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Abstract. Cryptography based on elliptic curves is endowed with efficient meth-
ods for public-key cryptography. Recent research has shown the superiority
of the Montgomery and Edwards curves over the Weierstrass curves as they
require fewer arithmetic operations. Using these modern curves has, however,
introduced several challenges to the cryptographic algorithm’s design, opening
up new opportunities for optimization.
Our main objective is to propose algorithmic optimizations and implementation
techniques for cryptographic algorithms based on elliptic curves. In order to
speed up the execution of these algorithms, our approach relies on the use of
extensions to the instruction set architecture. In addition to those specific for
cryptography, we use extensions that follow the Single Instruction, Multiple Data
(SIMD) parallel computing paradigm. In this model, the processor executes the
same operation over a set of data in parallel. We investigated how to apply SIMD
to the implementation of elliptic curve algorithms.
As part of our contributions, we design parallel algorithms for prime field and
elliptic curve arithmetic. We also design a new three-point ladder algorithm for
the scalar multiplication P + kQ, and a faster formula for calculating 3P on
Montgomery curves. These algorithms have found applicability in isogeny-based
cryptography. Using SIMD extensions such as SSE, AVX, and AVX2, we develop
optimized implementations of the following cryptographic algorithms: X25519,
X448, SIDH, ECDH, ECDSA, EdDSA, and qDSA. Performance benchmarks
show that these implementations are faster than existing implementations in the
state of the art.
Our study confirms that using extensions to the instruction set architecture is an
effective tool for optimizing implementations of cryptographic algorithms based
on elliptic curves. May this be an incentive not only for those seeking to speed
up programs in general but also for computer manufacturers to include more
advanced extensions that support the increasing demand for cryptography.

1. Motivation
Extensive research efforts have focused on delivering public-key cryptography securely
and efficiently. Cryptography based on elliptic curves provides efficient methods due to
the use of keys that are shorter than the ones used in the Rivest-Shamir-Adleman (RSA)
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cryptosystem [Rivest et al. 1978] and in algorithms based on the Discrete Logarithm
Problem [ElGamal 1985]. Despite elliptic curve cryptography have been endorsed by
international standardization agencies [NIST 2000, ANSI 1998, IEEE 2000] for several
years, a recent line of research proposes a shift to new elliptic curves with the aim of
improving efficiency while preserving high-security guarantees.

With the avalanche of novel elliptic curve proposals, such as the ones highlighted
by [Bernstein and Lange 2015], new challenges have appeared. Former investigations
focused on elliptic curves given in the Weierstrass model; however, there is still room for
optimizing the operations of alternative elliptic curve models, such as the Montgomery
curves [Montgomery 1987] and the Edwards curves [Bernstein et al. 2008]. New algo-
rithms for these curves must likely be adapted, or otherwise reformulated considering
the upsides and downsides of each model. New improvements could arise by analyzing
the algorithms from theoretical, computational, and practical standpoints. Therefore, the
pathway for designing cryptographic algorithms, their implementation, and their put in
practice is currently in progress.

From the computational perspective, a compelling approach for improving perfor-
mance is using extensions to the instruction set architecture. There exist extensions that
support the Single Instruction, Multiple Data (SIMD) paradigm characterized in Flynn’s
taxonomy [Flynn 1966] of parallel computing. In this model, a vector instruction encodes
an operation that is executed over several data units simultaneously, as shown in Figure 1.

(a) Scalar (non-vector) Processing: Four scalar in-
structions perform the workload.

(b) Vector Processing: A single vector instruction
performs the same workload.

Figure 1. SIMD vector instructions.

