolate processes data, we relied on raising interrupts each
time the buffer is written, collecting the provided source and target branch addresses in a
step-basis and associating them with the running process.

Our solution is also able to reconstruct whole execution flow by using an introspection
procedure, which allows us to bridge the semantic gap, retrieving high level semantic
information. As we are interested on function calls, the low level instruction addresses
provided by the BTS mechanism are compared against system loaded libraries and exe-
cutable images, which allows us to discover the base address they point to. After that, the
remainder of the calculation is used as an offset on the given library, The offset points to a



function name, which will appear on the CG, as the monitor stores addresses of only taken
branches. Thus, unlike in static disassembly toosl, no fake function call are included.

Behavioral classes Based on a malware taxonomy [Grégio et al. 2015], we defined the
following classes to model sample’s behaviors.

Compression: APIs related to file compression. They can be used for embedding and
extracting files.

Cryptography: APIs related to cryptography. They can be used by ransomware sam-
ples, fingerprinting by hashing, and for anti-forensic purposes (encoding).

Debug: APIs related to debugging. They can be used to monitor and control other pro-
cesses.

Delay: APIs related to execution suspension. They can be used to evade an analysis
procedure due to timeouts.

Environment: API related to environment variables. They can be used to set general
program settings, such as default program paths.

Escalation: API related to execution privileges: They can be used to escalate privi-
leges in the system.

Exfiltration: API related to user and system information, such as computer name
and serial numbers. They can be used for information stealing or fingerprinting.

Fingerprint: API related to assure system exclusive access, such as mutexes. They
can be used to assure only one malware instance is running at time.

File System: APIs related to file system access. They can be used for general filesys-
tem actions, such as storing downloaded data.

Interference: APIs related to processes control, such as thread enumeration, sus-
pension, and/or memory writes. They can be used to interfere into another process and
eventully hijack them.

Internet: APIs related to network communication. They can be used to exfiltrate data,
download payloads from internet and perform network attacks.

Modularity: APIs related to process creation. They can be used to insert new compo-
nents into the system, such as instantiating downloader’s payloads.

Monitoring: APIs related to system monitoring. They can be used trace process, check
if is being traced, and/or being alerted when system events happens.

Registry: APIs related to the system registry. They can be used for system, writing on
Run registry key, for instance.

Evidence Removal: APIs related to file deletion. They can be used to remove infec-
tion evidence from the system.

Side Effects: APIs which cause execution side effects, such as system reboots, often
associated to deep modifications on system configuration.



System Changes: APIs related to system level configurations, such as driver loading
or boot options changes. They can be used by rootkits to hide their intents.

Target Information: APIs related to information retrieval. They can be used on
the attack recognition phase, by getting memory addresses or process permissions.

Timing Attacks: APIs related to time measurement, such as timers and alerts. They
can be used on timing attacks against sandboxes.

Matching Metrics The usual graph matching metric used by most solutions is the one
presented in Definition 1. This definition considers the universe of both graphs as
groundtruth, which makes the metric symmetric. In the case where the two graphs are
equal, both union and intersection will be equal, leading to the maximum similarity (1).
Totally distinct sets will lead to an empty intersection, thus to the minimum similarity.
Definition 1. The similarity of two malware, represented as sets, A and B, of vertices or
edges of two graphs, is defined as:

Sim(A,B) =
|A ∩B|
|A ∪B|

(1)

The major drawback of this metric is when a sample is embedded in a bigger sample, as
shown in Figures 4 and 5. In this case, although the Sample 1 is totally contained into
Sample 2, the similarity measure is just 50%, because the additional code surrounding
Sample 1’s embedding in Sample 2. This lack of similarity identification is a draw-
back for threshold-based approaches, which would fail to recognize samples as similar,
causing analysis to occur separately, thus increasing costs.

Figure 4. Sample 1. The origi-
nal sample.

Figure 5. Sample 2. Variant
sample embedding the original
one.

