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Resumo

A criptografia baseada em curvas elípticas fornece métodos eficientes para a criptografia de
chave pública. Pesquisa recente tem mostrado a superioridade das curvas de Montgomery
e de Edwards sobre as curvas de Weierstrass pois elas precisam de menos operações
aritméticas. O uso destas curvas modernas, porém, traz consigo diversos desafios na
construção de algoritmos criptográficos deixando em aberto novos alvos de otimizações.

Nosso objetivo principal é propor otimizações algorítmicas e técnicas de implemen-
tação para os algoritmos criptográficos baseados em curvas elípticas. Visando acelerar a
execução destes algoritmos, nossa abordagem fundamenta-se na utilização extensões ao
conjunto de instruções da arquitetura. Além daquelas específicas para a criptografia, nós
usamos extensões que seguem o paradigma de cômputo paralelo SIMD (do inglês, Single
Instruction, Multiple Data). Neste modelo, o processador executa a mesma operação so-
bre um conjunto de dados de forma paralela. Nós investigamos como aplicar o modelo
SIMD na implementação de algoritmos de curvas elípticas.

Como parte de nossas contribuições, projetamos algoritmos paralelos para a aritmética
de corpos primos e de curvas elípticas. Projetamos também um algoritmo de multiplica-
ção escalar para calcular P + kQ e uma fórmula otimizada para calcular 3P em curvas
de Montgomery. Estes algoritmos encontraram aplicabilidade na criptografia baseada em
isogenias. Usando extensões SIMD tais como SSE, AVX e AVX2, desenvolvemos im-
plementações otimizadas dos seguintes algoritmos criptográficos: X25519, X448, SIDH,
ECDH, ECDSA, EdDSA e qDSA. Testes de desempenho mostram que essas implemen-
tações são mais rápidas do que as implementações existentes no estado da arte.

Nosso estudo confirma que o uso de extensões ao conjunto de instruções da arquitetura
é uma ferramenta efetiva para otimizar implementações de algoritmos criptográficos base-
ados em curvas elípticas. Seja isto um incentivo não somente para aqueles que procuram
acelerar os programas em geral, mas também para que os fabricantes de computadores
incluam mais extensões avançadas para apoiar a demanda crescente da criptografia.



Abstract

Cryptography based on elliptic curves is endowed with efficient methods for public-key
cryptography. Recent research has shown the superiority of the Montgomery and Edwards
curves over the Weierstrass curves as they require fewer arithmetic operations. Using
these modern curves has, however, introduced several challenges to the cryptographic
algorithm’s design, opening up new opportunities for optimization.

Our main objective is to propose algorithmic optimizations and implementation tech-
niques for cryptographic algorithms based on elliptic curves. In order to speed up the
execution of these algorithms, our approach relies on the use of extensions to the instruc-
tion set architecture. In addition to those specific for cryptography, we use extensions
that follow the Single Instruction, Multiple Data (SIMD) parallel computing paradigm.
In this model, the processor executes the same operation over a set of data in parallel.
We investigated how to apply SIMD to the implementation of elliptic curve algorithms.

As part of our contributions, we design parallel algorithms for prime field and ellip-
tic curve arithmetic. We also design a new three-point ladder algorithm for the scalar
multiplication P + kQ, and a faster formula for calculating 3P on Montgomery curves.
These algorithms have found applicability in isogeny-based cryptography. Using SIMD
extensions such as SSE, AVX, and AVX2, we develop optimized implementations of the
following cryptographic algorithms: X25519, X448, SIDH, ECDH, ECDSA, EdDSA, and
qDSA. Performance benchmarks show that these implementations are faster than existing
implementations in the state of the art.

Our study confirms that using extensions to the instruction set architecture is an
effective tool for optimizing implementations of cryptographic algorithms based on elliptic
curves. May this be an incentive not only for those seeking to speed up programs in general
but also for computer manufacturers to include more advanced extensions that support
the increasing demand for cryptography.



Resumen

La criptografía basada en curvas elípticas está dotada de métodos eficientes para la crip-
tografía de llave pública. Investigaciones recientes han mostrado la superioridad de las
curvas de Montgomery y de Edwards sobre las curvas de Weierstrass, pues emplean me-
nos operaciones aritméticas. El uso de estas curvas modernas, en cambio, introduce varios
desafíos en el diseño de algoritmos criptográficos y expone nuevos blancos de optimización.

Nuestro objetivo principal es proponer optimizaciones algorítmicas y técnicas de im-
plementación para algoritmos criptográficos basados en curvas elípticas. Para acelerar la
ejecución de estos algoritmos, nuestro enfoque se basa en el uso de extensiones al conjunto
de instrucciones de la arquitectura. Además de aquellas específicas para la criptografía,
nosotros usamos las extensiones que siguen el paradigma de cómputo paralelo SIMD (del
inglés, Single Instruction, Multiple Data). En este modelo, el procesador ejecuta la mis-
ma operación sobre un conjunto de datos de forma paralela. Nosotros investigamos cómo
aplicar el modelo SIMD en la implementación de algoritmos de curvas elípticas.

Como parte de nuestras contribuciones, diseñamos algoritmos paralelos para la aritmé-
tica de cuerpos primos y de curvas elípticas. Diseñamos también un algoritmo de multi-
plicación escalar para calcular P + kQ y una fórmula optimizada para calcular 3P en
curvas de Montgomery. Estos algoritmos encontraron aplicabilidad en la criptografía ba-
sada en isogenias. Usando extensiones SIMD tales como SSE, AVX y AVX2, desarrollamos
implementaciones optimizadas de los siguientes algoritmos criptográficos: X25519, X448,
SIDH, ECDH, ECDSA, EdDSA y qDSA. Pruebas de rendimiento muestran que estas
implementaciones son más rápidas que implementaciones existentes en el estado del arte.

Nuestro estudio confirma que el uso de extensiones al conjunto de instrucciones de la
arquitectura es una herramienta efectiva para optimizar implementaciones de algoritmos
criptográficos basados en curvas elípticas. Sea esto un incentivo no solamente para aque-
llos que desean acelerar programas en general, sino también para que los fabricantes de
computadoras incluyan más extensiones avanzadas que respalden la demanda creciente
de la criptografía.
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Chapter 1

Introduction

The simplest communication model involves two honest participants, called Alice and
Bob, who want to interchange messages through a public communication channel. There
is also a participant, known as Eve, who can eavesdrop the messages transmitted through
the channel. In this context:

How can Alice and Bob communicate confidentially
even in the presence of Eve?

This is a central problem in the field of cryptography.

1.1 Cryptography

Cryptography is a discipline that studies how to encode information so it remains secret
and protected from adversaries. More formally, cryptography is the scientific study of tech-
niques for securing digital information, transactions, and distributed computations [170].

One solution cryptography provides to the above problem is data encryption. An
encryption algorithm converts a message, also known as plaintext, into a ciphertext. Alice
encrypts a message and send the ciphertext to Bob. Once Bob receives the ciphertext, he
uses a decryption algorithm that recovers the original message from the ciphertext. Eve
never has access to the original message because only the ciphertext is in transit. So Alice
and Bob can communicate confidentially.

An issue of the procedure described above is that the algorithms must be kept secret.
If Eve knows the encryption or decryption algorithms, she would be able to participate in
the conversation. Hiding the algorithms is, however, not always possible or even practical.
A better approach is to shift the secrecy requirements from the algorithms to the secrecy
of an additional data, referred to as keys. Thus, the encryption and decryption algorithms
take a key as an additional input making possible to publicly disclose the algorithms used.
If Alice and Bob maintain the key in secrecy, they can interchange encrypted messages
without Eve being able to read them.

It is evident that the initial problem becomes harder as adding more details to its
description. In the following sections, we incrementally introduce some other issues that
allow us to motivate the actual research problem addressed in this thesis. We then present
our approach to solve it and show the findings of our study. Let’s begin.
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1.1.1 Symmetric-Key Cryptography

In the description above, we showed a system that enables two entities to communicate
confidentially through an insecure channel. More formally, a cryptosystem consists of
the encryption and decryption algorithms together with the set of all possible plaintexts,
ciphertexts, and keys. It is said a cryptosystem offers a security level of λ bits if the best-
known attack that breaks it requires a computational effort of O(2λ) operations. Examples
of breaking a cryptosystem includes methods that systematically find the secret key or
recover the plaintext from a ciphertext without knowledge of the key. The security level
of a cryptosystem is strongly related to the size of the key space.

In data encryption algorithms, only those with knowledge of the key are able to encrypt
and to decrypt messages. In general, there is no restriction on using different keys for
encryption and decryption provided that one key can be easily obtained from the other.
Algorithms that use the same key for encrypting and decrypting messages are known
as symmetric-key encryption algorithms, which are studied by a branch of cryptography
known as symmetric-key cryptography.

The put in practice of symmetric-key encryption raises some issues concerning to the
management of keys. Issues on the operational side include a secure way to distribute
keys among the participants. For example, rotation of keys must be performed every time
a participant abandons a group of communication. There are also issues regarding the
storage of keys. If one-to-one secret communication is needed for a group of n participants,
there is required to store n2 keys securely, which can be cumbersome if the group keeps
growing. A trusted key distribution center addresses this issue for fixed-sized groups.
Unfortunately, it does not scale to groups with an arbitrary number of participants.

The symmetric-key cryptography assumes that Alice and Bob share a secret key, which
they use to interchange encrypted messages. One way to agree on the key is, for example,
by having an in-person secret conversation; but, in practice, this is not always possible.
For this reason, Alice and Bob require a secure way to agree on a secret key through the
public communication channel. This requirement of symmetric-key cryptography is not
easy to accomplish; at least, not until the discovery of a revolutionary idea that solves
this problem and that introduced a new paradigm for cryptography.

1.1.2 Public-Key Cryptography

In 1976, Diffie and Hellman [87], and independently Merkle [192], shown new ideas that led
to the origin of a new branch of cryptography called public-key cryptography. Specifically,
they proposed the use of two personal keys: one of them is made publicly available, and
the other key is in the private possession of its owner.

The first algorithm of public-key cryptography is the Diffie-Hellman protocol [87].
This protocol allows Alice and Bob to agree on a shared secret through an insecure
communication channel. Thus, Alice and Bob can generate a shared key that they use
as a secret key in a symmetric-key encryption algorithm. The combination of these two
techniques enables confidential communication between participants located remotely.

Another breakthrough in public-key cryptography is the separation of the capabilities
of the keys. In public-key data encryption, Alice uses Bob’s public key to encrypt a
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message sending the ciphertext through the channel. Upon receiving the ciphertext,
Bob uses his private key to decrypt it and recovers the message. Unlike symmetric-key
encryption, a public key is used only for encryption and a private key only for decryption.
This imbalance in the capabilities of keys motivates the name of asymmetric cryptography
when referring to the public-key cryptography [149,190,256].

A fundamental requirement for this asymmetry to work is that it must be computa-
tionally infeasible to obtain the private key from the public key. A way to ensure this
relies on the assumption that one-way functions exist. A function is one-way if it is easy
to compute but hard to invert. Although no proof is known for the existence of one-way
functions, the hardness of some mathematical problems serves to base one-way functions.
A concrete example is the integer factoring problem in number theory. It is easy to cal-
culate the product of two prime integers, but finding the factors from their product is
widely believed to be hard.

There exists a well-known cryptosystem based on the hardness of integer factoring.
In 1977, Rivest, Shamir, and Adleman [232] proposed a public-key encryption algorithm
known as RSA. Let p and q be two primes and n = pq, choose an integer e > 1 such that
gcd(e, ϕ(n)) = 1, where ϕ(n) = (p − 1)(q − 1); then there exists a unique d such that
ed ≡ 1 (mod ϕ(n)). Now, given (n, e) as the public key, it is hard to find the private
key d without the knowledge of ϕ(n). The encryption of a message m is performed as
c = me mod n, whereas decryption is m = cd mod n. The RSA problem [233] is to recover
the message given a ciphertext and the public key. This problem becomes easy if d or the
factorization of n is known. Currently, no polynomial time algorithms for integer factoring
are known; the best ones have sub-exponential time complexity on the size of the primes.
The RSA assumption supports the security of public-key encryption and digital signature
schemes massively used in digital communications.

ElGamal [92] proposed the use of the discrete logarithm problem in group theory for
basing a one-way function. Given a group with generator g and assuming an efficiently-
computable group law, it is easy to calculate group exponentiation, i.e., given g and an
integer k to calculate h = gk. The opposite calculation is known as the discrete logarithm
problem (DLP), which is to find the integer k given g and arbitrary element h such that
h = gk. The hardness of the DLP depends on the choice of the group. For example, in
the multiplicative group of the integers modulo a prime, the best-known algorithms have
sub-exponential time-complexity on the size of the group order. Hence, it is desirable to
use a group with a strong DLP and an efficient group law. A group with these properties
is found in the theory of elliptic curves.

1.1.3 Elliptic Curve Cryptography

In 1985, Koblitz [171] and Miller [194] independently proposed a way to use elliptic curves
in public-key cryptography leading to the elliptic curve cryptography (ECC). Specifically,
they noted that elliptic curves defined over finite fields allow instantiating groups with
a hard discrete logarithm problem. The main advantage of elliptic curve-based cryp-
tosystems is the use of shorter key sizes and more efficient operations than previous
cryptosystems such as RSA.
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Elliptic curves have a special mathematical structure that allows instantiating a group.
The points lying on an elliptic curve are the group elements, and the group law takes two
points P and Q on the curve and calculates their addition P +Q, which is also a point on
the curve. Analogously to the group exponentiation, the scalar multiplication operation
multiplies a point P by an integer k, which abbreviates the repeated application of the
group law on P to itself k − 1 times, and the resulting point is denoted as kP .

As in the general case, one can base a one-way function from this group. Given a
generator P of the group and an integer k, it is easy to calculate kP . On the other hand,
given two points P and Q, finding an integer k such that Q = kP is believed to be a hard
problem, which is known as the elliptic curve discrete logarithm problem (ECDLP). The
best-known algorithm for solving ECDLP is the Pollard’s rho algorithm [226], which has
exponential time-complexity on the size of the group order.

Elliptic curve cryptography is efficient with regard to the size of keys. The complexity
of the ECDLP has an advantage over the DLP on the multiplicative group of integers
modulo a prime. By fixing the effort required for solving these problems, the order of
the group is smaller in the case of elliptic curve groups. In practice, this translates on
shorter key sizes for equivalent security levels. Table 1.1.1 lists estimates of the key sizes
of some symmetric-key and public-key cryptosystems. It is clear the advantage of elliptic
curve-based algorithms, specially when moving to higher security levels.

Table 1.1.1: Comparison of the bit-length of keys of cryptosystems.

Security Level Symmetric-key Algorithm Public-key Algorithm

(bits) AES RSA DL-based ECC-based

128 128 3,072 3,072 256

192 192 7,680 7,680 384

256 256 15,360 15,360 512

Although elliptic curves are the object of study of number theory and algebraic ge-
ometry, their use in cryptography attracted so much attention introducing a number of
applications. For example, Lenstra [179] used elliptic curves in integer factoring algo-
rithms, a problem that Montgomery [196] also studied giving significant contributions
used in contemporary algorithms. Some other applications of elliptic curves include dig-
ital signature schemes, protocols for key agreement and key encapsulation, public-key
encryption, pairing-based cryptography, zero-knowledge proof systems, and multiparty
computation systems. More recently, elliptic curves also found a place in the portfolio
of quantum-resistant algorithms leading to the isogeny-based cryptography, which relies
on the mathematical relations between elliptic curves to base a one-way function. In
summary, elliptic curve cryptography has positioned as an efficient way for supporting
public-key cryptography in practice.
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1.2 Cryptographic Engineering

The fundamentals of cryptography are as relevant as their put in practice. For this reason,
special attention must be given to the cryptographic engineering, which focuses on the ap-
plication and practical aspects related to the use of cryptography and its implementation
under real-world constraints [105].

The security of implementations is a chief goal to pursue. Translating mathematical
formulations into machine instructions is not a straightforward task because it is prone
to introduce not only errors, but also security vulnerabilities. Although security always
prevails over other goals, it is not the only factor when using a system in practice as
some other engineering constraints should be considered too. In certain situations such as
scaling up a system or when the computational resources are limited, the computational
efficiency becomes a relevant factor.

Security and efficiency are goals often in compromise. For example, suppose an ap-
plication requires to perform group exponentiation by a secret exponent. One may be
tempted to use the fastest algorithm, however, the algorithm could be expose a time
variation that depends on the exponent; thus, revealing the secret. In this situation, the
fastest algorithm is not always suitable for its direct use in cryptography.

The following sections focus on the implementation of elliptic curve cryptography. We
describe some aspects regarding the security and the efficiency of software implementa-
tions. We also describe a recent initiative that motivates the need for new elliptic curves.

1.2.1 Security of Implementations

The security of a system is as strong as its weakest link. Breaking a cryptographic algo-
rithm is by far the attacker’s target, but breaking its implementation is an easier one. A
special class of implementation-specific attacks are the side-channel attacks [173]. In this
scenario, the attacker tries to learn some secret data while the computer is running. To do
so, the attacker measures some physical variables of the computer environment and corre-
lates these measurements with the data processed. The attacker’s success highly depends
on the behavior of the hardware and the software implementation during execution.

Side-channel attacks are a first-class concern when implementing cryptography. Al-
though hardware implementations are more susceptible to these attacks, software imple-
mentations can also be vulnerable as has been exemplified in these works [4,57,178]. For
this reason, protecting software implementations against side-channel attacks is manda-
tory to prevent the leakage of secret information. There exist several types of side-channel
attacks such as timings attacks, cache-memory attacks, and power analysis attacks.

One type of side-channel attacks are the timing attacks. For instance, assume a pro-
gram executes a time-consuming operation only when a determined bit of a secret key
is set, otherwise it performs a faster operation. A timing attack leverages this situation.
So an attacker that observes variations in the running time of a program can correlate
a longer execution with the bits of the key that are set, thus, learning the secret infor-
mation. A conventional countermeasure against timing attacks is to ensure the program
follows a regular execution pattern when processing secret data, and to ensure that the
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latency of operations is independent of the secret values. This programming pattern, also
known as a constant-time execution, is key for developing secure implementations.

Other well-known techniques exist for protecting implementations against side-channel
attacks. For example, secret data must not remain in memory for a long time, only when
needed; and after its use, it must be wiped out. Also programs must avoid using secret
data for performing bifurcations and to use secret indexes for accessing memory, these pat-
terns in programs are often the target of cache-memory attacks. Hence, the development
of cryptographic algorithms must consider all these threats to protect implementations.
As the attacks become more powerful, looking for new methods and techniques to protect
implementations is an active research topic.

1.2.2 Efficiency of Implementations

Efficiency is a relevant factor in the implementation of algorithms. Generally, efficiency
is regarded as the proper utilization of the computational resources to accomplish a task
without a waste of time and effort. Usually, efficiency is linked to high performance, but
the vast diversity of devices and computer architectures brings a variety of metrics for
determining the efficiency of implementations.

Latency is the amount of time that an operation takes to be executed. Commonly
the unit of latency is the second. Nonetheless, when measuring fine-grained operations,
such as machine instructions, the number of clock cycles is used instead. An advantage of
using clock cycles is that it allows to made comparisons between computers that have a
similar architecture but that run at different clock frequencies. A metric closely related to
latency is the throughput, which is the number of operations performed by a unit of time,
and is usually reported as operations-per-second (or instructions-per-cycle, if measuring
the throughput of instructions of a program). Both metrics can be used as indicators of
the performance of an implementation.

Memory footprint is another metric used for efficiency that indicates the amount of
memory required to perform a task. The memory footprint of a program is often an issue
in systems with memory limitations, such as in embedded devices. This is not the case in
commodity computer architectures. Depending on the execution environment, memory
footprint becomes an influential factor for the efficiency of an implementation.

More recently, the energy consumption of computers has become a concern regarding
efficiency. This concern is not particular to the increasing use of battery-powered devices
but it also applies to large data centers supporting Internet applications. On the hardware
side, modern computer architectures allow the processor to run at a lower power level
reducing their energy consumption. However, there is still investigation needed to make
programs consume less power, and more tooling for measuring energy consumption.

1.2.3 Shifting to Modern Elliptic Curves

Since their introduction to cryptography, the research on elliptic curves has focused on
finding better algorithms, optimizing curve parameters, and proposing improvements for
both hardware and software implementations.
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In 1999, a set of elliptic curves was recommended for their standardization [200]. Their
use for performing cryptographic operations was endorsed by international organizations
such as the American National Standards Institute (ANSI) [8, 9], the Institute of Elec-
trical and Electronics Engineers (IEEE) [155], the National Institute of Standards and
Technology (NIST) [204], among others. Sometime later, the standardized curves became
the subject of controversy after the discovery of trapdoors in a standardized algorithm
based on elliptic curves for pseudorandom number generation [249].

The research community responded with an active avalanche of proposals that improve
over the standard elliptic curves. Firstly, the parameter generation process of new elliptic
curves should not be biased, so all parameters must be chosen through rigid and explicit
arguments. A line of research promotes the use of faster elliptic curve forms such as the
Montgomery, Hessian, and (twisted) Edwards curves. Also due to the recent efforts on
solving DLP over binary fields [166,241], several proposals have a preference for defining
curves over finite fields of large characteristic rather than over small characteristic fields.

Several proposals appeared intending to improve security and efficiency. The Safe-
Curves [36] project summarizes some of them. The following is a non-exhaustive list of
these proposals:

• Curve25519 [23]

• Brainpool project [191]

• Ed3363 [239]

• GLV/GLS binary curves [142]

• Curve448 [140]

• FourQ [77]

• Hyper-elliptic curves [45]

• Edwards curves [12]

• Curve41417 [28]

• MSR ECCLib [48]

• Isogeny-based cryptography [160]

Each of them presents new parameters for elliptic curves and prime fields showing a certain
advantage over the standardized curves. Naturally, there exist trade-offs between all of
these proposals when instantiating public-key cryptographic algorithms. A concern these
proposals have in common is that they enforce the implementations to include some kind
of side-channel protection.

1.3 Related Works

This section summarizes some research related on the study of elliptic curve cryptography.
We split the discussion in generic algorithm optimizations, efficient software implementa-
tions, and the use of special hardware extensions.

1.3.1 Algorithmic Optimizations

We describe some theoretical advances in prime field and elliptic curve arithmetic that
have impacted in the development of elliptic curve cryptography.
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Prime Field Arithmetic

We start summarizing some contributions on faster methods for modular multiplication
using prime moduli of special shape. Granger and Scott [121] proposed an efficient al-
gorithm for calculating multiplications over Fp, where p = 2521 − 1 is a Mersenne prime;
thus, they reduced the number of digit multiplications to be calculated. Some other
methods are shown in Crandall-Pomerance’s book [79] for pseudo-Mersenne moduli, i.e.,
numbers of the form p = 2k − c where c is a short number.

Scott [240] revisited the implementation of the arbitrary degree Karatsuba (ADK)
multiplier [271]. Scott analyzed the threshold degree at which the ADK is faster than
quadratic-complexity methods. As a result, ADK could be worthwhile even for smaller
sizes raising the question whether this technique can be helpful for the primes used in
elliptic curve cryptography.

Elliptic Curve Arithmetic

Renes, Costello, and Batina [230] showed optimizations on complete formulas for point
addition. On the one hand, implementations of elliptic curve arithmetic can now be
computed following a regular execution pattern. On the other hand, the complete formulas
require more field operations than the non-complete ones, specifically, more field additions
and subtractions. There is a need for an alternative field representation that allows
performing field additions faster, which consequently can reduce the overhead introduced
by complete formulas.

1.3.2 Software Implementations of Elliptic Curves

We review recent software implementations of cryptographic algorithms using different
elliptic curve models.

Standardized Elliptic Curves

A vast number of cryptographic libraries support operations over standard elliptic curves.
Most of them have poor performance, nonetheless, some libraries have optimized imple-
mentations for the most used curves. For example, OpenSSL [263] has highly-optimized
code for P-224 and P-256 curves derived, respectively, from contributions by Kasper [169],
and Gueron and Krasnov [132]. The main optimization applied to P-256 curve targets
field multiplication using Montgomery method. It remains unknown whether a different
set of techniques can accelerate operations on these curves.

Binary Elliptic Curves

When running in hardware, operations over binary fields are faster than operations over
prime fields. However, for software implementations the main bottleneck is the binary
multiplier. Aranha et al. [15] showed how to use permutation instructions as look-up ta-
bles for calculating multiplications, squares, and square roots in extensions of binary fields.
In 2010, Intel [125] introduced a carry-less multiplication instruction called PCLMULQDQ
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that is useful for binary field multiplication. As a result, a positive impact on the perfor-
mance of binary elliptic curves was observed by several researchers [43, 260]. The NEON
instruction of the ARM architecture set also contains a carry-less multiplier, which was
used by Câmara et al. [60] for performing binary field operations. The inclusion of a
carry-less multiplier exemplifies the benefits associated to the use of special instructions.

Endomorphisms

Researchers have proposed the use of endomorphisms for accelerating elliptic curve arith-
metic. The GLV [112] and GLS [111] are multiplication methods that use endomorphisms
for calculating scalar multiplication faster. More acceleration is obtained if the curve
has two efficient endomorphisms. These methods allows parallel calculation of scalar
multiplication. Some previous articles show the use of endormorphisms in software im-
plementations of prime curves [46,97,150,185] and of binary curves [211,212].

Alternative Curve Models

Joye and Quisquater [164] showed a unified formula for Hessian curves that can pre-
vent against some side-channel attacks. In 2015, a generalization of Hessian curves was
introduced [27] improving the operation counts of point addition.

A model for representing hyper-elliptic curves is through Kummer surfaces [113]. Re-
cently, some implementations were developed targeting the 112- and 128-bit security lev-
els [29,45,46]. Developing efficient and secure implementations of hyper-elliptic curves is
a novel approach for delivering efficient public-key cryptography.

Another approach centers on optimized software implementations using Edwards or
Montgomery curves. For example, Curve25519 [23] is a Montgomery curve used for setting
speed records of the Diffie-Hellman protocol. Some other researchers followed a similar
approach reporting novel implementation techniques that reduce the latency of elliptic
curve operations [31,38,64,139,140].

1.3.3 Implementations using Hardware Extensions

Extensions to the computer architecture have been used to accelerate the implementation
of some cryptographic algorithms. Released by Intel in 2010, a new instruction set called
AES-NI [125] accelerates execution of the AES data encryption algorithm. According to
Gueron’s estimates [125], the performance of AES gets improved by an order of magnitude
for parallel modes, and two times faster for a sequential mode such as CBC encryption.

Belonging to the AES-NI set, the PCLMULQDQ is a new instruction that performs carry-
less multiplications. Using this instruction jointly with those for AES, one can implement
the AES Galois Counter Mode (GCM), an authenticated encryption algorithm proposed
by McGrew and Viega [188]. Timings measured by Gueron and Kounavis [127] showed
an improvement of six times faster encryption than implementations using look-up tables.
The NEON instruction set of the ARM architecture also has instructions for AES. Similar
speedups were reported by Gouvêa et al. [120]. The carry-less multiplier is also used for
implementing binary elliptic curves as shown in several research papers [43,259,260].
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Another important target of optimizations is the multi-precision integer arithmetic.
In [126,130,131,134], Gueron and Krasnov showed a series of optimizations for accelerating
large-integer multiplications using advanced vector instructions. In [132], they also pre-
sented an optimized implementation of the P-256 curve using 128-bit vector instructions
for performing prime field arithmetic and querying look-up tables.

A trend for accelerating implementations is using vector parallel processing. Together
with the introduction of Curve25519 in 2006, Bernstein [23] suggested the use of floating-
point vector instructions. Follow up implementations adopted this suggestion but using
instead integer vector instructions [197,198], and Chou [64] extended this work to use 128-
bit vector instructions. Later, in 2018, de Valence [84, 85] showed speed improvements
of elliptic curve arithmetic using 256-bit vector instructions. Hamburg [140] used vector
instructions to process a batch of additions required by the Karatsuba multiplication in
the Goldilocks curve.

1.4 Research Problem

1.4.1 Motivation

Extensive research efforts have focused on delivering public-key cryptography securely and
efficiently. Cryptography based on elliptic curves provides efficient methods using keys
shorter than the ones used in RSA and DLP-based algorithms. Despite elliptic curves
being endorsed by international standards, a recent line of research proposes new elliptic
curves to improve efficiency and preserving high-security guarantees.

With the avalanche of novel elliptic curve proposals, new challenges have appeared.
Former investigations focused on optimizations for elliptic curves given in the Weierstrass
form; however, there is still room for optimizing operations of alternative elliptic curve
models. Algorithms for elliptic curves must likely be adapted, or otherwise reformulated
considering the upsides and downsides of each model. New improvements could arise
by analyzing the algorithms from theoretical, computational, and practical standpoints.
Therefore, the pathway for designing cryptographic algorithms, their implementation, and
their put into practice are currently in progress.

From the computational perspective, a compelling approach for improving perfor-
mance is using extensions to the instruction set architecture. There exist extensions that
support the Single Instruction, Multiple Data (SIMD) paradigm characterized in Flynn’s
taxonomy [107, 108] of parallel computers. In this model, a vector instruction encodes
an operation that is executed over several data units simultaneously. Historically, SIMD
processing has been shown effective in the high-performance computing area applied to
graphics processing, scientific computing, and mathematical modeling, among others. In
the early days, SIMD units were exclusive of large workstations and supercomputers.
Nowadays, computer architectures have incorporated SIMD execution units and exten-
sions tailored to accelerate cryptographic algorithms.
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1.4.2 Problem Statement

The widespread availability of SIMD execution units in commodity computers, Internet
servers, and mobile devices motivates their application to the implementation of crypto-
graphic algorithms. Nonetheless, a few resources explain how to use SIMD units efficiently,
and even fewer are dedicated to the case of elliptic curves and cryptography. Moreover,
it is unclear to what extent these computational resources can help to improve efficiency.

It is interesting to know how to apply SIMD processing to implementations of elliptic
curve cryptography. Especially to the algorithms derived from the recent proposals of
elliptic curves and making use of the most advanced vector instructions and other exten-
sions found in contemporary computers. For this reason, it is imperative to investigate
how to design new algorithms and data structures (or adapt the existing ones) so that
implementations take full advantage of SIMD processing.

1.5 Aims and Scope

Thesis Statement We claim that the execution of algorithms for elliptic curve cryp-
tography can be accelerated through a combination of algorithmic optimizations, imple-
mentation techniques, and the use of SIMD processing and other hardware extensions.

1.5.1 Aims

To support this assumption, we investigate algorithmic optimizations and look for imple-
mentation techniques for elliptic curve algorithms emphasizing the application of SIMD
parallel processing.

An objective of our study to close the gap between theory and practice. For instance, in
addition to proposing parallel algorithms, we also cover their implementation in software.
We highlight some issues arisen during development and propose some solutions for them.
The design of our proposed algorithms considers the capabilities and limitations of the
computer architectures studied.

Our research aims to enlighten a pathway for applying SIMD efficiently. Current
computer architectures support hundreds of SIMD instructions, which are gradually in-
creasing in the upcoming computer architectures. Part of this research is to give guidance
on the use of SIMD instructions, identify some issues and their limitations, and show how
to apply them to the algorithms used in elliptic curve cryptography.

1.5.2 Scope

Since the study of elliptic curve cryptography and its implementation involve many di-
mensions and other engineering aspects, we delimit the scope of our study as follows.

Elliptic Curves

Due to the recent proposals for new elliptic curves, we target the Weierstrass, Montgomery,
and (twisted) Edwards curves defined over fields of large prime characteristic.
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Cryptographic Algorithms

We consider algorithms of public-key cryptography. We study the following Diffie-Hellman
protocols: the ECDH [9] protocol with the P-384 curve, the X25519 [23] and X448 [264]
protocols, and the SIDH-751 protocol.

We study the following digital signature schemes: ECDSA [8] with the P-384 curve,
Ed25519 [31] and Ed448 [162], qDSA with Curve25519 [231], XMSS and XMSSMT [58,153]
schemes. Note that XMSS and XMSSMT are algorithms believed to be quantum-resistant.
Digital signatures often use a cryptographic hash function, so we study the SHA-256 [203]
hash function.

Hardware

We target the x64 (also known as x86-64) computer architecture [175], which is commonly
found in end-user devices such as desktop and laptop computers, as well as in Internet
servers and data centers. This architecture includes a bank of 64-bit registers and supports
a general-purpose instruction set.

We looked for micro-architectures that implement the x64 architecture. In particular,
we looked for those that support the SIMD instruction sets such as SSE, AVX, and
AVX2; and extensions for cryptographic applications such as the AESNI, and PCLMULQDQ
instructions. We have access to the Haswell, Skylake, SkylakeX, and Kaby Lake micro-
architectures from Intel, and to the Zen micro-architecture from AMD. Zen additionally
supports the SHA-NI instruction set. In Table 1.5.1, we list the specifications of the
processors used in this research.

Table 1.5.1: Technical specifications of the computers used in this research.

Micro-architecture Processor Frequency Instruction Sets

Haswell Core i7-4770 3.4GHz SSE, AVX, AVX2.
Skylake Core i7-6700K 4.0 GHz SSE, AVX, AVX2, BMI2, ADX.
Kaby Lake Core i5-7400 3.0GHz SSE, AVX, AVX2, BMI2, ADX.
SkylakeX Core i7-7820X 3.6GHz SSE, AVX, AVX2, BMI2, ADX, AVX-512.
Zen Ryzen 7 1800X 2.4 GHz SSE, AVX, AVX2, BMI2, ADX, SHA-NI.

Software

Our software implementations are written in the C programming language. We use special
declarations of C functions, called intrinsics, that allow accessing to the SIMD and other
hardware extensions without writing assembly code. A comprehensive list of instrinsics
is provided by Intel at [75]. For efficiency reasons, we sometimes resort to inline assembly
language into the C code. We verify source codes are successfully compiled by the GNU C
Compiler (gcc) [115], the Intel C Compiler (icc) [74], and the Clang (clang) compiler [262].
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Measurement Methodology

We follow the benchmark methodology recommended by Intel in Paoloni’s paper [219]. We
use clock cycles instead of seconds as the unit of time, this allows making time comparisons
between processors that operate at different clock frequencies. The timings reported are
obtained as the median of the time taken to compute a batch of operations of the same
type. The comparison tables report codes compiled with the Clang compiler version 5.0.2
using the following compilation flags: “-O3 -march=native -mtune=native”.

Several factors interfere with the accuracy and reproducibility of timings. Time mea-
surements are sensitive to the computer (micro-)architecture, the processor’s frequency,
and the processor usage. Also, varying the compiler, the compiler version, or the compila-
tion flags results in different binary programs, which could exhibit different performance.

To get accurate measurements, we disable any frequency scaling technology, such as
the Intel Turbo Boost or Hyper-Threading, for reducing interference during the execution
of benchmarks. To make fair comparisons, we measure publicly available code under the
same measurement environment we used to measure our codes. We encourage those want-
ing to reproduce our experiments to consider all these factors before making comparisons.

1.6 Contributions

Our contributions are a conjunction of several layers of improvements involving theoretical
optimizations as well as practical implementation techniques and running software.

Our initial target for optimizations is the prime field arithmetic. We show data struc-
tures and representation of numbers that are suitable for processing scalar and vector
instructions efficiently. We develop optimized SIMD implementations of prime field op-
erations whose prime modulus is given in a special form. We target prime fields that are
suggested in recent proposals of new elliptic curves distinguishing four families of primes.

We propose optimizations for the arithmetic of elliptic curves. For Montgomery curves,
we show a new three-point ladder algorithm, an optimized tripling formula, and a parallel
implementation of the Montgomery ladder algorithm. For Edwards curves, we show par-
allel algorithms for point additions and scalar multiplications. For Weierstrass curves, we
show parallel algorithms for the complete formulas for point additions. For completeness,
we implemented these parallel algorithms applying the SIMD prime field operations.

All of these optimizations are of general interest, and we show their immediate appli-
cability on several elliptic curve cryptography algorithms such as X25519, EdDSA, and
others. Some of these algorithms are in track for standardization so they will be used
massively for securing Internet communications in the TLS, SSH, and VPN protocols.
We also contribute with public-available software libraries that are optimized for SIMD
processing, and performance benchmarks provide evidence of their superiority.

1.6.1 Publications

Some of our contributions were published in peer-reviewed academic venues such as sci-
entific journals and conference proceedings of cryptography.

https://releases.llvm.org/5.0.2/tools/clang/docs/index.html
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Journal Articles

A Faster Software Implementation of the Supersingular Isogeny Diffie-Hellman Key Ex-
change Protocol by Armando Faz Hernández, Julio López, Eduardo Ochoa-Jiménez and
Francisco Rodríguez-Henríquez. IEEE Transactions on Computers, Nov 2018.
doi: 10.1109/TC.2017.2771535  .

High-performance Implementation of Elliptic Curve Cryptography Using Vector Instruc-
tions by Armando Faz Hernández, Julio López, and Ricardo Dahab. ACM Transactions
on Mathematical Software (TOMS), Jul 2019. doi: 10.1145/3309759  .

Papers in Conference Proceedings

On Software Implementation of Arithmetic Operations on Prime Fields using AVX2 by
Armando Faz Hernández and Julio López. XIV Simpósio Brasileiro em Segurança da
Informação e de Sistemas Computacionais, Nov 2014. doi: 10.5753/sbseg.2014.20148  .

Fast Implementation of Curve25519 using AVX2 by Armando Faz Hernández and Julio
López. Progress in Cryptology – LATINCRYPT, Sep 2015.
doi: 10.1007/978-3-31922174-8_18  .

Speeding up Elliptic Curve Cryptography on the P-384 Curve by Armando Faz-Hernández,
and Julio López. XVI Simpósio Brasileiro em Segurança da Informação e de Sistemas
Computacionais, Nov 2016. doi: 10.5753/sbseg.2016.19306  .

How to (Pre-)Compute a Ladder by Thomaz Oliveira, Julio López, Hüseyin Hişil, Ar-
mando Faz Hernández, and Francisco Rodríguez-Henríquez. Selected Areas in Cryptog-
raphy, Dec 2017. doi: 10.1007/978-3-319-72565-9_9  .

A Secure and Efficient Implementation of the Quotient Digital Signature Algorithm (qDSA)

by Armando Faz Hernández, Hayato Fujii, Diego F. Aranha, and Julio López. Security,
Privacy, and Applied Cryptography Engineering (SPACE 2017), Nov 2017.
doi: 10.1007/978-3-319-71501-8_10  .

SoK: A Performance Evaluation of Cryptographic Instruction Sets on Modern Architec-
tures by Armando Faz Hernández, Julio López, and Ana K. D. S. de Oliveira. APKC’18
Proceedings of the 5th ACM on ASIA Public-Key Cryptography Workshop. Jun 2018.
doi: 10.1145/3197507.3197511  .

Generation of Elliptic Curve Points in Tandem by Armando Faz Hernández, and Julio
López. XX Simpósio Brasileiro em Segurança da Informação e de Sistemas Computa-
cionais. Oct 2020. doi: 10.5753/sbseg.2020.19230  .

