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Abstract

Cryptography based on elliptic curves is endowed with efficient methods for public-key
cryptography. Recent research has shown the superiority of the Montgomery and Ed-
wards curves over the Weierstrass curves as they require fewer arithmetic operations.
Using these modern curves has, however, introduced several challenges to the crypto-
graphic algorithm’s design, opening up new opportunities for optimization.

Our main objective is to propose algorithmic optimizations and implementation tech-
niques for cryptographic algorithms based on elliptic curves. In order to speed up the
execution of these algorithms, our approach relies on the use of extensions to the instruc-
tion set architecture. In addition to those specific for cryptography, we use extensions
that follow the Single Instruction, Multiple Data (SIMD) parallel computing paradigm.
In this model, the processor executes the same operation over a set of data in parallel.
We investigated how to apply SIMD to the implementation of elliptic curve algorithms.
As part of our contributions, we design parallel algorithms for prime field and elliptic
curve arithmetic. We also design a new three-point ladder algorithm for the scalar
multiplication P + k@, and a faster formula for calculating 3P on Montgomery curves.
These algorithms have found applicability in isogeny-based cryptography. Using SIMD
extensions such as SSE, AVX, and AVX2, we develop optimized implementations of the
following cryptographic algorithms: X25519, X448, SIDH, ECDH, ECDSA, EdDSA, and
gDSA. Performance benchmarks show that these implementations are faster than existing
implementations in the state of the art.

Our study confirms that using extensions to the instruction set architecture is an effective
tool for optimizing implementations of cryptographic algorithms based on elliptic curves.
May this be an incentive not only for those seeking to speed up programs in general but
also for computer manufacturers to include more advanced extensions that support the
increasing demand for cryptography.
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1 Introduction

Extensive research efforts have focused on delivering public-key cryptography securely and efficiently. Cryp-
tography based on elliptic curves provides efficient methods due to the use of keys shorter than the ones
used in well-known cryptosystems, such as the Rivest-Shamir-Adleman (RSA) [3] and in those based in

* Summary of a doctoral thesis authored by Armando Faz Hernandez and supervised by Julio Lopez. The full text [1] can
be found at https://hdl.handle.net/20.500.12733/6756. This is the extended version of a previous summary [2].
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the Discrete Logarithm Problem [4]. Elliptic curve cryptography has been endorsed by international stan-
dardization agencies [5, 6, 7]. Despite these standards have been in circulation for several years, a recent
line of research proposes a shift to new elliptic curves with the aim of improving efficiency while preserving
high-security guarantees.

With the avalanche of novel elliptic curve proposals, such as the ones highlighted by [8], new challenges
have appeared. Former investigations focused on elliptic curves given in the Weierstrass model; however,
there is still room for optimizing the operations of alternative elliptic curve models, such as the Montgomery
curves [9] and the Edwards curves [10]. New algorithms for these curves must likely be adapted, or otherwise
reformulated considering the upsides and downsides of each model. New improvements could arise by ana-
lyzing the algorithms from theoretical, computational, and practical standpoints. Therefore, the pathway for
designing cryptographic algorithms, their implementation, and their put in practice is currently in progress.

From the computational perspective, a compelling approach for improving performance is using extensions
to the instruction set architecture. There exist extensions that support the Single Instruction, Multiple Data
(SIMD) paradigm characterized in Flynn’s taxonomy [11] of parallel computing. In this model, a vector
instruction encodes an operation that is executed over several data units simultaneously. Figure 1 contrasts
the number of instructions used in scalar processing versus vector processing.
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Figure 1: SIMD vector instructions

Historically, SIMD processing has been shown effective in the high-performance computing area applied
to graphics processing, scientific computing, mathematical simulation, among other domains. In the early
days, SIMD execution units were exclusive of large workstations and supercomputers; but nowadays, SIMD
vector units [12, 13, 14] can be found at commodity computers and portable devices. Figure 2 shows
the increasing addition of extensions to the instruction set architecture and their applicability to different
domains. Hundreds of instructions have been added in order to support SIMD processing for integer and
floating-point arithmetic. As can be seen, more recently instructions target more specific domains, for
example, the inclusion of extensions tailored to accelerate cryptographic algorithms [15].