To give more importance to the continence of a sample into another, we propose the
matching metric presented in Definition 2. In this metric, instead the union of both sam-
ples, we consider one sample as groundtruth each time, thus solving a maximum subgraph
isomorphism problem. In our example, as we consider Sample 1 as contained into
Sample 2, their union is the Sample 1 itself, thus leading to the maximum similarity
(100%).
Definition 2. The similarity of two malware, represented as sets, A and B, of vertices or
edges of two graphs, is defined as:

Sim(A,B) = max

(
|A ∩B|
|B|

,
|B ∩ A|
|A|

)
(2)

A drawback of this metric is that, as we are comparing unions to individual samples,
the ratio is not symmetric, as shown in Table 1 and 2, for real Mimail’s variants. This
way, we should consider both directions (1’s embedding in 2 and 2’s embedding in 1) to
compute the maximum continence, as in the example presented on Table 3.



Table 1. Conti-
nence of Sample
1 in Sample 2.

CG A B C
I 0.66 0.52 0.64
J 0.75 0.49 0.50
K 0.42 0.80 0.44

Table 2. Continence
of Sample 2 in Sample
1.

CG A B C
I 0.57 0.56 0.43
J 0.33 0.51 0.44
K 0.76 0.65 0.44

Table 3. Maxi-
mum continence
of Sample 1 and
Sample 2.

CG A B C
I 0.66 0.56 0.64
J 0.75 0.51 0.50
K 0.76 0.80 0.44

5. Evaluation
When applied to binaries, our approach leads to behavioral constructions like the one
presented in Figure 6. We here evaluate whether such constructions, along the proposed
metric, are suitable for malware clustering in an effective way.

Figure 6. Behavior-based
graph for a given sample.
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General-purpose functions pollution As most malware clustering approaches do not
consider function semantics, they end up considering general-purpose functions that are
present both in goodware as well as in malware samples (e.g., OpenFile) and do not con-
tribute for characterizing malware similarity. In practice, these functions only contribute
for increasing CG size and making similar edges sparser. Malware creators may exploit
this fact by intentionally adding general-purpose functions as dead-code to their variants,
thus lowering sample’s similarity rates. Our solution mitigates this problem by discarding
these constructions via a whitelist of general-purpose functions.

To evaluate the impact of this choice, we first conducted a comparison among samples
from the Mimail1 family by evaluating them with and without function whitelisting and
applying the usual comparison metric (still not applying behavior classification). Some
comparison results2 are shown in Figure 7. We notice that the whitelist approach out-
performs the original strategy. In our tests, all Mimail samples presented higher scores
when using the whitelist approach. We highlight the significance of this result by remark-
ing that such improvement was achieved when considering Mimail samples, that are very

1We chose Mimail and Klez samples for our exploratory tests because they are available on the Internet
and thus our results can be compared to other published research work.

2We present only some cases due to page length constraints



similar among themselves by construction. Therefore, we hereafter consider function
whitelisting as basis for comparison.

Behavioral vs. Function-based classifications The major contribution of this work is
to propose the use of behavioral classes to improve sample similarity detection. We here
contrast the function-only approach (already whitelisting general-purpose function calls,
as previously justified) to the behavior-based approach.

We evaluated the behavioral strategy by comparing the samples of Mimail family and
the ones from the Klez family. The samples belong to distinct families and although
they present the same infection goal, they are not very similar in terms of called func-
tions, thus we can observe any change in similarity detection rates when applying distinct
approaches. The tests were performed using the usual comparison metric and the results
are presented in Figure 8.
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The behavioral approach presented higher scores compared to the function-only one for
all the 180 compared samples, which corroborates our expectations that even samples
presenting distinct functions can be considered as behaviorally similar. Therefore, we
hereafter consider behavioral models for malware similarity evaluation.

Metrics Comparison The previous tests, using the usual similarity metric, showed that
our proposed behavior-based approach improved samples comparison accuracy. How-
ever, this measurement still provides limited information, thus being unable to identify,
for instance, whether a given sample is embedded in another. To fill this gap, we propose
using the continence metric.