Book Chapter

Implementação Eficiente e Segura de Algoritmos Criptográficos by Armando Faz Hernán-
dez, Roberto Cabral, Diego F. Aranha, and Julio López. XV Simpósio Brasileiro de
Segurança da Informação e de Sistemas Computacionais: minicursos. Nov 2015.
ISBN: 978-85-7669-304-8 . doi: 10.5753/sbc.9004.8.3  .
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1.6.2 Software Libraries

We develop a set of software libraries that show implementation techniques and optimiza-
tions of several cryptographic algorithms. Our libraries are available at public reposito-
ries released under permissive software licenses, and are also available at an institutional
repository: https://gitlab.ic.unicamp.br/ra142685/phd_libs/ .

fld-ecc-vec

An optimized implementation of the Ed25519 and Ed448 signature
schemes, the X25519 and X448 Diffie-Hellman protocols, and hash to
curve functions using AVX2 vector instructions.
https://github.com/armfazh/fld-ecc-vec

flor-sidh-x64

An implementation of the SIDH-751 Diffie-Hellman protocol accelerated
with BMI2 and ADX instructions.
https://github.com/armfazh/flor-sidh-x64

rfc7748_precomputed

An optimized 64-bit implementation of the X25519 and X448
Diffie-Hellman protocols accelerated with BMI2 and ADX instructions.
https://github.com/armfazh/rfc7748_precomputed

nistp384_avx2

A SIMD implementation of the complete addition formulas for the
P-384 Weierstrass curve.
https://github.com/armfazh/nistp384_avx2

qdsa_space2017

An optimized 64-bit implementation of the qDSA signature scheme.
https://github.com/armfazh/qdsa-space17

flo-shani-aesni

Optimized implementations of SHA-256 using SHANI instructions, and
AES and AEGIS using AESNI instructions.
https://github.com/armfazh/flo-shani-aesni

Our x64 implementation of X25519 was included in the implementation of the Wire-
guard protocol [88]. This protocol offers a VPN-like secure communication between re-
mote machines and was recently included in the kernel of Linux. Our x64 implementation
of X25519 was formally verified in EverCrypt project by Protzenko et al. [227] proving
the correctness of the code. Our implementation techniques for SIDH were adopted by
the SIKE [159] project submitted to the Post-Quantum Cryptography Standardization
project by NIST [206].

https://gitlab.ic.unicamp.br/ra142685/phd_libs/
https://github.com/armfazh/fld-ecc-vec
https://github.com/armfazh/flor-sidh-x64
https://github.com/armfazh/rfc7748_precomputed
https://github.com/armfazh/nistp384_avx2
https://github.com/armfazh/qdsa-space17
https://github.com/armfazh/flo-shani-aesni
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1.7 Outline

In the next chapters we present our findings in a bottom-up manner. We start by reviewing
concepts of computer architectures and their hardware extensions. Then we deep dive into
the arithmetic of prime fields and its implementation. Building on top of it, we describe
the arithmetic of elliptic curves and present some optimizations. After that, we describe
the implementation of some cryptographic algorithms based on elliptic curves. Finally,
we summarize our conclusions and future work.

In Chapter 2, we give a panorama of current and upcoming hardware optimizations
available in computer architectures. We cover some basic concepts about parallel pro-
cessing and their support in recent computer architectures. Then, we examine the SIMD
processing showing several vector instruction sets and highlight some extensions of special
interest for cryptography.

In Chapter 3, we review algorithms for performing prime field arithmetic. We start by
reviewing data structures for representing large integer numbers and describe how to cal-
culate arithmetic operations with such representations. We introduce a key concept that
defines the parallel execution of field operations suitable for a SIMD processing. Then,
we detail the implementation of operations over some prime fields of interest covering dif-
ferent families of prime moduli. For each study case, we show a performance benchmark
and comparisons.

In Chapter 4, we center our attention to the arithmetic of elliptic curves. We review
fundamental concepts of elliptic curves and well-known algorithms for scalar multiplica-
tion. Then, we show some algorithmic improvements for Montgomery curves, and review
the point addition formulas of the Weierstrass, Montgomery, and twisted Edwards curves.
For each curve model, we propose parallel algorithms for point operations and show their
implementation using SIMD processing.

In Chapter 5, we give details about the implementation of a selection of cryptographic
algorithms and protocols. For each one, we describe techniques for its efficient implemen-
tation showing specific optimizations. We present results of performance benchmarks and
made comparisons against state-of-the-art implementations.

In Chapter 6, we present the conclusions of this research study. We give a brief
retrospective and summarize our contributions. We end this chapter suggesting some
paths for future investigation.

In Appendix A, we provide detailed bibliographic information of the publications pro-
duced as part of this thesis.

We believe that our research can help broaden the knowledge base of elliptic curve
cryptography and the engineering aspects around its implementation.
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Chapter 2

Modern Computer Architectures

The design of newer computer architectures often includes optimizations for speeding up
the execution of programs. The goal of some optimizations is to execute more instructions
per unit of time, and the most recent ones seek to process more data at a time relying
on parallel computing. Although most optimizations benefit to generic programs, others
target domain-specific applications.

In this chapter, we give a summary of some hardware optimizations found in contem-
porary computer architectures. Our description is centered on extensions to the instruc-
tion set architecture, in particular, those that support parallel computing as well as the
extensions tailored for cryptography.

2.1 Optimizations in Computer Architectures

Around the middle of the 1980s decade, the emergence of the Reduced Instruction Set
Computer (RISC) was a breakthrough in the design of computer architectures. The RISC
design proposes the use of a small set of instructions, this results in short instruction
formats leading to a higher hardware utilization [221]. The RISC architecture is more
renowned due to the introduction of the pipeline execution, a technique used for increasing
the instruction-level parallelism of programs.

RISC-based processors achieve higher throughput by issuing several instructions per
clock cycle. The so-called superscalar processors contain multiple units to execute in-
structions, and these instructions can be issued to the pipeline out of the program order
through a dynamic pipeline scheduling. Unlike previous processors that execute program’s
instructions sequentially (in program order), executing them in out-of-order increases the
chances to execute instructions in parallel.

Another hardware optimization commonly found in the recent processors is the simul-
taneous multi-threading, which is a high-level technique to share a physical core among
multiple logical cores (or execution threads). With this technique, the pipeline interleaves
the execution of instructions that belong to different logic cores. This is possible because
it is unlikely that data dependencies occur between instructions of different logical cores.

The hardware optimizations mentioned above are, in some sense, unnoticed by the
programmer; i.e., a few or no actions are required by the programmer to enable (or disable)
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these optimizations. On the other hand, other hardware resources, such as vectorization or
multi-core parallelization, require the intervention of the programmer mainly to distribute
a workload among the parallel units. Usually, the assignment of tasks to execution units
is performed through special functions or keywords added to the source code. In some
cases, this is not even required since advanced compilers are able to recognize common
execution patterns that are suitable for their execution in parallel.

Other hardware optimizations are in the form of new instructions. The latest micro-
architectures have included specialized instructions targeting a wide range of applications,
such as text processing, bit manipulation, cryptography, and neural networks processing.

In the following sections we give more details about hardware optimizations available
in contemporary processors.

2.1.1 Pipeline Execution

Some computer architectures process instructions using an execution path or a pipeline
consisting of five stages: fetch, decode, execute, access to memory, and write-back the
result [146]. An instruction completes its execution once it has passed through each of
these stages sequentially. Assuming each stage takes one cycle, each instruction would
take five cycles to complete.

The main idea of a pipeline execution is to processes several stages of different instruc-
tions at once. To do so, the instructions get overlapped to keep the hardware units always
busy executing stages of different instructions. When an instruction finishes one stage and
goes to the next stage, the execution unit becomes available for the next instruction. Thus,
more than one stage is performed at once as shown in Figure 2.1.1. Instructions still take
five cycles to complete, but at every cycle one instruction is completed. Although the
latency of each instruction remains unaltered, the amount of instructions processed per
unit of time, also known as the throughput of instructions, increases.

Inst #1 fetch decode execute memory write

Inst #2 fetch decode execute memory write

Inst #3 fetch decode execute memory write

Inst #4 fetch decode execute memory write

Inst #5 fetch decode execute memory write

Inst #6 fetch decode execute memory write

Figure 2.1.1: Instruction execution in a five-stage pipeline.

Pipeline hazards prevent the efficient use of pipelining. The source of these hazards is
mainly due to data dependencies between instructions (data hazards), but also they can be
originated when execution units are busy (structural hazards). In both types of hazards,
the execution of instructions is delayed, and the pipeline stalls until the dependencies are
resolved. One way to avoid pipeline stalls is forwarding the result value of an instruction
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to the instruction that depends on it; therefore, the latter instruction can use the value
immediately without waiting for the pipeline to write the result in the register bank.

A data dependency analysis is needed for benefiting from a pipeline execution. The
analysis reveals which instructions of the program can be executed in parallel. To do
so, it often requires reordering the instructions of the program. Compilers usually pro-
duce an optimized instruction scheduling based on the data dependency analysis of the
source code. However, sometimes the compiler cannot identify all the opportunities for
optimizations, so the programmer must reorder the instructions manually.

Pipeline execution is a powerful technique for executing programs faster. This hard-
ware optimization was implemented in architectures for supercomputers such as the
Z3 [235], Stretch [42], and Illiac II [54]. The pipeline length has grown as long as 31-
stages in the Prescott [70] architecture. More recent architectures, like Haswell, operate
with pipelines of around 14 to 16 stages [248].

2.1.2 Superscalar Processors

A superscalar processor refers to the processors that can issue more than one instruction
per clock cycle [146]. Also known as multiple-issue architectures, they enhanced the
RISC design by replicating execution units, which execute several instructions at once.
The availability of several units raises the following question: how to handle more than one
instruction per clock cycle? A solution is to extend the pipeline with a set of reservation
stations, a set of execution units, and a commit unit. These additional hardware units
work together to dynamically scheduling instructions.

The multiple-issue mechanism works as follows. Once an instruction is decoded, it
enters into a reservation station waiting to be assigned to an execution unit. Since each
execution unit can only perform a subset of all possible instructions, different units have
a different amount of instructions to process. When an execution unit becomes available,
the instruction on the top of the reservation station is sent for its execution. If another
instruction of the same type is waiting in the reservation station, the instruction can
only be sent to the execution unit after t clock cycles, where t represents the reciprocal
throughput of this instruction. After its completion, the computed value is stored in a
buffer, which is part of the commit unit. Finally, the commit unit writes back the values
in the buffer to either the registers or the memory.

Note that the order in which the instructions are executed could be different of the
program’s order. Suppose a program in which a long-latency instruction is followed by
several short-latency instructions that do not depend on it. Clearly all these instructions
can be sent to other execution units, and since they have a short latency, they will be
completed before the long-latency instruction ends storing their results into a buffer. Note
that these values cannot be written back until the result of the long-latency instruction
is computed. Once the long-latency instruction finishes, the results are committed in the
program’s order. Hence, in an out-of-order execution instructions are executed in out of
the program’s order but the results are committed to the registers in the program’s order.

The execution units vary depending on the micro-architecture. In some Intel architec-
tures, there are ports that redirect instructions from the reservation station to an execution
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unit. As shown in Figure 2.1.2, the Sandy Bridge micro-architecture has six ports: the
ports 0, 1, and 5 handle most of the arithmetic instructions; the ports 2, 3, and 4 manage
memory-accessing instructions; and the port 5 is used for branching instructions.

54-entry Reservation Station

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Int, Shift

Vec FMul

Vec IMul

Vec Logic

Vec Shift

Div

Int, LEA

Vec FAdd

Vec Int

Vec Logic

Load, store Load, store Store Int, Shift

Vec Int

Vec Logic

Branch

Figure 2.1.2: Execution engine of the Sandy Bridge micro-architecture.

The Haswell micro-architecture, successor of Sandy Bridge, increased the number of
ports to eight to achieve better performance. As shown in Figure 2.1.3, Haswell has two
ports that handle branching instructions (ports 0 and 6), and one extra that calculates
addresses of memory-storing instructions (port 7). Another difference is that Haswell
reduced the type of instructions performed by the port 5, which handles arithmetic in-
structions. The Intel micro-architectures released after Haswell, such as Skylake and Kaby
Lake, have a similar execution engine.

60-entry Reservation Station

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

Int, Shift

Vec FMul

Vec IMul

Vec Logic

Vec Shift

Div

Branch

Int, LEA

Vec FAdd

Vec Int

Vec Logic

Load, store Load, store Store Int, Shift

Vec Int

Vec Logic

Int, Shift

Branch

Store

Figure 2.1.3: Execution engine of the Haswell micro-architecture.

2.1.3 Simultaneous Multi-Threading

Multiprogramming is a standard technique used to run several programs concurrently us-
ing a single processor [146]. To do so, several programs or threads (light-weight programs)
have assigned chunks of processor’s time for their execution.
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An issue that arises in multiprogramming is the following. While a program is running,
it could happen that some execution units of the pipeline stay idle, which can be caused
due to a low instruction-level parallelism in the program, or because the program only
uses a specific subset of instructions. For example, when a program executes many logic
arithmetic instructions but only a few integer instructions, so the program underutilizes
the other execution units available.

There is a technique that avoids this issue. The Simultaneous Multi-Threading (SMT)
shares the execution units of a physical core among different threads or programs. Thus,
the pipeline dynamically schedules instructions that belong to different programs; these
instructions have attached a thread identifier that allows committing the result to the
correspondent thread. A program running several threads in the same physical core gets an
improvement in the execution time on top of using the multiprogramming technique. On
the other hand, for single-threaded programs, the use of SMT does not have a significant
impact on the running time. Therefore, SMT is intended to increase the thread-level
parallelism (TLP) of programs running concurrently.

The SMT has been incorporated in some contemporary architectures. The Intel ar-
chitectures support SMT through Intel Hyper-Threading, which shares the resources of a
physical processor between two logic processors. The Intel Xeon Phi coprocessor extends
this support to handle four threads per physical core. Some AMD architectures have a
technology known as SMT, which can be found in the Zen micro-architecture.

2.1.4 Parallel Computing

In 1966, Michael Flynn [107,108] characterized the computer architectures based on how
parallelism behaves in the face of instruction and data streams. Thus, every computing
model can be classified in the following categories:

SISD Single instruction stream, single data stream.

SIMD Single instruction stream, multiple data streams.

MISD Multiple instruction streams, single data stream.

MIMD Multiple instruction streams, multiple data streams.

Computers from the early days were able to execute one instruction at a time operating
over a single unit of data matching the SISD processing. However, the capabilities of
computers have improved. Currently, modern computers overlap these categories since
they implement multiple features in the same architecture.

The SIMD Paradigm

The SIMD processing one instruction encodes an operation that is executed over a set
of data. Implementing SIMD in a computer architecture requires of new instructions and
registers that contain several units of data. For this reason, implementations of the SIMD
model commonly used the term vector processing.
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Actual implementations of SIMD firstly appeared in supercomputers. Notable exam-
ples around the 1970s decade are the Illiac-IV computer from the Illinois University [53],
the CDC Star processor [228], and the ASC processor from Texas Instruments [270].
These computer architectures share similar characteristics such as large registers (each
one storing more than 64 floating-point words), multiple functional units, and a config-
urable set of registers. A different implementation was the Berkeley’s Intelligent RAM
(IRAM) project [220], which combines vector processing units with the DRAM memory.
The Cray supercomputer [237] was another implementation of SIMD processing focusing
mostly on high-performance computing and scientific applications.

Vectorization is the process of transforming a program to use vector instructions. In
this process, the programmer identifies fragments of the program that are suitable to
run in parallel and determines how to pack data into vector registers. Depending on the
complexity of the program, vectorization could be as easy as a one-to-one replacement
of instructions, or it could be more complex requiring of a detailed analysis of the flow
of data to determine the best partition and distribution of the operations. Unlike the
hardware optimizations presented in the previous sections, the use of vector instructions
requires the programmer to take action.

The MIMD Paradigm

This paradigm refers to the computation of a task across several processing units or
cores [146]. In the MIMD processing, the communication between cores is performed
using shared memory or through a message passing interface. Unfortunately, both of
them introduce notorious performance overheads. In addition, in some platforms, the
time taken for accessing to memory is non-uniform; i.e., a core unit observes a different
latency for accessing to values stored in different memory locations. The latency mainly
depends on the topology of the parallel units. Hence, the time taken in communications
and in memory accessing are key factors that must be considered in this model.

Implementing programs following the MIMD model often involves the following steps.
First, identify the part of the program that can be parallelized and divide such a workload
into independent slices. Then, each slice is assigned to one or more core units for its
execution. Finally, partial results of each core unit are collected by a single unit that
produces the final result.

The OpenMP library [80] is a tool that helps on the implementation of MIMD pro-
grams. The programmer annotates the source code in those parts that can run in parallel.
For example, under certain conditions, the iterations of a time-consuming for-loop can be
mapped to a set of independent tasks, which are executed by the cores simultaneously.
At compilation time, the compiler is hinted by these annotations to produce a parallel
program with several threads; each thread contains a fraction of the total workload to
be computed. At running time, the parallel program determines the number of available
processing cores and distributes the threads to the processing units.

Nowadays computers are equipped with multiple processors. End-user processors have
two or four cores, and processors used in Internet servers have more than twelve cores
usually. The number of operations performed by a multi-core processor is significantly
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large, since each physical core supports pipelining, simultaneous multi-threading, and
vector instructions.

Another computer architecture that overlaps both the SIMD and MIMD categories is
the Graphics Processing Unit (GPU). Initially intended to accelerate graphics and video
processing, more recently the GPU has been extended to support a wider number of appli-
cations. This originated to the creation of general-purpose GPU (GPGPU) architectures.
In cryptography, GPGPUs are applied to solve some instances of hard problems that are
easily parallelizable, for example, the problem of integer factorization [51,193].

2.1.5 Comparison of Optimizations

In Table 2.1.4, we compare the hardware optimizations presented the previous sections.
The first and second columns indicate whether the programmer or the compiler needs

to take some action to benefit from the hardware optimization. Most of the optimizations
target generic programs, and because of that, no intervention by the programmer or the
compiler is needed. On the other hand, vectorization and multi-core execution require the
programmer explicitly indicates which parts of the program run in parallel. Although some
advanced compilers can automatically identify parts of the code to be vectorized [74,115],
fine-tuning optimizations must be done by the programmer to get faster execution.

The third column of Table 2.1.4 shows that most of the hardware optimizations are
available per physical core. This is clear because most of the programs are written to be
run by a single processor. This fact becomes more relevant on cloud computing scenarios,
in which a multi-core computer is shared in such a way that its physical cores are assigned
to virtual machines. Thus, although each virtual machine runs on a single physical core,
it still possible to execute code in parallel using vector instructions.

The last column lists the type of parallelism exploited by each hardware optimization.
For generic programs, exploiting the instruction-level parallelism (ILP) is more beneficial
since most programmers write code with a low sense of instruction optimizations. On the
other hand, vectorization and multi-core execution are focused on accelerating the exe-
cution of programs that have a certain degree of data-level parallelism (DLP). Finally, in
the cases where many different tasks must be performed, then the thread-level parallelism
(TLP) is exploited through simultaneous multi-threading or multi-core execution.

Table 2.1.4: Comparison of hardware optimizations.

Programmer
Intervention

Compiler
Intervention

Available in
Single/Multiple

Processors

Type of
Parallelism

Pipeline Execution No No Single ILP
Superscalar No No Single ILP
SIMD processing Yes Yes Single DLP
Multi-Threading No No Single TLP
Multi-Core Yes Yes Multiple DLP, TLP
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2.2 SIMD Vector Units

A vector unit is an extension of the computer architecture that supports the SIMD parallel
computing paradigm. Vector units are composed of large registers, called as vector regis-
ters, that store a fixed number of words; and extensions to the instruction set architecture,
also known as vector instructions, that operate on vector registers. To distinguish from
vector instructions, we refer to the non-vector instructions as scalar or native instructions.
Following the SIMD paradigm, vector instructions perform the same operation on every
word stored in a vector register, as shown in Figure 2.2.1.
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Figure 2.2.1: Scalar vs vector processing. Four additions are performed by either four
scalar instructions or by only one vector instruction.

Vector registers are fixed-size units of memory that store several words. Let n be
the size in bits of a vector register (usually, n ≥ 64 and is a power of two), a vector
register can be interpreted as a single register of n bits, or as an array of either n

8
bytes,

n
16

words, n
32

double-words (or single-precision floating-point numbers), or n
64

quad-words
(or double-precision floating-point numbers). The exact interpretation is encoded in the
vector instruction, which determines the operation to be performed, the number of words
in the vector register, as well as the datatype of each word.

One advantage of vector instructions is that they reduce the memory footprint of pro-
grams. The binary encoding of one vector instruction shortens the encoding of several
scalar instructions. The processor decodes only one vector instruction and avoids decod-
ing the same scalar instruction many times. Having less instructions to decode releases
pressure on the instruction decoders.

Vector instructions fetch more data from memory, which tends to be a costly operation.
On architectures with a cache memory, every time that a program requests a word from
memory, a large portion of data is transferred from memory to a line in the cache; and
then, the requested word is moved from the cache to the processor. A reason for doing
this is due to the spatial locality of data. It is likely that subsequent memory accesses
refer to locations close to the previous reference; thus, the requested words are already in
the cache reducing the latency of accessing to memory.

Cache memory helps when accessing units of data, but vector units require fetching
vectors of data. Note that filling a vector register with data from memory will consume a
larger part of the cache line. So subsequent references to memory will require more cache
lines. In this situation, spatial locality does not help as much as with scalar access to
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memory, unless the architecture has a large bank of cache memory. This explains why
accessing memory is a time consuming operation when using a vector unit.

Availability

The SIMD paradigm landed on conventional computers around the middle of the 1990s
decade. At that time, the design of computer architectures focused more on extracting
parallelism at data level rather than at the instruction level. For this reason, several
extensions to the instruction set architecture appeared for supporting the emerging mul-
timedia applications, which heavily focused on sound, image, and video processing [86].
Motivated by these end-user applications, many SIMD instructions have been increasingly
added to processors since then. Nowadays the applicability of SIMD instructions has been
extended to other domains such as graphics processing, data encryption, advanced image
processing, neural networks, and others.

Vector units are present in several computer architectures. For instance, the ARM ar-
chitecture contains an extension called ASIMD vector unit formerly known as the NEON
vector unit [17]. Similarly, the Power ISA architecture supports the AltiVec [110] vec-
tor instructions. The x86-64 architecture was extended with a vast number of vector
instructions, known as the SSE and AVX instruction sets. Although these extensions are
not compatible to each other, they share an equivalent functionality for performing basic
arithmetic and logic operations.

2.2.1 Vector Instructions of the x86-64 Architecture

We describe instruction sets of the x86-64 architecture following a chronological order and
grouping instructions that operate over equal-sized registers.

The 64-bit Vector Instructions

During the 1990s decade, most of the processors support the x86 architecture and operate
over words of 32 bits. In 1997, Intel introduced the MultiMedia eXtensions (MMX) [222,
223], which is a set of 57 vector instructions that operate over a bank of eight 64-bit
registers named MM0-MM7. The goal of these larger registers was not to execute 64-bit
operations, but performing two 32-bit operations simultaneously.

Later in 1998, AMD released the 3DNow! technology, which enables the support of
SIMD processing for integer and floating-point operations [209]. The first implementation
of this technology appeared in the AMD-K6 processor and consisted of 21 instructions.
Although more extensions appeared, 3DNow! has been deprecated [7].

MMX and 3DNow! share the bank of registers with the floating-point unit (FPU).
The processor is allowed to use either the FPU or the MMX/3DNow! unit at a given time,
and programs must emit an instruction that toggles between the units. Unfortunately,
switching between the units incurred on performance overheads.
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The 128-bit Vector Instructions

In 1999, Intel released the Internet Streaming SIMD Extensions (SSE) [261] introducing
several changes to the micro-architecture. It was included a new bank of eight 128-bit
vector registers, called XMM0-XMM7. This bank is independent from the bank used by the
FPU unit and has a larger storage capacity. The SSE set contains 70 vector instructions
that process up to four 32-bit operations simultaneously.

Since most of the SSE instructions are for single-precision floating-point arithmetic, a
second version of SSE, called SSE2, included 144 new vector instructions covering integer
arithmetic, and double-precision floating-point arithmetic.

In 2000, AMD launched the AMD64 architecture that allows to perform operations
over 64-bit words. This architecture is also known as x64, x86_64, or as a 64-bit architec-
ture. Since its release, most of the processors found in current computers are based on the
x64 architecture. In addition, AMD64 also supports the SSE vector unit and increased
from eight to sixteen the number of vector registers (XMM0-XMM15).

Although SSE2 instructions can execute more operations than the MMX instructions,
in practice the performance observed was roughly the same. The main reason of this poor
performance was because the cost of accessing to misaligned data incurs in significant
timing penalties. To solve this issue, SSE3 was released in 2004 with instructions that
load/store data from unaligned memory addresses. Also, SSE3 included 13 new vector
instructions that operate horizontally in the vector register, i.e., they operate using the
words within a vector register, as opposed to the previous instructions, which operate
(vertically) with words from two different vector registers.

The Supplemental SSE3 instruction set (SSSE3) contains one relevant instruction
called PSHUFB. The documentation of this instruction suggests using this instruction
to permute bytes within a vector register. However, this instruction can be used to
compute other operations. For example, PSHUFB can simultaneously perform sixteen
queries on a 16-entry table of bytes, i.e., given two 128-bit vector registers, A and B,
obtains C ← PSHUFB(A,B) as follows: ci ← ai[bi] for i = 0 to 15 and 0 ≤ bi < 16.
Another interpretation given to this instruction is the calculation of any boolean function
f : {0, 1}4 → {0, 1}8. This versatility makes PSHUFB suitable for many applications.

A shift in the vector instruction design was observed to support more diverse appli-
cations. This strategy was even more evident in the SSE4 instruction set. The SSE4 set
consists of 54 instructions, the first 47 instructions are known as SSE4.1, and the last seven
instructions are known as SSE4.2. Unlike previous instruction sets, SSE4 has not targeted
graphics applications, but string processing. Thus, operations such as string comparisons
and population count were benefited from special vector instructions. Additionall, SSE4
included an instruction to calculate the CRC-32 error detection code [247]. This trend
continued with the inclusion of instructions for cryptography, such as the AES-NI set
presented in Section 2.3.

In 2007, AMD released the specification of SSE5 [6], which integrates instructions
that perform multiplications combined with additions; for example, D ← A × B + C;
these operations are known as Fused-Multiply and Accumulate (FMA). However, two
years later, AMD split the SSE5 instruction set between two sets: the FMA4 instructions
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and the eXtended Operations (XOP). The novelty of the XOP set is that includes vector
instructions to perform shift rotations, conditional moves, and permutation between words
of registers. Both sets were supported since the release of the Bulldozer AMD’s micro-
architecture, but they were discontinued on the Zen micro-architecture.

The 256-bit Vector Instructions

The next big step to improve the SIMD parallel execution was given in 2008. The main
objective of the new vector instructions was to extend the size of registers initially to
256 bits and in future processor generations to 512 bits. Consequently, processors must
support lots of new instructions and for this reason, a new instruction coding scheme was
introduced, which can handle instructions with up to four operands. These modifications
to the instruction set architecture are the Advanced Vector eXtensions (AVX).

The first implementation of AVX appeared in 2011 with the release of the Sandy Bridge
micro-architecture of Intel and the Bulldozer micro-architecture of AMD. Although AVX
extended the size of vector registers to 256 bits, the AVX instruction set was not complete
since it does not support most of the integer arithmetic operations. For this reason, the
Advanced Vector eXtensions 2 (AVX2) were released in 2013, which promoted most of
the integer arithmetic operations from 128 bits to 256 bits. Haswell and Zen were the
first micro-architectures of, respectively, Intel and AMD that support AVX2.

Extending a 128-bit vectorized code to use 256-bit instructions shows in the general
setting an increase in the performance. This increment is in part because the latency
of the AVX2 instructions is almost the same as the latency of SSE instructions, which
allows increasing the parallelism degree almost linearly. However, Zen exhibits a down-
grade on performance when executing AVX2 instructions. This occurs due to the micro-
architectural design of Zen, which emulates a 256-bit vector instruction by splitting the
workload into two parts, and each part is executed by a 128-bit vector unit sequentially
what causes that the latency of AVX2 instructions is twice slower than the latency of SSE
instructions. Hence, the performance of an AVX2 program is severely penalized on Zen.

The 512-bit Vector Instructions

Following the plans made in 2008 about extending the SIMD vector unit to operate
on vector registers of 512 bits, the Advanced Vector eXtensions 512 (AVX-512) was
announced to be implemented on the Skylake micro-architecture; however, Intel delayed
the release of AVX-512. Part of this instruction set was supported by the Intel Xeon Phi
co-processor, which is a hardware accelerator mainly focused on many-core programming
paradigm. The actual implementation of AVX-512 on desktop processors appeared under
the codename of Skylake Core X-series.

The AVX-512 extensions also increased the bank of registers to 32 512-bit vector
registers, which quadruples the size of the bank used by the AVX/AVX2 vector unit.
Another novelty of AVX-512 is the inclusion of conditional execution predicates for all
the instructions; thus, each vector instruction has attached a bit mask that determines
whether or not to execute an operation. Moreover, AVX-512 has a set of instructions
dedicated to enabling conditional execution for legacy 128- and 256-bit vector instructions.



47

a3 a2 a1 a0

+ + + +

b3 b2 b1 b0

= = = =

c3 c2 c1 c0

(a) VPADDQ: Adds four 64-bit words.

a3 a2 a1 a0

× × × ×

b3 b2 b1 b0

= = = =

c3 c2 c1 c0

(b) VPMULUDQ: Multiplies four 32-bit words.

a3 a2 a1 a0

⊕ ⊕ ⊕ ⊕

b3 b2 b1 b0

= = = =

c3 c2 c1 c0

(c) VPXOR: XORs four 64-bit words.

a3 a2 a1 a0

� � � �

b3 b2 b1 b0

= = = =

c3 c2 c1 c0

(d) VPSLLVQ: Variable left-shift of four 64-bit
words.

a0

a0 a0 a0 a0

(e) VPBROADCASTD: Broadcast one word into
the 64-bit words.

a3 a2 a1 a0 b3 b2 b1 b0

0/1 0/1 0/1 0/1

c3 c2 c1 c0

mask

(f) VPBLENDD: Conditionally selects between
two registers.

a3 a2 a1 a0

[0..3] [0..3] [0..3] [0..3]

c3 c2 c1 c0

mask

(g) VPERMQ: Permutes the 64-bit words of
one register.

a1 a0 b1 b0

[0..3] [0..3]

c1 c0

mask

(h) VPERM2I128: Permutes the 128-bit words
of two registers.

Figure 2.2.2: Relevant AVX2 [75] vector instructions used in our implementations.
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2.3 Extensions for Cryptography

Together with the inclusion of specialized instructions and technologies to increase the
performance of programs, micro-architecture designers also considered the inclusion of
instructions that aid in the execution of cryptographic algorithms.

2.3.1 The AES New Instructions

The Advanced Encryption Standard (AES) is a family of symmetric-key block ciphers
and is currently the standard algorithm for performing data encryption [201]. AES takes
a message of 128 bits and a key k, and produces a ciphertext of 128 bits; where |k| ∈
{128, 192, 256} matching the security level of the algorithm.

We briefly describe the AES algorithm as is shown in Algorithm 2.3.1. First, the
AES algorithm uses the secret key to generate a key schedule using the KeyExpansion
function. Then, the message is stored in a state structure, which is processed by the
following operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. These
operations are repeated for a determined number of iterations or rounds. The final value
in the state is declared as the ciphertext.

The internal structure of AES is a substitution and permutation network. The Sub-
Bytes function is a substitution layer providing a high-degree nonlinear function. The
diffusion of bits across the state is performed by the subsequent functions: ShiftRows
and MixColumns. Then, the AddRoundKey function combines the state with one of the
round keys produced by the KeyExpansion function. The exact definition of all these
functions is specified in [201, Section 5]. We suggest to look at the Paar-Pelzl’s book [218]
for a more didactic description of AES.

Algorithm 2.3.1 The AES encryption algorithm.
Input: M is a 128-bit message, and k is a key such that (|k|, nr) ∈ {(128, 10), (192, 12),

(256, 14)}.
Output: C is a 128-bit ciphertext such that C = AESk(M).
1: (K0, . . . , Knr)← KeyExpansion(k)
2: S ← AddRoundKey(M,K0)
3: for i← 1 to nr − 1 do
4: S ← SubBytes(S)
5: S ← ShiftRows(S)
6: S ← MixColumns(S)
7: S ← AddRoundKey(S,Ki)
8: end for
9: S ← SubBytes(S)

10: S ← ShiftRows(S)
11: C ← AddRoundKey(S,Knr)
12: return C

AESENC(S,Ki)

AESENCLAST(S,Knr)

In 2010, Intel released the AES-NI set, which contains six instructions dedicated to
computing parts of the AES algorithm. In particular, the AESENC and AESENCLAST in-
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structions encapsulate the operations performed in each round of the AES algorithm.
Hence, Algorithm 2.3.1 can be implemented replacing the lines 4-7 by an AESENC instruc-
tion and the lines 9-11 by an AESENCLAST instruction. Regarding performance timings,
the resultant AES-NI implementation renders around 9 times faster performance since its
execution is entirely performed in hardware.

The AES-NI set is supported on Intel processors since the release of the Westmere
micro-architecture, and on AMD processors since the Jaguar micro-architecture. Also,
some ARM processors have hardware support for executing AES; however, these exten-
sions are not compatible with the AES-NI set.

2.3.2 The Carry-Less Multiplier

In addition to the AES instructions, the AES-NI instruction set contains the PCLMULQDQ
instruction, which performs a carry-less multiplication of two 64-bit words. This multiplier
calculates the product of the inputs words replacing the integer multiplication and integer
addition by the AND and XOR Boolean operations, respectively.

The carry-less multiplier is useful for multiplying elements of a binary extension field.
One of the first applications of this multiplier was to implement the AES Galois Counter
Mode (GCM) [188], an algorithm for authenticated encryption, which requires calculating
operations over an extension of a binary field. Gueron and Kounavis [127] showed that an
implementation of AES-GCM using the PCLMULQDQ instruction is six times faster than
implementations using look-up tables.

Binary field arithmetic is another application of the carry-less instruction. Taverne et
al. [259,260] used the carry-less multiplier for implementing binary elliptic curves achieving
better timings than implementations of elliptic curves defined over prime fields. Aranha
et al. [13] achieved similar improvements for Koblitz binary curves.

Due to the relevance of this instruction, the latency of the carry-less multiplier have
reduced from 14 cycles (when it was released) to around four cycles in the most recent
architectures benefiting implementations of binary elliptic curves and AES-GCM.

2.3.3 Multi-Precision Integer Arithmetic

Multi-precision integer arithmetic is an essential part of the development public-key cryp-
tography. This type of arithmetic is used to implement prime field operations, as we
will discuss this topic extensively in Chapter 3. Due to its complexity, the calculation
of multiplications is the most critical operation regarding performance. Although several
techniques exist to perform multi-precision integer multiplications, all of them rely on the
use of the native word-sized addition and multiplication instructions.

The instruction set of the x64 architecture has a structural issue that limits to in-
crease the performance of integer multiplications. Any processor implementing the x64
architecture has the FLAGS register, which contains a set of bit flags that are updated
according to the result of any integer operation executed by the processor. For example,
both the carry bit (CF) and the overflow bit (OF) of the FLAGS register are set whenever
adding two 64-bit integers produces a result greater than 264. Recalling that the exe-
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cution engine has several units for processing more than one instruction simultaneously,
then instructions depending on values stored in the FLAGS register could cause dependen-
cies that avoid the efficient use of multiple execution units. This behavior is observed on
instructions that calculate integer additions (the ADD instruction), additions with carry
(the ADC instruction), and integer multiplications (the MUL and IMUL instructions).

The BMI and the ADCX/ADOX extensions are new instruction sets released to opti-
mize the execution of multi-precision integer multiplications.

MULX: A New 64-bit Multiplier

The Bit Manipulation Instruction (BMI) is a set of instructions to perform bit operations
over 64-bit registers. The MULX instruction belongs to BMI and is used to calculate 64-bit
integer multiplications; however, MULX has properties that allow executing multi-precision
integer multiplications faster.

The original MUL instruction calculates a 64-bit integer multiplication of the first
register by the RDX register storing the product in the RDX and RAX registers.

 1  MUL <reg>   # <reg> x RDX ->  RDX || RAX

Thus, MUL overwrites the RDX register and updating the FLAGS register whenever the
product is greater than 264.

Like the MUL instruction, the MULX also calculates a 64-bit integer multiplication,
however the new multiplier handles the product differently. The new MULX instruction
uses a three-operand code. The MULX instruction multiplies the first operand register by
the RDX register; then, the product is stored in the second and third operand registers.

 1  MULX <reg0>, <reg1>, <reg2>   # <reg0> x RDX ->  <reg2> || <reg1>

Unlike MUL, the FLAGS register is not modified by MULX. This property is key for imple-
menting multi-precision multiplications faster.

Some multi-precision multiplication algorithms require executing addition and multi-
plication instructions sequentially. By using the MUL instruction, the FLAGS register is
modified overwriting the bits required by a previous ADC instruction. However, no over-
writing happens when the MULX instruction is used. Therefore, addition instructions can
be combined with MULX instructions resulting on a faster execution [217].

ADX: New Addition Instructions

The product-scanning technique, used for multi-precision integer multiplications, requires
to process two additions with carry per integer multiplication; one of them is used to
add consecutive words of the product, and the other one accumulates the intermediate
product into the final product. However, calculating two additions requires to handle two
carry bits at the same time, which is not possible using ADC instructions.

The ADX extensions [217] introduced two new instructions that modify the operation
of integer additions. The ADCX instruction adds two 64-bit integers storing the last carry
bit in the CF bit, and the other bits of the FLAGS register remain unaltered. The ADOX
instruction performs analogously to the ADCX instruction; however, the carry bit is stored
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in the OF bit. Hence, the processor can execute both instructions handling each carry bit
separately. The ADX instructions can be used in conjunction with the MULX instruction
to implement multi-precision integer multiplications leading to faster execution timings.

2.3.4 The SHA New Instructions

A hash function produces a short, fixed-size output known as the digest or hash value of
an arbitrary-length input data. A cryptographic hash function adds the following security
requirements: (i) Pre-image resistant: it must be difficult to find an input that produces a
given digest; (ii) Second pre-image resistant: it must be difficult to find an input different
from a given value such that both have the same digest; and (iii) Collision resistant: it
must be difficult to find two different inputs that have the same digest.

There exists several algorithms that implement a cryptographic hash function. Former
algorithms such as MD5 and SHA-1 are proven insecure [255, 268], and they should not
be used for cryptographic purposes. Instead, the Secure Hash Algorithm (SHA) [203] is a
standard that defines a family of cryptographic hash functions. The SHA-256, SHA-348,
and SHA-512 are the most popular instances of the SHA-2 standard. There is also a third
version of the SHA standard, called SHA-3 [205], that introduces new hash functions and
extendable-output functions called SHAKE-128, and SHAKE-256.

Cryptographic hash functions are widely used in digital signature schemes. For in-
stance, the RSA signature scheme signs the hash of messages, so it supports signing
arbitrary-length messages. Another application is to verify the integrity of a message.
Hash functions are designed in such a way that a minimal variation in the input signifi-
cantly changes the output digest allowing an easy verification.

In 2013, Intel announced the specification of the SHA-NI instruction set [136]. These
instructions offer native support for the most critical internal operations of the SHA-1
and SHA-256 hash functions. In Section 5.6, we show more details about the instructions
and the implementation of SHA-256.

Although SHA-NI was introduced in 2013, the first processors supporting SHA-NI were
available several years later. In 2016, the Goldmont micro-architecture, tailored for low
power-consumption devices, was the first on supporting the SHA-NI set. In 2017, AMD
released Zen micro-architecture that supports SHA-NI, AES-NI, and SIMD instructions.

2.3.5 Vectorized AES and Galois Field Extensions

In 2018, Intel announced a set of new extensions for improving the implementation of al-
gorithms for data encryption [73]. The new VAES instruction set is a vectorized approach
that extends the AES-NI instructions to execute up to four AES instructions simultane-
ously. Similarly, the SIMD processing was also applied to the carry-less multiplier by
introducing the VPCLMULQDQ instruction.

Another relevant extension is the Galois field New Instructions (GFNI). This set
includes instructions that perform operations over the binary field F2[x]/(g(x)), where
g(x) = x8 + x4 + x3 + x + 1. These operations are used to implement the AES-GCM
authenticated encryption algorithm [202].
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2.4 Evolution of Hardware Extensions

More instruction sets will be available in future generations of processors. For exam-
ple, the IFMA instruction set has instructions that perform fused-multiply and add op-
erations over 52-bit integers; these instructions are of particular interest to implement
arbitrary-precision integer arithmetic, which is central to the implementation of the RSA
algorithm [133].