1.1 Problem Statement

The widespread availability of SIMD execution units in commodity computers, Internet servers, and mobile
devices motivates their application to the implementation of cryptographic algorithms. Nonetheless, a few
resources explain how to use SIMD units efficiently, and even fewer are dedicated to the case of elliptic curve
cryptography, and the secure software development required in this domain. Moreover, it is unclear to what
extent these computational resources can help to improve efficiency.

It is interesting to know how to effectively apply SIMD processing to the implementation of elliptic
curve cryptography. Especially to the algorithms derived from the recent proposals of elliptic curves and
making use of the most advanced vector instructions [14] and other extensions found in contemporary
computer architectures. For this reason, it is imperative to investigate how to design new algorithms and
data structures (or adapt the existing ones) so that implementations take full advantage of SIMD processing.

Thesis Statement We claim that the execution of algorithms for elliptic curve cryptography can be
accelerated through a combination of algorithmic optimizations, implementation techniques, and the use of
SIMD processing and other hardware extensions.
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Figure 2: Evolution of SIMD Instructions. Each bar represents an instruction set showing its release date
(in the horizontal dimension), the number of new instructions (in the vertical dimension), and the main
application (in the chromatic dimension). The milestones show the release date of large vector registers.

1.2 Aims

To support this assumption, we investigate algorithmic optimizations and look for implementation techniques
for elliptic curve algorithms emphasizing the application of SIMD parallel processing.

An objective of our study is to close the gap between theory and practice. For instance, in addition
to proposing parallel algorithms, we also cover their implementation in software. We highlight some issues
arisen during development and propose some solutions for them. The design of our proposed algorithms
considers the capabilities and limitations of the computer architecture studied.

Our research aims to enlighten a pathway for applying SIMD efficiently. Current computer architectures
support hundreds of SIMD instructions including SSE, AVX, AVX2, AVX512, and others. Moreover, the
number of instructions is gradually increasing in the upcoming computer architectures (cf. Figure 2). Part
of this research is to give guidance on the use of SIMD instructions, to identify some of their limitations,
and to show how to apply them to elliptic curve cryptography.

2 Contributions

Our contributions are the union of several layers of improvements comprising algorithmic optimizations for
elliptic curve cryptography, practical implementation techniques for SIMD vector processing of mathematical
field operations, and the immediate applicability of our findings into current information security standards.
Now, we briefly describe these contributions. More details can be found in the full text available at [1].

2.1 Algorithmic Optimizations

For Montgomery curves, we introduced a new Three-point Ladder Algorithm that calculates the x-coordinate
of P+ k@, where P, () are points on an elliptic curve and k is an integer. Our algorithm improves in three
aspects. First, it saves one third of arithmetic operations than the previously-known three-point ladder
algorithm [16, 17]. Second, when P and @ are known in advance, the algorithm allows faster execution by
employing precomputation. Third, when precomputation is used, fetching precomputed values from mem-
ory requires non-secret indexes, which naturally prevents against side-channel attacks. Figure 3 exemplifies
the operation of the multiplication algorithm. We showed immediate application of this algorithmic opti-
mization in several cryptographic schemes such as in Isogeny-based Cryptography, the Diffie-Hellman (DH)
protocol [18], and the gDSA digital signature scheme.
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Figure 3: New Three-point Ladder Algorithm. Example of the execution flow for calculating 22P + S given
P, S, P— S and k = 22.

Application to Isogeny-based Cryptography Isogeny-based Cryptography is a branch of cryptography
looking for secure algorithms resistant against adversaries with quantum computing power. In this scenario,
elliptic curves can be seen as the vertex set of a regular graph, and the edges are isogenies, algebraic maps
that link two elliptic curves. Given a starting elliptic curve, it is easy to reach to other curve by computing
an isogeny; however, finding the path of isogenies that connects two arbitrary elliptic curves in the graph is
known to be hard using either a classical or a quantum computer [19].

Formulas to compute isogenies are known [20] and rely on the knowledge of the kernel of an isogeny.
Such a kernel is often calculated as P + kQ, where P and @ are points on an elliptic curve, and k is a secret
integer chosen uniformly at random. An algorithm that computes this operation using only the z-coordinate
of the points also requires knowledge of a third point P — @, hence the name of three-point ladder.