To verify the effectiveness of the proposed metric, we compared the results of the usual
metric to the new proposed one when applied on Mimail family samples using the be-
havioral approach. The results presented in Figure 9 show that although the usual metric
indicated samples shared significant snippets of code (more than 50% similar), it does not
indicate whether one was embedded in the other. In turn, the continence metric is able to
provide such information and, for the presented cases, all samples contained a complete
variant of another behavior inside them.

Approaches comparison To verify whether our solution was able to improve malware
similarity detection im comparison to the existing approaches, we compared our results



against the ones from other works (here named Solution 1 [Shang et al. 2010] and Solu-
tion 2 [Carrera and Erdelyi 2004]). We evaluated all solutions using the same sample’s
families (Mimail and Klez) used in these work. All samples were retrieved from Vx-
Heaven [VxHeaven 1999].

Our solution presented the same overall score levels as reported in these work. None
of our scores were lower than the ones from the other approaches. Moreover, our solu-
tion scored greater values on specific cases, such as on the ones presented in Figure 10.
Therefore, we hereafter consider our solution as basis for malware variant identification.
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Variant Identification The previously presented results showed that our approach outper-
forms related work regarding identifying whether the behavior of a sample is embedded in
another. However, to classify samples in families, a similarity threshold must be defined.
We here discuss how such threshold can be defined.

Figure 11 shows the results of samples classification using distinct thresholds. The F.
lines correspond to results obtained using the function-based approach whereas the B.
lines correspond to results obtained using the behavior-based approach. We evaluated
Mimail and Klez families individually and also performed a Cross-verification, com-
paring samples from one family against the samples from the other one. From samples
from the same family, the result is considered correct whether the sample’s similarity is
higher than the threshold, because we know a priori that they belong to the same family.
On the Cross case, the result is considered correct whether samples’ similarity is lower
than the threshold, because we know a priori that they belong to distinct families. The
graph shows the percentage of samples correctly labeled.

We observe that a lower threshold, such as 50%, is not suited to classify samples as
family variants or not. It happens due to the fact that the proposed behavioral model
naturally increases sample’s similarity, thus, at the same time that it increases the rate of
correctly identified variants, it also labels distinct family samples as variants. Therefore,
we need a tighter threshold so that we can properly classify samples as family variants.
As the threshold increases, the number of correct labels on the behavioral approach also
increases. It is important to notice that, in all cases, the number of same-family samples
labeled correctly is higher on the behavior-based approach than in the function-based one.



In the 80% threshold, the number of cross-family samples labeled correctly is very
similar on both approaches whereas the same-family is greater on the behavior one,
which constitutes a suitable threshold value. An increase to a 90% threshold presents us
the same accuracy on both approaches for the cross-family class, but the lowest value
of same-family cluster similarity. Therefore, we hereafter consider a 80% threshold
as basis for malware variant identification.

Study Case We here showcase the application of our solution to a set of 18 in-the-wild
malware samples collected from a honeypot in the day before submiting this document.
From all samples, our solution identified 6 as variants (33%), which is according to the
average number of variants identified in the wild (blinded reference). The identified
sample variants are shown in Table 4.

We notice that two variant families (cluster) were identified, presenting three samples
each. To give a bit more information about them, we cross-checked our detection re-
sults to AV detection labels3. The first family is a generic one, having backdoor and
injector characteristics. The second family is a ransomware-like/cryptor.

Table 4. Identified variants among unknown, wild-collected samples.
Family Sample Hash Label

1
A c2ef1aabb15c979e932f5ea1d214cbeb Generic_vb.OBY
B 747b9fe5819a76529abc161bb449b8eb Generic_vb.OBO
C 39a04a11234d931bfa60d68ba8df9021 Generic_vb.OBL

2
A 96d13246971e4368b9ed90c6f996a884 Atros4.CENI
B e23588078ba6a5f5ca1c961a8336ec08 Atros4.CENI
C 31a2b6adc781328cb1d77e5debb318ff Atros4.CENI

To provide more insights about our solution’s efficiency, we compared our continence
results to the fuzzy hash similarity scores provided by the ssdeep4 tool, as presented in
Figure 12. Our solution scored higher than the similarity measure provided by ssdeep
in all cases. Besides, all in-family comparison results are higher than the previously
established threshold of 80%.