We designed Figure 2.4.1 that show a timeline of the release date of several vector
instruction sets other hardware extensions. In the figure, the height of the bars represents
proportionally the number of instructions belonging to the each set. The color of the
bars shows the predominant field of application of each set. becoming more specific As
it can be seen, the number of vector instructions increased significantly in the past few
years. Also, the applicability of recent hardware extensions is becoming more diverse. For
instance, the Neural Network Vector Instructions (VNNI) [234] target the acceleration of
deep learning processing, which is a building block in the artificial intelligence field.
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Figure 2.4.1: Evolution of vector instructions and hardware extensions.

2.5 Chapter Summary

Modern computer architectures aim to accelerate the execution of programs using differ-
ent hardware optimizations. The most commonly available in contemporary processors
are pipeline execution, superscalar processors, simultaneous multi-threading, SIMD pro-
cessing, and multiple-core processing. Although they all have a common goal, which is to
run programs faster, they benefit programs to different extents. Some issues and trade-offs
appear concerning the efficiency of a given application.
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A compelling way of improving performance is processing more data per unit of time.
Since the middle of the 1990s decade, end-user processors increasingly added new instruc-
tions for SIMD processing. Initially, these instructions targeted programs with computa-
tionally intensive floating-point arithmetic. Nowadays, SIMD instructions cover a wide
range of applications, such as integer arithmetic, text processing, bit manipulation, neural
network acceleration, and cryptography.

The high relevance of information security boosts the inclusion of new extensions
for cryptography. Modern processors have instructions that help with data encryption,
cryptographic hashing, data integrity, and binary field arithmetic. However, public-key
cryptography algorithms still need more support. One basic building block is the prime
field arithmetic, a topic we cover in the next chapter. More specifically, we show how to
efficiently apply the SIMD instruction sets to arithmetic of prime fields.
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Chapter 3

Prime Field Arithmetic

In cryptography, data is manipulated through mathematical operations, mainly using al-
gebraic operations. For this reason, it is convenient to use not only discrete domains
(such as the integer numbers), but also finite domains (like a subset of integers) because
the operands can be compactly stored and manipulated by computers. In abstract alge-
bra, there are several mathematical objects (algebraic structures) with these properties.
Notably the prime fields are elementary on the construction of cryptographic algorithms.

In this chapter, we review concepts about algebraic structures and algorithms for arith-
metic operations over prime fields. We propose implementation techniques for performing
operations efficiently and using regular execution algorithms. We cover special families of
prime moduli identifying the following study cases:

• p25519 = 2255 − 19,

• p384 = 2384 − 2128 − 296 + 232 − 1,

• p448 = 2448 − 2224 − 1,

• p751 = 23723239 − 1 and more generally primes of the form p = 2ab− 1.

Each case is of interest in the recent advances of elliptic curve cryptography.
As shown in the previous chapter, recent computer architectures have included several

layers of hardware optimizations promoting SIMD processing. In this chapter, we describe
how to use these hardware extensions for executing prime field operations in parallel so
to achieve a better utilization of the computer resources.

3.1 Algebraic Structures

It is said that a non-empty set of elements possesses an algebraic structure, if it is possible
to define arithmetic operations on the elements of the set. Different algebraic structures
emerge by imposing certain conditions on the set or on the properties of the operations.
Three algebraic structures are fundamental for our purposes. We reproduce their defini-
tions as given in a classic book about cryptography.

Definition 3.1.1 (§2.162 of [190]). A group (G, ⋆) consists of a set G with a binary
operation ⋆ : G×G→ G satisfying the following properties:
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1. The group operation is associative: a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all a, b, c ∈ G.

2. There exists an element 1 ∈ G, known as the identity element, such that a ⋆ 1 =

1 ⋆ a = a for all a ∈ G.

3. For all a ∈ G there exists an element a−1 ∈ G, called the inverse of a, such that
a ⋆ a−1 = a−1 ⋆ a = 1.

The group is abelian (or commutative) if the binary operation is commutative, i.e.,
a ⋆ b = b ⋆ a for all a, b ∈ G. If this is the case, it is common to refer to the group as an
additive group, its group operation as addition (denoted by +), its identity element is 0,
and the inverse of an element a is denoted as −a.

The order of the group, denoted as #G, is the equal to the cardinality (or the number
of elements) of G. However, the term order has a different meaning when is applied to
the elements of G. Hence, the order of an element a ∈ G is the least positive integer
k = ord(a) such that ak = 1 provided that k exists, otherwise the order is ∞. For any
a ∈ G, the set of powers of a generates a cyclic group H = ⟨a⟩ of order #H = ord(a),
which is a subgroup of G. Lagrange’s theorem states that for every subgroup H of G, it
holds that the order of H divides the order of G.

There exist other algebraic structures that consider more than one binary operation.

Definition 3.1.2 (§2.175 of [190]). A ring (R,+,×) consists of a set R together with
two binary operations, denoted as + (addition) and × (multiplication), satisfying:

1. (R,+) is an abelian group with identity denoted by 0.

2. The operation × is associative: a× (b× c) = (a× b)× c, for all a, b, c ∈ R.

3. There exists a multiplicative identity denoted by 1 such that 1 ̸= 0 and a × 1 =

1× a = a for all a ∈ R.

4. The operation × is distributive over +, i.e., a × (b + c) = (a × b) + (a × c) and
(b+ c)× a = (b× a) + (c× a) for all a, b, c ∈ R.

The ring is commutative if a× b = b× a for all a, b ∈ R. An element a ∈ R is called
a unit or an invertible element if there exists an element b ∈ R such that a× b = 1. If it
exists, b is called the multiplicative inverse of a and is denoted by b = a−1.

A subgroup I of R is called a left ideal of R if for all r ∈ R and all x ∈ I, it holds
that rx ∈ I. A right ideal is defined such that xr ∈ I. If I is both a left ideal and a right
ideal, then it is called a two-sided ideal, or simply an ideal of R. An ideal I is maximal if
for any ideal J of R with I ⊆ J , either J = I or J = R.

The fact that some elements of the ring have no multiplicative inverse allows identifying
another algebraic structure.

Definition 3.1.3 (§2.181 of [190]). A field is a commutative ring (F,+,×) in which
every non-zero element has multiplicative inverse. The characteristic of a field, denoted
as char(F ), is the least integer k ≥ 1 such that

∑︁k
i=1 1 = 0 (if the sum is never equal to

0, the characteristic of the field is 0).
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Fields that have a finite number of elements are also known as Galois fields, named
in honor of Évariste Galois. The number of elements in the field is called its order and
is equal to pm, where p is a prime number and m ≥ 1. A prime field is when m = 1.
Conversely, for any prime power pm, there exists a unique (up to isomorphism) finite field
of order pm, which is unambiguously denoted as Fpm or GF(pm). A subset E of a field F

is a subfield of F if E is itself a field with the same binary operations. Hence, F is an
extension field of E.

We describe some instances of algebraic structures that are of particular interest.

3.1.1 The Ring of Integers

The integer numbers (Z) form a ring structure using the conventional operations of addi-
tion (+) and multiplication (×). We describe the calculation of these operations in terms
of bit operations restricting to the positive integers.

Representation

The binary representation of a ∈ Z+ is the unique sequence of bits (bk−1, . . . , b0)2 such
that a =

∑︁k−1
i=0 bi2

i, where k is the size (in bits) of a defined as

|a| =
{︄
1, if a = 0,

⌊log2(a)⌋+ 1, otherwise.
(3.1.4)

It is said that a is a k-bit integer if |a| = k.
Let n ≥ k = |a|, the n-bit representation of a is defined as its binary representation

prefixed by n− k leading zeros, i.e., (bn−1, . . . , b0)2 setting bi = 0, for |a| ≤ i < n.

Integer Addition

The integer addition can be defined in terms of bit operations. Let x and y be integers
of one bit size, then x+ y is represented by two bits, the addition bit s and the (output)
carry bit c such that x + y = 2c + s. More generally, the addition with (an input) carry
is performed using a full adder circuit defined as

FullAdder : {0, 1}3 → {0, 1}2

(x, y, cin) ↦→ (cout, s) =
(︂
(x ∧ y)⊕ (cin ∧ (x⊕ y)), x⊕ y ⊕ cin

)︂
.

(3.1.5)

If cout produced by a full adder is fed as the cin of another full adder, a two-bit full adder
is obtained. Using this strategy repeatedly, one can calculate additions of integers of
arbitrary size as shown in Algorithm 3.1.6.

Observe that Algorithm 3.1.6 could return a number of n+1 bits, which happens, for
example, when adding two n-bit integers, and thus, the n-th bit of their sum is non-zero.
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Algorithm 3.1.6 Integer addition using full adder circuit.
Input: (an−1, . . . , a0)2 and (bn−1, . . . , b0)2, the n-bit representation of integers a, b ≥ 0

such that |a|, |b| ≤ n.
Output: (cn, . . . , c0)2, the (n+ 1)-bit representation of a+ b.
1: z ← 0
2: for i← 0 to n− 1 do
3: (z, ci)← FullAdder(ai, bi, z)
4: end for
5: cn ← z
6: return (cn, . . . , c0)2

Integer Subtraction

Analogously to addition, integer subtraction can be defined using bit operations. A sub-
traction with borrow is performed using a full subtractor circuit defined as

FullSubtractor : {0, 1}3 → {0, 1}2

(x, y, bin) ↦→ (bout, d) =
(︂
(¬x ∧ y)⊕ (bin ∧ (¬x⊕ y)), x⊕ y ⊕ bin

)︂
.

(3.1.7)
This circuit calculates x−y−bin = 2bout+d, where the resulting value must be interpreted
in two’s complement. Under this representation, bout is non-zero if the result is negative.
If the borrowed bits are chained between circuits, one can subtract integers of arbitrary
size as shown in Algorithm 3.1.8.

Algorithm 3.1.8 Integer subtraction using full subtractor circuit.
Input: (an−1, . . . , a0)2 and (bn−1, . . . , b0)2, the n-bit representation of integers a, b ≥ 0

such that |a|, |b| ≤ n.
Output: (cn, . . . , c0)2, the (n+ 1)-bit representation of a− b.
1: z ← 0
2: for i← 0 to n− 1 do
3: (z, ci)← FullSubtractor(ai, bi, z)
4: end for
5: cn ← z
6: return (cn, . . . , c0)2

Integer Multiplication

Let a and b be n-bit integers, their product c = a× b is calculated as

a× b = a×
(︄

n−1∑︂
j=0

bj2
j

)︄
=

n−1∑︂
j=0

(a× bj)2
j

=
n−1∑︂
j=0

n−1∑︂
i=0

ai2
i × bj2

j =
n−1∑︂
j=0

n−1∑︂
i=0

(ai × bj)2
i+j =

∑︂
k=i+j

ck2
k .

(3.1.9)

The last equality follows since the product a× b represented in binary is (c2n−2, . . . , c0)2,
where ck =

∑︁
k=i+j ai × bj, for all 0 ≤ i, j < n.
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Well-known algorithms for calculating integer multiplications have quadratic time-
complexity on the size of the operands. That is, calculating the product of n-bit in-
tegers takes O(n2) operations. Sub-quadratic time-complexity algorithms exist such as
the Karatsuba [168] algorithm. This algorithm takes O(nlog2 3) operations outperforming
quadratic-complexity algorithms for big-enough operands.

Integer Squaring

Calculating squares is a special case of multiplication that occurs when both operands are
equal. Let a be an n-bit integer, a2 is calculated faster than a multiplication as follows

a2 =

(︄
n−1∑︂
j=0

aj2
j

)︄2

=
n−1∑︂
j=0

n−1∑︂
i=0

ai2
i × aj2

j

=
n−1∑︂
i=0

ai
222i + 2

n−2∑︂
i=0

n−1∑︂
j=i+1

(ai × aj)2
i+j .

(3.1.10)

From the last equality, one can derive a method for integer squaring. First, each bit is
squared leading to a partial product, and then, the product of bits with different indexes is
multiplied by two and added to the first calculation. Although squaring and multiplication
have the same complexity, squaring has smaller constants behind the big-O notation, it
requires around one half of the operations of a multiplication, which is something that
implementations usually leverage.

3.1.2 Prime Fields

This section shows how to construct a prime field from the ring of the integer numbers.
Let p be a prime and pZ be a two-sided ideal of Z, which contains all the multiples

of p. The ∼ symbol denotes an equivalence relation between two elements i, j ∈ Z
such that i ∼ j iff i − j ∈ pZ. Thus, the equivalence class of an element a ∈ Z is
[a] = {a + kp : k ∈ Z}. The quotient ring Z/pZ is defined as the set of all equivalence
classes under ∼ and the cardinality of this set is p. Since pZ is a maximal ideal, then
(Z/pZ,+,×) is a finite field, denoted as Fp, of characteristic p, whose binary operations
are defined as +: ([a], [b]) ↦→ [a+ b], and × : ([a], [b]) ↦→ [a× b].

The canonical projection is a function that given a ∈ Z obtains the correspondent
equivalence class [a] ∈ Z/pZ. Any integer belonging to an equivalence class can be used
as the representative of the class; however, usually the representative of [a] is chosen to
be r ∈ [a] that is the unique integer 0 ≤ r < p such that a = kp+ r for k ∈ Z. Note that
r is also the remainder of the division of a by p, which is denoted as r = a mod p. The
reduction modulo p is a projection used to define unique representatives of Fp.

Definition 3.1.11 (Canonical Representatives of Fp). Let Fp = (Z/pZ,+,×) be a prime
field of p elements. The canonical representatives of the elements of Fp are given by the
set of integers {0, 1, . . . , p− 1}, where 0 is the identity element of +, and 1 is the identity
element of ×.
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The canonical representation gives us a first approach to represent and operate prime
field elements. Arithmetic operations in Fp correspond to modular arithmetic with prime
modulus p. In this arithmetic, operations are equal to the conventional integer arithmetic,
but are followed by a reduction modulo p.

There exist several efficient algorithms for reduction modulo p such as the Barret’s [21],
Blakley’s [41], and Montgomery’s [195] methods. All these methods are generic with
respect to an arbitrary modulus. However, simpler algorithms for reduction exists if the
modulus holds certain properties. Section 3.1.2 details families of prime moduli with
faster methods for reduction modulo p.

Prime Field Addition and Subtraction

The addition of a, b ∈ Fp obtains c = a + b ∈ Z and then reduces c modulo p. After
calculating the integer addition, only one of these cases can occur:

1. if c ≥ p, one must subtract p from c,

2. otherwise, c < p and c corresponds to the element c = a+ b ∈ Fp.

Thus, addition in Fp is calculated as an integer addition followed by an integer subtraction
only if the result is greater than p.

For subtractions in Fp, first calculate d = a − b ∈ Z; then d could be either positive,
in which case d = a − b ∈ Fp; or negative, in this case adding p to d gives the canonical
representative.

In both cases, the reduction modulo p is calculated faster than an integer division
since only an extra addition or subtraction was calculated.

On the one hand, these methods, as described above, present an irregular execution
pattern. Note that some extra operations are performed only when the integer operation
gives a result that is not a canonical representative. On the other hand, this irregularity
is easy to handle following secure software development techniques. For example, per-
forming always the extra operations regardless whether or not the result is a canonical
representative, and conditionally selecting the correct result.

Prime Field Multiplication

Prime field multiplications are calculated in two steps: an integer multiplication followed
by a reduction modulo p. However, the reduction modulo p is more complicated because
the size of the integer product is twice as large as the size of the input operands. Thus,
the reduction procedure must be able to handle double-sized inputs. The next section
describes a generic algorithm that calculates reductions modulo p efficiently.

Montgomery Arithmetic

Montgomery [195] showed an efficient method for modular arithmetic that does not require
divisions by arbitrary integers. Instead, all divisions are by powers of two, which are easily
computed with binary operations.
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Montgomery’s method requires that elements of Fp be pre-processed before being
operated. Let R be a positive integer such that gcd(p,R) = 1 and R > p, then given
a ∈ Fp define a = aR mod p. The calculation of additions and subtractions remains as
usual since a±b = aR±bR = (a±b)R = a± b. However, the multiplication a×b = abR2

requires of dividing this product by R to obtain a× b.
Montgomery’s REDC algorithm, shown in Algorithm 3.1.14, calculates a× b from

T = abR2 < Rp. The core operation of REDC is adding a multiple of p to T such that
the result is a multiple of R, i.e., there exists an integer q such that

T + qp = RT ′ . (3.1.12)

Hence, T ′ = (T + qp)/R is an integer congruent to TR−1 mod p . The value of q is derived
from Equation (3.1.12) as

q = (RT ′ − T )/p

= −T/p mod R

= (T mod R)(−p−1 mod R) mod R .

(3.1.13)

It is guaranteed that the second factor exists whenever gcd(p,R) = 1, and this factor
is a constant value for each p. Since 0 ≤ T + qp ≤ 2Rp, the value of T ′ is bounded as
0 ≤ T ′ < 2p. This means that if T ′ ≥ p, subtracting p from T ′ results in T ′ = TR−1 mod p.

Algorithm 3.1.14 Montgomery’s REDC algorithm [195].
Constants: Define R such that R > p and gcd(p,R) = 1. Define p′ = −p−1 mod R.
Input: T , an integer such that 0 ≤ T < Rp.
Output: T ′, an integer such that T ′ = TR−1 mod p.
1: q ← (T mod R)p′ mod R
2: T ′ ← (T + qp)/R
3: if T ′ ≥ p then
4: T ′ ← T ′ − p
5: end if
6: return T ′

Algorithm 3.1.14 requires to calculate integer divisions and residues modulo R; how-
ever, if R is a power of two, these operations are easily performed in the binary represen-
tation. One motivation behind REDC algorithm is calculating divisions by two modulo p.
REDC generalizes this operation when R is a power of two.

REDC has a regular execution pattern except by the last subtraction. To remedy this
issue, Walter [266] proposed a parameter selection that avoids the subtraction when a
series of consecutive multiplications are performed. Using such a parametrization, REDC
algorithm is a suitable choice for calculating reductions modulo p in constant time.

The Montgomery reduction admits different implementation techniques. Some of them
reduce the number of operations performed and others modify the order in which opera-
tions are computed. Some examples of these techniques are: the SOS, FIOS, CIOS, FIPS,
and CIHS methods described by Koç et al. [172], the hybrid scanning technique [137], and
some hybrid variants of the methods presented above [181].
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Multiplicative Inverse

The extended Euclidean algorithm (EEA) for integers can be adapted to calculate mul-
tiplicative inverses. Given a, p ∈ Z, EEA calculates (d, a′, p′) such that d = gcd(a, p) =

aa′ + pp′. Note that if 0 ≤ a < p and p is prime, then gcd(a, p) = aa′ + pp′ = 1, and
reducing this equation modulo p, it follows that aa′ ≡ 1 (mod p) implying that a′ = a−1.
Therefore, EEA can be modified to keep track of a′ (as d and p′ are not required) to
calculate multiplicative inverses in Fp.

Unfortunately, some operations required by EEA are dependent on the size of the
inputs leading to a non-regular execution pattern. Although some countermeasures can
be added to EEA, see for example Bos’ work [44], the implementation effort is elevated.

An alternative way to calculate multiplicative inverses relies on the Fermat’s little
theorem. This theorem states that if p is a prime number then for any integer a, it
holds that ap ≡ a (mod p). Thus, a−1 ≡ ap−2 (mod p), which can be calculated using an
exponentiation by a fixed constant.

In the literature, there are several algorithms that perform exponentiation using a
regular execution pattern, avoiding the vulnerabilities exhibited by EEA. In fact, since
the exponent depends on p, which is usually a public parameter, shorter addition chains
can be used for speeding up this exponentiation.

Itoh and Tsujii [156] introduced an efficient algorithm to calculate inverses in F2m .
Relying on the Lagrange’s theorem, the inverse of a ∈ F2m \ {0} is given as a−1 = a2

m−2.
Itoh-Tsujii’s algorithm performs this exponentiation as a−1 = (αm−1)

2, where αx = a2
x−1

for some positive integer x. The term αm−1 is obtained from the following set of field
elements S = {αc1 , . . . , αcs}, where the sequence (c1, . . . , cs) represents an addition chain
of length s such that c1 = 1 and cs = m−1. The elements of S are obtained constructively
using the rule αci = (αcx)

2cyαcy , where ci = cx + cy for 1 ≤ x, y < i ≤ s. Calculating the
entire set S takes s− 1 field multiplications and cy(s− 1) field squarings. For this reason,
the shorter addition chain for cs = m − 1, the lesser number of elements in the set S,
and the lesser number of operations required. Itoh-Tsujii’s method can also be adapted
to prime fields. The method saves a number of operations when the modulus is close to
a power of two.

Regarding addition chains, Clift [67] provides a list of the lengths of all shortest addi-
tion chains for the integers lesser than 231. Flammenkamp [106] provides an online service
that calculates the shortest addition chain of integers lesser than 227. These tools are
useful for implementing Itoh-Tsujii’s algorithm on prime fields. Once an addition chain is
chosen, the operations of the Itoh-Tsujii method follow a regular execution pattern, which
is a desirable property in secure software development.

Special Families of Moduli

Some cryptographic algorithms offer certain flexibility on selecting of the prime numbers
that define a field. The main restriction is the relation between the security level and the
size of the primes. However, after fulfilling this requirement, prime modulus can be chosen
in such a way that it allows optimizations on arithmetic operations. In this section, we
describe some advantages of well-known families of moduli.
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Montgomery-Friendly Primes. The REDC algorithm performs a reduction modulo
p using a constant value R, and as noted by Montgomery, by setting R as a power of
two, the divisions by R can be performed as bit shifts. However, this is not the only trick
that can be used in this algorithm. Special formats on the prime modulus are commonly
known as Montgomery-friendly primes, since they allow saving some operations in the
REDC algorithm. The following are some examples.

• Optimal prime fields [123]. Assuming that p is represented using w-bit words, the
primes of the form p = u2k + v, such that u, v < 2w and k > 0, are used to reduce
the number of multiplications of the REDC algorithm. The key observation is that
apart of the least- and the most-significant words, the remainder words are equal to
zero, then multiplications by zero can be omitted. This kind of primes were used
for optimizing implementations of elliptic curve algorithms [65,183,274].

• Acar and Shumow [1] presented a set of primes that avoid the calculation and
storage of the constant p′ = −p−1 mod R. Thus, whenever p2 ≡ 1 (mod R) and
gcd(p,R) = 1, then p′ = −p mod R.

• Gueron and Krasnov [132] defined a property that allows to characterize some
Montgomery-friendly primes.

Definition 3.1.15 (k-Montgomery-friendly prime [132, Def. 1] ). Let p be a prime
and k a positive integer, if −p−1 ≡ 1 (mod 2k), then p is a k-Montgomery-friendly
modulus.

Using k-Montgomery-friendly primes saves n word multiplications of REDC algo-
rithm.

• A prime p such that p = 2i3j + 1, for i, j > 0, is known as a Pierpont prime [224].
Similarly, if p = 2i3j − 1, then p is a Pierpont prime of the second kind. The latter
case was also classified in the class 1 by Erdös and Selfridge [138, Def. A18]. It can
be noted that any Pierpont prime p = 2i3j − 1 is also an i-Montgomery-friendly
prime according to Definition 3.1.15. This indicates that if i > w, where w is
the word size of the instruction set architecture, then the Montgomery reduction
can be performed using fewer operations. This fact was also noticed by Bos and
Friedberger [49] using different notation.

The use of these primes enables a faster calculation of the Montgomery’s REDC algorithm.

Mersenne Numbers. The k-th Mersenne number has the form Mk = 2k − 1 for some
positive integer k. As of December 2018, there are known only 51 Mersenne numbers that
have been proved to be primes [272].

Let p be a n-bit Mersenne prime and let a be the product of two n-bit numbers, thus
0 < a < 22n. The operation c = a mod p is performed as the addition c = a0 + a1, where
a0 = a mod 2n and a1 = ⌊a/2n⌋. If c > p, then the same procedure can be applied one
more time. Therefore, the reduction modulo p has linear time-complexity on the size of
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the prime, unlike general reduction algorithms, such as Montgomery REDC algorithm,
which have quadratic time-complexity.

In cryptography, the prime M521 is used to define standardized elliptic curve algo-
rithms. In [5, 121, 246], several optimizations were proposed targeting the arithmetic
operations on FM521 . Also, the prime M128 is used to construct a quadratic extension of
FM128 , which is used to define an elliptic curve called FourQ [77].

Pseudo-Mersenne Numbers. The existence of Mersenne primes is scarce, nonetheless
the primes of the form p = 2n−c, where c is a small number, are abundant. These numbers
are known as pseudo-Mersenne primes and admit fast reduction modulo p as described in
Crandall-Pomerance’s book [79].

Let a be the product of two n-bit numbers, then 0 ≤ a < 22n and the number
d = a mod p can be calculated as d = a0 + a1c, where a0 = a mod 2n and a1 = ⌊a/2n⌋.
After calculating that addition, d could be greater than p; in this case, apply a few times
the same rule on d until obtaining 0 ≤ d < p. This operation has also a linear time
complexity on the size of p, but it is slightly slower than a reduction modulo a Mersenne
prime due to the multiplications by c. The cost of this last multiplication can be reduced
if c is chosen as a small number or as having a low Hamming weight. Also, c can be
chosen as c < 2w, where w is the word size of the instruction set architecture, to save
word multiplications.

Generalized Mersenne Numbers. Solinas [251] showed a family of moduli known as
the generalized Mersenne numbers that admit fast reduction. The modulus p is expressed
as a polynomial f(t) ∈ Z[t], where t = 2k for some integer k.

Let a be the number to be reduced modulo p = f(t), the reduction is performed as
c = a mod p =

∑︁
j Bj2

j where Bj are j linear combinations defined as Bj = b0,ja0 +

b1,ja1 + · · · + bn−1,jan−1 such that bi,j is a bit value and ai are the digits of a in base t.
Using this representation, a search of primes can be performed using several conditions
that ensure the reduction takes a lower number of operations.

Primes of this form are used in standardized elliptic curves [200]. For example, the
prime numbers p192 = 2192−264−1 , p224 = 2224−296−1 , p256 = 2256−2224+2192+296−1 ,
and p384 = 2384 − 2128 − 296 + 232 − 1 were chosen using Solinas’s method.

More recently, Hamburg [141] proposed the use of the prime p448 = 2448 − 2224 − 1 to
perform efficient prime field operations. This number can also be seen as a generalized
Mersenne number by setting t = 2224, thus p448 = f(t) = t2 − t− 1. Observe that one of
the roots of this polynomial is the golden ratio φ.

3.1.3 Extension Fields

Constructing Extension Fields

An extension field is a field that can be constructed from a given field. Similarly to
the construction of prime fields, an extension field can be constructed from a ring and a
maximal ideal on it. The quotient ring of them fulfills the properties of a finite field.



64

Let K be a field of characteristic p and order q = pn for some n > 0. and let K[x] be
the ring of polynomials on variable x and coefficients on K. This ring is the one used to
construct a field of order qm.

First, choose a non-constant monic polynomial f(x) ∈ K[x] of degree m > 1 such that
f(x) be irreducible on K, i.e., f(x) cannot be expressed as a product of non-constant
polynomials of degree lesser than m. Let (f(x)) denote an ideal of K[x] containing all the
polynomials that are multiples of f(x). Hence, there exists an equivalence relation ∼ on
the elements of K[x]. Given g0(x), g1(x) ∈ K[x], g0(x) ∼ g1(x) iff g0(x)− g1(x) ∈ (f(x)).
The equivalence class of g(x) ∈ K[x] is [g(x)] = {g(x) + h(x)f(x) : h(x) ∈ K[x]}. Using
this relation, the quotient ring K[x]/(f(x)) corresponds to the set of equivalence classes
of ∼ and its cardinality is qm.

Since f(x) is irreducible over K and (f(x)) is an ideal maximal of K[x], it follows that
L = (K[x]/(f(x)),+,×) is a field of characteristic p and order qm. The representation of
its elements are all the polynomials of degree lesser that m. Moreover, L is an extension
field, or an extension of the field K, and this relation is denoted as L/K. It is said that
K is the base (or ground) field of L.

Given g(x), h(x) ∈ L, the addition of elements is defined as the addition of polynomials
g(x) + h(x) where the coefficient operations are performed in K. On the other hand, the
product of elements in L is defined as the polynomial r(x) = g(x)× h(x) mod f(x) such
that 0 ≤ deg(r(x)) < m.

A Quadratic Extension Field

We exemplify the construction of an extension field of order p2 from a field of prime order
p. We denote the quadratic extension of Fp as Fp2 . This extension has been used in the
GLS method [111] and the FourQ curve [77], and more recently, it has also been used in
the supersingular isogeny setting.

An extension field of order p2 can be efficiently constructed if p ≡ 3 (mod 4) as follows.
Let Fp[τ ] be the ring of polynomials in τ with coefficients on Fp and f(τ) = τ 2+1 ∈ Fp[τ ].
Note that τ 2 + 1 can be factored as

(︁
τ −
√
−1
)︁ (︁

τ +
√
−1
)︁
; however, −1 is a quadratic

non-residue on Fp indicating that
√
−1 /∈ Fp; hence, τ 2 +1 is irreducible over Fp. Finally,

since (τ 2+1) is a maximal ideal, this results on that Fp2 = (Fp[τ ]/(τ
2+1),+,×) is a field

of order p2.
The elements of Fp2 are represented by polynomials a1τ + a0 such that a0, a1 ∈ Fp.

Let a1τ + a0 and b1τ + b0 two elements of Fp2 , addition is calculated as

(a1τ + a0) + (b1τ + b0) = (a1 + b1)τ + (a0 + b0) , (3.1.16)

and subtraction as

(a1τ + a0)− (b1τ + b0) = (a1 − b1)τ + (a0 − b0) . (3.1.17)

Hence, to calculate one addition (subtraction) on Fp2 are required two additions (sub-
tractions) on the base field Fp. The multiplication of elements of Fp2 is performed as a
polynomial multiplication followed by a reduction modulo τ 2 + 1. The polynomial multi-
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plication (a1τ+a0)×(b1τ+b0) is equal to a1b1τ
2+(a1b0+a0b1)τ+a0b0 ∈ Fp[τ ]. Note that

τ 2 ≡ −1 (mod τ 2 +1), so we obtain (a1b0 + a0b1)τ + (a0b0− a1b1) ∈ Fp2 . As can be seen,
calculating a multiplication in the extension field requires four base field multiplications.
However, it can be reduced to three multiplications using the Karatsuba identity as

(a1τ + a0)× (b1τ + b0) = [(a1 + a0)(b1 + b0)− a1b1 − a0b0] τ + (a1b1 − a0b0) . (3.1.18)

The square of a1τ + a0 ∈ Fp2 is calculated as

(a1τ + a0)
2 = (2a0a1) τ +

(︁
a0

2 − a1
2
)︁
,

= (2a0a1)τ + (a0 + a1)(a0 − a1) .
(3.1.19)

The first formula requires two squarings and one multiplication on the base field, and
the second one takes two multiplications on the base field. The choice of the formula
depends on the cost of multiplying versus squaring. Finally, the multiplicative inverse of
a1τ + a0 ∈ Fp2 \ {0} is given as

(a1τ + a0)
−1 =

−a1
a02 + a12

τ +
a0

a02 + a12
. (3.1.20)

This operation takes two squares, two multiplications, and one inverse on the base field.

3.2 Operations over Prime Field Elements

3.2.1 Machine Representation of Integers

The size of the numbers used in cryptographic algorithms is around a few hundreds of
bits; nonetheless, current processors operate over integers of 64 bits. Because of that,
multi-precision software libraries are used to handle numbers of that magnitude. For
example, the GNU Multi-Precision (GMP) [122] library is one of the most used software
libraries that supports operations over arbitrary-precision integers. It is common that
cryptographic algorithms fix a set of parameters for a given security level. Under this
assumption, developing a multi-precision software library can be specialized to operate
over numbers of a fixed size enabling a number of optimizations.

We now describe two representations suitable for operating large integer numbers.

Polynomial Representation

Multi-precision libraries habitually use a representation known as the radix-2w represen-
tation, which splits integers into digits of w bits, where w is the size of the words operated
by the instruction set architecture.

Definition 3.2.1 (Polynomial Representation, or radix-2w). Let w be the processor’s
word size and a be an n-bit positive integer, the polynomial representation of a is a
sequence of integers A = (al−1, . . . , a0)2w such that a =

∑︁l−1
i=0 ai2

iw and 0 ≤ ai < 2w,
where l = ⌈n/w⌉.
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One advantage of this representation is that elements require a compact memory-
footprint, since the digits of sequence can be stored using l registers of w bits. This
compact representation is convenient when large integers must be stored or transmitted.

In the literature, some authors use interchangeably the following terms for referring
to the elements of a sequence: digits, words, chunks, or limbs. In this work, we decided to
use the term digits because we are restricting to use only positive integers, and to use the
term word for referring to the data stored in a machine register. Algorithm 3.2.2 shows
steps to follow for obtaining the polynomial representation of an integer.

Algorithm 3.2.2 Obtaining the radix-2w representation of an integer.
Input: (a, w), where a is an n-bit positive integer and w is a positive integer.
Output: (al−1, . . . , a0) is the polynomial representation of a.
1: l← ⌈n/w⌉
2: for i← 0 to l − 1 do
3: ai ← a mod 2w

4: a← ⌊a/2w⌋
5: end for
6: return (al−1, . . . , a0)

Generalized Polynomial Representation

One possible generalization of the radix-2w representation is to consider w as a non-integer
number. This modification brings a representation which is formally specified as follows.

Definition 3.2.3 (Generalized Polynomial Representation). Let w be the processor’s
word size and a be an n-bit positive integer, given ρ ∈ R+ such that 0 < ρ ≤ w, the
generalized polynomial representation of a is a sequence of integers A = (al−1, . . . , a0)

such that a =
∑︁l−1

i=0 ai2
⌈iρ⌉ , and 0 ≤ ai < 2βi , where l = ⌈n/ρ⌉, and βi = ⌈(i+1)ρ⌉−⌈iρ⌉.

We want to highlight some relevant properties of the generalized polynomial represen-
tation. First, observe that the polynomial representation is a special case setting ρ = w.
When ρ < w, the maximum size of the digits (βi) reduces while the number of digits (l)
increases in comparison to the polynomial representation. For this reason, the selection
of ρ introduces a trade-off between the number of digits and the maximum size of digits.

Additionally, when ρ is not an integer, the maximum size of digits (βi) is not uniform
across the sequence because the size of the i-th digit can be as large as βi bits. Conversely
to the polynomial representation, in which the maximum size of digits is 2w.

A sequence of l digits can be stored in l registers of w bits. Note that by storing
the digit ai, it only uses the βi least-significant bits of a w-bit register, meanwhile the
remainder w− βi bits are set to 0. When ρ = w, registers have no extra room for storing
more bits, then it is said that the digit saturates the register; and this is one reason for
which the polynomial representation is also known as a saturated representation. On the
other hand, when ρ < w, the digits do not populate the whole register, and this case
is commonly known as an unsaturated representation. Algorithm 3.2.4 shows steps for
obtaining the generalized polynomial representation of an integer.
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Algorithm 3.2.4 Obtaining the generalized polynomial representation of an integer.
Input: (a, ρ), where a is an n-bit positive integer and ρ ∈ R+.
Output: (al−1, . . . , a0) is the generalized polynomial representation of a.
1: l← ⌈n/ρ⌉
2: for i← 0 to l − 1 do
3: βi ← ⌈(i+ 1)ρ⌉ − ⌈iρ⌉
4: ai ← a mod 2βi

5: a← ⌊a/2βi⌋
6: end for
7: return (al−1, . . . , a0)

Redundant Representation

From the generalized polynomial representation, we derive a redundant representation,
in which integers are represented in a non-unique way. Note that by storing digits into
w-bit registers, digits can safely grow up to 2w − 1 without overflowing the register. If
this behavior is allowed, the maximum size of digits increases from βi to 2w, and as a
result, the integers could have more than one sequence of digits that represents them. We
formally state this idea defining an equivalence relation between sequences of digits.

Given ρ ∈ R+, and let A = (ala−1, . . . , a0) and B = (blb−1, . . . , b0), be two sequences
of digits of length la and lb, respectively, such that 0 ≤ ai, bj < 2w for 0 ≤ i < la and
0 ≤ j < lb. Note that we relax the condition about the digits (i.e., 0 ≤ ai, bj < 2w) in
contrast to the generalized polynomial representation, in which digits must be smaller
than 2βi . Then, it is easy to prove that ∼ is an equivalence relation such that A ∼ B iff
there exists a positive integer k such that

la−1∑︂
i=0

ai2
⌈iρ⌉ = k =

lb−1∑︂
j=0

bj2
⌈jρ⌉ . (3.2.5)

Thus, it can be said that A and B are equivalent representations of k. This equivalence
relation allows us to define more formally a redundant representation as follows.

Definition 3.2.6 (Redundant Representation). Given ρ ∈ R+, the redundant represen-
tation of a refers to any sequence of positive integers that belongs to the equivalence
class [A], where A = (al−1, . . . , a0) is the generalized polynomial representation of a. A
canonical representative of an equivalence class is the sequence of digits that holds the
conditions of the generalized polynomial representation.

Example 3.2.7. Let ρ = 3 and w = 4 (informally, this means registers can store hex-
adecimal digits while we work on a redundant octal radix), it can be seen that A = (2, 7)

and B = (1, 15) are equivalent sequences as both evaluate to 23 = 2×23+7 = 1×23+15.

An advantage of using a redundant representation is that digits can grow a few bits
without overflowing registers. For instance, in a saturated arithmetic, digits are likely to
overflow a register after an addition operation due to the carry bit generation. However,
this is not the case when working on a redundant, unsaturated representation, since the
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extra bits in each register support a bounded increment of the digit’s size. This slight
difference enables a parallel calculation of operations, as we will show later in the section
devoted for arithmetic operations. Table 3.2.8 shows a summary of the parameters used
by the representations described above.

Table 3.2.8: Comparison of machine representations of n-bit integers.

Representation l Maximum size of digits Unique
(digits) (bits) Representative

Binary n 1 Yes
Hexadecimal ⌈n/16⌉ 16 Yes
Polynomial or radix-2w ⌈n/w⌉ w Yes
Generalized Polynomial ⌈n/ρ⌉ max0≤i<l βi Yes
Redundant ⌈n/ρ⌉ w No

The length of a sequence is the number of digits in a sequence. But, the size of a sequence
A = (al−1, . . . , a0) is given by the size of its largest digit, and is defined as

|A| = max(|al−1|, . . . , |a0|) . (3.2.9)

Proposition 3.2.10. If A is the generalized representation of an integer, then |A| ≤ ⌈ρ⌉.

Proof. From Equation (3.2.9), it is known that |A| = max(|ai|) ≤ max(βi) for 0 ≤ i < l

and from Definition 3.2.3, we have βi = ⌈(i + 1)ρ⌉ − ⌈iρ⌉; then, we must find an upper
bound for βi. We start with this fact

⌈iρ⌉+ ⌈ρ⌉ − 1 ≤ ⌈(i+ 1)ρ⌉ ≤ ⌈iρ⌉+ ⌈ρ⌉ . (3.2.11)

Then, subtracting ⌈iρ⌉ to this inequality, we have ⌈ρ⌉ − 1 ≤ βi ≤ ⌈ρ⌉ , which indicates
that for any 0 ≤ i < l, the value of βi ≤ ⌈ρ⌉, which implies |A| ≤ ⌈ρ⌉.

3.2.2 Operations using Polynomial Representation

This section describes how to perform arithmetic operations over large integer numbers
using a polynomial representation.

Addition

The computer architecture has an instruction, called ADC, that performs integer addition
with carry of w-bit integers, i.e., given a, b two w-bit and a bit z the ADC instruction
calculates (x, c)← ADC(a, b, z), where c = a+ b is a w-bit integer and x is the carry bit.