We found direct application of our algorithm for computing the kernel of isogenies. Previous algorithms
requires two differential additions plus on differential doubling operations. In contrast, ours only requires one
differential addition and one doubling per bit of the integer scalar. Theoretically, our algorithm saves around
a third of the arithmetic operations to compute the same result. In practice, we verify these improvements
in the Supersingular Isogeny Diffie-Hellman (SIDH) protocol [19]. The algorithm and its implementation
were published in the IEEE Transactions of Computing journal [21], and Table 1 is reproduced from that
article showing the timings measured in Haswell and Skylake micro-architectures.

Table 1: Timings of SIDH-751

. Haswell | Skylake
Operation
CLN [16] FLOR [21] Speedup | CLN [16] FLOR [21] Speedup
Key Alice 483 38.0 1.27x | 357 26.9 1.33x
Generation  “pop, 545 4238 127x | 39.9 30.5 1.31
Shared Alice 45.7 34.3 1.33%x | 33.6 24.9 1.35%
Secret Bob 528 39.6 133x | 384 28.6 1.34x

I Timings of the SIDH v2 implementation are 108 clock cycles.

SQISign is another quantum-resistant algorithm that requires the calculation of isogenies. SQISign is a
digital signature scheme [22], recently proposed in the NIST Post-Quantum Competition [23], has one of the
shortest key and signature sizes in comparison to other contenders. However, the execution of this scheme
is slow and needs more optimizations to be used in practical scenarios such as in the TLS protocol.

We investigate the impact of our algorithm in SQISign. The verification of a signature validates that the
challenge isogenies are computed honestly, to do so a number of isogenies are computed by first computing
its kernel. Like for SIDH, our three-point ladder algorithm performs this task. So, we took the reference
implementation of SQISign [22] and measure the time taken to verify a signature. The measurements are
shown in Table 2 for the security parameters of SQISign Level 1. As can be seen, verification is 9% faster
due to the use of our three-point ladder algorithm. Other operations such as key generation and signing still
require more investigation to improve their execution time.



Table 2: Timings of SQISign Level 1 with Three-point Ladder

Three-point Ladder Algorithm — Jao-De Feo [19] Ours [21]
Signature Verification 20 x 10% cycles 18 x 106 cycles

For Montgomery curves, we showed an optimized formula for tripling points, that is, given a point P, to
calculate 3P. This operation is relevant for multi-base scalar multiplication methods as well as in the SIDH
protocol. SIDH requires to evaluate 3" P for an integer n > 0. By applying our formula, we reduce the
total number of field operations by an observable margin. We acknowledge some trade-offs against formulas
independently proposed in [24].

Application to Diffie-Hellman Protocol The Diffie-Hellman protocol can be efficiently instantiated
with Montgomery curves. Montgomery curves allow a faster computation because operations use only the
x-coordinates of points, so operations are correct up to the sign. The central operation in elliptic curve
cryptography is called scalar multiplication. So, given an integer k and a point P = (zp,yp) on the curve,
a scalar multiplication algorithm calculates @Q = kP = (2¢,yq). Montgomery devised a faster algorithm for
computing zg given only k and zp. Fortunately, the z-coordinate is more than enough to accomplish the
Diffie-Hellman protocol.

We noted that the three-point ladder can be used to compute kP. Our approach relies on an auxiliary
point S, so we first compute Q' = S + kP using the three-point ladder. For security, it is required to remove
any low order points, so a multiplication by h, the curve’s order cofactor, one can get rid of the point S.
We apply this to the X25519 and X448 Diffie-Hellman protocols and we also specialize the algorithm to the
case when the input point is known in advance. Details about these contributions were published in the
SAC 2017 paper [25].

Application to gDSA The ¢DSA signature scheme also uses the fast arithmetic of Montgomery curves.
In this case, signing requires to perform a scalar multiplication kP using only the z-coordinates of the
points. We applied a similar approach as described for Diffie-Hellman resulting on 35 % faster signatures
by employing the three-point ladder algorithm. Moreover, we proposed an alternative signature verification
procedure that checks for a stronger signature verification. More details can be found in the SPACE 2017
paper [26].