Historically, SIMD processing has been shown effective in the high-performance
computing area applied to graphics processing, scientific computing, mathematical sim-
ulation, among other domains. In the early days, SIMD execution units were exclusive
of large workstations and supercomputers; but nowadays, computer manufacturers have
incorporated SIMD vector units [Thakkar and Huff 1999, ARM , Intel Corporation 2011].
Figure 2 shows the increasing addition of extensions to the instruction set architecture
and their applicability to different domains. Hundreds of instructions have been added
in order to support SIMD processing for integer and floating-point arithmetic. As can be
seen, more recently instructions target more specific domains, for example, the inclusion
of extensions tailored to accelerate cryptographic algorithms [Gueron 2009].
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Figure 2. Evolution of SIMD Instructions. Each bar represents an instruction set
showing its release date (in the horizontal dimension), the number of new
instructions (in the vertical dimension), and the main application (in the
color dimension). The milestones show the release date of vector registers.

1.1. Problem Statement
The widespread availability of SIMD execution units in commodity computers, Internet
servers, and mobile devices motivates their application to the implementation of crypto-
graphic algorithms. Nonetheless, a few resources explain how to use SIMD units efficiently,
and even fewer are dedicated to the case of elliptic curve cryptography, and the secure
software development required in this domain. Moreover, it is unclear to what extent these
computational resources can help to improve efficiency.

It is interesting to know how to effectively apply SIMD processing to the im-
plementation of elliptic curve cryptography. Especially to the algorithms derived from
the recent proposals of elliptic curves and making use of the most advanced vector in-
structions [Intel Corporation 2011] and other extensions found in contemporary computer
architectures. For this reason, it is imperative to investigate how to design new algorithms
and data structures (or adapt the existing ones) so that implementations take full advantage
of SIMD vector processing.

Thesis Statement We claim that the execution of algorithms for elliptic curve cryptogra-
phy can be accelerated through a combination of algorithmic optimizations, implementation
techniques, and the use of SIMD processing and other hardware extensions.

1.2. Aims
To support this assumption, we investigate algorithmic optimizations and look for imple-
mentation techniques for elliptic curve algorithms emphasizing the application of SIMD
parallel processing.



An objective of our study is to close the gap between theory and practice. For
instance, in addition to proposing parallel algorithms, we also cover their implementation in
software. We highlight some issues arisen during development and propose some solutions
for them. The design of our proposed algorithms considers the capabilities and limitations
of the computer architecture studied.

Our research aims to enlighten a pathway for applying SIMD efficiently. Current
computer architectures support hundreds of SIMD instructions including SSE, AVX, AVX2,
AVX512, and others. Moreover, the number of instructions is gradually increasing in the
upcoming computer architectures (cf. Fig. 2). Part of this research is to give guidance on
the use of SIMD instructions, to identify some of their limitations, and to show how to
apply them to elliptic curve cryptography.

2. Contributions
Our contributions to the Computer Science field are the union of several layers of im-
provements comprising algorithmic optimizations for elliptic curve cryptography, practical
implementation techniques for SIMD vector processing of mathematical field operations,
and the immediate applicability of our findings into current information security standards.
Now, we briefly describe these contributions. More details can be found in the full text
available at [Faz-Hernández 2022].

2.1. Algorithmic Optimizations
For Montgomery curves, we introduced a new Three-point Ladder Algorithm that calculates
the x-coordinate of P + kQ, where P,Q are points on the curve and k is an integer. Our
algorithm improves in three aspects. First, it requires fewer operations than previously-
known algorithms [Costello et al. 2016, Jao et al. 2014]. Second, when P and Q are
known in advance, the algorithm allows faster execution by employing precomputation.
Third, when precomputation is used, fetching precomputed values from memory requires
non-secret indexes, which prevents against side-channel attacks. Figure 3 exemplifies the
operation of the multiplication algorithm.

We showed the immediate application of the algorithm to the Diffie-Hellman
(DH) protocol [Diffie and Hellman 1976]. In fact, we apply it to concrete cryptographic
algorithms, such as X25519, X448, qDSA with Montgomery curves, and SIDH/SIKE. The
latter algorithm is part of Isogeny-based Cryptography, a branch of cryptography looking
for secure algorithms resistant against adversaries with quantum computing power. By
using our multiplication algorithm, all of these algorithms show better performance than
previous approaches. The improvement is independent of the computer’s architecture.