The ADC instruction is used to add sequences of digits following Algorithm 3.2.12.
This algorithm exhibits inherent sequential execution, since the digit ci+1 depends on the
carry bit produced by the addition of ai and bi. Hence, the carry bit z introduces a
loop-carried dependency that limits the parallel execution of additions.
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Algorithm 3.2.12 Integer Addition using Polynomial Representation.
Input: A and B, two sequences of digits of length l.
Output: C and z, a sequence of digits of length l, such that C = A + B and z is the

carry bit.
1: z ← 0
2: for i← 0 to l − 1 do
3: (z, ci)← ADC(ai, bi, z)
4: end for
5: return C = (c0, . . . , cl−1) and z

Multiplication

Algorithm 3.2.13 shows the operand-scanning method to multiply integers in a polynomial
representation. The multiplication of w-bit integers, is denoted as (x, y) ← a × b, where
x and y represent, respectively, the w most- and least-significant bits of a× b.

Algorithm 3.2.13 Integer Multiplication using Polynomial Representation (operand
scanning method).
Input: A and B, two sequences of digits of length l.
Output: C, a sequence of digits of length 2l, such that C = A×B.
1: z ← 0
2: for j ← 0 to l − 1 do
3: (x, y)← a0 × bj
4: cj ← y + z
5: z ← x
6: end for
7: cl ← z
8: for i← 1 to l − 1 do
9: z ← 0

10: for j ← 0 to l − 1 do
11: (x, y)← ai × bj
12: ci+j ← ci+j + y + z
13: z ← x
14: end for
15: ci+l ← z
16: end for
17: return C = (c0, . . . , c2l−1)

This algorithm is known as the operand-scanning method because the digits of B

are scanned sequentially whereas one digit of A is fixed. Note that the internal loop of
Algorithm 3.2.13 calculates one multiplication and two additions, one of these additions
is used to propagate the highest part of the previous product and the second one is used
to accumulate the product into the output register. Therefore, Algorithm 3.2.13 requires
l2 digit multiplications and 2l2 − l digit additions to multiply two sequences of length l.

Other multiplication techniques exist. The product-scanning technique also known as
the Comba multiplier [69], the operand-caching technique [154], the consecutive operand-
caching technique [242], the full operand-caching technique [243], and the reverse product
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scanning [182]. These methods target different optimization goals, for example, for re-
ducing the number of digit additions or the number of load and stores, or for improving
the usage of registers. However, all of them calculates l2 digit multiplications. Unless a
distinction is needed, we refer to any of these methods as quadratic complexity algorithms.

3.2.3 Operations using a Redundant Representation

This section shows how to calculate arithmetic operations using a redundant representa-
tion of integers specified in Definition 3.2.6.

Addition

Let A and B be redundant sequences, the addition C = A + B is performed digit-by-
digit following Algorithm 3.2.14. An advantage of this algorithm is that the digits of C
are calculated without dependencies between digits, unlike the addition of sequences in
the polynomial representation. Thus, the addition of integers exhibits a larger degree of
parallelism by using a redundant representation.

Algorithm 3.2.14 Integer Addition using Redundant Representation.
Input: A and B, two sequences of digits of length l, such that 0 ≤ |A|, |B| < w.
Output: C, a sequence of digits of length l, such that C = A+B and 0 ≤ |C| ≤ w.
1: for i← 0 to l − 1 do
2: (x, ci)← ADC(ai, bi, 0) = ai + bi
3: end for
4: return C = (cl−1, . . . , c0)

Beware that this algorithm restricts the size of the input operands to be strictly lesser
than w bits, which ensures that x = 0, i.e., the carry bit produced by the ADC instruction
is always equal to 0, and because of that, it can be safely discarded. On the other
hand, if the size of the input sequences is w, then, x = 1 for some i; and if this occurs,
Algorithm 3.2.14 will fail because the carry bit must be propagated to the next digit,
which is a task that is not performed by it.

The following proposition can be used to find the maximum the number of consecutive
digit additions that can be performed before overflowing a register.

Proposition 3.2.15. Given an integer n ∈ Z+, let a be an integer such that |a| = n and
define c =

∑︁2k

1 a, then |c| = n+ k bits for an integer k ≥ 0.

Proof. We want to prove that the addition of 2k integers of n bits results in a number of
n + k bits for k ≥ 0. Note that c = 2ka, then |c| = ⌊log2(2ka)⌋ + 1 = ⌊k + log2(a)⌋ + 1,
and since k is integer then |c| = k + ⌊log2(a)⌋+ 1 = n+ k as claimed.

Assume that A is a sequence such that |A| ≤ ⌈ρ⌉, then according to Proposition 3.2.15,
A can be added with itself 2k − 1 times, where k = w − ⌈ρ⌉, without overflowing the
w-bit registers. This result is relevant since it tells us that for each bit added in the
extra room of an unsaturated representation, the number of consecutive additions using
Algorithm 3.2.14 is doubled. Hence, if a high-level operation requires of many consecutive
additions, one can reduce the value of ρ for supporting this workload.
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Multiplication

The objective of this section is to explain how to calculate integer multiplications avoiding
any carry propagation or overflowing. To achieve these properties, one must guarantee
certain bounds on the size of input operands and registers. This approach differs from the
calculation performed by Algorithm 3.2.13, which splits digit products and accumulates
each part in separated digits. Conversely, in this setting, digit products are accumu-
lated without dependencies, which increases the degree of parallelism of multiplications.
We now describe a procedure we followed to derive a set of parameters and an integer
multiplication method that hold these requirements.

Given two sequences A and B of length l, the sequence C = A×B = (c2l−2, . . . , c0) is
calculated as

ci+j =
l−1∑︂
j=0

l−1∑︂
i=0

ai × bj . (3.2.16)

The first restriction we impose to calculate this operation is that the digits of C must fit in
w-bit registers, because this avoids the propagation of bits between digits during integer
multiplication. As a consequence, one must guarantee that the registers have enough
space to accumulate double-sized digit products. To that end, one can reduce the size of
input operands. So we want to find tighter bounds on the size of operands that allows us
to precisely determine the capacity of registers for performing this calculation.

We want to determine the size of the sequence C = A×B assuming that |A|, |B| ≤ ⌈ρ⌉.
First, we must know the size of each digit in the products, which is given by the following
proposition that bounds the size of the product of two integers. With this information,
we can calculate the size of the digits of C.

Proposition 3.2.17. If a and b are positive integers, then it follows that the size of a× b

is bounded as |a|+ |b| − 1 ≤ |a× b| ≤ |a|+ |b|.
Proof. From Equation (3.1.4) we have

|a× b| = ⌊log2(a× b)⌋+ 1 = ⌊log2(a) + log2(b)⌋+ 1 , (3.2.18)

then, it is known that ⌊x⌋ + ⌊y⌋ ≤ ⌊x + y⌋ ≤ ⌊x⌋ + ⌊y⌋ + 1 is valid for x, y ∈ R; so, we
can apply this relation to obtain

⌊log2(a)⌋+ ⌊log2(b)⌋ ≤ ⌊log2(a) + log2(b)⌋ ≤ ⌊log2(a)⌋+ ⌊log2(b)⌋+ 1 ; (3.2.19)

finally, adding one and using Equation (3.1.4), it follows that

|a|+ |b| − 1 ≤ |a× b| ≤ |a|+ |b| , (3.2.20)

which proves the proposition.

With this relation, we know the size of each digit product is bounded as |ai×bj| ≤ 2⌈ρ⌉.
Recall that the digits of C are generated by accumulating some of these digit products;
in fact, cl−1 is the digit that accumulates more products, since there are l pairs (i, j) that
hold i+ j = l − 1. Let’s calculate the size of cl−1 which gives us the size of C.
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The digit cl−1 accumulates l digit products. From Proposition 3.2.15, we know that
adding 2k integers of n bits produces an integer of n+k bits. Then, if we set k = ⌊log2(l)⌋,
we have that |cl−1| = 2⌈ρ⌉+ k, and finally, we can conclude that |C| ≤ 2⌈ρ⌉+ |l| − 1.

Finally, we want to find a tight bound for ρ assuming that the digits of C are stored
in registers of w bits, i.e., |C| ≤ w. Using the previous result, the following relation gives
us such a bound

⌈ρ⌉ ≤ w − |l|+ 1

2
. (3.2.21)

This relation is a strong condition used to choose the value of ρ, otherwise, a loss of
precision or overflowing can be experienced.

Another condition for the value of ρ comes from the instruction set architecture.
Assume that w′ is an integer that represents the size of the integer multiplier available in
the instruction set architecture, i.e., the multiplication instruction calculates the product
of w′-bit integers. Usually, w′ = w in most architectures; however, others could have a
smaller multiplier, i.e., w′ ≤ w. For instance, in AVX2 most of the arithmetic operations
can be performed for 64 bit words, except for multiplications, which calculates products of
32 bits; thus, w′ = 32 < 64 = w. This micro-architectural issue introduces the following
condition on the value of ρ, specifically

⌈ρ⌉ < w′ ≤ w . (3.2.22)

Therefore, the implementation of integer multiplications using redundant representation
must select a value of ρ that satisfies bounds given in Equations (3.2.21) and (3.2.22).
With these conditions at hand, we present Algorithm 3.2.23 showing the operand-scanning
method to calculate the product of two sequences of length l.

Algorithm 3.2.23 Integer Multiplication using Redundant Representation.
Input: A and B, two sequences of digits of length l and size |A|, |B| ≤ ⌈ρ⌉.
Output: C = A×B, a sequence of digits of length 2l− 1 and size |C| ≤ 2⌈ρ⌉+ |l| − 1.
1: for i← 0 to 2l − 2 do
2: ci ← 0
3: end for
4: for i← 0 to l − 1 do
5: for j ← 0 to l − 1 do
6: ci+j ← ci+j + ai × bj
7: end for
8: end for
9: return C = (c2l−2, . . . , c0)

Karatsuba Multiplication

The Karatsuba algorithm [168] is a divide and conquer strategy for multiplying poly-
nomials of degree 2n at the cost of three polynomial multiplications of degree n plus
some polynomial additions. We apply the Karatsuba algorithm to multiply sequences
of digits as reduces the total number of digit multiplications. Given A = (al−1, . . . , a0)
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and B = (bl−1, . . . , b0), define n = ⌈l/2⌉ and A1 = (al−1, . . . , an), A0 = (an−1, . . . , a0),
B1 = (bl−1, . . . , bn), and B0 = (bn−1, . . . , b0); the sequence C = A×B is calculated as

X = A0 ×B0 ,

Y = A1 ×B1 ,

Z = (A0 + A1)× (B0 +B1) ,

C = X + 2n(Z −X − Y ) + 22nY .

(3.2.24)

The last equality is also known as the Karatsuba identity. One can apply Karatsuba mul-
tiplication to calculate X, Y , and Z recursively. Although the recursion can continue until
reaching sequences of length one, it usually stops earlier at a point in which multiplying
short-length sequences is performed faster with a different method.

Bernstein [25] observed that some additions can be saved during the recombination of
products. The refined Karatsuba identity gives an alternate way for calculating C from
X, Y , and Z as

C = (1− 2n)(X − 2nY ) + 2nZ . (3.2.25)

The idea is to calculate X−2nY first, and then add it to the first position and subtract it
from n-th position, and then add Z in the n-th position to produce the output sequence.

Algorithm 3.2.26 shows how to multiply sequences of digits using the Karatsuba
method together with the refined identity. We use this algorithm when l is (close to)
a power of two.

Algorithm 3.2.26 Karatsuba Algorithm for Integer Multiplication using Redundant
Representation.
Input: A and B, two sequences of digits of length l and size |A|, |B| ≤ ⌈ρ⌉.
Output: C = A×B, a sequence of digits of length 2l and size |C| ≤ 2⌈ρ⌉+ |l| − 1.
1: n← ⌈l/2⌉
2: A1 ← (al−1, . . . , an)
3: A0 ← (an−1, . . . , a0)
4: B1 ← (bl−1, . . . , bn)
5: B0 ← (bn−1, . . . , b0)
6: X ← A0 ×B0

7: Y ← A1 ×B1

8: Z ← (A0 + A1)× (B0 +B1)
9: for i← 0 to n− 1 do

10: ri ← xi+n − yi
11: ci ← xi

12: ci+n ← ri − xi + zi
13: ci+2n ← yi+n − ri
14: ci+3n ← yi+n

15: end for
16: return C = (c2l−1, . . . , c0)
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Digit Size Reduction

Suppose we want to calculate A × B × C. To do that, calculate D = A × B using
Algorithm 3.2.23; however, one cannot proceed to multiply D×C using Algorithm 3.2.23
since |D| > ⌈ρ⌉. Thus, there is a need of an operation that shortens the size of each digit
without increasing the number of digits of a sequence. In other words, we must be able
to find an equivalent sequence D′, such that |D′| ≤ ⌈ρ⌉, so we can multiply D′ × C with
Algorithm 3.2.23 to get the final result.

Definition 3.2.27 (Digit Size Reduction). Given a sequence A of length l such that
|A| ≤ w, the digit size reduction of A, denoted as dsr(A), derives an equivalent sequence
A′ of length l such that A ∼ A′ and |A′| ≤ ⌈ρ⌉.

The in-place, sequential algorithm for digit size reduction of A works as follows. Ini-
tially, the first digit a0 is split in two parts, the first part contains the β0 (cf. Defini-
tion 3.2.3) least-significant bits of a0, and the second part has the remainder bits. Then,
a0 is updated with the first part, and the second part is added to a1. This process is
commonly known as a propagation of bits, in which the most-significant bits of one digit
are added to the next significant digit. After propagating a0, this operation is performed
to the remainder digits in increasing index order. Note that the last digit will produce
a number z2⌈lρ⌉, for some integer z, that must be reduced modulo p and added to the
sequence A′. Algorithm 3.2.28 shows the steps to follow for digit size reduction.

Algorithm 3.2.28 Digit Size Reduction (sequential).
Input: A, a sequence of digits of length l such that |A| ≤ w.
Output: C = dsr(A), a sequence of digits of length l such that C ∼ A and |C| ≤ ⌈ρ⌉.
1: C ← A
2: z ← 0
3: for i← 0 to l − 1 do
4: βi ← ⌈(i+ 1)ρ⌉ − ⌈iρ⌉
5: ci ← ci + z
6: z ← ⌊ci/2βi⌋
7: ci ← ci mod 2βi

8: end for
9: Z ← GenPolyRepr(z2⌈lρ⌉ mod p) //Algorithm 3.2.4

10: C ← C + Z
11: return C = (cl−1, . . . , c0)

In lines 8-9 of Algorithm 3.2.28, the value z2⌈lρ⌉ is reduced modulo p and added to
the output sequence. This task is efficiently accomplished if the prime modulus has a
special form that allows fast reduction. Also, for efficiency purposes, it is desirable that
the reduction modulo p can be performed using a redundant representation.

Algorithm 3.2.28 exhibits sequential execution since there is a loop-carried dependency
that avoids a parallel execution. Nonetheless, there exist alternative implementations of
digit size reduction. For example, Algorithm 3.2.29 shows how to propagate bits inde-
pendently removing the loop-carried dependency. This change increases the degree of
parallelism of this operation enabling a parallel execution.
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Algorithm 3.2.29 Digit Size Reduction (parallel).
Input: A, a sequence of digits of length l such that |A| ≤ k ≤ w for some integer k.
Output: C = dsr(A), a sequence of digits of length l such that C ∼ A and |C| ≤

max(⌈ρ⌉, ⌈k − ρ⌉) + 1.
1: for i← 0 to l − 1 do
2: βi ← ⌈(i+ 1)ρ⌉ − ⌈iρ⌉
3: xi ← ai mod 2βi

4: yi ← ⌊ai/2βi⌋
5: end for
6: c0 ← x0

7: for i← 1 to l − 1 do
8: ci ← xi + yi−1

9: end for
10: Z ← GenPolyRepr(yl−12

⌈lρ⌉ mod p) //Algorithm 3.2.4
11: C ← C + Z
12: return C = (cl−1, . . . , c0)

Although both methods reduce the size of digits, one of them offers a tighter bound
on the size of the output sequence. Both algorithms take a sequence A such that |A| ≤ k,
where ⌈ρ⌉ < k ≤ w. On the one hand, Algorithm 3.2.28 calculates C ∼ A such that
|C| ≤ ⌈ρ⌉; this bound is guaranteed because it propagates the most significant bits of every
digit sequentially. On the other hand, the size of sequence calculated by Algorithm 3.2.29
is |C| ≤ max(⌈ρ⌉, ⌈k−ρ⌉)+1, i.e., the size of C depends on the size of the input sequence.

3.3 Parallel Calculation of Arithmetic Operations

High-level operations, such as elliptic curve arithmetic, require to calculate many prime
field operations and it is often the case that some of these operations have no data de-
pendencies between them. This situation motivates the use of parallel execution units to
reduce the execution time of high-level operations. In this section, we describe the case
of parallel prime field arithmetic.

In our study case, we use vector units (described in Section 2.2) for calculating arith-
metic operations in parallel. The central idea of this implementation technique is to store
the digits of several prime field elements in vector registers, and to use vector instructions
for calculating arithmetic operations simultaneously.

We now introduce a notation that allows us referring to prime field elements that
are ready to be operated by vector instructions. Although it could be trivial in the
mathematical sense, our notation is full of meaning for implementation purposes, and
because of that, we formally state the following.

Definition 3.3.1 (An n-way operand). Let A0, . . . , An−1 be n field elements, where each
of them is represented by l digits following Definition 3.2.6. An n-way operand, denoted
as ⟨A0, . . . , An−1⟩, refers to a distribution of nl digits in a set of vector registers.

Note that this distribution is not unique and is implementation-dependent due to
several factors including: (i) the size of p and the value of ρ, which both determine
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the number of digits l, (ii) the size of vector registers, (iii) the capabilities of vector
instructions, (iv) the number of parallel calculations n.

For efficiency, it is vital to choose a distribution suitable for calculating operations as
fast as possible. Regarding the value of n, it seems to be completely determined by the
size of the vector registers, but this is not always the case. For example, a 128-bit vector
register can be seen as a parallel unit able to process two 64-bit operations in parallel;
then, a natural choice is to store n = 2 elements. However although this approach can
be easily extended to wider vector registers, i.e., storing n = 4 elements on 256-bit vector
registers, we will show that there are more efficient ways to use these registers. Therefore,
all of these factors must be taken in consideration to find efficient distributions.

Once n-way operands are defined, let’s define operations on them too.

Definition 3.3.2 (An n-way field operation). Given a k-arity operation ⋆, we refer to
n-way field operation as the task of operating ⋆ over k n-way input operands and pro-
ducing one n-way output operand. It must hold that none of these operations has a data
dependency with other operation, i.e. they are pair-wise independent.

Given ⟨A0, . . . , An−1⟩ and ⟨B0, . . . , Bn−1⟩, an n-way addition is calculated as

⟨A0, . . . , An−1⟩+ ⟨B0, . . . , Bn−1⟩ ↦→ ⟨A0 +B0, . . . , An−1 +Bn−1⟩ , (3.3.3)

an n-way multiplication as

⟨A0, . . . , An−1⟩ × ⟨B0, . . . , Bn−1⟩ ↦→ ⟨A0 ×B0, . . . , An−1 ×Bn−1⟩ , (3.3.4)

and analogously, the digit size reduction (dsr) is performed as

dsr : ⟨A0, . . . , An−1⟩ ↦→ ⟨dsr(A0), . . . ,dsr(An−1)⟩ . (3.3.5)

To process a large number of arithmetic operations, the elements are stored in vector
registers; then, parallel arithmetic operations are calculated on them; and finally, the
result is converted back to a canonical representation. This implementation technique is
successful whenever the performance of n-way operations is superior to calculate n single
operations sequentially.

We found different trade-offs on the implementation of these operations for the prime
fields of interest. In the rest of this chapter, we provide more details for each case.

3.4 Arithmetic on GF(2255 − 19)

This section shows the implementation of arithmetic operations of the prime field Fp25519 ,
where p25519 = 2255 − 19. We report two implementations based on the following rep-
resentations: using a polynomial representation setting w = 64, and using a redundant
representation setting ρ = 25.5.
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3.4.1 Polynomial Representation

This implementation targets the use of native 64-bit instructions, so we set w = 64. Since
p25519 is a number of 255 bits, we use sequences of l = 4 digits to represent prime field
elements. Thus, a sequence A = (a3, a2, a1, a0) is stored in an array of four 64-bit words.

Now, we describe implementation details of the arithmetic operations.

Addition using ADD and ADC Instructions

Given A = (a3, a2, a1, a0) and B = (b3, b2, b1, b0) be two sequences representing elements
of Fp, then a =

∑︁3
0 ai2

64i and b =
∑︁3

0 bi2
64i are numbers of at most 256 bits. Thus, to

calculate a+ b mod p, one must determine how to handle the carry bit produced by the
integer addition a+ b.

The addition of a and b, namely c, could be larger than 2256. If this is the case, a
carry bit will be generated, then c = c12

256 + c0, where c1 is the carry bit and c0 are the
256 least-significant bits of c. Then, since c12

256 ≡ 38c1 mod 2255 − 19 it follows that
d = c0 + 38c1. However, there are some cases in which d could be greater than 2256.
Observe that for 2256 − 38 ≤ c0 < 2256, then 2256 ≤ d < 2256 + 38, and because of that
d = d12

256+d0. Once again another addition must be performed to reduce d12
256, namely

e = d0 + 38d1. Note that e is never large than 2256, since d0 is a small number, more
specifically 0 ≤ d0 < 38. Figure 3.4.1a shows graphically this description.

c12
256 + c0 = a+ b c1 d12

256 + d0 = c0 + 38c1 d1 e = d0 + 38d1start

end

1 1

0 0

(a) Non-constant time algorithm.

c12
256 + c0 = a+ b

x = −((uint64_t)c1)&38

d12
256 + d0 = c0 + x

x = −((uint64_t)d1)&38

e = d0 + xstart

end

(b) Constant time algorithm.

Figure 3.4.1: Calculation of additions modulo p25519.

The calculation of additions modulo p25519 as described in Figure 3.4.1a exhibits an
irregular execution pattern. Observe that there are early termination conditions (when
the carry bits are 0) that cause the addition could take different amount of time depending
on the value of the inputs. For this reason, we must implement additions in such a way
the program executes always the same number of operations regardless the value of the
carry bits.

To achieve a regular execution pattern, the addition must always add either 0 or 38
depending on the value of the carry bit. Given b ∈ {0, 1}, we must construct a 64-bit
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word containing either x = 38 if b = 1, or x = 0 otherwise. We can use the following C
code to accomplish this task.

 1 x = -((uint64_t)b) & 38;

Alternatively, the same task can be performed using a conditional move instruction CMOV.

 1  mov  $0, ax
 2  mov $38, cx
 3  cmovc ax, cx

The CMOV instruction will assign 38 to CX if the carry bit from the FLAGS register is set,
otherwise, CX is not modified.

Either alternative allows that the addition of integers modulo p25519 is performed us-
ing a constant time algorithm. As shown in Figure 3.4.1b, a regular execution pattern is
achieved by removing the conditionals and always executing the same number of oper-
ations. Specifically, the first two additions take eight ADC instructions and one more to
calculate e; in total, adding two 256-bit numbers takes nine ADC instructions.

Additions using ADX Instructions

Additions modulo p25519 can be calculated using the ADX instructions. The main change
that is noticed in the use of the ADCX/ADOX instructions is that they always calculate
the addition with carry using the carry/overflow bit from the FLAGS register. Because of
that, these bits must be cleared before starting a series of additions.

The instruction CLC sets the CF bit to 0; unfortunately, there is no analogous instruc-
tion for clearing the OF bit. Then, it is required an operation that produces 0 as output
setting the destination register to 0, which clears both the CF and OF flags. One way to
perform that is through the XOR instruction.

 1 xor ax, ax

Also, it can be used the SUB instruction.

 1 sub ax, ax

There are other instructions that have the same effect.
Although there are required extra instructions for clearing bits, these instructions

are not executed entirely. Instruction idioms are instructions for which the result of the
operation is known in advance. Some advanced processors recognize these instruction
idioms and perform the minimum micro-operations to simulate the effect caused by them.
Thus, the overhead of adding instruction idioms is negligible.

Subtraction

The method used to subtract two 256-bit numbers mimics the procedure followed by
addition. For subtractions, the addition with carry (ADC instructions) is replaced by
subtraction with borrow (SBB instructions).
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Integer Multiplication using MULX and ADX Instructions

One feature of the MULX instruction is that allows to specify the destination registers that
store the product calculated. Another relevant feature of this instruction is that it does
not overwrite the input RDX register. Thus, once RDX was loaded with some value, this
register can be used by subsequent multiplications, reducing the number of loads from
memory. This operation is particularly useful in the operand-scanning multiplication
method, where one digit of the first operand is multiplied by all the digits from the
second operand. For this reason, we applied the operand-scanning method to calculate
integer multiplications.

The implementation of integer multiplications of 256-bit integers, a and b, follows
Algorithm 3.2.13, which multiplies sequences of digits A and B of length four. The first
for-loop schedules four MULX instructions, which calculate the values (xi, yi)← a0× bi for
0 ≤ i < 4 resulting in eight registers, where the 64 most-significant bits of each product
are propagated resulting in five 64-bit words representing the number a0 × b

(d0,4, d0,3, d0,2, d0,1, d0,0)← (x3, x2, x1, x0, 0) + (0, y3, y2, y1, y0) .

Then, c0 ← d0,0 is stored in memory since no more operations are performed with it,
and the last four words remain in registers to be used later. The second for-loop of
Algorithm 3.2.13 iterates over the words aj, for 1 ≤ j < 4, to calculate (xi, yi)← aj × bi
for 0 ≤ i < 4 and from these words, it obtains

(dj,4, dj,3, dj,2, dj,1, dj,0)← (x3, x2, x1, x0, 0) + (y4, y3, y2, y1, y0) .

After that, these words must be added to the words obtained in the previous iteration as

(dj,4, dj,3, dj,2, dj,1, dj,0)← (dj,4, dj,3, dj,2, dj,1, dj,0) + (0, dj−1,4, dj−1,3, dj−1,2, dj−1,1) .

Like before, cj ← dj,0 is stored in memory since no more operations are performed on it.
After performing the second for-loop, the words (c7, c6, c5, c4) ← (d3,4, d3,3, d3,2, d3,1) are
stored in memory completing the calculation of the integer multiplication.

We applied several optimizations to improve the performance of this implementation.
First, we maintain all the intermediate values in registers; otherwise, some overheads
appear by spilling some registers to memory. Fortunately, it was possible to store inter-
mediate products in registers since the length of the sequences is only four digits.

A second optimization applied relies on observing that the execution of MULX in-
structions does not interfere with the calculation of addition instructions. Hence, we can
schedule addition instructions in between of a series of multiplication instructions. Ob-
serve that once the products (xi, yi) ← aj × bi and (xi+1, yi+1) ← aj × bi+1 have been
calculated, the addition xi + yi+1 can be scheduled before to the execution of the product
(xi+2, yi+2)← aj × bi+2. This scheduling can be repeated for the subsequent calculations;
thus, the addition and multiplication instructions get interleaved. This schedule of in-
structions runs faster because multiplication instructions do not alter the carry bit used
by additions. Be aware that this optimization is only valid by using the MULX instruc-
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tion, which (unlike the IMULQ/MULQ instructions) does not modify the bits of the FLAGS
register that are used by the addition instructions.

A third optimization is derived from the second one when using the ADX instruc-
tions. The ADCX and ADOX instructions calculate two multi-precision additions without
interference between them. That is, two series of additions with carry can be performed si-
multaneously as they use, respectively, the CF and OF bits as the carry bit. This is useful in
the second for-loop, where one multi-precision addition propagates the 64 most-significant
bits of (xi, yi)← aj×bi, and another one accumulates the values dj,i ← dj,i+dj,i−1. Thus,
these additions are calculated using a series of ADCX and ADOX instructions and they are
scheduled between MULX instructions. This optimization is only valid by using the MULX
instruction in conjunction with the ADX instructions.

These optimizations lead to three implementations of the 256-bit integer multiplier.
Table 3.4.2 summarizes the instruction counts of them. By using MULX, the number of
move instructions is reduced significantly allowing a better utilization of the registers. On
the other hand, using ADCX/ADOX instructions requires some additional move instructions
to set registers to zero, but without modifying the FLAGS register; thus, explicit MOV
instructions are used instead of instruction idioms, like the XOR instruction.

Table 3.4.2: Instruction counts for 256-bit integer multiplication.

Implementation Multiplication Addition Load Store Move

MULQ + ADC 16 34 20 8 24
MULX + ADC 16 31 20 8 0
MULX + ADX 16 31 20 8 7

Reduction Modulo p = 2255 − 19

After calculating integer multiplications a sequence of eight digits is generated, which must
be reduced modulo p to obtain a shorter sequence of length four. Let A = (a7, . . . , a0) be
the sequence to be reduced, it holds that (a7, a6, a5, a4, 0, 0, 0, 0) ∼ (38) × (a7, a6, a5, a4)

since 2256 ≡ 38 (mod p25519). Thus, the reduction calculates

(c4, c3, c2, c1, c0)← (a3, a2, a1, a0) + (38)× (a7, a6, a5, a4) ,

after that, c4 must be reduced modulo p25519 applying the same strategy

(d4, d3, d2, d1, d0)← (c3, c2, c1, c0) + (38)× (c4) .

However, this last addition could generate a carry bit d4 ∈ {0, 1}. When ai = 264 − 1 for
0 ≤ i < 8, it follows that c4 = 38; and d4 = 1, if 2256− 382 ≤ k < 2256 for k =

∑︁3
i=0 ci2

64i;
otherwise d4 = 0. Hence, the reduction of A modulo p25519 is

A′ = (d3, d2, d1, d0 + 38d4) ,
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where the addition d0 +38d4 does not generate carry regardless the value of d4. All these
operations must be implemented in constant time.

We also provide three implementations depending whether the MULX and ADX in-
structions are available in the target machine. In the implementations that use MULX, the
reduction procedure uses five multiplications, fourteen additions, one conditional move,
eight loads, and four store instructions.

Multiplicative Inverse

The multiplicative inverse of an element in a ∈ F2255−19 is given as

a−1 = a2
255−21 = a2

255−32+11 =
(︂
a2

250−1
)︂25

a11 = (α250)
25 a11 . (3.4.3)

The exponentiation a2
250−1 is calculated using the Itoh-Tsujii’s method [156] as follows.

Let αx = a2
x−1, we calculate α250 looking for an addition chain (c1, . . . , cs) such that

c1 = 5 and cs = 250. We started from α5 instead of α1, since some intermediate values
used to calculate a11 can be shared to obtain α5 = a31 at the cost of three multiplications
and four squares. The addition chain for α250 is shown in the following table.

i cx cy ci = cx + cy S ← S ∪ {αci = (αcx)
2cyαcy}

- - - 5 {α5}
1 5 5 10 {α5, α10}
2 10 10 20 {α5, α10, α20}
3 20 20 40 {α5, α10, α20, α40}
4 40 10 50 {α5, α10, α20, α40, α50}
5 50 50 100 {α5, α10, α20, α40, α50, α100}
6 100 100 200 {α5, α10, α20, α40, α50, α100, α200}
7 200 50 250 {α5, α10, α20, α40, α50, α100, α200, α250}

In each row, the algorithm includes αci = (αcx)
2cyαcy to S taking one multiplication and cy

squares. So, calculating a multiplicative inverse takes 11 multiplications and 254 squares.

3.4.2 Redundant Representation

The redundant representation as stated in Definition 3.2.6 requires to select ρ < w, then
we will describe some conditions that allows to select a proper value for ρ.

First of all, we assume that w = 64, since the vector registers can operate up to four
64-bit integer operations simultaneously. However, the PMULUDQ instruction multiplies
32-bit integers, and for this reason, we must consider that w′ = 32. Based on these
parameters and relying on the relations given in Equations (3.2.21) and (3.2.22), we are
free to chose any ρ value holding ρ ≤ 29.

We explored across different values for ρ. For instance, by setting ρ = 26 and l = 10,
the procedure that performs the reduction modulo p25519 requires more multiplications
by powers of two. Note that after multiplication some digits have 2260 as a factor. This
factor can be replaced by 19× 25 after reduction modulo p25519; however, these extra five
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bits increase the size of the output digits. Alternatively, by setting ρ = 255
9

and l = 9,
the integer multiplication is calculated with fewer digit multiplications. Although that⌈︁
255
9

⌉︁
≤ 29 satisfying the condition above, this choice reduces the extra room used for

carry bits, and as a consequence, the digit products will overflow registers during the
reduction modulo p25519. We will see it is more efficiently to set l = 10, because any digit
with factor 2255, it will have factor 19, which is the shortest factor.

Setting ρ = 255
10

= 25.5 and l = 10 leads to work with sequences of ten digits, which
are stored in five 128-bit vector registers. Figure 3.4.4 shows that each of these registers
stores two digits in a 64-bit word. As the size of digits is at most 26 bits, then the red
part represents the room of space until reaching 32 bits, and the blue part represents the
remainder 32 bits. Due to ρ is not integer, the size of the digits is not uniform. The size
is 26 bits for even-indexed digits and is 25 bits for odd-indexed digits.

a5 a0 X0

a6 a1 X1

a7 a2 X2

a8 a3 X3

a9 a4 X4

Memory

a0 a5 a1 a6 a2 a7 a3 a8 a4 a9 · · ·A

Figure 3.4.4: A sequence of digits A = (a9, . . . , a0) representing a ∈ Fp25519 is loaded from
memory into five 128-bit registers X0, . . . , X4.

Addition

The addition of sequences must be performed digit-by-digit, then we use three PADDQ
instructions to each digit from the input sequences. Each digit has several bits for storing
the carry bits produced by additions. In this case, no reduction is performed, since the size
of the digits will increase in at most one bit. Hence, several additions can be performed
consecutively without overflowing registers. Let A and B be sequences stored in five
128-bit registers, we use five PADDQ instructions to calculate C = A+B as

[c5 c0] ← [a5 a0] + [b5 b0]

[c6 c1] ← [a6 a1] + [b6 b1]

[c7 c2] ← [a7 a2] + [b7 b2]

[c8 c3] ← [a8 a3] + [b8 b3]

[c9 c4] ← [a9 a4] + [b9 b4] .

Subtraction

Replacing the PADDQ by PSUBQ instructions, we can perform subtraction between se-
quences of digits; however, the digits could be lesser than zero and according to the
redundant representation (see Definition 3.2.6) all the digits must be positive.
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One way to subtract sequences and producing positive digits is by adding a multiple
of p25519. Let A and B be the sequences to be subtracted, we perform C = A − B + P ,
where P is a redundant sequence of p25519. We carefully select a sequence P such that
|ci| ≥ 0 for 0 ≤ i < 10. If we assume that |A|, |B| ≤ ⌈ρ⌉ = 26, then |P | = 27 and

P = (0x3fffffe, 0x7fffffe, 0x3fffffe, 0x7fffffe, 0x3fffffe,

0x7fffffe, 0x3fffffe, 0x7fffffe, 0x3fffffe, 0x7ffffda) .
(3.4.5)

Multiplication

Since p25519 is a pseudo-Mersenne prime, the reduction can be merged with the integer
multiplication resulting in a single procedure for calculating prime field multiplications.
Let A and B be two sequences of ten digits, C = A×B = (c9, . . . , c0) is calculated as

c0 ← a0b0+38a9b1+19a8b2+38a7b3+19a6b4+38a5b5+19a4b6+38a3b7+19a2b8+38a1b9
c1 ← a1b0+ a0b1+19a9b2+19a8b3+19a7b4+19a6b5+19a5b6+19a4b7+19a3b8+19a2b9
c2 ← a2b0+ 2a1b1+ a0b2+38a9b3+19a8b4+38a7b5+19a6b6+38a5b7+19a4b8+38a3b9
c3 ← a3b0+ a2b1+ a1b2+ a0b3+19a9b4+19a8b5+19a7b6+19a6b7+19a5b8+19a4b9
c4 ← a4b0+ 2a3b1+ a2b2+ 2a1b3+ a0b4+38a8b5+19a8b6+38a7b7+19a6b8+38a5b9
c5 ← a5b0+ a4b1+ a3b2+ a2b3+ a1b4+ a0b5+19a9b6+19a8b7+19a7b8+19a6b9
c6 ← a6b0+ 2a5b1+ a4b2+ 2a3b3+ a2b4+ 2a1b5+ a0b6+38a9b7+19a8b8+38a7b9
c7 ← a7b0+ a6b1+ a5b2+ a4b3+ a3b4+ a2b5+ a1b6+ a0b7+19a9b8+19a8b9
c8 ← a8b0+ 2a7b1+ a6b2+ 2a5b3+ a4b4+ 2a3b5+ a2b6+ 2a1b7+ a0b8+38a9b9
c9 ← a9b0+ a8b1+ a7b2+ a6b3+ a5b4+ a4b5+ a3b6+ a2b7+ a1b8+ a0b9 .

(3.4.6)
In this formulation, the intermediate products aibj are accumulated in ck for 0 ≤ i, j < 10

and k = i+ j mod 10. We identify three cases in this computation:

a) When i+ j ≥ 10, the products aibj are multiplied by 19 as they had 2255 as a factor.

b) When both i, j are odd, the products aibj are multiplied by two. To see this, note
that there exist integers q, r such that i = 2q + 1 and j = 2r + 1, and the following
is true

ai2
⌈25.5i⌉ × bj2

⌈25.5j⌉ = aibj 2
⌈25.5i⌉+⌈25.5j⌉

= aibj 2
⌈25.5(2q+1)⌉+⌈25.5(2r+1)⌉

= 2aibj 2
51(q+r mod 10)+51 .

(3.4.7)

The ck digit represents the number

ck2
⌈25.5k⌉ = ck 2

⌈25.5(i+j mod 10)⌉

= ck 2
⌈25.5(2q+1+2r+1 mod 10)⌉

= ck 2
51(q+r mod 10)+51 .

(3.4.8)

These equations explain the multiplication by two, which appears because ρ is not
an integer.

c) The remainder cases, products have no factor and are directly accumulated in ck.
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Some products are multiplied by 38 because the first two cases apply. Equation (3.4.6)
takes 100 digit multiplications, 30 multiplications by 19, 15 multiplications by 38, and 10
multiplications by two. The size of C is bounded as |C| ≤ 2⌈ρ⌉ + |l| + |38| = 61 bits.
Thus, there is still room (three bits) on the top of 64-bit registers to perform additions
to C before overflowing the register.

We analyzed efficient ways for implementing prime field multiplication using vector
instructions. In particular, we look for an algorithm that produces a large number of
independent multiplications in order to take advantage of the high throughput of the
PMULUDQ instruction.

The Mastrovito multiplier [187] is a hardware technique used for multiplication over
binary field extensions, and in this context, the central idea of this algorithm is to calculate
a series of bit multiplications simultaneously. To that end, at every iteration one of
the inputs is multiplied by x and reduced modulo f(x), where f(x) is the irreducible
polynomial defining the extension field. Inspired by the design of Mastrovito multiplier,
we adapted it for computing a prime field multiplications as described next.

Let A and B defined as above. We perform C = A × B as a vector-matrix product
Circ(A) × B such that B and C are column vectors and Circ(A) is a circulant matrix
generated by a column-vector A as

Circ(A) =
[︁
A, π(A), π2(A), . . . , πl−1(A)

]︁
, (3.4.9)

where π is a function defined as

(al−1, . . . , a0)
T ↦→ (al−2, . . . , a0, 0)

T + (al−1 mod p)T . (3.4.10)

Then, the product sequence C is calculated as

C = A× [b0] + π(A)× [b1] + . . . πl−1(A)× [bl−1] . (3.4.11)

This algorithm iterates over the digits of B (like in the operand-scanning method) to
multiply them with every digit of A using l independent multiplications. After that, A
is updated using the π function, which shifts the digits of A by one position to the next
power of two, and the last digit is reduced modulo p. This process is repeated until all
the digits of B have been multiplied. See Algorithm 3.4.12 for a formal description.