2.2 Implementation Techniques

On the availability of SIMD and other extensions to the instruction set architecture, we speed up implemen-
tations of arithmetic operations over prime fields and elliptic curves.

SIMD Implementation of Prime Field Arithmetic We initially focus on the SIMD parallel processing
of prime field arithmetic. To do so, we showed data structures and representation of numbers suitable for
parallel processing. Our study covered four families of prime moduli corresponding to the ones used in recent
proposals of new elliptic curves. For each family, we showed how to perform field operations using scalar and
vector instructions. Our benchmark analysis showed that improvements in performance are more significant
when operating over larger numbers.

For smaller prime fields, manipulating data inside vector registers using permutation instructions has
a negative effect on performance. This is explained because in the targeted computer architecture, the
AVX2 permutation instructions have a higher latency than other vector instructions. Thus, the vectorized
implementation of smaller prime fields suffers of a notorious performance overhead limiting the amount of
improvement.

A better approach that employs vector units more efficiently is taking the SIMD’s essence to higher
abstraction levels. We follow the notion of n-way operations using the n words of a vector register for
calculating n field operations in parallel. This approach was motivated due to the overheads of using SIMD
instructions to perform single field operations. Figure 4 shows how to distribute the individual words of a
prime field element into a vector register. For example, note that one can store data units in such a way
to perform either two-way or four-way operations. Using the AVX-512 instruction set, one can extend this
idea further to prepare data for performing eight-way operations.

Armed with n-way field operations, we turned our attention to investigate parallel algorithms for elliptic
curve arithmetic that benefit from them.
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Figure 4: Data structures for SIMD operations

SIMD Implementation of Elliptic Curve Arithmetic We target the formulation of parallel algorithms
for elliptic curves in three different models: Weierstrass, Montgomery, and Edwards curves.

For Weierstrass curves, we adapt the FF,-complete formulas for point addition, in such a way that point
addition is performed by two parallel units, enabling the application of two-way field operations. The explicit
algorithms are described in the SBSeg 2016 paper [27] together with timings for the P-384 curve.

For Montgomery curves, we showed how to calculate the Montgomery ladder step using two parallel
units. The common implementation strategy for these two curve models consists on using the 256-bit AVX2
vector unit for simulating two 128-bit parallel units. Thus, each 128-bit unit can also be seen as two 64-bit
parallel units that are dedicated to field arithmetic. We follow this approach because it reduces the use of
expensive permutation instructions; thus, minimizing the overheads observed in the vectorization of smaller
prime fields. The findings for Montgomery curves were published at Latincrypt 2017 paper [28].

For Edwards curves, we focused on parallel algorithms for point addition, point doubling, and scalar
multiplication. Our implementation strategy is to perform four-way operations using the 256-bit vector
unit. Then, we developed parallel algorithms for point addition (and doubling) using four-way field opera-
tions. Additionally, we constructed a four-way point addition that allowed us to perform parts of the scalar
multiplication in parallel. The design of all parallel algorithms has the purpose to minimize the use of costly
permutation instructions. The combined application of these strategies results on the acceleration of scalar
multiplications that ultimately inject an speed up to the higher level cryptographic algorithms.

Optimized Implementation of Cryptographic Algorithms Building on top of the improvements on
the prime field arithmetic and the elliptic curve arithmetic, we found their direct applicability for speeding up
some cryptographic algorithms. We developed vectorized implementations of the ECDH and ECDSA with
the P-384 curve; the X25519, X448, and Supersingular Isogeny Diffie-Hellman protocols; and the EADSA
and qDSA digital signature schemes. In all cases, we observed improvements on performance by using vector
instructions.

We show timings of our implementations of the Diffie-Hellman protocol and digital signatures. Part
of these results were published in the ACM Transactions on Mathematical Software journal [29]. For the
Diffie-Hellman protocol, Table 3 shows timings of the X25519 and X448 protocols.

Table 3: Timings of the X25519 and X448 protocols

Instance  Operation Haswell Skylake Tiger Lake
Key Generation 43.7 34.5 18.2

=44
X251 Spared Secret 121.0 99.4 50.7
X448 Key Generation 129.0 107.7 53.7
Shared Secret 428.1 364.2 168.1

I Entries are 102 clock cycles.