For Montgomery curves, we showed an optimized formula for tripling points,
that is, given a point P , to calculate 3P . This operation is relevant for multi-base scalar
multiplication methods as well as for Isogeny-based Cryptography. For instance, the SIDH
protocol requires to evaluate 3nP for an integer n > 0. By applying our formula, we
reduce the total number of field operations by an observable margin. We acknowledge
some trade-offs against formulas independently proposed in [Costello and Hisil 2017].

2.2. Implementation Techniques
On the availability of SIMD and other extensions to the instruction set architecture, we
speed up implementations of arithmetic operations over prime fields and elliptic curves.
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Figure 3. New Three-point Ladder Algorithm. Execution flow for calculating
22P + S given P , S, P − S and k = 22.

SIMD Implementation of Prime Field Arithmetic. We initially focus on the SIMD
parallel processing of prime field arithmetic. To do so, we showed data structures and
representation of numbers suitable for parallel processing. Our study covered four families
of prime moduli corresponding to the ones used in recent proposals of new elliptic curves.
For each family, we showed how to perform field operations using scalar and vector
instructions. Our benchmark analysis showed that improvements in performance are more
significant when operating over larger numbers.

For smaller prime fields, manipulating data inside vector registers through permu-
tation instructions has a negative effect on performance. This is explained because in the
targeted computer architecture, the permutation instructions have a higher latency than
other vector instructions. Hence, the vectorized implementation of smaller prime fields
suffers a notorious performance overhead limiting the amount of improvement.

A better approach that employs vector units more efficiently is taking the SIMD’s
essence to higher abstraction levels. We follow the notion of n-way operations using the
n words of a vector register for calculating n field operations in parallel. This approach
was motivated due to the overheads of using SIMD instructions to perform single field
operations. Armed with n-way field operations, we turned our attention to investigate
parallel algorithms for elliptic curve arithmetic that benefit from them.

SIMD Implementation of Elliptic Curve Arithmetic. For Weierstrass curves, we adapt
the Fq-complete formulas for point addition, in such a way that point addition is performed
by two parallel units, enabling the application of two-way field operations.

For Montgomery curves, we showed how to calculate the Montgomery ladder step
using two parallel units. The common implementation strategy for these two curve models
consists on using the 256-bit AVX2 vector unit for simulating two 128-bit parallel units.
Thus, each 128-bit unit can also be seen as two 64-bit parallel units that are dedicated
to field arithmetic. We follow this approach because it reduces the use of expensive
permutation instructions; thus, minimizing the overheads observed in the vectorization of
smaller prime fields.



For Edwards curves, we focused on parallel algorithms for point addition, point
doubling, and scalar multiplication. Our implementation strategy is to perform four-way
operations using the 256-bit vector unit. Then, we developed parallel algorithms for point
addition (and doubling) using four-way field operations. Additionally, we constructed
a four-way point addition that allowed us to perform parts of the scalar multiplication
in parallel. The design of all parallel algorithms has the purpose to minimize the use of
costly permutation instructions. The combined application of these strategies results on
the acceleration of scalar multiplications.

Optimized Implementation of Cryptographic Algorithms. Building on top of the
improvements on the prime field arithmetic and the elliptic curve arithmetic, we found
their direct applicability for speeding up some cryptographic algorithms. We developed
vectorized implementations of the ECDH and ECDSA with the P-384 curve; the X25519,
X448, and Supersingular Isogeny Diffie-Hellman protocols; and the EdDSA and qDSA
digital signature schemes. In all cases, we observed improvements on performance by
using vector instructions. Figure 4 shows the time latency savings on the X25519 and
Ed25519 algorithms.

Moon
(floodyberry)

x64

Tung
SAC 2015
x64+SSE2

Oliveira et al.
SAC 2017

x64(MULX/ADCX)

Our code
AVX2

MULX/ADCX

0

25

50

75

100

125

150

175

100 Kcc

R
un

ni
ng

T
im

e
(1

0
3
cy
cl
es
)

Haswell Skylake

(a) Performance comparison of X25519.