Algorithm 3.4.12 Adaptation of Mastrovito’s Algorithm for Prime Field Multiplication
using Redundant Representation.
Input: A and B, two sequences of digits of length l and size |A|, |B| ≤ ⌈ρ⌉.
Output: C = A×B, a sequence of digits of length 2l− 1 and size |C| < |l|+ 2⌈ρ⌉+ 1.
1: C ← A× (b0)
2: for i← 1 to l − 1 do
3: A← π(A)
4: C ← C + A× (bi)
5: end for
6: return C = (cl−1, . . . , c0)
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Let’s instantiate Algorithm 3.4.12 with p25519. First, ten digit multiplications are used
to process A× [b0]. After that, at every iteration of the loop, this algorithm schedules ten
digit multiplications and ten digit additions to accumulate A×[bi] into C. Notice that each
digit multiplication is independent to each other, like in the Mastrovito multiplier; hence,
these multiplications can be executed as a series of consecutive PMULUDQ instructions.
We note that scheduling independent instructions is favorable for reducing the latency of
the prime field multiplication.

The role of π is to shift the position of the digits of one operands, and then, to reduce
modulo p. For p25519, the π function is defined as

(a9, a8, a7, a6, a5, a4, a3, a2, a1, a0)
T ↦→ (a8, a7, a6, a5, a4, a3, a2, a1, a0, 19a9)

T . (3.4.13)

It is evident that π can be computed in-place by using permutation instructions and
one multiplication by 19. Moreover, the digits of A can be reordered through register
renaming, which is a task that is usually performed by the compiler at a negligible cost.

One issue that arises by using ρ = 25.5 is that some intermediate products must
be multiplied by two. Unfortunately, the Mastrovito multiplier does not calculate these
multiplications. We show two approaches that solve this issue. First, we can use two
independent accumulators for C; thus, one of them is used to store the products that
must be multiplied by two; and at the end of the execution of the Mastrovito multiplier,
these two accumulators are added to obtain C. A second approach is to multiply the
digits of A either by bi or 2bi according to the index value.

Now, we describe the implementation of the prime field multiplication using 128-bit
registers. Due to the issue described above, we implemented the Mastrovito multiplier
using two accumulators X and Y , which are calculated from A and B as Figure 3.4.14
shows. The calculation of π over the five registers representing A requires to permute and
multiply by 19 the first register, meanwhile the remaining registers are not modified. After
that, some products of Y must be multiplied by two, and we perform these multiplications
using bit shifts (≪). Thus, the sequence C = A×B is calculated as

[c5 c0] ← [x5 x0] + [y5 y0] ≪ [0 1]

[c6 c1] ← [x6 x1] + [y6 y1] ≪ [1 0]

[c7 c2] ← [x7 x2] + [y7 y2] ≪ [0 1]

[c8 c3] ← [x8 x3] + [y8 y3] ≪ [1 0]

[c9 c4] ← [x9 x4] + [y9 y4] ≪ [0 1] .

Hence, a prime field multiplication takes 50 multiplications (PMULUDQ), 45 additions
(PADDQ), 5 bit shifts (PSLLI), and 9 multiplications by 19. The latter multiplications
can be performed either using two additions and two shifts to the left, i.e., 19x = (x ≪
4) + (x ≪ 2) + x; or using one PMULUDQ instruction. In our experiments, it’s faster to
perform an extra multiplication because the instruction has a high-throughput when is
combined with the other multiplications.
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i = 0 i = 1

[x5 x0] ← [a5 a0] × [b0 b0]

[x6 x1] ← [a6 a1] × [b0 b0]

[x7 x2] ← [a7 a2] × [b0 b0]

[x8 x3] ← [a8 a3] × [b0 b0]

[x9 x4] ← [a9 a4] × [b0 b0] .

[y5 y0] ← [a4 19a9] × [b1 b1]

[y6 y1] ← [a5 a0] × [b1 b1]

[y7 y2] ← [a6 a1] × [b1 b1]

[y8 y3] ← [a7 a2] × [b1 b1]

[y9 y4] ← [a8 a3] × [b1 b1] .

i = 2 i = 3

[x5 x0] += [a3 19a8] × [b2 b2]

[x6 x1] += [a4 19a9] × [b2 b2]

[x7 x2] += [a5 a0] × [b2 b2]

[x8 x3] += [a6 a1] × [b2 b2]

[x9 x4] += [a7 a2] × [b2 b2] .

[y5 y0] += [a2 19a7] × [b3 b3]

[y6 y1] += [a3 19a8] × [b3 b3]

[y7 y2] += [a4 19a9] × [b3 b3]

[y8 y3] += [a5 a0] × [b3 b3]

[y9 y4] += [a6 a1] × [b3 b3] .

i = 4 i = 5

[x5 x0] += [a1 19a6] × [b4 b4]

[x6 x1] += [a2 19a7] × [b4 b4]

[x7 x2] += [a3 19a8] × [b4 b4]

[x8 x3] += [a4 19a9] × [b4 b4]

[x9 x4] += [a5 a0] × [b4 b4] .

[y5 y0] += [a0 19a5] × [b5 b5]

[y6 y1] += [a1 19a6] × [b5 b5]

[y7 y2] += [a2 19a7] × [b5 b5]

[y8 y3] += [a3 19a8] × [b5 b5]

[y9 y4] += [a4 19a9] × [b5 b5] .

i = 6 i = 7

[x5 x0] += [19a9 19a4] × [b6 b6]

[x6 x1] += [ a0 19a5] × [b6 b6]

[x7 x2] += [ a1 19a6] × [b6 b6]

[x8 x3] += [ a2 19a7] × [b6 b6]

[x9 x4] += [ a3 19a8] × [b6 b6] .

[y5 y0] += [19a8 19a3] × [b7 b7]

[y6 y1] += [19a9 19a4] × [b7 b7]

[y7 y2] += [ a0 19a5] × [b7 b7]

[y8 y3] += [ a1 19a6] × [b7 b7]

[y9 y4] += [ a2 19a7] × [b7 b7] .

i = 8 i = 9

[x5 x0] += [19a7 19a2] × [b8 b8]

[x6 x1] += [19a8 19a3] × [b8 b8]

[x7 x2] += [19a9 19a4] × [b8 b8]

[x8 x3] += [ a0 19a5] × [b8 b8]

[x9 x4] += [ a1 19a6] × [b8 b8] .

[y5 y0] += [19a6 19a1] × [b9 b9]

[y6 y1] += [19a7 19a2] × [b9 b9]

[y7 y2] += [19a8 19a3] × [b9 b9]

[y8 y3] += [19a9 19a4] × [b9 b9]

[y9 y4] += [ a0 19a5] × [b9 b9] .

Figure 3.4.14: Scheduling of 128-bit vector instructions to calculate prime field multipli-
cations.
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Digit Size Reduction

Given a sequence C such that |C| ≥ ⌈ρ⌉ we want to obtain an equivalent sequence D

such that C ∼ D and |D| ≤ ⌈ρ⌉. In the previous section, we presented two algorithms for
implementing this operation, and in this section we describe their implementation using
vector registers.

Algorithm 3.2.28 splits each digit in two parts adding the most significant part to the
next digit. This propagation of bits starts from the first digit and continues along the
digits of the sequence. At the end, one digit is generated, which must be reduced modulo
p25519 and added to the output sequence.

For the implementation of Algorithm 3.2.28, we assume that the sequence C is stored
into five 128-bit registers. Given a digit ci, we calculate xi ← ci mod 2βi and yi ← ⌊ci/2βi⌋
using one mask (PAND instruction) and one right bit-shift (PSRLI instruction) on ci. Note
that, for example, the propagation of digits from the digit c0 to c1 happens at the same
time as the propagation of bits of the digit c5 to c6; and continuing analogously, we
propagate until reaching the last pair of digits [c9 , c5] as follows

i = 0, i = 5 i = 1, i = 6 i = 2, i = 7

[c5 c0] → [x5 x0] [y5 y0]

[c6 c1]

[d5 d0] [c6 c1].

[c6 c1] → [x6 x1] [y6 y1]

[c7 c2]

[d6 d1] [c7 c2].

[c7 c2] → [x7 x2] [y7 y2]

[c8 c3]

[d7 d2] [c8 c3].

i = 3, i = 8 i = 4, i = 9

[c8 c3] → [x8 x3] [y8 y3]

[c9 c4]

[d8 d3] [c9 c4].

[c9 c4] → [x9 x4] [y9 y4]

[d9 d4] .

As a result of this last propagation, the pair [y9 , y4] of new digits is generated. Then, y9
is multiplied by 19 (reduced modulo p25519) and added to d0; and y4 is added to d5.

[d5 d0] ← [d5 d0] + [y4 19y9] .

Finally, we propagate d0 to d1 and also d5 to d6.

[d5 d0] → [x′
5 x′

0] [y′5 y′0]

[d6 d1]

[d5 d0] [d6 d1] .

Although this implementation is processed sequentially, we still benefit from the use of
vector registers by performing the propagation of two digits at each step.

In contrast to Algorithm 3.2.28, Algorithm 3.2.29 calculates more operations in paral-
lel. The parallel algorithm calculates the values xi and yi from the input digits, however,
these values can be calculated simultaneously. Then, the algorithm propagates the most
significant bits to the next digit. Here, y9 must be reduced modulo p25519 and added to
the output sequence.

The implementation of Algorithm 3.2.29 assumes that C is stored into five 128-bit
registers. First, the values xi and yi are calculated from the digits ci for all 0 ≤ i < 10 as
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[c5 c0] → [x5 x0] [y5 y0]

[c6 c1] → [x6 x1] [y6 y1]

[c7 c2] → [x7 x2] [y7 y2]

[c8 c3] → [x8 x3] [y8 y3]

[c9 c4] → [x9 x4] [y9 y4] .

Then, we propagate the most significant bits in each digit and assign d0 ← x0 and d5 ← x5.

[x5 x0] [y5 y0]

[x6 x1] [y6 y1]

[x7 x2] [y7 y2]

[x8 x3] [y8 y3]

[x9 x4] [y9 y4]

[d5 d0] [d6 d1] [d7 d2] [d8 d3] [d9 d4] .

Finally, we accumulate y4 into d5, and 19y9 into d0.

[d5 d0] ← [d5 d0] + [y4 19y9] .

This procedure runs faster than the previous one because most of the operations do not
have dependencies between them. In both, implementations, the multiplication by 19 was
performed using two bit shifts and two additions. The following table shows the operation
counts of these two implementations.

Implementation
Addition Bit Shift Logic
(PADDQ) (PSLLI/PSRLI) (PAND)

Algorithm 3.2.28 8 8 6
Algorithm 3.2.29 7 7 5

Performance Comparison between Representations

We measured the latency of the arithmetic operations and compared the timings of both
implementations. Table 3.4.15 shows the performance timings measured on Skylake.

Table 3.4.15: Time in clock cycles of Fp25519 operations measured on Skylake.

Implementation ISA A M S Digit Size Reduction I
Sequential Parallel

Radix-264 x64 7 43 41 – – 11,600
Redundant ρ = 25.5 AVX2 5 46 37 20 10 14,000

At a first glance, the cycle counts of the implementation using a redundant represen-
tation are slower faster for additions and squares, also the timings for multiplications are
quite competitive in comparison with the timings of the implementation using polyno-
mial representation. However, we noticed some extra overheads by using the redundant
representation.
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In the redundant representation the size of digits increases after calculating multipli-
cations or squares. This overhead in calculations accounts for 20 cycles; meanwhile in the
polynomial representation, this operations is not required. An example of this overhead is
shown in the time to calculate a multiplicative inverse; this operation requires to calculate
many consecutive squares; thus, a digit size reduction must be executed in between of
consecutive square calculations. Then, although the squaring operation takes 37 cycles in
the vector implementation, there are also required 20 additional cycles for reducing size
of digits, resulting in 57 cycles per squaring, which in contrast to the 41 cycles that takes
the implementation using the polynomial representation.

This comparisons show that the vector implementation using 128-bit vector registers
is slightly slower for calculating arithmetic operations. This is partially caused because
an extra overhead must be considered by using the redundant representation, since the
size of digits must be reduced before a multiplication or a squaring is calculated. Another
reason of this performance difference is due to the size of the integer multiplier, even
calculating two 32-bit multiplications in parallel, the performance of this instruction is
lower to the performance of the 64-bit multiplier. As a result, the implementation using
radix-264 achieves better timings for calculating (single) prime field operations.

3.4.3 Two-way Operations

One can accelerate the calculation of operations by increasing their throughput rather
than reducing their latency. To do so, we rely on the notion of n-way operations, in-
troduced in Section 3.3, and develop two-way operations by extending the 128-bit vector
implementation from the previous section.

In the implementation of two-way prime field operations, we store one sequence in
each 128-bit part of the 256-bit vector registers. Thus, given two sequences of digits
A = (a9, . . . , a0) and B = (b9, . . . , b0), the pair ⟨A,B⟩ represents the distribution of digits
into five 256-bit registers as Figure 3.4.16 shows.

b5 b0 a5 a0 Y0

b6 b1 a6 a1 Y1

b7 b2 a7 a2 Y2

b8 b3 a8 a3 Y3

b9 b4 a9 a4 Y4

Figure 3.4.16: The notation ⟨A,B⟩ represents the distribution of digits of two sequences
A and B stored into five 256-bit registers.

The implementation of the arithmetic of two-way operations follows the description
given in the previous sections. In essence, we use 256-bit registers as two units of 128
bits, and each unit is in charge to calculate one prime field operation. For this to work,
the operations must be calculated independently from each other.
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Sometimes it is required to swap the contents of ⟨A,B⟩ to obtain ⟨B,A⟩. We im-
plement this operation using five VPERMQ instructions, which moves 64-bit words within
a 256-bit register. We want to highlight that VPERMQ has a higher latency than other
integer operations. For this reason, swapping words within a 256-bit register results in
overheads that negatively impact on performance.

Another common operation between pairs is to combine sequences of digits. Given
⟨A,B⟩ and ⟨C,D⟩, we want to obtain either ⟨A,D⟩ or ⟨C,B⟩. These pairs can be cal-
culated using five BLENDD instructions, which are faster than VPERMQ instructions. This
difference on performance is due to the latency of BLENDD instructions is one cycle and
also because there are three execution units for processing them; thus, the processor can
execute three BLENDD instructions per cycle. Therefore, combining two pairs is faster
than swapping the sequences stored in 256-bit registers.

Performance Benchmark

Table 3.4.17 lists the timings measured on a Skylake for executing two-way operations.
The first two rows are equal to the rows of Table 3.4.15. The third row lists the tim-
ings of two-way operations. The last row shows the acceleration factor calculated as
2Tsingle/Ttwo-way , where Tsingle is the minimum time to compute an operation either using
x64 or SSE instructions, and Ttwo-way is the time taken by a two-way operation.

Table 3.4.17: Time in clock cycles of two-way Fp25519 operations measured on Skylake.

Operations Radix ISA A M S Digit Size Reduction

Sequential Parallel

Single Radix-264 x64 7 43 41 – –
ρ = 25.5 SSE 5 46 37 20 10

Two-way ρ = 25.5 AVX2 6 47 37 21 11
1.66× 1.83× 2.00× 1.90× 1.82×

Extending the processing of operations from 128-bit to 256-bit registers scales almost
linearly. This is because most of the integer instructions have the same latency on either
register size. Differences on the latency of these two implementations are evident in
operations with high memory-accessing instructions. Moving values from/to the memory
to/from vector registers requires a higher latency when dealing with larger vectors.

We optimize the calculation of the digit size reduction. Recall that the calculation of
digit size reduction using Algorithm 3.2.28 is a sequential process, and the same instruc-
tion scheduling is used for calculating dsr(⟨A,B⟩). However, the processor can handle
execute more instructions by issuing these instructions to other execution units. Hence,
we implemented a function that calculates both dsr(⟨A,B⟩) and dsr(⟨C,D⟩), such a
function interleaves the calculation of these operations. For example, the first step of
the reduction propagates the digits [b5, b0, a5, a0] to [b6, b1, a6, a1], and at the same time
the digits [d5, d0, c5, c0] to [d6, d1, c6, c1]; this processing leverages the capabilities of a su-
perscalar processor, which can execute more than one vector instruction using several
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execution units. We denote as dsr2
(︁
⟨A,B⟩, ⟨C,D⟩

)︁
to this optimized function. Regard-

ing performance timings, the dsr2 function takes 23 clock cycles, which is 1.73× faster
than calculating two dsr

(︁
⟨A,B⟩

)︁
operations consecutively.

In Table 3.4.17, we do not report timings for calculating multiplicative inverses. This
operation is scarcely used and it is an inherently sequential operation that does not take
advantage of the use of two-way operations. Although we could implement a two-way in-
verse, it is more efficient to calculate a batch of n inverses using the simultaneous inversion
method [143, Section 2.26], which requires one inversion and 3(n− 1) multiplications.

3.4.4 Four-way Operations

We found two ways to implement four-way operations. One way is using 512-bit registers
as four units of 128 bits, as shown in Figure 3.4.19. Another approach, and the one we
follow, is using 256-bit registers as four units of 64 bits. So, ⟨A,B,C,D⟩ denotes four
sequences A, B, C, and D stored into a 256-bit register as shown in Figure 3.4.18.

We developed functions that perform arithmetic operations in parallel. In this case, we
store a tuple using ten 256-bit registers. The scheduling of instructions for multiplications
follows Algorithm 3.4.12; thus at every iteration, ten PMULUDQ instructions are executed
independently and their products are accumulated into ten destination registers. The
calculation of π function is performed using one PMULUDQ instruction to multiply by 19,
meanwhile the reordering of digits is performed by means of register renaming, which is
handled at compilation time.

d0 c0 b0 a0 Y0

d1 c1 b1 a1 Y1

...

d9 c9 b9 a9 Y9

Figure 3.4.18: Digit distribution of ⟨A,B,C,D⟩ to perform four-way prime field operations
using 256-bit registers.

d5 d0 c5 c0 b5 b0 a5 a0 Z0

d6 d1 c6 c1 b6 b1 a6 a1 Z1

d7 d2 c7 c2 b7 b2 a7 a2 Z2

d8 d3 c8 c3 b8 b3 a8 a3 Z3

d9 d4 c9 c4 b9 b4 a9 a4 Z4

Figure 3.4.19: Digit distribution of ⟨A,B,C,D⟩ to perform four-way prime field operations
using 512-bit registers.
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Performance Benchmark

Table 3.4.20 lists the timings measured on Skylake for executing prime field operations.
The first four rows are equal to the rows of Table 3.4.17. The fifth row lists the tim-
ings of four-way operations. The last row shows the acceleration factor calculated as
4Tsingle/Tfour-way , where Tsingle is the minimum time to compute an operation either using
x64 or SSE instructions, and Tfour-way is the time taken by a four-way operation.

Table 3.4.20: Time in clock cycles of four-way Fp25519 operations measured on Skylake.

Operations Radix ISA A M S Digit Size Reduction

Sequential Parallel

Single Radix-264 x64 7 43 41 – –
ρ = 25.5 SSE 5 46 37 20 10

Two-way ρ = 25.5 AVX2 6 47 37 21 11
1.66× 1.83× 2.00× 1.90× 1.82×

Four-way ρ = 25.5 AVX2 11 84 52 34 16
1.81× 2.05× 2.84× 2.35× 2.50×

The performance timings of the four-way prime field arithmetic show an increase on
the throughput of the operations. For example, calculating four multiplications takes 84
cycles using the four-way operation whereas, using four multiplications using the radix-264

implementation takes 4 × 43 = 172 cycles; thus, the four-way multiplications are twice
faster. However, the four-way implementation do not scale linearly with the number of
units, since it was expected an acceleration factor close to the ideal factor (4×).

One reason that explains this loss of performance is because operating over larger
tuples requires more live registers than the other implementations. Processors supporting
AVX2 have only sixteen 256-bit vector registers, so the compiler must issue instructions
to spill registers to memory more frequently. Since the latency of accessing memory using
large registers is high, the performance of the four-way operations is downgraded.

3.5 Arithmetic on GF(2384 − 2128 − 296 + 232 − 1)

In this section, we cover the case of a prime modulus that belongs to the family of Gener-
alized Mersenne numbers [251]. These primes admit an efficient procedure for reduction
modulo p. The prime field studied is Fp384 where p384 = 2384 − 2128 − 296 + 232 − 1, which
is specified in standards for elliptic curve cryptography. We now describe the implemen-
tation of arithmetic operations in this field.

The choice of a multi-precision representation of integers is key for achieving good
performance. By using a polynomial representation, modular additions propagate some
carry bits through all the digits of the number; however, this propagation of bits is a
dependency chain that avoids calculating operations in parallel. Besides, the presence of
large dependency chains reduces the performance of the operations significantly. As a
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corollary, it follows that reducing such dependencies is crucial for improving the perfor-
mance. Conversely, using a redundant representation guarantees that the addition of two
elements will not overflow the registers, which enables parallel processing of digits and
leads to an immediate application of vector instructions.

3.5.1 Redundant Representation

The redundant representation as stated in Definition 3.2.6 requires setting ρ. Although
there are several alternatives, we selected ρ following these criteria. First of all, recall
that Equation (3.2.22) must be satisfied to use the PMULUDQ AVX2 instruction. Initially,
we considered setting ρ = 30 leading to sequences of l = 13 digits; however, digits will
not have enough room to store carry bits, which does not satisfy ρ ≤ 29.5 according to
Equation (3.2.21). The next options are to choose ρ = {28, 29} as either case leads to
work with sequences of l = 14 digits. We selected ρ = 28 because registers will have more
room for storing carry bits after calculating a multiplication. Finally, we discarded the
case of ρ < 28 as it increases the length of sequences and the number of instructions for
performing arithmetic operations.

Let ρ = 28, an element a ∈ Fp384 is represented as any sequence A = (a13, . . . , a0) of
length l = 14 such that a =

∑︁13
i=0 2

28iai mod p384, as shown in Figure 3.5.1.

a7 a0 X0

a8 a1 X1

a9 a2 X2

a10 a3 X3

a11 a4 X4

a12 a5 X5

a13 a6 X6

Memory

a0 a7 a1 a8 a2 a9 a3 a10 a4 a11 · · ·A

Figure 3.5.1: A sequence of digits A = (a13, . . . , a0) representing a ∈ Fp384 is loaded from
memory into seven 128-bit registers X0, . . . , X6.

Addition

Given A = (a13, . . . , a0) and B = (b13, . . . , b0), the addition C = A + B is calculated as
C = (a13+b13, . . . , a0+b0). These additions are calculated using seven PADDQ instructions.

Subtraction

For subtracting sequences, we must ensure that all digits of the resultant sequence be pos-
itive. To do that, we perform the subtraction of A = (a13, . . . , a0) minus B = (b13, . . . , b0)
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as C = A−B+P , where P is a redundant sequence of p384 such that |P | ≤ 30, so we set

P = (p13, . . . , p0)

= (0x101ffffe, 0x1ffffffe, 0x1ffffffe, 0x1ffffffe, 0x1ffffffe,

0x1ffffffe, 0x1ffffffe, 0x1ffffffe, 0x1ffffffe, 0x1efdfffe,

0x1fefdffe, 0x1ffffffe, 0x2000101e, 0x1ffffefe) .

(3.5.2)

In this sequence, |p1| = 30 whereas the size of the remaining digits is 29 bits; the selection
of this sequence is due to the size of the second digit increases faster than the size of the
other digits when performing a reduction modulo p384.

Multiplication

We evaluate two alternatives for multiplying prime field elements. First, we implemented
the Mastrovito multiplier, which merges the integer multiplication with the reduction
modulo p; and we also implemented the Karatsuba multiplier, which calculates the integer
multiplication, followed by the reduction modulo p.

Multiplication using Mastrovito Multiplier

Recalling that the Mastrovito multiplier enables the calculation of several digit multipli-
cations without dependencies, which is suitable to leverage the high throughput of the
PMULUDQ instruction. In this setting, this algorithm calculates the multiplication of the
sequence A times B as C = A×B =

∑︁13
i=0 π

i(A)× bi, where π is defined as

(a13, . . . , a0) ↦→ (a12, . . . , a0, 0) +R , (3.5.3)

and R is a sequence of digits representing the number 2⌈lρ⌉a13 = 2392a13. Reducing this
number modulo p384, it follows that 2392a13 ≡ (2136 + 2104 − 240 + 28)a13 (mod p384). An
initial approach is R = (224a13, 2

20a13, 0,−212a13, 28a13); however, since |a13| ≤ 28 then
|R| ≤ 52, which avoids performing a subsequent multiplication of digits with the 32-bit
PMULUDQ multiplication instruction. For this reason, we looked for a sequence R that
ensures |πi(A)| ≤ 32 for 0 ≤ i < 14, and we arrived to a better approach: R = (r5, . . . , r0),
where

r5 = ⌊a13/24⌋ , r4 = ⌊a13/28⌋+ 224(a13 mod 24) ,

r3 = 220(a13 mod 28) , r2 = −⌊a13/216⌋ ,
r1 = ⌊a13/220⌋ − 212(a13 mod 216) , r0 = 28(a13 mod 220) .

(3.5.4)

Thus |R| ≤ 28 and if we consider that |A| ≤ 28, then the size of π(A) is at most 29 bits.
We experimentally verified that if |A| ≤ 28, then |πi(A)| ≤ 30 for 0 ≤ i < 14. This last re-
lation allows performing digit multiplications using the PMULUDQ instruction. Therefore,
we implemented Mastrovito’s multiplication method following Algorithm 3.4.12.

The operations required by π were implemented using only logic and bit shifting in-
structions. That is using the PAND and PSRLQ/PSLLQ vector instructions. We optimized
the implementation of π noticing that whenever the shift displacement is multiple of
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eight, we use instead byte permutation instructions (PSHUFB instruction). This permu-
tation instruction enters to an execution unit that is different to the ones used for shift
instructions. We use this equivalence of instructions to relieve pressure in one of the units
and to better distribute the workload among other execution units. This optimization
technique allows increasing the instruction-level parallelism of this task which results on
reducing the execution time of the function.

Multiplication using Karatsuba Multiplier

Since l = 14 is even, we can split the input sequences by half and calculate three multipli-
cations of sequences of seven digits. These multiplications can be performed again using
the Karatsuba multiplier. In Figure 3.5.5, we show the recursion tree used to calculate
multiplications of sequences of fourteen digits. Each node is annotated with n, which rep-
resents the multiplication of sequences of length n. Each internal node is calculated using
Karatsuba algorithm splitting in three nodes. The leaves of the tree represent the end
of the recursion, where the product of these sequences is calculated using the schoolbook
method, more specifically, using the operand-scanning method.

14

7

4 3 4

7

4 3 4

7

4 3 4

Figure 3.5.5: Recursion tree of Karatsuba multiplication of sequences of length l = 14.
The leaves of the tree represent multiplications of sequences of length three and four using
the schoolbook multiplication.

Given A = (a13, . . . , a0) and B = (b13, . . . , b0), the Karatsuba multiplication algorithm
sets n = 7 and splits the inputs into shorter sequences A1 = (a13 . . . , a7), A0 = (a6 . . . , a0),
B1 = (b13 . . . , b7), and B0 = (b6 . . . , b0). Then, it calculates X = A0×B0, Y = A1×B1, and
Z = (A0+A1)×(B0+B1). Note that the recursion trees of these multiplications are iden-
tical, and more importantly, they are independent of each other, which enables a parallel
execution of the operations. For instance, one can construct the tuple ⟨A0, B0, A0 + A1⟩
and multiply it by ⟨A1, B1, B0 +B1⟩ to obtain ⟨X, Y, Z⟩ executing this operation entirely
in parallel using, for example, 256-bit vector registers. However, we do not follow such
approach because inserting (and extracting) values into the high part of a 256-bit register
is a time-consuming operation that slows down the execution of the multiplication.

For the third recursion tree, we execute the first two sub-trees in parallel as is shown in
Figure 3.5.6. Once we calculate X, Y , and Z the product C = A×B is obtained using the
refined Karatsuba identity from Equation (3.2.25). Finally, C will have 28 digits which
must be reduced modulo p384 to obtain an equivalent sequence of 14 digits.
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14

7

4 3 4

7

4 3 4

7

4 4 4

7× 7 Mult
(2-way)

4× 4 Mult
(2-way)

Figure 3.5.6: Parallel execution of the Karatsuba recursion tree for l = 14. The recursion
levels inside the rectangles are processed using a 2-way n×n digit multiplication function
using 128-bit vector instructions.

Reduction Modulo p384

This section describes a procedure to reduce A modulo p384, where A is the sequence
resulting from calculating an integer multiplication using the Karatsuba algorithm. In
such a case, the input sequence A has length 28 and |A| ≤ 60 bits.

Our reduction method is an iterative algorithm that shortens the sequence A one digit
at a time. For i ≥ 14, the digit ai of A represents the number 228iai which is equivalent
to 228iai ≡ (2136 +240− 240 +28)228(i−14)ai (mod p384). By using this equivalence, we can
replace the last digit of the sequence, and accumulate the correspondent sequence into
the remaining digits. This equivalence is applied fourteen times until it remains fourteen
digits. Algorithm 3.5.7 shows the steps to follow for reducing modulo p384.

Algorithm 3.5.7 Reduction modulo p384.
Input: A, a sequence of length 28.
Output: C, a sequence of length 14 such that C ∼ A.
1: C ← A
2: for i← 0 to 13 do
3: x← c27−i

4: c19−i ← c19−i + ⌊x/232⌋
5: c18−i ← c18−i + ⌊x/236⌋
6: c17−i ← c17−i + 224(x mod 232)
7: c16−i ← c16−i + 220(x mod 236)− ⌊x/244⌋
8: c15−i ← c15−i + ⌊x/248⌋
9: c14−i ← c14−i − 212(x mod 244)

10: c13−i ← c13−i + 28(x mod 248)
11: end for
12: return C = (c13, . . . , c0)

By analyzing Algorithm 3.5.7, there exists a series of loop-carried dependencies in the
execution of the main loop. Assume that the main loop is processing the i-th iteration
for replacing the digit c27−i, then it can be seen that the digits c13−i to c19−i are updated
with parts of the digit ci; thus the digits c13−i to c19−i depend on ci. Using the same
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argument, the digits c6−i to c12−i depend on the digit c20−i. However, we observed that
the loop-carried dependencies do not interfere with the calculation of the digits derived
by reducing c27−i and c20−i. Hence, the reduction of this digits runs in parallel.

The parallel execution of Algorithm 3.5.7 can reduce two digits at the same time.
First, the input digits must be stored into 128-bit registers as shown below.

[c27 c20] → [c19 c12] [c18 c11] [c17 c10] [c16 c9] [c15 c8] [c14 c7] [c13 c6]

[c26 c19] → [c18 c11] [c17 c10] [c16 c9] [c15 c8] [c14 c7] [c13 c6] [c12 c5]
...

[c21 c14] → [c13 c6] [c12 c5] [c11 c4] [c10 c3] [ c9 c2] [ c8 c2] [ c7 c0] .

The leftmost pair represents the digits that are reduced modulo p384 updating the value
stored into the pairs on the right. Thus, each row represents the calculation of two
reductions modulo p384 in parallel. After seven iterations, the input sequence will have
fourteen digits, which are already stored as ⟨A0, A1⟩ into 128-bit vector registers.

The implementation of this reduction procedure is analogous to the one used for imple-
menting the π function. In this case, Algorithm 3.5.7 requires performing divisions and
reductions modulo a power of two, operations that are straightforwardly implemented
using bit shifting and logic instructions. As before, some of these operations can be al-
ternatively implemented using byte permutation instructions (PSHUFB instruction). The
processor executes them as fast as logical operations, and more importantly, the execution
unit that processes PSHUFB is different to the one that processes bit shifting instructions.

Digit Size Reduction

This operation reduces the size of each digit of a given sequence to be lesser than or equal
to 28 bits. In the reduction modulo p384, every time a digit is reduced some parts of it
are added to the reduced sequence. However since 2384 mod p384 has one negative power
of 2, some bits must be subtracted instead. This can be seen in the Steps 7 and 9 of
Algorithm 3.5.7. These subtractions cause, in some cases, that the reduced sequence has
negative digits; nonetheless, although such a sequence also represents the same integer as
the non-reduced one, we restrict the redundant representation to work with positive digits
(cf. Definition 3.2.6). Thus, to remove negative digits in an input sequence A, we add a
redundant sequence P , which is a multiple of p384 such that 60 < |P | ≤ 62, specifically

P = (p13, . . . , p0)

= (0x1ffffefe00000000, 0x2000101e00000000, 0x1ffffffe00000000,

0x1fefdffe00000000, 0x1efdfffe00000000, 0x1ffffffe00000000,

0x1ffffffe00000000, 0x1ffffffe00000000, 0x1ffffffe00000000,

0x1ffffffe00000000, 0x1ffffffe00000000, 0x1ffffffe00000000,

0x1ffffffe00000000, 0x101ffffe00000000) .

(3.5.8)

Once the sequence was updated as A← A+ P , we can perform the digit size reduction.
Recall that a sequence A is stored into 128-bit vector registers as A0, A1; then we have

registers containing the digits [a0, a7], . . . , [a6, a13]. We start the propagation of digits
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from [a6, a13]. Thus, the most significant bits of a6 are propagated to a7, whereas the
most significant bits of a13 are reduced using 2392x ≡ (2136 + 2104 − 240 + 28)x mod p384.
After performing this propagation and reduction, we propagate the most significant bits
of a0 and a7 into, respectively, the digits a1 and a8. We continue with this propagation of
bits until reaching again a6 and a13. Finally, we propagate the most significant bits of a6
and reduce the most significant bits of a13, which ensures that |A| ≤ 28. The propagation
of digits is performed in parallel since digits are stored in 128-bit vector registers.

Multiplicative Inverse

Let a ∈ Fp384 , the multiplicative inverse of a is calculated as

a−1 = a2
384−2128−296+232−3

=
[︂
a2

288−232−1
]︂296 [︂

a2
32−3

]︂
=
[︂
a2

288−233+232−1
]︂296 [︂

a2
32−22+21−1

]︂
=

[︃(︂
a2

255−1
)︂233 (︂

a2
32−1

)︂]︃296 [︃(︂
a2

30−1
)︂22 (︂

a2
1−1
)︂]︃

=
[︂
(α255)

233 Tα2

]︂296
[Tα1] , where T = (α30)

22 and αx = a2
x−1 .

(3.5.9)

We calculate a large part of this exponentiation using the Itoh-Tsujii algorithm [156]. To
calculate α255, we looked for the shortest addition chain (c1, . . . , cs), such that c1 = 1 and
cs = 255.

i cx cy ci = cx + cy S ← S ∪ {αci = (αcx)
2cyαcy}

- - - 1 {α1}
1 1 1 2 {α1, α2}
2 2 1 3 {α1, α2, α3}
3 3 3 6 {α1, α2, α3, α6}
4 6 6 12 {α1, α2, α3, α6, α12}
5 12 3 15 {α1, α2, α3, α6, α12, α15}
6 15 15 30 {α1, α2, α3, α6, α12, α15, α30}
7 30 30 60 {α1, α2, α3, α6, α12, α15, α30, α60}
8 60 60 120 {α1, α2, α3, α6, α12, α15, α30, α60, α120}
9 120 120 240 {α1, α2, α3, α6, α12, α15, α30, α60, α120, α240}
10 240 15 250 {α1, α2, α3, α6, α12, α15, α30, α60, α120, α240, α255}

We leverage that fact that the term α30 is part of the addition chain since it is used to
calculated the multiplicative inverse. In total, calculating multiplicative inverses takes 14
multiplications and 385 squares.
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3.5.2 Two-way Operations

The previous section shows how to perform prime field operations using the 128-bit vector
instructions. Such an implementation leverages that some internal prime field operations
can be performed in parallel among the digits of the sequence. This section shows the
extension to 256-bit registers to process two-way prime field operations.

Given a pair of sequences A and B, we use seven 256-bit registers to store the tuple
⟨A,B⟩ as Figure 3.5.10 shows.

b7 b0 a7 a0 Y0

b8 b1 a8 a1 Y1

...

b13 b6 a13 a6 Y6

Figure 3.5.10: Distribution of the digits of ⟨A,B⟩ into seven 256-bit vector registers.

The arithmetic operations are performed using 256-bit AVX2 instructions, and for
implementing the algorithms described in the previous section, the digits are processed
analogously. With the exception of multiplicative inverses, the implementation of the
arithmetic operations follows the parallel strategy described in Section 3.3.

3.5.3 Performance Benchmark

We report a performance benchmark of the vectorized implementation of the arithmetic
operations on Fp384 .

Since multiplication is a critical operation of the implementation, we want to deter-
mine which multiplication algorithm offers a better performance. We measured the time
taken to calculate multiplications between sequences of fourteen digits and obtained the
following timings.

Implementation Latency (cycles) Code Size (bytes)

Mastrovito Method 181 2,314
Karatsuba Method 173 3,428

We experimentally verified that multiplications run around 5 % faster when using the
Karatsuba algorithm. The memory footprint of the Karatsuba implementation is 1.48×
the size of the Mastrovito’s implementation. If a software library wants to target a low
memory consumption, the implementation of Mastrovito multiplier becomes the preferred
choice for calculating multiplications. We opted for using the fastest implementation, so
the Karatsuba algorithm is the one used in our implementation.
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Comparison with Related Works

We looked for software libraries that perform arithmetic operations using 64-bit in-
structions. The OpenSSL library [263] has support for calculating operations on Fp384

but the code is not optimized for this field. This library uses generic multi-precision
integer arithmetic and uses the Montgomery REDC algorithm for calculating reduc-
tions modulo p384. We measured the OpenSSL’s functions: BN_mod_add for additions,
BN_mod_mul_montgomery for multiplications, and BN_mod_exp_mont_consttime for mul-
tiplicative inverses. We also found an optimized 64-bit library for Fp384 developed by
McMillion [189]. This is a Go library with the prime field arithmetic written in assembly.
These two 64-bit implementations are the baseline used in comparisons. Table 3.5.11
shows the timings of operations measured on Skylake.

Table 3.5.11: Time in clock cycles of Fp384 operations measured on Skylake.

Operations Radix ISA A M S DSR I Reference

Single
Radix-264 x64 106 298 271 – 124,000 OpenSSL [263]
Radix-264 x64 18 162 162 – 116,500 McMillion [189]
ρ = 28 SSE 5 173 145 34 75,100 This work

Two-way ρ = 28 AVX2
7 178 150 36 – This work

1.43× 1.82× 1.93× 1.88×

It is clear that the optimized assembly implementation surpasses OpenSSL’s imple-
mentation. For example, the timings for squaring are almost twice as fast, but it is not
the case for inversions. McMillion’s implementation uses a generic square-and-multiply
method to calculate inverses, whereas OpenSSL uses a fixed-size window exponentia-
tion method. In contrast, our vectorized implementation calculates inverses 35% and
39% faster than the baseline implementations. This is due to we use an exponentiation
method that requires fewer operations. For field additions, the 64-bit implementations
always perform a reduction modulo p. In the vectorized implementation, additions are
executed in parallel and the reduction modulo p is only calculated after multiplications.

Regarding the implementation of two-way operations, we achieve significant improve-
ments by using 256-bit vector instructions. The last row of Table 3.5.11 summarizes the
acceleration factor calculated as 2Tsingle/Ttwo-way , where Tsingle is the minimum time to
compute a prime field operation either using 64-bit or SSE instructions, and Ttwo-way is
the time taken by a two-way operation. As can be seen, almost all arithmetic operations
get acceleration factors close to the ideal factor (2×).

3.6 Arithmetic on GF(2448 − 2224 − 1)

This section shows the implementation of arithmetic operations of the prime field Fp448 ,
where p448 = 2448−2224−1. This modulus is an example of a Generalized Mersenne prime,
but also resembles the polynomial of the golden ratio. Moreover, this prime field is used to
define elliptic curves with efficient arithmetic. We describe two optimized implementations



101

based on the following representations: using a polynomial representation setting w = 64,
and using a redundant representation setting ρ = 28.