For digital signatures, the dominant operation of EADSA is elliptic curve scalar multiplication. Figure 5
shows a breakdown of the internal operations of the EADSA signature scheme. We contrast the timings
measured by our vectorized implementation. Ed25519’s latency gets reduced by 19 % for signing and 24 %
for signature verification. Table 4 shows timings for the operations of the Ed25519 and Ed448 schemes.

In February 2023, the National Institute of Standards and Technology [30] has approved the standardiza-
tion of EADSA. In practical terms, it means that EADSA is endorsed to be used on Internet communications
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Figure 5: Performance comparison of Ed25519

massively. This is relevant to secure communication protocols such as SSL/TLS, SSH, VPN, and others.
Our contributions on accelerating the performance of this algorithm are pertinent.

Table 4: Timings of Ed25519 and Ed448 schemes

Instance  Operation Haswell Skylake Tiger Lake
Key Generation 42.8 34.8 18.4
Ed25519  Signing 48.6 39.5 20.1
Verification 156.0 123.3 77.1
Key Generation 126.7 104.9 54.8
Ed448 Signing 132.7 110.1 57.4
Verification 465.8 409.5 193.6

1 Entries are 103 clock cycles.

Implementations using other Extensions In addition to the SIMD extensions, we studied the efficient
application of other hardware extensions such as BMI2, ADX, and SHA-NI instructions.

We developed efficient implementations of field arithmetic using the MULX instruction and the ADCX/ADOX
instructions, which are part of, respectively, the BMI and ADX instruction sets. Using these instructions,
our implementations render better performance than using basic instructions. Nonetheless, our vectorized
implementations offer superior improvements to prime fields of larger size.

The availability of SHA-NI allowed us to evaluate the performance of the SHA-256 cryptographic hash
function. We developed a pipelined implementation that performs a four-way version of the SHA-256 func-
tion. We applied this function to the XMSS and XMSSMT hash-based signatures, which are in the portfolio
of quantum-resistant algorithms. Using SHA-NI, we observed that signature operations run up to four
times faster than using a non-hardware aided implementation. Moreover, the performance is slightly better
than implementing a four-way version with SIMD vector instructions. More details about these results are
published in the ACM AsiaPKC paper [31].

2.3 Software Libraries

We developed a set of software libraries that exhibit implementation techniques and optimizations of the
cryptographic algorithms mentioned above. Source code was optimized for SIMD processing, and perfor-
mance benchmarks provide evidence of their superiority. To enable reproducibility, our libraries are available
at public repositories and released under permissive software licenses. The code is also available at an insti-
tutional repository:

https://gitlab.ic.unicamp.br/ral142685/phd_libs/
Third-party Usage Due to its improved efficiency, our x64 implementation of X25519 was included in the

implementation of the Wireguard protocol [32]. Wireguard offers a VPN-like secure communication tunel to
connect between remote machines. Wireguard was recently included in the kernel of Linux.
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As part of the EverCrypt project, Protzenko et al. [33] formally verified a x64 implementation of X25519,
which is based on our implementation published at SAC 2017 [25] conference. Formal methods allow proving
the correctness of the code and brings higher assurances to the development of cryptographic software.

Our three-point ladder algorithm and other implementation techniques were adopted by SIKE [34] and
SQISign [22], contenders of the NIST’s Post-Quantum Cryptography Standardization project [23].

3 Conclusions

Based on the experimentation performed in our investigation, we conclude that the application of SIMD
vector instructions does reduce the execution time of both prime field operations and elliptic curve arithmetic
resulting in observable improvements in high-level cryptographic algorithms. However, we remark that in
order to get better performance several changes in the algorithms are needed. Some of them are naturally
motivated by the SIMD parallel computing paradigm, but others arose from the instruction set used.

Our investigation provided explicit optimizations and implementation techniques that resulted in a faster
execution of cryptographic algorithms than those existent in the state of the art. Our software implemen-
tations render better performance when using AVX2 vector instructions for the X25519 and X448 Diffie-
Hellman protocols, and the Ed25519 and Ed448 digital signature schemes. We also identified trade-offs and
limitations of these developments, which can provide insights for future improvements. We hope our work
and the ideas presented motivate to students and researchers on future projects.
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