In addition to these results, we also evaluated the portion of reused code on each
samples—what we called coverage. In most samples, the coverage is as high as the con-
tinence itself. In two cases from the second family, a small portion of code was reused.
These cases illustrate how our approach contributes to the development of better cluster-
ing analysis procedures.

6. Discussion

Solution Limitations Besides implementation issues, which are more related to the al-
gorithm complexity field, an inherent limitation of our solution is that it only considers
imported API functions. An evasive sample could implement its own functions, so a given
behavior would not be identified. A solution which considers internal function calls is an
extension from this work. In addition, we also have to manually determine the behavior

3We chose AVG as groundtruth because it was the only AV which detected all samples
4http://ssdeep.sourceforge.net/
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Figure 12. Study case: variant identification. Our approach outperforms others
even on low coverage scenarios.

classes, so our results are dependent of these. If new functions and libraries were required
to be included in the sample characterization procedure, a manual update would be re-
quired. Therefore, our approach would benefit from solutions which try to automatically
identify malicious behaviors, such as Jackdaws [Polino et al. 2015].

Library Organization Proposal The function-based, behavioral classification procedure
could be eased if functions whose behaviors are similar could be clustered on the same
library. A typical Windows library may present a myriad of behaviors. The ntdll.dll,
for instance, presents I/O functions, such as printf and scanf, file system functions,
such as CreateFile, process functions, such as CreateProcess, and so on. This
organization requires manual processing to understand how each function behaves. Mod-
ern Windows APIs, such as crypto API, pack all behavior-related APIs on the same
DLL, which makes an automated procedure development easier. If all APIs were pre-
sented in this same way, we could automate classes generations by just understanding
the DLL “subject” and then parsing its exported functions. We know this proposal is not
practical right now, since legacy support should be provided by OS vendors. However,
this can be considered on newer systems versions.

Open Research Questions Whereas our proposed metric brings new possibilities, it also
brings new questions. For instance, in our definition, the metric does not consider edges
location in code. Therefore, a given behavior present in the binary begin and end have
the same impact. Additional research is required to identify its impact over classification.
Similarly, our metric is not weighted. Therefore, a sequence of 2 common behaviors
is scored the same way as an n-long. Further investigation is required to integrate such
information in the metric without losing generality and detection effectiveness.

Future Work As a future work, we are interested on identifying more complex
behaviors. As an example, consider the DLL injection procedure identification
problem. The injection is composed by many calls, which should appear on a
given sequence (OpenProcess + VirtualAlloc + WriteProcessMemory +
CreateRemoteThread). On a real scenario, these APis can be interleaved by many
others, either legitimate or dead code ones, as shown on Figure 13.

By identifying such complex behaviors, we could build a DLL injection behavior class,
as shown on Figure 14, which is much more semantically meaningful for classification.



Figure 13. DLL injection functions among other function calls.

Figure 14. Proposed DLL injection class.

The development of such kind of detector is associated to complex graph matching algo-
rithms, which may require heuristic procedures to be solved.

7. Conclusion
Clustering malware samples is essential to speed up analysis procedures face a scenario
of multiple malware variants created every day. Therefore, we presented strategies for
handling malware variants in practice. We tackled the problem from three complemen-
tary perspectives: i) by leveraging transparent data-collection techniques to mitigate the
impact of malware variants created by adding evasive code; ii) by performing behavioral-
based instead of function-based clustering to mitigate the effects of malware variants cre-
ated by function replacement; and iii) by applying a continence instead of similarity met-
ric to mitigate the effect of malware variants created by embedding a malware samples
and adding dead-code to it. We first discussed the effects of each one of these factors
individually and then presented the whole effect when combining the use of all of them.
Our variant identification experiments on a set of real, unknown samples showed that the
combined application of the three approaches outperforms other solutions. Finally, we
discussed weak points and presented insights on how system libraries could be organized
in the future to ease behavioral clustering procedures.

Reproducibility. All code developed for this research work is available at https://
github.com/marcusbotacin/Malware.Variants.
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