3.6.1 Polynomial Representation

We implement arithmetic operations for Fp448 using the native 64-bit instruction set.
Prime field elements are represented as sequences of digits in radix-264, i.e., w = 64

following Definition 3.2.1. So, an element a ∈ Fp448 is represented by A = (a6, . . . , a0),
which stored in an array of l = 7 words of 64-bits.

Addition

Adding two prime field elements requires performing an addition with carry for every digit
of the sequence. This operation produces one carry bit, which must be reduced modulo
p448. We want to emphasize that the reduction modulo p448 must be implemented using
a regular execution pattern to fulfill the requirements of secure software development.

Now, we show the operations required for adding a and b, two 448-bit numbers, to
obtain c, a 448-bit number that is equivalent to c ≡ a + b (mod p448). First, calculate
d ← a + b, this number can be written as d12

448 + d0, where d0 = d mod 2448 and
d1 = ⌊d/2448⌋. After calculating the addition, if the carry bit d1 = 0, then the operation
ends by setting c ← d; otherwise, if d1 = 1, then d1 must be reduced modulo p448 and
added to d0, i.e., e← d0 + d1(2

224 + 1). However, e could be greater than 2448 generating
and additional carry bit. Thus, it follows e = e12

448 + e0, where e0 = e mod 2448 and
e1 = ⌊e/2448⌋. Observe that if e1 = 0, then the addition ends by setting c← e; otherwise,
e1 is different to zero whenever 2448 − 2224 − 1 ≤ d0 < 2448, which causes that e is
bounded as 2448 ≤ e < 2448 + 2224 + 1. Finally, reduce e1 modulo p384 and calculate
c ← e0 + e1(2

224 + 1). In this operation, the calculation of c does not produce carry bit,
since 0 ≤ e0 < 2224 + 1; thus 0 ≤ c < 2448. A graphic description of this algorithm is
shown in Figure 3.6.1.

d← a+ b
d = d12

448 + d0
d1

e← d0 + (2224 + 1)d1
e = e12

448 + e0
e1 c← e0 + (2224 + 1)e1

start

end

1 1

0 0

Figure 3.6.1: Non-constant-time calculation of additions modulo p448.

The previous method as it was described does not run in constant time. To implement
these operations in constant-time, we use conditional instructions to handle the carry bit
and always perform a fixed number of operations. After performing an addition with carry
operation, the resultant carry bit is used to conditionally load 232 into a register, which
is performed through the CMOV instruction. Algorithm 3.6.2 shows the steps followed to
calculate the addition modulo p448 using a regular execution pattern.
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Algorithm 3.6.2 Constant-time implementation of additions modulo p448.
Input: A and B, two sequences of seven digits of 64-bits representing a, b ∈ Fp448 .
Output: C, a sequence of seven digits representing c = a+ b mod p448.
(d7, . . . , d0)← AddCarry ((a6, . . . , a0), (b6, . . . , b0), 0)
x← 0
x← CMOV(d7, 232)
(e7, . . . , e0)← AddCarry ((d6, . . . , d0), (x, 0, 0, 0), d7)
x← 0
x← CMOV(e7, 232)
(c6, . . . , c0)← AddCarry ((e6, . . . , e0), (x, 0, 0, 0), e7)
return C ← (c6, . . . , c0)

Subtraction

The subtraction of prime field elements is calculated using an analogous implementation as
the one used for calculating additions. Thus, all the addition with carry operations (ADC
instruction) were replaced by subtraction with borrow operations (SUB/SBB instruction).

Multiplication

We decompose the calculation of prime field multiplication in an integer multiplication
followed by a reduction modulo p448.

For implementing integer multiplication, we use the operand scanning method, because
this method is highly compatible with the use of MULX instructions and ADX addition
instructions. We developed a 448-bit multiplier that calculates a 896-bit product following
Algorithm 3.2.13 and we provide three implementations using a combination of MULX
and ADX instructions, the MULX instruction (without ADX instructions), and the MULQ
instruction (without MULX and ADX instructions).

Table 3.6.3 shows the instruction counts of our implementations of the 448-bit integer
multiplier. The application of the MULX instruction reduces the number of addition
instructions. Moreover, by using ADX instructions, the number of memory accesses
reduces significantly.

Table 3.6.3: Instruction counts of 448-bit integer multiplication.

Implementation Multiplication Addition Load Store Move

MULQ + ADC 49 134 98 56 49
MULX + ADC 49 97 98 56 0
MULX + ADX 49 97 56 14 13

Reduction Modulo p448

The implementation of the reduction modulo p448 assumes the input is a 896-bit number
stored in fourteen words C = (c13, . . . , c0) and produces as output a shorter sequence
D = (d6, . . . , d0) such that C ∼ D.
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The special format of p448 allows obtaining a fast reduction method. Observe that the
most significant words of C can be reduced modulo p448 as Figure 3.6.4 shows.

0224448

c0

c7

d0

c1

c8

d1

c2

c9

d2

c3

c10

d3

c4

c11

d4

c5

c12

d5

c6

c13

d6d7

c7

c10

c10

c8

c11

c11

c9

c12

c12

c10

c13

c13

+

+

+

+

Figure 3.6.4: Partial reduction modulo p448 from fourteen 64-bit words C = (c13, . . . , c0)
to eight words D = (d7, . . . , d0). The shadowed areas over c10 represents that only 32 bits
of c10 are considered for the addition. This reduction holds C ∼ D.

In the implementation we calculate D = (d7, . . . , d0) = (c6, . . . , c0) + E + F , where E

and F are defined as

E =
(︁
2c13, 2c12, 2c11, 2c10 − (c10 mod 232), c9, c8, c7

)︁
,

F =
(︁
⌊c9/232⌋+ c10 mod 232, ⌊c8/232⌋+ c9 mod 232, ⌊c7/232⌋+ c8 mod 232,

⌊c13/232⌋+ c7 mod 232, ⌊c12/232⌋+ c13 mod 232, ⌊c11/232⌋+ c12 mod 232,

⌊c10/232⌋+ c11 mod 232
)︁
.

This operation can generate one extra word with the carry bits of the addition. The word
d7 must be reduced modulo p448 by performing D = (d6, . . . , d0)+ (232d7, 0, 0, d7) and this
last addition does not produce carry bits.

Multiplicative Inverse

Let a ∈ F2448−2224−1 and define αx = a2
x−1, the multiplicative inverse of a is given as

a−1 = a2
448−2224−3 =

(︂
(α223)

2223α222

)︂22
α1 . (3.6.5)

We use the Itoh-Tsujii [156] method to calculate α223 and α222 efficiently. To calculate α223,
we look for a short addition chain (c1, . . . , cs) setting c1 = 1 and cs = 223. Fortunately,
the shortest addition chain also calculates α222 as an intermediate value, and it is shown
in the following table.
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i cx cy ci = cx + cy S ← S ∪ {αci = (αcx)
2cyαcy}

- - - 1 {α1}
1 1 1 2 {α1, α2}
2 2 1 3 {α1, α2, α3}
3 3 3 6 {α1, α2, α3, α6}
4 6 6 12 {α1, α2, α3, α6, α12}
5 12 12 24 {α1, α2, α3, α6, α12, α24}
6 24 3 27 {α1, α2, α3, α6, α12, α24, α27}
7 27 27 54 {α1, α2, α3, α6, α12, α24, α27, α54}
8 54 54 108 {α1, α2, α3, α6, α12, α24, α27, α54, α108}
9 108 3 111 {α1, α2, α3, α6, α12, α24, α27, α54, α108, α111}
10 111 111 222 {α1, α2, α3, α6, α12, α24, α27, α54, α108, α111, α222}
11 222 1 223 {α1, α2, α3, α6, α12, α24, α27, α54, α108, α111, α222, α223}

In each row, the set S contains a new element αci = (αcx)
2cyαcy , which is calculated with

one multiplication and cy squares. Once α223 is calculated, the multiplicative inverse of a
takes 13 multiplications and 447 squares in total.

Merging Square-Root and Inversion Calculation

Like the multiplicative inverse, the square-roots of a prime field element could be calcu-
lated raising to a power that depends on the prime modulus. In the particular case when
p ≡ 3 (mod 4), the square-roots of a ∈ Fp can be obtained as ±√a = ±a p+1

4 .
Given u, v ∈ Fp and v ̸= 0, the calculation of x = ±√︁u

v
∈ Fp can be performed faster

by merging the calculation of inversion and square-root. Thus, defining x as

x =
(︂u
v

)︂ p+1
4

= u
p+1
4 v−

p+1
4

= u
p−3+4

4 v(p−1)− p+1
4 = u

p−3
4

+1v
3p−5

4

= u v
(︁
uv3
)︁ p−3

4 .

(3.6.6)

This calculation has two cases: if x2v = u, then x = ±√︁u
v
; otherwise, the square-root does

not exists. In RFC-8032 [162], the same calculation is performed as x = u3 v (u5v3)
p−3
4 ;

however, Equation (3.6.6) is faster since it saves two multiplications and one square.
For the case of Fp448 , the exponentiation a

p−3
4 can be calculated using an analogous

method as for calculating multiplicative inverses. It follows that a
p−3
4 = (α223)

2223α222.
Note that this factor appears in the calculation of inverses, so we can reuse the same
addition chain for both purposes reducing the code size of the software library.

3.6.2 Redundant Representation

The redundant representation, stated in Definition 3.2.6, requires to select a value of ρ
for representing elements of the prime field. According to the bounds defined in Equa-
tions (3.2.21) and (3.2.22), the size of digits must be lower than w = 32 for enabling the



105

use of vector instructions. Since p448 is a 448-bit number, we opt for splitting the numbers
in l = 16 digits of size ρ = 28 bits because this selection sets the size of sequences to be
a power of two, which is particularly useful for implementing Karatsuba multiplication.
Setting ρ < 28 increases the length of sequences, which incurs in more digit multiplica-
tions and larger storage requirements. Therefore, an element a ∈ Fp448 is represented by
any sequence A = (a15, . . . , a0) of length l = 16 such that a ≡∑︁15

i=0 2
28iai mod p448. The

digits of a sequence are stored into 128-bit vector registers as shown in Figure 3.6.7.

a8 a0 X0

a9 a1 X1

a10 a2 X2

a11 a3 X3

a12 a4 X4

a13 a5 X5

a14 a6 X6

a15 a7 X7

Memory

a0 a8 a1 a9 a2 a10 a3 a11 a4 a12 · · ·A

Figure 3.6.7: A sequence of digits A = (a15, . . . , a0) representing a ∈ Fp448 is stored into
eight 128-bit registers X0, . . . , X7.

Addition

The addition of sequences C = A + B is performed by scheduling eight 128-bit vector
additions PADDQ as

[ c8 c0] ← [ a8 a0] + [ b8 b0]

[ c9 c1] ← [ a9 a1] + [ b9 b1]

[c10 c2] ← [a10 a2] + [b10 b2]

[c11 c3] ← [a11 a3] + [b11 b3]

[c12 c4] ← [a12 a4] + [b12 b4]

[c13 c5] ← [a13 a5] + [b13 b5]

[c14 c6] ← [a14 a6] + [b14 b6]

[c15 c7] ← [a15 a7] + [b15 b7] .

Although the addition of digits could produce some carry bits, these bits are contained
inside of the 64 bit registers. So, no carry propagation is required for calculating additions.

Subtraction

Unlike the calculation of additions, the calculation of subtractions can produce some
negative digits. Although a sequence with negative digits is an equivalent sequence of the
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subtraction of sequences, we restricted digits to be always positive. To avoid calculating
negative digits, we perform the subtraction as C = A − B + P , where P is a redundant
sequence of p448 such that |pi| = 29 for 0 ≤ i < 16, more specifically

P = (p15, . . . , p0) = (0x1ffffffe, 0x1ffffffe, 0x1ffffffe, 0x1ffffffe,

0x1ffffffe, 0x1ffffffe, 0x1ffffffc, 0x3ffffffc,

0x1ffffffe, 0x1ffffffe, 0x1ffffffe, 0x1ffffffe,

0x1ffffffe, 0x1ffffffe, 0x1ffffffe, 0x1ffffffe) .

(3.6.8)

Using this auxiliary sequence, the subtraction of digits is always positive assuming that
the size of the input digits is ρ = 28 bits. This operation is implemented using eight
vector additions (PADDQ) and eight vector subtractions (PSUBQ).

Multiplication

We implemented two multiplication algorithms the Mastrovito multiplier and the Karat-
suba algorithm, and compared their performance.

The Mastrovito multiplier has the main advantage that several multiplications can
be issued independently, which can be suitable for taking advantage of the throughput
of the PMULUDQ instruction. Recall that for multiplying C = A × B, the sequence C is
obtained as C = Circ(A) × B, where Circ(A) = [A, π(A), . . . , πl−1(A)]. To instantiate
this algorithm, we define

π : (a15, a14, a13, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3, a2, a1, a0)

↦→ (a14, a13, a12, a11, a10, a9, a8, a7 + a15, a6, a5, a4, a3, a2, a1, a0, a15) .
(3.6.9)

As can be seen, π rotates the digits of the input sequence and updates the eighth digit with
a7+a15. The rotation of digits can be efficiently performed using register renaming, which
is accomplished at compilation time at no cost during execution. Thus, the calculation of
π reduces to calculate one digit addition.

One negative result of the implementation of the Mastrovito multiplier is that it re-
quires lots of memory accesses, which are translated in performance penalties. For exam-
ple, to store C and A are required 32 live registers, but since the processor only has sixteen
this causes that some registers be spilled to memory more often, which downgrades the
performance of this implementation significantly.

As a better alternative, we implemented the Karatsuba [168] multiplication method
instead. The main advantage of this algorithm when is instantiated with this prime field is
that elements have a larger number of words making suitable the use of this sub-quadratic
time-complexity algorithm. Moreover, since the number of digits is a power of two, then
the Karatusba algorithm can partition the sequences evenly.

We experimentally determined the optimal recursion level that minimizes the running
time of the integer multiplication and obtained the following timings.

Recursion Level 0 1 2 3 4

Clock Cycles 250 164 143 163 183
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The zero recursion level represents the time taken by the execution of the schoolbook
multiplication method. It can be seen that by increasing the recursion level, the time
to compute integer multiplication is gradually reduced until a point in which the cost of
performing integer additions dominates the total cost of the multiplication. According to
our experiments, we found that the inflection point was reached at the third recursion level.
Hence, we implement Karatsuba algorithm using two recursion levels and the remainder
multiplications are calculated using the schoolbook method. Algorithm 3.6.10 shows the
steps followed in the first recursion level of the Karatsuba multiplier.

Algorithm 3.6.10 Karatsuba multiplication merged with reduction modulo p448.
Input: A = (a0, . . . , a15) and B = (b0, . . . , b15), two sequences of digits.
Output: C = (c0, . . . , c15), a sequence of digits such that C = A×B.

Integer Multiplication
1: (s0, . . . , s7)← (a0 + a8, . . . , a7 + a15)
2: (t0, . . . , t7)← (b0 + b8, . . . , b7 + b15)
3: (x0, . . . , x15)← Karatsuba8

(︁
(a0, . . . , a7), (b0, . . . , b7)

)︁
4: (y0, . . . , y15)← Karatsuba8

(︁
(a8, . . . , a15), (b8, . . . , b15)

)︁
5: (z0, . . . , z15)← Karatsuba8

(︁
(s0, . . . , s7), (t0, . . . , t7)

)︁
Karatsuba recombination merged with reduction modulo p448

6: for i← 0 to 7 do
7: ci ← xi + yi + zi+8 − xi+8

8: ci+8 ← yi+8 + zi + zi+8 − xi

9: end for
10: return C = (c0, . . . , c15)

Reduction modulo p448

It is possible to merge integer multiplication and reduction modulo p448. The prime p448
resembles the minimal polynomial φ2 − φ − 1 of the golden ratio φ = a+b

a
= a

b
setting

φ = 2224. Hamburg [141] pointed out this fact and showed that given A = A0 + 2224A1

and B = B0 +2224B1, the product C = A×B is calculated with three multiplications as

C = A×B = (A0 + 2224A1)× (B0 + 2224B1)

= (A0B0 + A1B1) + 2224 ((A0 + A1)(B0 +B1)− A0B0) .
(3.6.11)

We go one step further to optimize the calculation of C. We use the common sub-
expression elimination technique to perform the reduction modulo p448. We can split
the product A0B0 in a pair of sequences X0 and X1 such that A0B0 = X0 + 2224X1.
Analogously, we define A1B1 = Y0+2224Y1, and (A0+A1)(B0+B1) = Z0+2224Z1. Thus,
C is calculated as

C = C0 + 2224C1 = (X0 + Y0 + Z1 −X1) + 2224(Y1 + Z0 + Z1 −X0) . (3.6.12)

Lines 6-9 of Algorithm 3.6.10 calculate the Karatsuba recombination merged with the
reduction modulo p448 from the partial products calculated by the Karatsuba recursion.
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Digit Size Reduction

Since ρ = 28, given a sequence C such that |C| ≥ 28 we want to obtain an equivalent
sequence D such that C ∼ D and |D| ≤ 28. In Section 3.2.3, we presented two algorithms
for implementing this operation, and in this section we describe their implementation
using vector registers.

The implementation of the sequential version (described in Algorithm 3.2.28) requires
to propagate the most-significant bits of each digit to the next digit in the sequence. Since
digits are stored into 128-bit registers as Figure 3.6.7 shows, every time we propagate bits
from the digit ai to the digit ai+1, we are also propagating bits from the digit ai+8 to the
digit ai+9 for 0 ≤ i < 7 as follows

[a8 a0] → [a9 a1] → [a10 a2] → [a11 a3] → [a12 a4] → [a13 a5] → [a14 a6] → [a15 a7] .

The propagation of bits of the digit a7 to a8 is a special case, since at the same time the
most significant bits of the digit a15 must be reduced modulo p448. To do that, we add the
most-significant bits of a15 denoted by x to the digit a0 and a8. Finally, this last addition
can result into a digit greater than 228. To avoid that, we perform two propagation steps
from the digits a0 and a8 as

[a8 + x a0 + x] → [a9 a1] → [a10 a2] .

Unlike the sequential version, the parallel version (described in Algorithm 3.2.29) allows
to calculate more operations simultaneously. We implement Algorithm 3.2.29 using eight
PAND, eight PSRLI, and nine PADDQ vector instructions.

Performance Comparison between Representations

Table 3.6.13 reports timings of arithmetic operations using 64-bit scalar instructions and
128-bit vector instructions.

Table 3.6.13: Time in clock cycles of Fp448 operations measured on Skylake.

Implementation ISA A M S Digit Size Reduction I
Sequential Parallel

Radix-264 x64 14 98 94 – – 43,100
Redundant ρ = 28 AVX2 6 87 78 25 14 33,400

For this prime field, the implementation of arithmetic operations renders better perfor-
mance using vector instructions. Part of this improvement is due to the representation of
elements. Recalling that the redundant representation allows to perform some operations
in parallel, this case is observed in the calculation of additions where a vector addition is
twice as fast than using 64-bit instructions.

Regarding the calculation of multiplications, the performance exhibited by using the
Karatsuba algorithm saves some clock cycles with respect to use the schoolbook multi-
plication. This implementation shows that for sequences of sixteen digits is worthwhile
to apply Karatsuba algorithm instead of using a quadratic time-complexity algorithm.
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The same argument applies to the squaring operation. We want to remark that the ratio
S/M is 0.95 for the 64-bit implementation and is 0.89 for the 128-bit implementation.
As a reference, the ratio is usually around 0.8 in generic implementations. Thus, these
numbers indicate that in both implementations the time for calculating squares is closer
to the time consumed by multiplications.

As a result of the improved performance of squaring using vector instructions, this
improvement also reduces the cost of calculating multiplicative inverses. From the num-
bers on Table 3.6.13, it can be seen that inversion is 22% faster when using the vector
implementation. This is a notable example in which the vector instructions do accelerate
an inherently sequential operation.

3.6.3 Two-way Operations

We implement functions that calculate two-way prime field operations. Following the
implementation techniques described in the last section, we extended the calculation of one
operation using 128-bit instructions to calculate two operations using 256-bit instructions.
Let A and B be two sequences, then the tuple ⟨A,B⟩ is stored into eight 256-bit vector
registers as Figure 3.6.14 shows.

b8 b0 a8 a0 Y0

b9 b1 a9 a1 Y1

b10 b2 a10 a2 Y2

b11 b3 a11 a3 Y3

b12 b4 a12 a4 Y4

b13 b5 a13 a5 Y5

b14 b6 a14 a6 Y6

b15 b7 a15 a7 Y7

Figure 3.6.14: The notation ⟨A,B⟩ represents the distribution of digits of two sequences
A and B stored into eight 256-bit registers.

The implementation of two-way prime field operations allows increasing the through-
put for calculating operations. We leverage this fact to calculate more operations but
taking almost the same latency as performing only one operation. As the operations are
performed inside the lanes of 128 bits, it avoids moving data between these two lanes. In
our experiments, we observed a performance penalty when using permutation instructions
that move data across the 128-bit lanes. Therefore, to achieve better efficiency using two-
way prime field operations, the schedule of operations must avoid in as much as possible
to move data between lanes.
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Performance Benchmark

Table 3.6.15 shows the timings of the prime field operations measured in Skylake. The
first two rows have exactly the same entries as the ones displayed in Table 3.6.13. The last
row shows the speedup factor yielded by the use of two-way prime field operations and
is calculated as 2Tsingle/Ttwo-way , where Tsingle is the minimum time to compute a prime
field operation either using x64 or SSE instructions, and Ttwo-way is the time taken by a
two-way operation.

Table 3.6.15: Time in clock cycles of two-way Fp448 operations measured on Skylake.

Operations Radix ISA A M S Digit Size Reduction

Sequential Parallel

Single Radix-264 x64 14 98 94 – –
ρ = 28 SSE 6 87 78 25 14

Two-way ρ = 28 AVX2 9 114 86 25 14
1.33× 1.52× 1.81× 2.00× 2.00×

Extending the implementation of arithmetic operations to the use of 256-bit vectors
resulted on significant speedups on the timings for calculating two-way prime field op-
erations. In particular, the speedup factor obtained for multiplications is 1.52×, which
means that calculating two multiplication in parallel is 34% faster than executing two
consecutive calls to the single operation implementation. Moreover, calculating squares
is 44% faster. These numbers can improve the timings of workloads that require parallel
calculations of prime field operations.

3.6.4 Four-way Operations

The four-way arithmetic operations uses 256-bit vector registers. In this case, each 64-bit
word of the 256-bit vector register stores one digit of four sequences. Let A, B, C, and D

be four sequences, the tuple ⟨A,B,C,D⟩ denotes the distribution of their digits as shown
in Figure 3.6.16.

d0 c0 b0 a0 Y0

d1 c1 b1 a1 Y1

...

d15 c15 b15 a15 Y15

Figure 3.6.16: Digit distribution of ⟨A,B,C,D⟩ to perform four-way prime field operations
using 256-bit registers.
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Performance Benchmark

Table 3.6.17 shows the timings of four-way operations measured on Skylake. The last
row of the table summarizes the acceleration factor calculated as 4Tsingle/Tfour-way , where
Tsingle is the minimum time to compute a prime field operation either using x64 or SSE
instructions, and Tfour-way is the time taken by a four-way operation.

The cycle counts of the four-way operations reveal that a significant portion of time can
be saved in comparison to single operations. For example, the calculation of a four-way
multiplication takes 149 clock cycles, which is 57% faster than using the single implemen-
tation four times. The implementation of four-way operations increases the throughput
of workloads that calculate several prime field operations independently.

Table 3.6.17: Time in clock cycles of four-way Fp448 operations measured on Skylake.

Operations Radix ISA A M S Digit Size Reduction

Sequential Parallel

Single Radix-264 x64 14 98 94 – –
ρ = 28 SSE 6 87 78 25 14

Two-way ρ = 28 AVX2 9 114 86 25 14
1.33× 1.52× 1.81× 2.00× 2.00×

Four-way ρ = 28 AVX2 18 149 105 40 25
1.33× 2.33× 2.97× 2.50× 2.24×

3.7 Arithmetic on GF((2ab− 1)2)

We study the case of implementing operations over a field of characteristic p = 2ab − 1.
These primes received lots of attention after its use on isogeny-based cryptography because
supersingular elliptic curves are defined over Fp2 .

In this section, we first show a multi-precision implementation of the REDC algo-
rithm for reduction modulo p and present some optimizations derived from the format of
these primes. Second, we describe implementation techniques for calculating arithmetic
operations over the quadratic extension field.

3.7.1 Improvements on the Reduction Modulo p = 2ab− 1

Multi-precision Implementation of REDC

The Montgomery REDC algorithm [195] can be extended for operating on large integers
using a multi-precision representation. In this section, we show how to apply REDC to
numbers represented in radix-2w. Nonetheless, the optimizations derived from the use
of special primes are also applicable to other representations with few modifications. We
denote with l the number of digits required to represent n-bit integers in radix-2w following
Definition 3.2.1.
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We briefly detail how to implement REDC under this representation. First, we set
R = 2lw so we can reduce any number T modulo p such that 0 ≤ T < Rp. To do
that, we iteratively apply the core operation from Equation (3.1.12). In this step, we
calculate a multiple of T that can be evenly divided by 2w to obtain a number congruent
to T/2w mod p. By repeating this process l times, one obtain T/2lw mod p, which can be
seen as processing l successive multiplications by 2−w mod p. Finally, we subtract p if this
number is larger than p. This procedure is shown in Algorithm 3.7.1 and is equivalent to
the multi-precision REDC algorithm given by Montgomery.

Algorithm 3.7.1 Montgomery’s REDC algorithm in radix-2w.
Constants: Define R = 2lw such that R > p and gcd(2w, p) = 1, and p′ = −p−1 mod 2w.
Input: T , an integer such that 0 ≤ T < Rp.
Output: T ′, an integer such that T ′ = TR−1 mod p.
1: T ′ ← T
2: for i← 0 to l − 1 do
3: q ← (T ′ mod 2w)p′ mod 2w

4: T ′ ← (T ′ + qp)/2w

5: end for
6: if T ′ ≥ p then
7: T ′ ← T ′ − p
8: end if
9: return T ′

We summarize the cost of REDC counting the number of w-bit (digit) multiplications.
Each iteration of Algorithm 3.7.1 calculates one digit multiplication in line 3 and l digit
multiplications in line 4; thus, the total cost of REDC is l2 + l digit multiplications.

The cost of performing a prime field multiplication using REDC takes 2l2 + l digit
multiplications. From them, l2 multiplications calculate the integer multiplication, so
more than half of the cost is due to REDC.

Several efforts for reducing the total number of digit multiplications in prime field
multiplications have been proposed. The KCM method [124] implements REDC com-
bining the Karatsuba and Comba techniques, so prime field multiplications take 7

4
l2 + l

digit multiplications. Seo et al. [245] proposed a hybrid Karatsuba reduction that requires
7
8
l2 + l digit multiplications. Although both methods rely on the Karatsuba algorithm

(a sub-quadratic time-complexity method), these methods are well-suited only when l is
larger than certain threshold. For instance, they are advantageous on architectures with a
short word size, e.g., in 8-bit or 16-bit architectures makes the size of l be larger. However,
in 64-bit architectures, quadratic complexity algorithms usually perform better for some
particular cases.

A different approach for speeding up REDC is relying on the use of primes with special
properties. In the next section, we present the case of the primes used in isogeny-based
cryptography and show new optimizations for implementing REDC efficiently.
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Properties of REDC using p = 2ab− 1

Section 3.1.2 presents some methods that leverage special primes for reducing the execu-
tion time of the REDC algorithm. In this section, we detail some well-known optimizations
that are applicable when using primes of the form p = 2ab−1. We highlight key properties
that lead us to improvements on the implementation of REDC.

An invariant of the REDC algorithm when p = 2ab − 1 is that p′ = −p−1 mod 2x is
always p′ = 1 for any 0 ≤ x ≤ a as can be seen

pp−1 ≡ 1 (mod 2x)

(2ab− 1)p−1 ≡ 1 (mod 2x)

2x2a−xbp−1 − p−1 ≡ 1 (mod 2x)

−p−1 ≡ 1 (mod 2x) .

(3.7.2)

Therefore, if a ≥ w, the multiplication in line 3 of Algorithm 3.7.1 is not performed
anymore saving l digit multiplications of the l2 + l multiplications required in the general
case. In practice, this fact was leveraged by Gueron and Krasnov [132], who accelerated
the calculation of REDC using p = 2256 − 2224 + 2192 + 296 − 1. Koziel et al. [176] also
pointed out this fact in their implementation of SIDH.

Another improvement can be derived from Equation (3.1.12). Assuming a ≥ w, the
special form of the prime allows T ′ to be calculated as

T ′ = (T + qp)/2w

= (T + p′(T mod 2w)p)/2w

= (T + T0(2
ab− 1))/2w , where T0 = T mod 2w

= (2wT1 + T0 + 2abT0 − T0)/2
w , where T1 = ⌊T/2w⌋

= T1 + 2a−wbT0 .

(3.7.3)

The dominant operation for calculating T ′ is a 1×|b| integer multiplication. This operation
is cheaper than a 1× l integer multiplication calculated in the arbitrary-prime case. For
example, assuming that b fits in l/2 digits, the number of digit multiplications is reduced
from l2 to 1

2
l2. This fact was observed by Costello et al. [78] in their implementation

of SIDH. Additionally, note that the same trick can be applied several times, say B

times, as long as a ≥ Bw. This is an equivalent observation as the one reported by
Bos and Friedberger [49]. We independently arrived to a similar result when looking for
the elimination of loop-carried dependencies that appear in REDC. We now explain our
approach, and then we will later connect it with Bos and Friedberger’s observations.

Avoiding Loop-carried Dependencies in REDC

The REDC algorithm has a data dependency that prevents calculating some operations
independently. More specifically, the dependency is present on calculating q in each
iteration of Algorithm 3.7.1. When T ′ is updated with (T ′ + qp)/2w, the value of q for
the next iteration can not be calculated before T ′ is updated. Hence, there exists a loop-
carried dependency that avoids the calculation of q for several iterations independently.
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Avoiding such a dependency is relevant since it enables more flexibility on calculat-
ing operations of REDC. Without such a dependency, the programmer can use a better
scheduling of instructions that are executed faster on some architectures. Also note that
multi-precision integer multiplication has no loop-carried dependencies on running val-
ues. This explains why there are several ways of implementing integer multiplications,
but fewer for REDC.

We observe that the loop-carried dependency on REDC can be partially avoided when
p = 2ab−1. First, we know from Equation (3.7.2) that p′ = 1; therefore, we can efficiently
perform divisions by 2a mod p, and the value of T ′ is alternatively updated as

T ′ = (T + qp)/2a

= (T + p′(T mod 2a)p) /2a

= (T + T0(2
ab− 1)) /2a , where T0 = T mod 2a

= (2aT1 + T0 + 2abT0 − T0)/2
a , where T1 = ⌊T/2a⌋

= T1 + bT0 .

(3.7.4)

A division by 2a mod p is calculated as one a × |b| integer multiplication, which can be
performed faster as we explain below.

We show how to break some data dependencies in Algorithm 3.7.1 by observing the
following. In the original multi-precision algorithm, the step size is w bits (processing one
digit at a time). On the other hand, using this shape of primes, we can process more bits
(up to a rather than w bits) per iteration. So one can perform larger steps, of any size
up to a bits. More specifically, since a ≥ Bw for some B > 0, the value of q for the first
B iterations is known in advance because it only depends on T0 = T mod 2Bw. In other
words, there is no loop-carried dependency in B consecutive iterations.

All of these observations were discovered working in collaboration with CINVESTAV
IPN’s researchers and landed on an improved implementation of REDC that is tuned for
this family of primes. The algorithm was published in the TC 2017 paper [103] P , and is
shown in Algorithm 3.7.5.

Algorithm 3.7.5 requires to set B, a parameter that indicates the step size of the multi-
precision REDC. Setting B = 1 leads to the original algorithm that processes one digit
per iteration. The value λ0 = ⌊l/B⌋ refers to the number of steps of size B, and the value
λ1 = l mod B denotes the number of steps of size one. It holds that a ≥ Bw > λ1w ≥ 0.

The cost of Algorithm 3.7.5 is summarized as follows. First, b is a fixed value that
is stored in |b|w = ⌊ |b|/w⌋ + 1 digits. Line 5 calculates bq, where q has B digits; thus,
the product takes B|b|w digit multiplications. This product is repeated λ0 times, which
amounts to λ0B|b|w digit multiplications. Line 9 calculates bq, where q has λ1 digits, so it
takes λ1|b|w digit multiplications. In total, Algorithm 3.7.5 takes λ0B|b|w+λ1|b|w = l×|b|w
digit multiplications.

We perform the products by powers of two using bit-shifting. Let a1 and a0 be the
quotient and the remainder of a/w, respectively. We calculate 2a−Bwbq = 2(a1−B)w · 2a0bq
and 2a−λ1wbq = 2(a1−λ1)w · 2a0bq shifting bq to the left a0 bits. The shifts by multiples of w
are performed by renaming registers at no cost. This last observation was independently
pointed out by Bos-Friedberger [49] as the shifted technique (sh). Alternatively, the
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Algorithm 3.7.5 Montgomery’s REDC tuned for p = 2ab− 1 in radix 2w.
Constants: Let p = 2ab− 1, define R = 2lw > p and an integer B such that B > 0 and

a ≥ Bw.
Input: T , an integer such that 0 ≤ T < Rp.
Output: T ′, an integer such that T ′ = TR−1 mod p.
1: T ′ ← T
2: λ0 ← ⌊l/B⌋ and λ1 ← l mod B
3: for i← 1 to λ0 do
4: q ← T ′ mod 2Bw

5: T ′ ← ⌊T ′/2Bw⌋+ 2a−Bwbq
6: end for
7: if λ1 ̸= 0 then
8: q ← T ′ mod 2λ1w

9: T ′ ← ⌊T ′/2λ1w⌋+ 2a−λ1wbq
10: end if
11: if T ′ ≥ p then
12: T ′ ← T ′ − p
13: end if
14: return T ′

factor 2a0 can be absorbed while performing the product bq removing the shifting, however
in some cases, this extra factor can increase the number of digit multiplications.

Another relevant aspect of Algorithm 3.7.5 is that allows performing bigger steps dur-
ing the calculation of REDC. The algorithm can calculate up to B iterations without
dependencies between them, i.e., processing Bw bits per iteration. Contrarily, the origi-
nal REDC algorithm proceeds in small steps since it processes only w bits per iteration,
and cannot go further due to the presence of data dependencies. Each big step requires
an m×m′ integer multiplication, whereas a small step requires a 1×m integer multiplica-
tion. Programmers can leverage this difference since there exist more ways of scheduling
instructions for calculating m×m′ multiplications than for 1×m multiplications.

What it remains is a way to find the optimal value for B. Our initial recommendation
is using larger values for B because it would allow more flexibility to the programmer to
implement the big steps. Alternatively, one can measure the performance of an actual
implementation. So we proceed with it, and provide experimental evidence to determine
to what extend our recommendation applies.

Performance Benchmark

We implemented Algorithm 3.7.5 for p751 = 23723239 − 1 covering three variants corre-
sponding to whether or not the architecture supports the BMI2 and ADX instructions.
Table 3.7.6 lists the instruction counts and the latency of reduction modulo p751.

Observe that the latency decreases as B increases, and this holds regardless which
instructions are used. These measurements corroborate that selecting larger values for B
results in time savings. For example, taking as a baseline the implementation with B = 1

and MULQ+ADC, the reduction takes 281 cycles. Setting B = 4, it takes 218 cycles, which
is 22% faster. Similar speedups are observed using MULX and ADX instructions.
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Table 3.7.6: Instruction counts of reduction modulo p751.

Implementation B
Instruction
Set

Instruction Counts Latency 1

MUL ADD MOV Other

This work

1
MULQ+ADC 84 251 204 8 281
MULX+ADC 84 191 24 8 232
MULX+ADX 84 191 24 8 230

2
MULQ+ADC 84 289 207 10 244
MULX+ADC 84 257 27 10 208
MULX+ADX 84 149 27 16 187

3
MULQ+ADC 84 301 210 10 227
MULX+ADC 84 281 34 10 210
MULX+ADX 84 137 34 18 193

4
MULQ+ADC 84 307 210 10 218
MULX+ADC 84 292 36 10 191
MULX+ADX 84 130 42 17 162

4 + (sh) 2
MULQ+ADC 72 265 186 46 204
MULX+ADC 72 253 36 46 189
MULX+ADX 72 118 36 55 156

Bos-Friedberger [49]

1 MULQ+ADC 84 332 157 41 254

2 MULQ+ADC 84 358 202 61 275

1 + (sh) 2 MULQ+ADC 72 299 223 86 240
1 Entries are clock cycles measured on Skylake.
2 sh stands for the shifted technique [49].

Comparison with Related Works

Bos and Friedberger [49] presented timings of a 64-bit implementation of REDC. However,
they do not obtain performance advantages by increasing the value of B. As part of their
performance results, they observed better timings setting B = 1 than B = 2, which at a
first glance, it could indicate that larger values of B do not offer performance advantages.
Contrary to that, we showed that our optimized 64-bit implementations reduce their
execution time as B gets bigger (as shown in Table 3.7.6).

In a follow up work by Bos and Friedberger [50], they revisited the case of reduction
modulo p751 targeting 32-bit ARM v7 architecture. In their implementation, they set
l = 24, w = 32, and B = 12, which is equivalent to implement REDC using λ0 = 2 big
steps (according our notation). These big steps calculate integer multiplications faster
using advanced multiply-and-accumulate instructions available in the ARM architecture.

Seo et al. [244] implemented SIDH targeting optimizations for ARM architectures.
For the ARM v8 64-bit architecture, they implemented REDC setting B = 4, which
accelerates the execution of reduction modulo p.

All of these independent works obtain performance improvements on REDC when
using larger values of B, which confirms our hypothesis about the choice of its value.
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Future Work

A different approach is using Karatsuba-based algorithms, since it saves a number of digit
multiplications improving the performance of Algorithm 3.7.5 on architectures with small
word size. Although we did not evaluated the performance of this variant in these archi-
tectures, this task can be turned on a follow up work for those interested on optimizing
implementations on smaller architectures. The performance-critical part of this strategy
is implementing Karatsuba multiplication efficiently.

3.7.2 Redundant Representation

We describe a vector implementation of arithmetic operations over Fp and its quadratic
extension. As a study case, we use the prime p751 = 23723239− 1 due to its first use in the
optimized implementation of the SIDH protocol [78].

We use a redundant representation as stated in Definition 3.2.6. According to the
bounds given in Equations (3.2.21) and (3.2.22), ρ must be lower than w′ = 32 for
enabling the use of vector instructions. Since p751 is a 751-bit number, we opt for using
ρ = 27 resulting in sequences of l = 28 digits. Also, since l is multiple of four, this eases
the application of two recursion levels of the Karatsuba multiplication algorithm.

An element a ∈ Fp751 is represented by any sequence A = (a27, . . . , a0) of length l = 28

such that a ≡∑︁27
i=0 2

27iai mod p751. The digits of a given sequence are stored into 128-bit
vector registers using the distribution shown in Figure 3.7.7.

a14 a0 X0

a15 a1 X1

...

a27 a13 X13

Memory

a0 a14 a1 a15 a2 a16 a3 a17 a4 a18 · · ·A

Figure 3.7.7: A sequence of digits A = (a27, . . . , a0) representing a ∈ Fp751 is stored into
fourteen 128-bit registers X0, . . . , X13.

Addition

The addition of sequences C = A+B is performed by scheduling fourteen 128-bit vector
additions PADDQ as follows

[c14 c0] ← [a14 a0] + [b14 b0]

[c15 c1] ← [a15 a1] + [b15 b1]
...

[c27 c13] ← [a27 a13] + [b27 b13] .