Moon
(floodyberry)

SSE2
24 KB

Moon
(floodyberry)

x64
24 KB

Schwabe
(supercop)
x64+SSE2
30 KB

Our code
AVX2

MULX/ADCX
12 KB

Our code
AVX2

MULX/ADCX
24 KB

20

40

60

80

100

R
un

ni
ng

ti
m
e

(1
0
3
cy
cl
es
)

Haswell Skylake

(b) Performance comparison of Ed25519 (EdDSA).

Figure 4. Performance benchmark on Haswell and Skylake micro-architectures.

In February 2023, the National Institute of Standards and Technology [NIST 2023]
has approved the standardization of EdDSA, which in practical terms means that EdDSA
is endorsed to be used on Internet communications massively. This is relevant to secure
communication protocols such as SSL/TLS, SSH, VPN, and others. Our contributions on
accelerating the performance of this algorithm are pertinent.



Implementations using other Extensions. In addition to the SIMD extensions, we
studied the efficient application of other hardware extensions such as BMI2, ADX, and
SHA-NI instructions.

We developed efficient implementations of field arithmetic using the MULX instruc-
tion and the ADCX/ADOX instructions, which are part of, respectively, the BMI and ADX
instruction sets. Using these instructions, our implementations render better performance
than using basic instructions. Nonetheless, our vectorized implementations offer superior
improvements to prime fields of larger size.

The availability of SHA-NI allowed us to evaluate the performance of the SHA-256
cryptographic hash function. We developed a pipelined implementation that performs a
four-way version of the SHA-256 function. We applied this function to the XMSS and
XMSSMT hash-based signatures, which are in the portfolio of quantum-resistant algorithms.
Using SHA-NI, we observed that signature operations run up to four times faster than
using a non-hardware aided implementation. Moreover, the performance is slightly better
than implementing a four-way version with SIMD vector instructions.
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Figure 5. Performance benchmark on Zen and Kaby Lake micro-architectures.

2.3. Software Libraries
We developed a set of software libraries that show implementation techniques and opti-
mizations of the cryptographic algorithms mentioned above. Source code was optimized
for SIMD processing, and performance benchmarks provide evidence of their superiority.
To enable reproducibility, our libraries are available at public repositories and released
under permissive software licenses. The code is also available at an institutional repository:

https://gitlab.ic.unicamp.br/ra142685/phd_libs/

https://gitlab.ic.unicamp.br/ra142685/phd_libs/


Third-party Usage. Our x64 implementation of X25519 was included in the imple-
mentation of the Wireguard protocol [Donenfeld 2018], which offers a VPN-like secure
communication tunel between remote machines. Wireguard was recently included in the
kernel of Linux.

Derived from our work, Protzenko et al. [Protzenko et al. 2020] formally verified
a x64 implementation of X25519, which closely follows our own implementation, proving
the correctness of the code as part of the EverCrypt project.

Our three-point ladder algorithm and other implementation techniques were
adopted by SIKE [Jao et al. 2017], a project part of the NIST’s Post-Quantum Cryp-
tography Standardization project [NIST 2016].

3. Conclusions
Based on the experimentation performed in our investigation, we conclude that the ap-
plication of SIMD vector instructions does reduce the execution time of both prime field
operations and elliptic curve arithmetic resulting in observable improvements in high-level
cryptographic algorithms. However, we remark that in order to get better performance
several changes in the algorithms are needed. Some of them are naturally motivated by the
SIMD parallel computing paradigm, but others arose from the instruction set used.

Our investigation provided explicit optimizations and implementation techniques
that resulted in a faster execution of cryptographic algorithms than those existent in the
state of the art. Our software implementations render better performance when using AVX2
vector instructions for the X25519 and X448 Diffie-Hellman protocols, and the Ed25519
and Ed448 digital signature schemes. We also identified trade-offs and limitations of these
developments, which can provide insights for future improvements. We hope our work
and the ideas presented motivate to students and researchers on future projects.
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