The addition of digits can produce some carry bits, which are contained inside of 64-bit
registers meaning that no carry propagation is required for calculating additions provided
the input digits are reduced.
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Subtraction

Unlike the calculation of additions, the calculation of subtractions can produce some
negative digits. We restricted digits to be always positive by performing C = A−B+P ,
where P is a redundant sequence of p751 such that |pi| = 28 for 0 ≤ i < 28; so we set

P = (p27, . . . , p0) = (0xdfcbaa7, 0x9f71c0d, 0x89484fb, 0xdeeb718,

0xd0ac569, 0x845cb24, 0xba40426, 0xa619f5a,

0xd7d0eda, 0xa959b19, 0x89fbe62, 0xdb8fb24,

0xd0a93ef, 0xf8a8ee9, 0xffffffe, 0xffffffe,

0xffffffe, 0xffffffe, 0xffffffe, 0xffffffe,

0xffffffe, 0xffffffe, 0xffffffe, 0xffffffe,

0xffffffe, 0xffffffe, 0xffffffe, 0xfffffc0) .

(3.7.8)

Using this auxiliary sequence, the subtraction of digits is always positive assuming that
the size of the input digits is ρ = 27 bits. This operation takes 14 PADDQ and 14 PSUBQ.

Multiplication

As the sequences have l = 28 digits, we process their multiplication with three products
of sequences of l/2 = 14 digits using Karatsuba, as shown in Figure 3.7.9. We implement
the reduction modulo p751 following Algorithm 3.7.5 and setting B = 2 to process two
REDC iterations, one per 64-bit line of the 128-bit register.

28

14

7

4 3 4

7

4 3 4

7

4 3 4

14

7

4 3 4

7

4 3 4

7

4 3 4

14

7

4 3 4

7

4 3 4

7

4 3 4

Figure 3.7.9: Recursion tree of Karatsuba multiplication of sequences of length l = 28.
The leaves of the tree represent multiplications of sequences of length three and four using
the schoolbook multiplication method.

Digit Size Reduction

Multiplying sequences of length l = 28 results in a sequence of 2l − 1 = 55 digits. After
calculating REDC algorithm (which clears l = 28 digits) the sequence gets reduced to
l− 1 = 27 digits. However the size of each digit is increased by double, i.e., ≈ 2ρ. At this
point, one must perform a digit size reduction for obtaining an equivalent sequence with
shorter digit size ≈ ρ.
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In Section 3.2.3, we present Algorithm 3.2.28 for implementing digit size reduction.
This algorithm requires to propagate the most-significant bits of each digit to the next
digit in the sequence. Since digits are stored into 128-bit registers as Figure 3.7.7 shows,
every time we propagate bits from the digit ai to the digit ai+1, we are also propagating
bits from the digit ai+14 to the digit ai+15 for 0 ≤ i < 14 as follows

[a14 a0] → [a15 a1] → [a16 a2] → . . . → [a25 a11] → [a26 a12] → [a27 a13] .

After performing these operations, there is required one last propagation of bits, the one
that goes from a13 to a14.

Multiplicative Inverse

Let p = 2ab − 1 and assuming that a > 2 and b > 0, then it holds that p ≡ 3 mod 4. In
this setting, we can obtain the inverse of x ∈ Fp by finding an optimized chain for the
exponent k = p−3

4
and calculating x−1 = (xk)2

2
x.

3.7.3 Two-way Operations for the Quadratic Extension

In this section, we show the vector implementation of operations over the quadratic ex-
tension field using 256-bit registers and AVX2 instructions. We followed the construction
presented in Section 3.1.3 to build a quadratic extension field assuming that a > 2 and
b > 0 in p = 2ab− 1, and thus having that p ≡ 3 mod 4. These assumptions are valid for
the primes used in the SIDH protocol.

The parallel strategy we followed for the implementation of field operations is similar
to the one we used for implementing operations on Fp for p ∈ {p255, p384, p448} described in
the previous sections. However, there exists a slight difference, since we will leverage the
use of 256-bit registers to store two prime field elements, but these elements correspond
to the coefficients of the polynomial used to represent an element in the extension. Thus,
the parallelism offered by AVX2 vector instructions is applied internally in the calculation
of one operation over the quadratic extension field.

Following the notation given in Section 3.1.3, we represent an element a1τ + a0 ∈ Fp2

by storing their coefficients as a two-way operand ⟨a0, a1⟩ such that each coefficient is
represented as sequence of l digits in the redundant representation given in the previous
section. For the case of p751, the machine representation is depicted in Figure 3.7.10.

(a1)14 (a1)0 (a0)14 (a0)0 Y0

(a1)15 (a1)1 (a0)15 (a0)1 Y1

...

(a1)27 (a1)13 (a0)27 (a0)13 Y13

Figure 3.7.10: The notation ⟨a0, a1⟩ represents the distribution of digits of an element
a1τ + a0 ∈ Fp7512 stored into fourteen 256-bit registers.
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Addition and Subtraction

Given a1τ+a0, b1τ+b0 ∈ Fp2 , the calculation of their addition or subtraction is performed
as polynomial operations, i.e., they are operated coefficient-wise. We store the coefficients
of elements in the lower and higher part of a 256-bit register because this enables a natural
extension from 128- to 256-bit vector instructions. Hence, by following the notation given
in Section 3.3, we can express the addition (or subtraction) of elements in the quadratic
extension as performing a two-way addition (or subtraction) of their coefficients; which
is denoted as ⟨c0, c1⟩ = ⟨a0, a1⟩+ ⟨b0, b1⟩. Since we are using a redundant representation,
the carry bits produced by adding digits are not propagated allowing the calculation of
several consecutive additions without propagation of bits.

Multiplication

We showed in Section 3.1.3 that the product of a1τ+a0 and b1τ+b can be calculated with
four multiplications in the base field or with three multiplications if we use the Karatsuba
identity. In our implementation, we opted by performing four multiplications since they
are evenly distributed over the two-way operations. The two-way calculation of the REDC
algorithm on ⟨a0, a1⟩ is defined as

redc : ⟨a0, a1⟩ ↦→ ⟨redc(a0),redc(a1)⟩ . (3.7.11)

Similarly, the digit size reduction, described in the previous section, is defined analogously

dsr : ⟨a0, a1⟩ ↦→ ⟨dsr(a0),dsr(a1)⟩ . (3.7.12)

Hence, Algorithms 3.7.13 and 3.7.14 show the steps needed for multiplying and squaring
elements of the quadratic extension field.

Algorithm 3.7.13 Multiplication on Fp2 .
Input: ⟨a0, a1⟩ and ⟨b0, b1⟩ such that a1τ + a0, b1τ + b0 ∈ Fp2 .
Output: ⟨c0, c1⟩ such that c1τ + c0 = (a1τ + a0)× (b1τ + b0) ∈ Fp2 .
1: Construct ⟨a0, a0⟩, ⟨a1, a1⟩, and ⟨b1, b0⟩.
2: ⟨a0b0, a0b1⟩ ← ⟨a0, a0⟩ × ⟨b0, b1⟩
3: ⟨a1b1, a1b0⟩ ← ⟨a1, a1⟩ × ⟨b1, b0⟩
4: ⟨c0, c1⟩ = ⟨a0b0 − a1b1, a0b1 + a1b0⟩ ← ⟨a0b0, a0b1⟩ ± ⟨a1b1, a1b0⟩
5: ⟨c0, c1⟩ ← redc (⟨c0, c1⟩) //Equation (3.7.11)
6: ⟨c0, c1⟩ ← dsr (⟨c0, c1⟩) //Equation (3.7.12)
7: return ⟨c0, c1⟩

Multiplicative Inverse

The SIDH protocol scarcely calculates inverses. Because of that, there is low advan-
tage of executing in parallel their internal operations. Our implementation reorders the
coefficients and performs the base field operations using 128-bit instructions.
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Algorithm 3.7.14 Squaring on Fp2 .
Input: ⟨a0, a1⟩ such that a1τ + a0 ∈ Fp2 .
Output: ⟨c0, c1⟩ such that c1τ + c0 = (a1τ + a0)

2 ∈ Fp2 .
1: Construct ⟨a0, a0⟩, ⟨a1, a1⟩, and ⟨a1, 0⟩.
2: ⟨W,X⟩ ← ⟨a0, a0⟩ − ⟨a1, 0⟩
3: ⟨Y, Z⟩ ← ⟨a1, a1⟩+ ⟨a0, a1⟩
4: ⟨c0, c1⟩ ← ⟨W,X⟩ × ⟨Y, Z⟩
5: ⟨c0, c1⟩ ← redc (⟨c0, c1⟩) //Equation (3.7.11)
6: ⟨c0, c1⟩ ← dsr (⟨c0, c1⟩) //Equation (3.7.12)
7: return ⟨c0, c1⟩

3.7.4 Performance Benchmark

Using the implementation techniques presented in the previous sections, we developed
an AVX2 implementation of arithmetic operations on the quadratic extension field for
the prime p751, and in this section, we compare its performance with other optimized
implementations. Table 3.7.15 shows timings, measured in a Skylake processor, of some
arithmetic operations. The first column lists the timings of the SIDH v2 implementa-
tion [78] and the second column lists the timings of the SIKE implementation [159]. The
most relevant difference between them is that the former implements multiplication op-
erations using MULQ instructions, whereas the latter uses MULX+ADX instructions along
with the implementation techniques shown in Section 3.7.1. The third column shows the
timings of our implementation.

Table 3.7.15: Time in clock cycles of Fp7512 operations measured on Skylake.

Domain Operation SIDH v2 [78] SIKE [159] This work

MULQ MULX+ADX PMULUDQ

Z
Multiplication 248 187 192
REDC 197 147 135
Digit size reduction ∅ ∅ 20

Fp2

Addition 80 79 16
Subtraction 65 64 22
Multiplication 1,452 957 1,223
Squaring 1,012 772 816

From the table, it is clear that our implementation improves the calculation of addi-
tions and subtractions. This happens due to the use of a redundant representation that
helps to reduce the latency of these operations significantly. For integer multiplications,
our vectorized implementation is faster than the implementation using native instructions.
The fastest is the implementation that use advanced multi-precision instructions MULX
and ADX. The difference becomes larger on multiplication and squaring over the quadratic
extension. Another interesting observation is that the cost of squaring is 1S = 0.8M for 64-
bit implementations, whereas for vectorized implementation is 1S = 0.6M, which is closer
to the theoretical ratio and makes more convenient trading multiplications by squares.
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Future Work

More investigation is needed for performing integer multiplications faster. We observed
that this prime size requires a large number of registers. This causes registers be spilled
to memory more often, which is time consuming because loading vector registers is more
costly than loading 64-bit registers.

We investigated only the case of p751 letting other prime sizes for future work. Adj et
al. [3] showed that SIDH can be instantiated with 448-bit primes. This prime size is more
friendly with vector instructions as the operands are shorter and require fewer registers.
Another possible venue is to explore the primes used in the CSIDH [62] protocol.

3.8 Chapter Summary

We showed techniques for implementing prime field operations efficiently. A relevant
factor is to find a representation of large integers that allows operating over several words
in parallel and with fewer dependencies. We described a redundant representation that
enables the use of AVX2 vector instructions. During the implementation, we found some
restrictions on the parametrization of the representation partially derived by some AVX
limitations, such as the width of the vector integer multiplier.

We showed vectorized implementations of prime field operations. In our measurements,
we observed that our vectorized implementations increase the throughput of the operations
with a shorter increase in their latency. Larger speedups are achievable in workloads where
many field operations are calculated in parallel. In the next chapter, we show how to use
parallel prime field operations for processing elliptic curve operations in parallel.
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Chapter 4

Arithmetic of Elliptic Curves

Elliptic curves have special properties that shine in the field of cryptography. In particular,
the points on an elliptic curve have a group structure with an intractable discrete logarithm
problem. Moreover, small instances of elliptic curves can achieve larger security levels,
which in practice results in short cryptographic keys.

In this chapter, we review some mathematical concepts of elliptic curves and describe
their arithmetic operations. We show some well-known algorithms for scalar multipli-
cation. Our study covers three different curve models: the Weierstrass, Montgomery,
and twisted Edwards curves. For each of them, we describe some algorithmic optimiza-
tions and propose parallel algorithms for point addition and scalar multiplication. These
algorithms build on top of the prime field operations described in the previous chapter.

4.1 Background

We review some concepts needed for defining elliptic curves. We also cover the description
of the algebraic group generated from the points of an elliptic curve, and show the hard
problem associated to this group that is of interest for cryptography.

4.1.1 Elliptic Curves

The goal of this section is to present the definition of an elliptic curve. To that end, we
start with a special equation that will help us to land on a standard curve equation known
as the Weierstrass equation. Then, we describe certain properties that this equation must
satisfy to become an elliptic curve.

The Weierstrass Equation

Let K be a finite field, and E be a family of curves parametrized by constant values
a1, a2, a3, a4, a6 ∈ K defined as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 . (4.1.1)

It is said that E is defined over K, denoted as E/K, whenever both its parameters and
its solutions are elements of K.
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Each curve E has associated two invariants. The value ∆ is the discriminant of E and
indicates whether the curve has singularities (points at which both partial derivatives are
equal to 0). If char(K) ̸= 2, the discriminant is

∆ = −b22b8 − 8b4
3 − 27b6

2 + 9b2b4b6 , where

b2 = a1
2 + 4a2 ,

b4 = 2a4 + a1a3 ,

b6 = a3
2 + 4a6 , and

b8 = a1
2a6 + 4a2a6 − a1a3a4 + a2a3

2 − a4
2 .

(4.1.2)

When ∆ = 0, E is singular; otherwise, E is a smooth curve, usually referred as a non-
singular or ordinary curve. The other is called the j-invariant of E and is defined as

j =
(b2

2 − 24b4)
3

∆
, (4.1.3)

which indicates that curves with the same j-invariant are in the same isomorphism class.
Given j′ ∈ K there exists a curve E with j-invariant equal to j′ (See [250, Prop. 1.4]).

After an admissible change of variables, Equation (4.1.1) can be transformed to an
equivalent simplified equation:

E/K :

⎧⎪⎪⎨⎪⎪⎩
y2 + xy = x3 + ax2 + b, if char(K) = 2 ,

y2 = x3 + ax2 + b, if char(K) = 3 ,

y2 = x3 + ax+ b, if char(K) ̸= 2, 3 .

(4.1.4)

The first two cases represent curves defined over fields of small characteristic and are
known as binary and ternary curves. In the third case, the curve is defined over fields of
large characteristic, and its equation is historically known as the Weierstrass equation.

From here on, we will work with non-singular curves defined over fields of large char-
acteristic. So, K = Fq is a finite field of characteristic p > 3, where q = pm and m ≥ 1.

Rational Points

The solutions of a Weierstrass equation can be described using algebraic sets. Let A2(Fq)

be an affine space over Fq, and Fq[x, y] be the ring of polynomials in two variables with
coefficients in Fq, the points of A2(Fq) that evaluated in f(x, y) = y2−x3−ax−b ∈ Fq[x, y]

give zero are an algebraic set denoted as

{(x, y) ∈ A2(Fq) : f(x, y) = 0} . (4.1.5)

This set contains the affine points of E/Fq corresponding to the solutions over Fq of the
Weierstrass equation y2 = x3 + ax+ b.

The projective space Pn(Fq) is the quotient set of non-zero elements in (Fq)
n+1 under

an equivalence relation ∼. Under this relation, (X0, . . . , Xn) ∼ (Y0, . . . , Yn) if it exists
λ ∈ Fq \ {0} such that Xi = λYi for 0 ≤ i ≤ n. The equivalence classes are commonly
referred as projective points and are denoted as (X0 : . . . : Xn).
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The affine space An(Fq) can be embedded into the projective space Pn(Fq) as

An(Fq)→ Pn(Fq)

(x0, . . . , xn−1) ↦→ (x0 : . . . : xn−1 : 1) ,
(4.1.6)

with inverse

Pn(Fq)→ An(Fq)

(X0 : . . . : Xn−1 : Xn) ↦→ (X0/Xn, . . . , Xn−1/Xn) for Xn ̸= 0 .
(4.1.7)

The projective points for which Xn = 0 are known as points at infinity.
The points on a Weierstrass curve can also be described as projective algebraic sets

over P2(Fq). This can be achieved by embedding the affine points of the Weierstrass curve
into P2(Fq) using (x, y) ↦→ (x : y : 1). The projective version of the Weierstrass equation
is obtained by changing the variables x = X/Z and y = Y/Z, and clearing denominators
resulting in an homogeneous polynomial f ∈ Fq[X, Y, Z] of degree three.

Definition 4.1.8 (Fq-rational points of E). Given a Weierstrass curve E, define the
homogeneous polynomial f(X, Y, Z) = Y 2Z − X3 − aXZ2 − bZ3 ∈ Fq[X, Y, Z]. The
Fq-rational points of E is the algebraic set denoted as

E(Fq) = {(X, Y, Z) ∈ P2(Fq) : f(X, Y, Z) = 0} , (4.1.9)

which contains the projection of all affine points of E and one point at infinity denoted
as O = (0: 1 : 0).

As proved in [250, Theorem 1.1], Hasse showed that #E(Fq) is bounded as

|#E(Fq)− q − 1| ≤ 2
√
q . (4.1.10)

Therefore, the number of points on E(Fq) is as large as the size of Fq.

Elliptic Curve Definition

Definition 4.1.11 (Elliptic Curve [250]). An elliptic curve is a pair (E,O), where E is
a non-singular curve of genus1 one and O ∈ E.

The standard example of an elliptic curve is given by a non-singular Weierstrass curve
E together with O as the distinguished point. Note that the genus of the curve is equal
to one because the Weierstrass curve is non-singular (∆ ̸= 0) and its projective equation
has degree equal to three.

Well-known forms of elliptic curves are Montgomery [196], Edwards [90], and twisted
Edwards [26], the Jacobi quartic [40], Kummer [114], Hessian [66], and twisted Hessian [27]
curves. Each of these curves has an equation (or set of equations) used for its definition,
but each model can be represented by a Weierstrass curve equation. However, the opposite
is not true, not all Weierstrass curves can be mapped to each model.

1The genus of a plane curve of degree d is calculated as g = 1
2 (d− 1)(d− 2)− s, where s is the number

of singularities.



126

4.1.2 The Group of Rational Points

The Fq-rational points (described in Definition 4.1.8) satisfy all the properties, given in
Definition 3.1.1, of an algebraic group. Thus, there exist a binary operation such that
given two points calculates a third point in the set. We describe such an operation by
stating first a law of composition.

Law of Composition in the Rational Points

The chord-and-tangent rule is a geometric method that given two points on a Weierstrass
curve obtains a third point also lying on the curve. This geometric construction provides
a law of composition in the Fq-rational points of a Weierstrass curve.

Definition 4.1.12 (Chord-and-Tangent Rule [250, Proposition 2.1]). Let E be a Weier-
strass curve and P,Q ∈ E. Take L as the line through P and Q (if P = Q, take L as the
tangent line to E at P ), and let R be the third point of intersection of L with E. Let L′

be the line through R and O. Then L′ intersects E at R, O, and a third point, which is
denoted as P +Q. See Figure 4.1.13.

(a) Point addition. (b) Point doubling.

Figure 4.1.13: Geometric description of the chord-and-tangent rule.

Using this law of composition, the Fq-rational points satisfy all the properties of a com-
mutative group (as proved in Silverman’s book [250, Proposition 2.2]). Thus, (E(Fq),+)

is an abelian group with identity O. The operation of calculating P + Q from P and Q

is generally known as a point addition, but its special case when P = Q is known as point
doubling and is denoted by 2P .

The chord-and-tangent rule can also be described algebraically as a set of rational
functions that depend on the coordinates of the points P and Q, and on the parameters
of the Weierstrass curve. Let P = (xP , yP ) and Q = (xQ, yQ) be two affine points on
E(Fq), the coordinates of P +Q are calculated as

xP+Q =

(︃
yQ − yP
xQ − xP

)︃2

− xP − xQ , and yP+Q =

(︃
yQ − yP
xQ − xP

)︃
(xP − xP+Q)− yP , (4.1.14)
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whenever P ̸= ±Q; otherwise, if P = −Q, P +Q = O; and if P = Q, the coordinates of
2P are

x2P =

(︃
3xP

2 + A

2yP

)︃2

− 2xP , and y2P =

(︃
3xP

2 + A

2yP

)︃
(xP − x2P )− yP . (4.1.15)

The computational cost of evaluating Equation (4.1.14) is 1M+ 1S+ 6A+ 1I field oper-
ations and Equation (4.1.15) takes 1M+ 2S+ 8A+ 1I field operations.

It must be noted that a single formula cannot calculate the composition law of any
two Fq-rational points. In this case, the point addition formula is said to be incomplete.
For example, the formula in Equation (4.1.14) is incomplete because it is not defined
whenever P and Q have the same x-coordinate and requiring of an alternative formula
for handling these exceptional cases.

Bosma and Lenstra [52] proved that the minimum set of addition formulas that is
complete has cardinality two. This means that one formula can be used in replacement
when the other fails on calculating a point addition. Kohel et al. [16,174] noted that one
of the formulas is sufficient to add any P,Q ∈ E(Fq) provided that the y-coordinate of
P − Q be non-zero. Thus, one can use a single formula for adding points provided that
its exceptional points did not appear as operands of the addition.

More generally, if the exceptional points of a formula are not defined in Fq (e.g., the
exceptional point has coordinates is in an extension field), the formula operates on points
with coordinates in Fq, and thus, no exceptions will be encountered. In this situation, it
is said that the formula is Fq-complete.

Scalar Multiplication

Given a point P ∈ E(Fq), it is possible to generate other points on the curve by calculating
repeated addition of a point, i.e., P +P , P +P +P , and so on. The repeated application
of point addition is a common operation that is formalized below.

Definition 4.1.16 (Scalar multiplication). Given a point P ∈ E(Fq) and an integer m,
the scalar multiplication, denoted as mP , is defined as

(m,P ) ↦→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O , if m = 0 or P = O ,

mP = P + P + · · ·+ P⏞ ⏟⏟ ⏞
m operands

, if m > 0 ,

−m(−P ) , if m < 0 .

(4.1.17)

A point P ̸= O can generate other points calculating mP for any integer; however,
by proceeding in this way, P only generates a finite number of different points before
generating O. More formally, the order of P is the smallest integer ord(P ) = r > 0 such
that rP = O. This implies that every point P generates a subgroup of E(Fq), which is
denoted as ⟨P ⟩ ⊆ E(Fq). The group structure of E(Fq) is isomorphic to Z/n1Z×Z/n2Z,
where n1 and n2 are the unique integers such that n2 divides n1, and n2 divides q − 1.
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Isogenies

Another general operation between the points of elliptic curves are called isogeny maps.

Definition 4.1.18 (Isogeny). Let (E0, OE0) and (E1, OE1) be two elliptic curves, an
isogeny is a non-constant rational map ϕ : E0 → E1 satisfying ϕ(OE0) = OE1 .

The kernel of an isogeny are the set of points that are mapped to the identity of the
codomain curve.

For any integer m, there exists an isogeny called multiplication-by-m defined as

[m] : E(Fq)→ E(Fq)

P ↦→ mP .
(4.1.19)

Its kernel is known as the m-torsion subgroup of E(Fq) and is denoted as

E[m] = {P ∈ E(Fq) : mP = O} . (4.1.20)

Let p be the characteristic of Fq, and for any integer m > 0 such that p ∤ m, the group
structure of E[m](Fq) ≃ Z/mZ × Z/mZ. Moreover, elliptic curves over a field of charac-
teristic p are classified, for all r > 0, as

E[pr](Fq) ≃
{︄
Z/prZ , E is ordinary,

{O} , E is supersingular.
(4.1.21)

For p ≥ 5, the number of points of a supersingular curve E(Fp) is equal to p+ 1.

4.1.3 Elliptic Curve Discrete Logarithm Problem

In the group of points of an elliptic curve, there exists a one-way function (a function
that is easy to compute, but hard to invert) that is useful for cryptographic purposes.
In one direction, calculating scalar multiplications is easy, whereas in the other direction,
calculating discrete logarithms is a hard task.

Definition 4.1.22 (Elliptic Curve Discrete Logarithm Problem (ECDLP)). Let G ∈
E(Fq) be a point generating the subgroup ⟨G⟩ ⊆ E(Fq) of order n. Given a point P ∈ ⟨G⟩,
the elliptic curve discrete logarithm problem is to find an integer k such that 0 ≤ k < n

and P = kG.

The best-known algorithms that solve ECDLP are the Pohlig-Hellman [225] and the
Pollard’s rho [226] algorithms. The latter has a time-complexity O(

√
d) where d is the

largest prime factor of n. Hence, the hardest instances of ECDLP are those in which n

is a prime number. For example, if n is an m-bit prime number, solving ECDLP requires
O(2m/2) operations.

The difficulty to solve ECDLP allows constructing public-key cryptography using el-
liptic curves. To target a security level of m bits requires to instantiate an elliptic curve2

2In addition to the size of the group, other aspects must be considered to generate strong instances
of elliptic curve groups, see SafeCurves project [36].
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whose largest (sub)group has order 22m. Regarding the scalability of a cryptosystem,
the parameters of ECDLP grow slower than the parameters of RSA-based cryptosystems.
This means that by increasing the security level of a cryptosystem, smaller elliptic curves
achieve equivalent security as using larger RSA-parameters. In practice, this translates
in the use of smaller keys for equivalent security levels.

4.2 Algorithms for Scalar Multiplication

We now review several algorithms for scalar multiplication. The algorithms presented
take an integer k ∈ Z and a point P ∈ E(Fq) to calculate kP ∈ E(Fq). Let r = #E(Fq)

be the order of the group, so k is bounded to the interval 0 ≤ k < r. Let n be the
size in bits of r, then k is stored in memory using an n-bit binary representation. The
time-complexity of algorithms for scalar multiplication is O(n). The algorithms described
in this section apply generally. Thus, no special assumptions are considered on the point
representation or on the elliptic curve model.

4.2.1 Basic Algorithms

We describe some well-known methods for calculating scalar multiplications. They have
in common that the number of operations strongly depends on the value of the scalar so
its execution pattern is not regular.

Binary Methods

The double-and-add multiplication algorithm is analogous to the square-and-multiply
method for exponentiation. This method, shown in Algorithm 4.2.1, initializes an ac-
cumulator point Q with O and iteratively scans the bits of the scalar k from the most-
significant bit to the least-significant bit. For each bit of the scalar, the algorithm doubles
Q, and then it adds P to Q only if the current bit is set. This method is also known as a
left-to-right algorithm due to the order in which the bits of the scalar are evaluated.

A variant of the double-and-add algorithm is obtained by scanning the bits in reverse
order. The right-to-left method, shown in Algorithm 4.2.2, initializes an accumulator
point Q with O. Then, for every bit of the scalar, it accumulates P on Q only if the bit
is set, and doubles P unconditionally. As can be noted, there is a duality between them.

The number of operations of these algorithms is determined as follows. Both algo-
rithms conditionally perform a point addition when a bit is set. More specifically, there
are calculated Hw(k) point additions, where Hw is the Hamming weight function. In av-
erage, calculating a scalar multiplication takes n/2 point additions and n point doublings.

The binary methods rely on the binary representation of the scalar, however, the
representation of scalars can also be extended to other bases and numeral systems as
shown in the next sections.



130

Algorithm 4.2.1 Left-to-Right Binary
Algorithm for Scalar Multiplication.
Input: P ∈ E(Fq) and k is a positive in-

teger.
Output: kP ∈ E(Fq).
1: Let (kn−1, . . . , k0)2 be the n-bit repre-

sentation of k.
2: Q← O
3: for i← n− 1 to 0 do
4: Q← 2Q

5: if ki = 1 then
6: Q← Q+ P

7: end if
8: end for
9: return Q

Algorithm 4.2.2 Right-to-Left Binary
Algorithm for Scalar Multiplication.
Input: P ∈ E(Fq) and k is a positive in-

teger.
Output: kP ∈ E(Fq).
1: Let (kn−1, . . . , k0)2 be the n-bit repre-

sentation of k.
2: Q← O
3: for i← 0 to n− 1 do
4: if ki = 1 then
5: Q← Q+ P

6: end if
7: P ← 2P

8: end for
9: return Q

Fixed-Window Method

A first generalization of the previous methods is switching from radix-two (binary) to
radix-2w, which results on the 2w-ary scalar multiplication method. This method is also
known as the fixed-window method since it is parametrized by an integer w ≥ 1, the
window parameter, that is used to represent the scalar k in radix-2w. Thus, given k > 0,
there are t = ⌈n/w⌉ digits (kt−1, . . . , k0)2w such that k =

∑︁
ki2

wi and ki ∈ {0, . . . , 2w−1}.
The fixed-window method, shown in Algorithm 4.2.3, follows a similar execution pat-

tern as the one in Algorithm 4.2.1. In fact, the left-to-right binary algorithm is a special
case of the fixed-window method setting w = 1. Algorithm 4.2.3 first initializes an accu-
mulator point Q with O and scans the digits of the scalar from the most-significant to
the least-significant digit. For each digit ki, the algorithm performs w consecutive point
doublings on the accumulator and adds kiP to Q only if ki is non-zero. It is easy to show
that after scanning all the digits of k, the accumulator Q will be equal to kP .

A refinement of this method takes in account that given a point P , calculating its
inverse −P is fast. This property is not always valid in other groups; for example, in
(Z/nZ)×, the calculation of modular inverses is significantly more expensive than cal-
culating modular multiplications. Hence, the scalar is encoded as a sequence of signed
digits. Setting t = ⌈n/w⌉, there are t signed digits (kt−1, . . . , k0)2w such that k =

∑︁
ki2

iw

and each digit ki ∈ {−2w−1, . . . , 2w−1−1} is either odd or zero. To calculate scalar multi-
plications, Algorithm 4.2.3 follows the same approach as before; however, when a negative
digit is found, the inverse of the point is accumulated instead.

The window parameter is used to tweak the number of point additions to be performed.
As can be seen, the algorithm calculates tw ≈ n point doublings whereas the number of
point additions averages to n/2w. So the number of point additions gets reduced as the
value of the window w increases. On the other hand, the space of all possible digits grows
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exponentially on w, which is relevant when adding the multiples kiP to the accumulator.
Even if these multiples are precomputed and stored in memory, the memory footprint
easily gets bigger as w increases. Therefore, the window parameter is commonly used for
adjusting the trade-off between the time and memory requirements of the algorithm.

Algorithm 4.2.3 Fixed-Window Algorithm for Scalar Multiplication.
Input: P ∈ E(Fq), k is a positive integer, and w ≥ 1 is the window parameter.
Output: kP ∈ E(Fq).
1: Let (kt−1, . . . , k0)2w be the 2w-ary (signed digit) representation of k.
2: Q← O
3: for i← t− 1 to 0 do
4: Q← 2wQ
5: if ki ̸= 0 then
6: Q← Q+ kiP
7: end if
8: end for
9: return Q

The Non-Adjancent Form

The non-adjacent form (NAF) is a signed-digit representation that minimizes the number
of non-zero digits of the scalar. More generally, the ω-NAF representation [252] of an
integer k is the unique sequence of digits (kl−1, . . . , k0)ω-NAF such that k =

∑︁l−1
i=0 ki2

i. The
digits of an ω-NAF representation hold the following properties: kl−1 ̸= 0, every non-zero
ki is an odd integer in the set {−2ω−1, . . . , 2ω−1− 1}, and l ≤ n+1, where n is the size in
bits of k. Algorithm 4.2.4 shows how to obtain the ω-NAF representation of an integer.

The ω-NAF scalar multiplication method mimics the left-to-right binary method as
shown in Algorithm 4.2.5. The main loop of this algorithm calculates, in average, l

ω+1

point additions and l point doublings. Thus, as ω gets larger, the number of point
additions gets reduced, whereas the table TP grows exponentially. Optimal values for ω

are usually found experimentally per case basis.

4.2.2 Algorithms with Regular Execution Pattern

In elliptic curve cryptography, scalars represent secret values commonly. The scalar mul-
tiplications methods shown in the previous section expose several sources of information
that are directly related to the value of the scalar. Some of these sources are, for example,
physical variables that can be measured during the execution of the algorithm. Attackers
can use this information for recovering secret values. So, it is important implementations
do not reveal secret values during its execution.

To prevent leaking secrets, a secure way of implementing algorithms is following a
regular execution pattern. That is, the number of operations must not depend on se-
cret values. We show that some multiplication algorithms already posses an inherent
regular execution pattern with respect to the scalar. These algorithms are preferred in
cryptography as they help to prevent exposure of secret information.
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Algorithm 4.2.4 Conversion of Integers
to ω-NAF Representation.
Input: ω and k, two integers such that

ω ≥ 2 and k > 0.
Output: (kl−1, . . . , k0)ω-NAF, the ω-NAF

representation of k.
1: i← 0

2: while k ≥ 1 do
3: if k is odd then
4: ki ← (k mod 2ω)− 2ω−1

5: k ← k − ki
6: else
7: ki ← 0

8: end if
9: k ← k/2

10: i← i+ 1

11: end while
12: l← i

13: return (kl−1, . . . , k0)

Algorithm 4.2.5 The ω-NAF Algorithm
for Scalar Multiplication.
Input: P ∈ E(Fq), and ω and k, two in-

tegers such that ω ≥ 2 and k > 0.
Output: kP ∈ E(Fq).
1: Let (kl−1, . . . , k0)ω-NAF be the ω-NAF

representation of k. //Algorithm 4.2.4
2: TP [i]← (2i+ 1)P , for 0 ≤ i < 2ω−2.
3: Q← O
4: for i← l − 1 to 0 do
5: Q← 2Q

6: j ← (|ki| − 1)/2

7: if ki > 0 then
8: Q← Q+ TP [j]

9: else if ki < 0 then
10: Q← Q− TP [j]

11: end if
12: end for
13: return Q

Regular Signed-Digit Multiplication

A well-known algorithm that has a regular execution pattern is the one proposed by
Joye and Tunsdall [165]. This method relies on converting the scalar to a signed-digit
representation that exhibits a deterministic pattern of non-zero digits. Given an integer
w ≥ 2, and an odd integer k such that 0 < k < 2n, define l = ⌈ n

w−1
⌉. Algorithm 4.2.6

converts k to a sequence of l + 1 signed digits (kl, . . . , k0) such that k =
∑︁l

i=0 ki2
(w−1)i

and ki ∈ {±1, . . . ,±2w−1 − 1} is odd.
The regular signed-digit algorithm, shown in Algorithm 4.2.7, is a left-to-right method

that calculates a scalar multiplication using w−1 point doublings and one point addition
per each digit in the signed representation of the scalar. Due to the scalars are bounded
to 2n, the length of the signed representation is fixed, and consequently, the total number
of operations is constant.

Note that the signed-digit conversion only works for odd scalars. The even scalars can
be handled by converting k′ = k + 1 and updating the final point Q← Q− P at the end
of the algorithm. If this correction is also performed using a regular execution pattern,
this method is suitable for calculating scalar multiplications when k is a secret value.
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Algorithm 4.2.6 Conversion of Integers
to Signed-Digit Representation.
Input: (n, k, w), integers such that n ≥ 1;

k is odd and 0 ≤ k < 2n; and w ≥ 2.
Output: (kl, . . . , k0), the signed-digit rep-

resentation of k.
1: l← ⌈n/(w − 1)⌉
2: for i← 0 to l − 1 do
3: ki ← (k mod 2w)− 2w−1

4: k ← (k − ki)/2
w−1

5: end for
6: kl ← k

7: return (kl, . . . , k0)

Algorithm 4.2.7 Regular Signed-Digit
Algorithm for Scalar Multiplication.
Input: P ∈ E(Fq), and (n, k, w) are in-

tegers such that n ≥ 1; k is odd and
0 ≤ k < 2n; and w ≥ 2.

Output: kP ∈ E(Fq).
1: Let (kl, . . . , k0) be the signed-digit rep-

resentation of k. //Algorithm 4.2.6
2: TP [i]← (2i+ 1)P for 0 ≤ i < 2w−2

3: Q← O
4: for i← l − 1 to 0 do
5: Q← 2w−1Q

6: j ← (|ki| − 1)/2

7: Q← Q+ sgn(ki)TP [j]

8: end for
9: return Q

4.2.3 Ladder Algorithms

Ladder multiplication algorithms are of primary interest since they exhibit a regular exe-
cution pattern regardless the value of the inputs. Although some non-regular algorithms
can achieve regularity by introducing additional (dummy) operations, in ladder methods
all operations are effective. We describe two well-known examples of ladder algorithms.

Montgomery [196] described a left-to-right multiplication method known as the Mont-
gomery ladder. It is shown in Algorithm 4.2.8, and starts initializing two accumulators,
and for each bit of the scalar, it calculates one point doubling and one point addition.
The bit of the scalar indicates which accumulator must be doubled, and the other one
accumulates the result of the point addition.

Joye’s ladder, shown in Algorithm 4.2.9, is a right-to-left multiplication algorithm
proposed by Joye [163]. Like in Montgomery ladder, there are two accumulator points
that are updated every iteration by one point doubling and one point addition. However,
in this ladder algorithm, the bit of the scalar determines which accumulator is doubled
before is added with the other point. Due to their similitude, several works [119, 267]
pointed out a relation of duality between them.

As it can be seen, the pattern of operations is regular in both algorithms. In every
iteration, it always calculates one point doubling and one point addition regardless the
value of the bits of the scalar. Consequently, the number of operations remains constant
depending on n only. For this reason, the ladder algorithms show an inherent regular
execution pattern useful for calculating scalar multiplications when the scalar is secret.
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Algorithm 4.2.8 Montgomery Ladder for
Scalar Multiplication.
Input: P ∈ E(Fq) and k is an integer such

that 0 ≤ k < 2n.
Output: kP ∈ E(Fq).
1: Let (kn−1, . . . , k0)2 be the n-bit repre-

sentation of k.
2: R0 ← O , R1 ← P

3: for i← n− 1 to 0 do
4: if ki = 0 then
5: R1 ← R0 +R1

6: R0 ← 2R0

7: else
8: R0 ← R0 +R1

9: R1 ← 2R1

10: end if
11: end for
12: return R0

Algorithm 4.2.9 Joye Ladder for Scalar
Multiplication.
Input: P ∈ E(Fq) and k is an integer such

that 0 ≤ k < 2n.
Output: kP ∈ E(Fq).
1: Let (kn−1, . . . , k0)2 be the n-bit repre-

sentation of k.
2: R0 ← O , R1 ← P

3: for i← 0 to n− 1 do
4: if ki = 0 then
5: R1 ← 2R1

6: R1 ← R1 +R0

7: else
8: R0 ← 2R0

9: R0 ← R0 +R1

10: end if
11: end for
12: return R0

Secure Implementation of Ladder Algorithms

Although ladder multiplication algorithms have an intrinsic countermeasure against tim-
ing attacks due to their regularity, this is not enough to prevent against other types of
side-channel attacks. Now, we describe some countermeasures and primitives that allow
hardening the implementation of these algorithms.

Secure software development forbids the use of if-then-else statements whenever the
branching condition depends on a secret value. The reasoning behind this restriction is
that compilers usually implement control statements using branching instructions; this
leads to secret-dependent branches that are easily detectable at running time. Because of
that a secure implementation must replace secret-dependent branches with countermea-
sures that reduce the surface of this type of attacks.

Conditional execution is a programming technique that replaces an operation depend-
ing on a secret value, such as a bifurcation, by a set of arithmetic and/or logic operations
that execute the same operation. Applying this technique to if-then-else statements is a
common countermeasure to remove branches that depend on secret data. For efficiency,
the body of an if-then-else statement must be as short as possible, for example, consisting
of a single instruction or a variable assignment.

Conditional execution of variable assignments is covered by two well-known primitives:
conditional swap and conditional move. Let x, y ∈ {0, 1}n be bit strings of length n, and
b ∈ {0, 1} be a secret. The conditional swap, cswap(x, y, b), is a function that interchanges
the values of x and y if b ̸= 0; otherwise, the values remain unaltered. The conditional
move, cmov(x, y, b), sets x with y if b ̸= 0; otherwise, the values remain unaltered.
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We show how to use these conditional execution primitives for implementing Mont-
gomery ladder (see Algorithms 4.2.10 and 4.2.11) and Joye ladder (see Algorithm 4.2.12).
In all the cases, the if-then-else statements are removed and the content of variables is
updated by conditional primitives. Thus, elliptic curve operations are always performed
on fixed memory locations and without the use of branching instructions.

Algorithm 4.2.10 cswap-based Montgo-
mery Ladder Algorithm for Scalar Multi-
plication.
Input: P ∈ E(Fq) and k is an integer such

that 0 ≤ k < 2n.
Output: kP ∈ E(Fq).
1: Let (kn−1, . . . , k0)2 be the n-bit repre-

sentation of k, and define kn = 0.
2: R0 ← O, R1 ← P .
3: for i← n− 1 to 0 do
4: b← ki ⊕ ki+1

5: (R0, R1)← cswap(R0, R1, b)

6: (R0, R1)← (2R0, R0 +R1)

7: end for
8: (R0, R1)← cswap(R0, R1, k0)

9: return R0

Algorithm 4.2.11 cmov-based Montgo-
mery Ladder Algorithm for Scalar Multi-
plication.
Input: P ∈ E(Fq) and k is an integer such

that 0 ≤ k < 2n.
Output: kP ∈ E(Fq).
1: Let (kn−1, . . . , k0)2 be the n-bit repre-

sentation of k, and define kn = 0.
2: R0 ← O, R1 ← P .
3: for i← n− 1 to 0 do
4: b← ki ⊕ ki+1

5: R2 ← cmov(R0, R1, b)

6: (R0, R1)← (2R2, R0 +R1)

7: end for
8: R0 ← cmov(R0, R1, k0)

9: return R0

Algorithm 4.2.12 cswap-based Joye Ladder Algorithm for Scalar Multiplication.
Input: P ∈ E(Fq) and k is an integer such that 0 ≤ k < 2n.
Output: kP ∈ E(Fq).
1: Let (kn−1, . . . , k0)2 be the n-bit representation of k, and define k−1 = 0.
2: R0 ← O, R1 ← P .
3: for i← 0 to n− 1 do
4: b← ki ⊕ ki−1

5: (R0, R1)← cswap(R0, R1, b)
6: (R0, R1)← (2R0, R0 +R1)
7: end for
8: (R0, R1)← cswap(R0, R1, kn−1)
9: return R0

Implementing cswap and cmov Primitives

The security of these algorithms relies on the existence of conditional primitives that
must be implemented without leaking any information related to the value of b. The
most common way to implement these conditional primitives is using logic arithmetic
instructions. This approach relies on the construction of an n-bit mask whose value
depends on b and is used to select one of two n-bit values. Assuming a two’s complement
representation of integers, the mask can be generated storing b in an n-bit register and
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subtracting this register from zero, or equivalently, performing an integer negation on b.
Thus, the mask will contain all-zeros if b = 0, or all-ones if b = 1.

Algorithms 4.2.13 and 4.2.14 show, respectively, the implementation of cswap and
cmov using logic arithmetic operations. The implementation runs without branches and
executes the same operations regardless the value of b, which turns the implementation
into a constant-time, regular execution code.

Algorithm 4.2.13 cswap Implemented
with Logic Arithmetic.
Input: x, y ∈ {0, 1}n and b ∈ {0, 1}.

Output: (x′, y′) =

{︄
(x, y) , if b = 0 ;

(y, x) , otherwise.
1: m← 0− b //Using two’s complement.
2: d← m ∧ (x⊕ y)

3: x′ ← x⊕ d

4: y′ ← y ⊕ d

5: return (x′, y′)

Algorithm 4.2.14 cmov Implemented
with Logic Arithmetic.
Input: x, y ∈ {0, 1}n and b ∈ {0, 1}.

Output: x′ =

{︄
x , if b = 0 ;

y , otherwise.
1: m← 0− b //Using two’s complement.
2: x′ ← (¬m ∧ x)⊕ (m ∧ y)

3: return x′

We identify two advantages on the use of cmov compared to cswap. First, the
execution of a conditional move is faster than a conditional swap because cmov overwrites
only one of the inputs; this turns out to be relevant when working with large bit vectors.
Second, as it can be seen in Algorithm 4.2.11 the point addition of Line 6 can be performed
before the cmov, since cmov only selects the point that will be doubled. This observation
was independently identified during the implementation of Kummer curves [29], where
their authors obtained savings by reordering operations.

Although using logic operations is a good countermeasure protecting against timing
attacks, it is not enough to prevent other attacks. The use of bit masks can be vulnerable
against power analysis attacks on certain architectures. Nascimento et al. [199] showed an
attack to an implementation of Montgomery ladder running on an AVR micro-controller.
The attack recovers the value of the mask by correlating power consumption variations
with the all-zeros or all-ones stored in the mask. Thus, mask-based implementations could
not be the best approach in all the cases.

We describe an alternative approach as an additional countermeasure against power
analysis attacks. More specifically, we recommend the use of native processor instructions
for implementing cswap and cmov. The release of Pentium Intel’s micro-architecture
introduced CMOVCC, which is an instruction that performs a conditional move between
registers according to a selection bit available in the FLAGS register. Implementing cswap
and cmov with CMOVCC instruction has the advantage that no (large) bit-masks are
required preventing exposure of secret bits.

4.2.4 Special Cases

All the previous methods handle the general case of scalar multiplication, i.e., there are no
assumptions about the inputs. When inputs hold certain properties some optimizations
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can be applied. This section lists some particular cases of scalar multiplication that appear
in cryptographic algorithms.

Fixed-Point Multiplication

Fixed-point multiplication refers to the calculation of a scalar multiplication in which the
input point is known in advance (or fixed) and the scalar is an arbitrary secret value. In
cryptographic algorithms, the input point is usually the generator of the elliptic curve
group. Since this point is fixed for all computations, scalar multiplications can be calcu-
lated faster using more efficient algorithms.

There exists a vast collection of articles for fixed-point multiplications [55,96,104,139,
144,145,180]. The general approach of these algorithms relies on the pre-computation of
multiples of the known point. These points are calculated offline and stored in read-only
memory. At running time, the multiplication algorithm fetches some of these multiples
from memory using indexes derived from the scalar. This evaluation method calculates
fixed-point multiplications faster than generic scalar multiplication algorithms.

The use of pre-computation introduces several trade-offs between the performance
and the memory footprint of an implementation. To speed up the implementation one
must use more points but it also requires more memory for their storage. The trade-off
between time and space can be adjusted depending on several factors such as the execution
environment and the targeted architecture.

Compounded to that, the use of pre-computed tables brings another constraint re-
garding security due to the scalar is secret. Specifically, accessing memory using secret
indexes is easily detectable by an attacker that monitors the effects produced in the hi-
erarchy of cache memory. These attacks are known as cache attacks [22]. A trivial yet
effective countermeasure is to fetch every entry of the table and to conditionally select the
entry corresponding of the index queried. Thus, the attacker has no clue on what value
was used in the calculation. Hence, increasing size of precomputed tables can downgrade
performance due to the cost of retrieving values securely.

Multiple-Point Multiplication

Some cryptographic protocols require to calculate a linear combination of points, i.e., to
calculate

∑︁t−1
i=0 kiPi for an integer t > 1. This operation is generally known as multi-

exponentiation, but in the elliptic curve case, is also known as multiple-point multiplica-
tion. Depending on the application scalars could be secret values.

If scalars are not secret, the interleaving method [112] can be used for multiple-point
multiplication. Algorithm 4.2.15 merges the evaluation of t instances of the left-to-right
binary algorithm. Here all the point additions are performed on a single accumulator
point, while point doublings are shared for all the scalar multiplications. Assuming scalars
are in the range 0 ≤ ki < 2n, the total number of operations is

∑︁t−1
i=0 Hw(ki) point additions

and n point doublings, where Hw is the Hamming weight function.
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Algorithm 4.2.15 Interleaved Algorithm for Multiple-Point Multiplication.
Input: A set of t pairs (ki, Pi), where ki is an integer such that 0 ≤ ki < 2n, and

Pi ∈ E(Fq) for 0 ≤ i < t.

Output:
t−1∑︂
i=0

kiPi ∈ E(Fq).

1: Let (ki(n−1), . . . , ki(0))2 be the n-bit binary representation of ki for 0 ≤ i < t.
2: Q← O
3: for j ← n− 1 to 0 do
4: Q← 2Q
5: for i← 0 to t− 1 do
6: if ki(j) ̸= 0 then
7: Q← Q+ Pi

8: end if
9: end for

10: end for
11: return Q

Double-Point Multiplication

Double-point multiplication refers to a particular case of multiple-point multiplication
that appears during the verification of digital signatures [8,31]. In this setting, a double-
point multiplication stands for the calculation of the point k0P + k1Q restricted to the
following conditions: P is an arbitrary point, Q is a point known in advance, k0, k1 are
arbitrary scalars, and none of the inputs represents a secret value. These conditions
allow accelerating the execution time of this operation by using standard optimization
techniques, such as using pre-computed tables, applying scalar conversions, and using
algorithms with non-regular execution patterns.

Algorithm 4.2.16 shows a method, described in [143, Alg. 3.51], for double-point mul-
tiplication. This method combines the interleaved algorithm [112] with the use of the ω-
NAF numeral system [252]. An advantage of this method is that the size of pre-computed
tables is independent for each point, which allows increasing the ω value that corresponds
to the known point.

So far we have covered generic algorithms for scalar multiplications. We reviewed
some algorithms with a regular execution pattern and their implementation. We also
showed special operations on points that often appear in cryptographic protocols. Now,
we center our attention in specific models of elliptic curves starting with the Weierstrass
curves, which are the standard form of any elliptic curve.
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Algorithm 4.2.16 Interleaved Algorithm with ω-NAF for Double-Point Multiplication.
Precompute: Calculate TQ[j] = (2j + 1)Q for all 0 ≤ j < 2ωQ−2.
Input: k0, k1 are positive integers, and P,Q ∈ E(Fq) such that Q is a known point, and

ωP , ωQ are positive integers such that ωP , ωQ ≥ 2.
Output: k0P + k1Q ∈ E(Fq).
1: Calculate TP [j] = (2j + 1)P for all 0 ≤ j < 2ωP−2.
2: Let (k0(s0−1), . . . , k0(0))ωP -NAF be the ω-NAF representation of k0. //Algorithm 4.2.4
3: Let (k1(s1−1), . . . , k1(0))ωQ-NAF be the ω-NAF representation of k1. //Algorithm 4.2.4
4: s← max(s0, s1)
5: Define k0(i) ← 0 , for s0 ≤ i < s; and k1(i) ← 0 , for s1 ≤ i < s.
6: R← O
7: for i← s− 1 to 0 do
8: R← 2R
9: if k0(i) ̸= 0 then

10: j ← (|k0(i)| − 1)/2
11: R← R + sgn(k0(i))TP [j]
12: end if
13: if k1(i) ̸= 0 then
14: j ← (|k1(i)| − 1)/2
15: R← R + sgn(k1(i))TQ[j]
16: end if
17: end for
18: return R

4.3 Arithmetic of Weierstrass Curves

This section describes the implementation of the point addition law for elliptic curves in
the Weierstrass form y2 = x3 + Ax + B over fields of characteristic p > 3. We review
point addition formulas in the projective space, including well-known coordinate systems
and the recently-optimized complete formulas. We also present parallel algorithms for the
complete formulas and their implementation with SIMD instructions.

4.3.1 Point Addition Formulas

The geometric description of the group addition law can also be expressed algebraically
as rational functions. The affine formulas given by Equations (4.1.14) and (4.1.15) are an
example of this equivalence. Since formulas are quotients of polynomials, point addition
formulas must calculate expensive field inverse operations. To avoid calculating inverses,
point operations can be performed on a projective space.

Incomplete Projective Formulas

The affine points on a Weierstrass curve are embedded into P2 as (x, y) ↦→ (x : y : 1) and
O ↦→ (0 : 1 : 0); and its inverse map is (X : Y : Z) ↦→ (X/Z, Y/Z) and (0 : 1 : 0) ↦→ O.
Using the formulas given in [66, 68], adding two projective points takes 12M + 2S + 7A
field operations, and point doublings take 5M + 6S + 1MA + 12A field operations.
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Alternatively, the Jacobian system of coordinates [66, 194] refers to a projective em-
bedding of the Weierstrass curve. In this setting, the affine points are mapped to a
weighted projective space as (x, y) ↦→ (x : y : 1) ∈ P2 and O ↦→ (1 : 1 : 0). The inverse
mapping is (X : Y : Z) ↦→ (X/Z2, Y/Z3) when Z ̸= 0 and (1 : 1 : 0) ↦→ O. By apply-
ing this map to the Weierstrass curve E/Fq, it results in the homogeneous polynomial
f(X, Y, Z) = Y 2 −X3 −AXZ4 −BZ6 that is used to define the Fq-rational points of E.

The arithmetic of points in Jacobian coordinates is performed without inverses in the
base field. Using the formulas given by Cohen et al. [68], point additions are calculated
using 12M+ 4S+ 7A field operations, and point doublings take 3M+ 6S+ 1MA + 13A
field operations, where MA is the cost of multiplying by the curve parameter A.

Although its efficiency, neither the projective nor the Jacobian formulas are not com-
plete (like the affine formulas), since they fail on calculating point additions for some
exceptional points.

Complete Formulas

Bosma and Lenstra [52] proved that a set of complete formulas for point addition has car-
dinality two, i.e., one of the formulas can add the exceptional points of the other formula.
However, Kohel et al. [16, 174] noted that one of these formulas is Fq-complete provided
that E(Fq) has no points of order two. Thus, the formula will never encounter an excep-
tional points if only adds points with coordinates in Fq. The fact that this Fq-complete
formula can add any point on the curve is relevant for secure software development.

The Fq-complete addition formula works on a homogeneous projective space P2. In
this setting, the affine points are mapped as (x, y) ↦→ (x : y : 1) ∈ P2 and O ↦→ (0 : 1 : 0).
The inverse map is (X : Y : Z) ↦→ (X/Z, Y/Z) and (0 : 1 : 0) ↦→ O. Given two projective
points P,Q ∈ E(Fq) with coordinates, respectively, (XP : YP : ZP ) and (XQ : YQ : ZQ); the
coordinates of P +Q = (XP+Q : YP+Q : ZP+Q) are calculated as

r0 = XPYQ +XQYP , r1 = YPYQ ,

r2 = XPZQ +XQZP , r3 = ZPZQ ,

r4 = 3Br3 , r5 = YPZQ + YQZP ,

r6 = 3XPXQ + Ar3 , r7 = AXPXQ + 3Br2 − A2r3 ,

XP+Q = r0(r1 − Ar2 − r4)− r5r7 , YP+Q = (r1 + Ar2 + r4)(r1 − Ar2 − r4) + r6r7 ,

ZP+Q = r5(r1 + Ar2 + r4) + r0r6 .
(4.3.1)

Renes et al. [230] showed optimized algorithms for evaluating Equation (4.3.1) taking
12M + 4MA + 2MB + 23A field operations. Table 4.3.2 compares several formulas for
calculating addition of points on a Weierstrass curve.

As seen in the table, the Fq-complete formula takes the same number of multiplications
as the Jacobian formula. However, it requires a larger number of field additions, which
could become a significant overhead if their cost is expensive. Renes et al. [230] measured
the performance of the Elliptic Curve Diffie-Hellman (ECDH) protocol by replacing the
Jacobian formulas by the complete formulas in the OpenSSL library. In their experiment,
they observed 1.4× slow-down factor when the complete formulas are used.
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Table 4.3.2: Operation counts of point addition for Weierstrass curves.

Fq-complete Projective
Coordinates

Point Addition Point Doubling

M S MA MB A M S MA MB A

No Homogeneous 12 2 0 0 7 5 6 1 0 12
No Jacobian 12 4 0 0 7 3 6 1 0 13
Yes1 Homogeneous 12 0 4 2 23 8 3 4 2 15
1 Provided that the curve has no points of order two.

In spite of the loss of performance, complete formulas have a valuable property since
they offer natural protection against side-channel attacks. This fact motivated us to
investigate on strategies for reducing the execution time of complete point addition. In
the next section, we describe our proposal that relies on parallel computing.

4.3.2 Parallel Complete Addition Formulas

The field operations of the complete formulas have certain degree of parallelism that can be
exploited using SIMD parallel computing. In the formula given in Equation (4.3.1), several
field operations have no dependencies between them allowing their parallel execution.
Motivated by the SIMD parallel scheduling of point additions given by Aoki [11], Izu-
Takagi [157], and Longa-Miri [184] we looked for a parallel scheduling of the complete
formula that distributes field operations across two and four units.

We rearrange the internal operations of the point addition formula according to the
following criteria. First, we distributed operations in such a way that, at each step, all
units calculate the same arithmetic operation. For simplicity, we considered additions
and subtractions equivalent. In a few cases, the symbol ∅ appears for indicating that no
computation is performed in that unit. We also observed that sharing data between units
could be an expensive operation in some architectures. For example, in the AVX2 vector
unit permutations are costly. Hence, our distribution of operations minimizes the amount
of values are interchanged between units.

The set of algorithms described in this section list series of n-way prime field oper-
ations (described at Section 3.3) enabling their direct implementation on parallel units.
Algorithms 4.3.3 and 4.3.5 describe a two-way scheduling of field operations for perform-
ing point addition and point doubling, respectively. Some operations can be saved if the
curve parameter A = −3 ∈ Fq. If this is the case, Algorithms 4.3.4 and 4.3.6 list a
two-way scheduling of field operations for point addition and point doubling, respectively.

We go further by proposing a scheduling of operations when four parallel units are
available. Algorithms 4.3.7 and 4.3.8 list the operations for point addition and point
doubling, respectively. Our scheduling distributes operations in such a way that increases
the utilization of the four units.
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Algorithm 4.3.3 Two-way Fq-Complete
Point Addition on E/Fq : y

2 = x3+Ax+B.

Input: (XP : YP : ZP ) and (XQ : YQ : ZQ)

are coordinates of P,Q ∈ E(Fq).
Output: (XR : YR : ZR) are coordinates of

R = P +Q ∈ E(Fq).

Unit 1

1: l0 ← XP + YP

2: l1 ← XQ + YQ

3: l2 ← l0 × l1
4: l3 ← YP × YQ

5: l4 ← YP + ZP

6: l5 ← YQ + ZQ

7: l6 ← l4 × l5
8: l7 ← l3 + r6
9: l8 ← l2 − l7

10: l9 ← 3B × r3
11: l10 ← A× r3
12: l11 ← A× l10
13: l12 ← l9 + r10
14: l13 ← l3 + l12
15: l14 ← l3 − l12
16: l15 ← 3r6
17: l16 ← l15 + l10
18: l17 ← l14 × l8
19: l18 ← l16 × r16
20: l19 ← l14 × l13
21: XR ← l17 − r17
22: YR ← l19 + l18

Unit 2

r0 ← XP + ZP

r1 ← XQ + ZQ

r2 ← r0 × r1
r3 ← ZP × ZQ

r4 ← l3 + r3
∅
r6 ← XP ×XQ

r7 ← r3 + r6
r8 ← r2 − r7
r9 ← 3B × r8
r10 ← A× r8
r11 ← A× r6
r12 ← r9 + r11
∅
r14 ← l6 − r4
∅
r16 ← r12 − l11
r17 ← r14 × r16
r18 ← l16 × l8
r19 ← r14 × l13
∅
ZR ← r19 + r18

23: return (XR : YR : ZR)

Algorithm 4.3.4 Two-way Fq-Complete
Point Addition on E/Fq : y

2 = x3−3x+B.

Input: (XP : YP : ZP ) and (XQ : YQ : ZQ)

are coordinates of P,Q ∈ E(Fq).
Output: (XR : YR : ZR) are coordinates of

R = P +Q ∈ E(Fq).

Unit 1

1: l0 ← XP + YP

2: l1 ← XP + ZP

3: l2 ← XQ + ZQ

4: l3 ← XP ×XQ

5: l4 ← l0 × r0
6: l5 ← l1 × l2
7: l6 ← 3l3
8: l7 ← l3 + r4
9: l8 ← l5 − l7

10: l9 ← B × l8
11: l10 ← l9 − l3
12: l11 ← l10 − r6
13: l12 ← 3l11
14: l13 ← l6 − r6
15: ∅
16: l15 ← l3 + r3
17: l16 ← l4 − l15
18: l17 ← l16 × r14
19: l18 ← r14 × r13
20: l19 ← l16 × l13
21: XR ← l17 − r17
22: ZR ← l19 + r19

Unit 2

r0 ← XQ + YQ

r1 ← YP + ZP

r2 ← YQ + ZQ

r3 ← YP × YQ

r4 ← ZP × ZQ

r5 ← r1 × r2
r6 ← 3r4
∅
∅
r9 ← B × r4
r10 ← l8 − r9
∅
r12 ← 3r10
r13 ← r3 − r12
r14 ← r3 + r12
r15 ← r3 + r4
r16 ← r5 − r15
r17 ← r16 × l12
r18 ← l12 × l13
r19 ← r16 × r13
YR ← l18 + r18
∅

23: return (XR : YR : ZR)
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Algorithm 4.3.5 Two-way Fq-Complete
Point Doubling on E/Fq : y

2 = x3+Ax+B.

Input: (XP : YP : ZP ) are coordinates of
P ∈ E(Fq).

Output: (X2P : Y2P : Z2P ) are coordina-
tes of 2P ∈ E(Fq).

Unit 1

1: l0 ← 2ZP

2: l1 ← ZP
2

3: l2 ← YP × l0
4: l3 ← l2 + l2
5: l4 ← l3 + l3
6: l5 ← YP

2

7: Z2P ← l4 × l5
8: l7 ← A× r6
9: l8 ← 3B × l1

10: l9 ← l7 + l8
11: l10 ← l5 + l9
12: l11 ← l5 − l9
13: l12 ← r5 × l11
14: l13 ← l10 × l11
15: X2P ← l12 − r13

Unit 2

r0 ← 2XP

r1 ← XP
2

r2 ← A× l1
r3 ← r1 + r2
r4 ← r1 − r2
r5 ← YP × r0
r6 ← XP × l0
r7 ← A× r4
r8 ← 3B × r6
r9 ← r7 + r8
r10 ← r1 + r1
r11 ← r3 + r10
r12 ← r9 × r11
r13 ← r9 × l2
Y2P ← r12 + l13

16: return (X2P : Y2P : Z2P )

Algorithm 4.3.6 Two-way Fq-Complete
Point Doubling on E/Fq : y

2 = x3−3x+B.

Input: (XP : YP : ZP ) are coordinates of
P ∈ E(Fq).

Output: (X2P : Y2P : Z2P ) are coordina-
tes of 2P ∈ E(Fq).

Unit 1

1: ∅
2: l1 ← 2XP

3: l2 ← l1 × YP

4: l3 ← l1 × ZP

5: l4 ← XP
2

6: l5 ← 3l3
7: l6 ← B × l5
8: l7 ← 3l4
9: l8 ← r5 − l7

10: l9 ← l7 − l6
11: l10 ← l9 + r7
12: l11 ← r2 × l10
13: l12 ← r9 × l2
14: X2P ← l11 + l12
15: Z2P ← 4r3

Unit 2

r0 ← YP
2

r1 ← 2YP

r2 ← r1 × ZP

r3 ← r2 × r0
r4 ← ZP

2

r5 ← 3r4
r6 ← B × r5
r7 ← 3r5
r8 ← r6 − l5
r9 ← r0 − r8
r10 ← r0 + r8
r11 ← l8 × l10
r12 ← r9 × r10
Y2P ← r11 + r12
∅

16: return (X2P : Y2P : Z2P )

Algorithm 4.3.7 Four-way Fq-Complete Point Addition on E/Fq : y
2 = x3 + Ax+B.

Input: (XP : YP : ZP ) and (XQ : YQ : ZQ) are coordinates of P,Q ∈ E(Fq).
Output: (XP+Q : YP+Q : ZP+Q) are coordinates of P +Q ∈ E(Fq).

Unit 1
1: e0 ← YP +XQ

2: e1 ← XP ×XQ

3: e2 ← YQ +XQ

4: e3 ← f1 + g1
5: e4 ← e0 × e2
6: e5 ← 3B × g1
7: e6 ← e4 − f3
8: e7 ← f1 − g6
9: e8 ← e6 × e7

10: e9 ← f6 × h7

11: XP+Q ← e8 − e9

Unit 2
f0 ← YP + ZQ

f1 ← YP × YQ

f2 ← YQ + ZQ

f3 ← e1 + f1
f4 ← f0 × f2
f5 ← A× e1
f6 ← f4 − e3
f7 ← f1 + g6
f8 ← e7 × f7
f9 ← g7 × h7

YP+Q ← f8 + f9

Unit 3
g0 ← XP + ZP

g1 ← ZP × ZQ

g2 ← e1 + e1
g3 ← g2 + e1
g4 ← A× g1
g5 ← A× g4
g6 ← e5 + h5

g7 ← g3 + g4
g8 ← e6 × g7
g9 ← f6 × f7
ZP+Q ← g8 + g9

Unit 4
h0 ← XQ + ZQ

h1 ← g0 × h0

h2 ← e1 + g1
h3 ← h1 − h2

h4 ← 3B × h3

h5 ← A× h3

h6 ← f5 + h4

h7 ← h6 − g5
∅
∅
∅

12: return (XP+Q, YP+Q, ZP+Q)
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Algorithm 4.3.8 Four-way Fq-Complete Point Doubling on E/Fq : y
2 = x3 + Ax+B.

Input: (XP : YP : ZP ) are coordinates of P ∈ E(Fq).
Output: (X2P : Y2P : Z2P ) are coordinates of 2P ∈ E(Fq).

Unit 1
1: e0 ← XP

2

2: e1 ← XP × ZP

3: e2 ← 2e1
4: e3 ← 3B × e2
5: e4 ← 2e0
6: e5 ← e3 + g3
7: e6 ← f2 × g5
8: X2P ← e6 − g6

Unit 2
f0 ← YP

2

f1 ← XP × YP

f2 ← 2f1
f3 ← A× e2
f4 ← e0 + g1
f5 ← e4 + f4
f6 ← h2 × e5
Y2P ← f6 + h6

Unit 3
g0 ← ZP

2

g1 ← A× g0
g2 ← e0 − g1
g3 ← A× g2
g4 ← f3 + h1

g5 ← f0 − g4
g6 ← e5 × f5
Z2P ← 2h4

Unit 4
h0 ← YP × ZP

h1 ← 3B × g0
h2 ← 2h0

h3 ← f0 × h2

h4 ← 2h3

h5 ← f0 + g4
h6 ← g5 × h5

∅
9: return (X2P : Y2P : Z2P )

Table 4.3.9 shows the operation counts of our parallel algorithms. As it can be seen, the
number of operations reduces as the number of units increases. For the two-way formulas,
the number of multiplications gets halved. Hence, parallel implementations could reduce
the cost of a point operation by half whenever the cost of two-way multiplications is faster
than the cost of two sequential multiplications, i.e., 1 < 2M/M2 ≤ 2. On the other
hand, the four-way scheduling for point operations absorbed multiplication by constants
as general multiplications. More optimizations can be performed once the elliptic curve
constants are fixed.

Table 4.3.9: Operation counts of parallel Fq-complete formulas.

Operation Parallel
Units Field Operations1 Formula

Point
Addition

Single 12M + 4MA + 2M3B + 23A [230, Alg. 1]
2-way 6M2 + 2 (MA)2 + 1 (M3B)2 + 14A2 Algorithm 4.3.3
4-way 5M4 + 6A4 Algorithm 4.3.7

Point
Doubling

Single 8M + 3S + 4MA + 2M3B + 15A [230, Alg. 3]
2-way 5M2 + 1S2 + 1 (MA)2 + 1 (M3B)2 + 7A2 Algorithm 4.3.5
4-way 4M4 + 4A4 Algorithm 4.3.8

1 MA and M3B denote the cost of multiplying by the curve parameters A and 3B, respectively.

4.4 Arithmetic of Montgomery Curves

Montgomery [196] proposed a special parametrization of elliptic curves for accelerating
the Elliptic Curve Method (ECM) for factorizing integers. For the purposes of ECM,
it is critical to calculate scalar multiplications as fast as possible, and this is one of
the cornerstone advantages of Montgomery’s parametrization. Due to their efficiency,
Montgomery curves are also used in a large number of applications beyond the scope of
integer factorization.
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In this section, we describe the remarkable properties of Montgomery curves that allow
calculating elliptic curve operations in an efficient way. We revisit several algorithms for
operations on the x-line variety such as the Montgomery ladder used for scalar multipli-
cation, and its right-to-left variants. We also show a new algorithm for the calculation of
P + kQ using a three-point ladder technique, and we present an optimized formula for
point tripling.

4.4.1 Montgomery Curves

Let Fq be a finite field of odd characteristic, a Montgomery curve over Fq is defined as

E/Fq : By2 = x3 + Ax2 + x , (4.4.1)

such that A,B ∈ Fq and B(A2 − 4) ̸= 0. By inspection, one can verify that T = (0, 0) is
a point on any Montgomery curve. This curve is non-singular and its j-invariant is

j(E) =
256(A2 − 3)

A2 − 4

3

. (4.4.2)

The affine formulas for calculating additions of points on a Montgomery curve are
given as follows. Let P = (xP , yP ) and Q = (xQ, yQ) be two points on a Montgomery
curve such that P,Q ̸= O, xPxQ ̸= 0, and xP ̸= xQ; then P + Q = (xP+Q, yP+Q) is
calculated as

λ =
yP − yQ
xP − xQ

, xP+Q = Bλ2 − A− xP − xQ , yP+Q = (2xP + xQ + A)λ−Bλ3 − yP .

(4.4.3)
For those points P = (xP , yP ) such that yP ̸= 0, the point doubling 2P = (x2P , y2P ) is
calculated as

λ =
3xP

2 + 2AxP + 1

2ByP
, x2P = Bλ2−A−2xP , y2P = (3xP +A)λ−Bλ3−yP . (4.4.4)

Like for Weierstrass curves, the affine points can be embedded into a projective space to
avoid the calculation of inverses in the field. Thus, the affine points are mapped to P2 using
(x, y) ↦→ (x : y : 1) ∈ P2 and O ↦→ (0 : 1 : 0). The inverse map is (X : Y : Z) ↦→ (X/Z, Y/Z)

if Z ̸= 0, and (0 : 1 : 0) ↦→ O. By applying this map to the Montgomery curve equation,
it results in the homogeneous polynomial f(X, Y, Z) = BY 2Z − X3 − AX2Z − XZ2,
which is used to define E(Fq), the Fq-rational points of a Montgomery curve. Therefore
(E(Fq),O) is an elliptic curve.

A distinctive property of Montgomery curves and thus the group E(Fq) is that its
order is always a multiple of four, i,e., 4 |#E(Fq). Although Montgomery curves cannot
generate groups of order prime, it is not difficult to find Montgomery curves for which
#E(Fq)/4 is a prime number.

Until now, the arithmetic of points is similar to the arithmetic of Weierstrass curves.
However, a striking property observed by Montgomery on implementing the ECM for
integer factorization helped to devise faster algorithms for point operations. In ECM,
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operations over points of an elliptic curve are used to detect factors of an integer. More
specifically, it is enough to test certain property on the x-coordinate of points. Mont-
gomery found a set of curves for which the calculation of point operations can be performed
using only the x-coordinate of points. Thus, the y-coordinate is not used. In practical
terms, performing point operations using only the x-coordinate of points reduces both the
number of field operations for adding points and the storage requirements.

A first observation of Montgomery is the relation between the coordinates of P + Q

and P − Q. Let xP and xQ be the x-coordinate of P and Q; then the following relation
holds whenever xP ̸= xQ:

xP+Q × xP−Q =

(︃
xPxQ − 1

xP − xQ

)︃2

. (4.4.5)

From this relation, Montgomery derived a new point operation called differential addition.
Hence, given the x-coordinate of the points P , Q, and P −Q the differential addition of
P and Q, which is denoted as P +(P−Q) Q, calculates the x-coordinate of P +Q as

xP+Q =
1

xP−Q

×
(︃
xPxQ − 1

xP − xQ

)︃2

. (4.4.6)

This equation is defined whenever xP−Q ̸= 0 and xP ̸= xQ. In other words, the differential
addition formula has two exceptional cases: when the points to be added differ by T and
when P = ±Q.

Following the same reasoning, Montgomery showed formulas for point doubling that
only depend on the x-coordinate of the input point. Let xP be the x-coordinate of P , the
x-coordinate of 2P is calculated as

x2P =
(xP

2 − 1)2

4(xP
3 + AxP

2 + xP )
. (4.4.7)

This formula is not defined on the points (α, 0), where α is a root of x3 + Ax2 + x = 0.
These exceptional points are T and

(︁
(−A±

√
A2 − 4)/2, 0

)︁
. These points are in E[2],

the two-torsion subgroup of the curve, and consequently they have order two. If A2 − 4

is a quadratic residue in Fq, the points will be Fq-rational points, and the curve is said to
have full rational two-torsion and it holds that E[2](Fq) ∼= Z2 × Z2. On the other hand,
if A2 − 4 is a quadratic non-residue, T is the only Fq-rational point of order two.

Formulas using only the x-coordinate of points also work with projective coordinates
avoiding the calculation of inverses. Before going into the details of their calculation, we
describe the Montgomery’s approach using a well-known algebraic variety.

4.4.2 The x-Line Variety

The Kummer variety associated to a curve C is defined as C/ ∼, where ∼ is an equivalence
relation on the points on the curve. Thus, for all P,Q ∈ C, we have P ∼ Q iff Q = −P .
That is, P and −P represent the same point in the Kummer variety. The Kummer variety
associated to an elliptic curve is commonly known as the x-line of the curve.
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The Fq-rational points of a Montgomery curve E are embedded into its Kummer
variety, which is isomorphic to P1, using the following map

x : E(Fq)→ E(Fq)/(−1) ∼= P1

(X, Y, Z) ↦→ (X : Z) , if Z ̸= 0

(0, 1, 0) ↦→ (1 : 0)

. (4.4.8)

This projection must not be confused with trivially dropping the y-coordinate of points
because doing so for (0 : 1 : 0) leads to (0 : 0), which does not belong to P1. The main
reason for defining (0 : 1 : 0) ↦→ (0 : 1) is to make the doubling formula complete (as proven
by Bernstein and Lange [37]).

Although the x-line variety does not form an abelian group, it inherits some properties
of the elliptic curve group. The most relevant of them is the hardness of solving ECDLP.
Therefore, working on the x-line of the curve improves the efficiency of point arithmetic
without reducing the complexity of the hard problem.

Point Operations on the x-Line

Given x(P ) = (XP : ZP ) ∈ P1 such that P ∈ E(Fq), the point x(2P ) = (X2P : Z2P ) is

t0 ← XP + ZP , t1 ← t0
2 ,

t2 ← XP − ZP , t3 ← t2
2 ,

t4 ← t1 − t3 , X2P ← t1 × t3 ,

Z2P ← t4 ×
[︃
t3 +

(︃
A+ 2

4

)︃
× t4

]︃
.

(4.4.9)

Like in the affine formula, the exceptional cases are the points of order two. However, note
that evaluating this projective formula on points of order two gives as a result (1 : 0) ∈ P1.
For this reason, it makes sense to fix (0 : 1 : 0) ↦→ (1 : 0) in the x mapping. Therefore,
the projective doubling formula works for any projective point and no exceptional cases
can occur. This formula calculates a point doubling taking 2M + 2S + 1C + 4A field
operations, where C is the cost of multiplying by (A+ 2)/4, which can be faster than a
generic multiplication if A is chosen as a small number.

In the x-line, the point addition is not well defined, since adding x(P ) and x(Q)

could result on either x(P + Q) or x(P − Q). However, Montgomery showed that these
points are related by Equation (4.4.5). Thus, the differential addition operation takes
x(P ) = (XP : ZP ), x(Q) = (XQ : ZQ), and x(P − Q) = (XP−Q : ZP−Q) and calculates
x(P +Q) = (XP+Q : ZP+Q) as

t0 ← XP + ZP , t1 ← XP − ZP ,

t2 ← XQ + ZQ , t3 ← XQ − ZQ ,

t4 ← t0 × t3 , t5 ← t1 × t2 ,

XP+Q ← ZP−Q × [t4 + t5]
2 , ZP+Q ← XP−Q × [t4 − t5]

2 .

(4.4.10)
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The exceptional cases of this formula are inherited from the affine formula, i.e., this
formula is defined when x(P ) ̸= x(Q) (or equivalently when XP/ZP ̸= XQ/ZQ) and
XP−Q ̸= 0. Using this formula, differential additions take 4M+2S+6A field operations.

Scalar Multiplication on the x-Line

The left-to-right ladder method for scalar multiplication (described in Section 4.2.3) was
also introduced by Montgomery [196]. Although Montgomery’s ladder method applies
generally to any group, when it is instantiated in the x-line variety, the scalar multiplica-
tion is calculated with a fewer number of operations.

The ladder step is the core operation of Montgomery ladder since it is performed for
every bit of the scalar. In the general case, this step updates two accumulator points
R0, R1 ∈ E(Fq) as (R0, R1)← (2R0, R0 +R1). However, for the case of the x-line variety,
R0, R1 ∈ P1 such that R0 = x(P ) and R1 = x(Q) for some P,Q ∈ E(Fq); thus the ladder
step is (R0, R1) ← (2R0, R0 +(R2) R1) for some point R2 ∈ P1 such that R2 = x(P − Q).
Algorithm 4.4.113 shows Montgomery ladder multiplication method applied to the x-line
of a Montgomery curve. This method takes x(P ) such that P ∈ E(Fq) \ {O, T } to
calculate x(kP ) for a positive integer k. Note that P /∈ {O, T } due to the exceptional
cases of the differential addition formula.

Algorithm 4.4.11 Montgomery Ladder Algorithm for Scalar Multiplication on the x-
Line.
Input: (n, k) are integers such that n ≥ 1 and 0 ≤ k < 2n; and x(P ) ∈ P1, where

P ∈ E(Fq) \ {O, T }.
Output: x(kP ) ∈ P1.
1: Let (kn−1, . . . , k0)2 be the n-bit representation of k and define kn = 0.
2: R0 ← x(O) , R1 ← x(P ) , R2 ← x(P )
3: for i← n− 1 to 0 do
4: β ← ki ⊕ ki+1

5: R0, R1 ← cswap
(︁
R0, R1, β

)︁
6: R0, R1 ← 2R0, R0 +(R2) R1 //Ladder Step
7: end for
8: R0, R1 ← cswap

(︁
R0, R1, k0

)︁
9: return R0

The ladder step can be calculated more efficiently by observing that the formulas for
differential addition and point doubling share some intermediate terms. Hence, the ladder
step formula takes x(P ) = (XP : ZP ), x(Q) = (XQ : ZQ), and x(P −Q) = (XP−Q : ZP−Q)

3Despite Algorithm 4.4.11 shows the cswap variant, the cmov-based method applies as well.
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to calculate the points x(2P ) = (X2P : Z2P ) and x(P +Q) = (XP+Q : ZP+Q) as follows

t0 ← XP + ZP , t1 ← XP − ZP ,

t2 ← XQ + ZQ , t3 ← XQ − ZQ ,

t4 ← t0 × t3 , t5 ← t1 × t2 ,

t6 ← t0
2 , t7 ← t1

2 ,

t8 ← t6 − t7 ,

X2P ← t6 × t7 , Z2P ← t8 ×
[︃
t7 +

(︃
A+ 2

4

)︃
× t8

]︃
,

XP+Q ← ZP−Q × (t4 + t5)
2 , ZP+Q ← XP−Q × (t4 − t5)

2 .

(4.4.12)

whenever x(P ) ̸= x(Q) and XP−Q ̸= 0. This formula takes 6M + 4S + 1C + 8A field
operations, where C is the cost of a multiplication by (A+ 2)/4.

Montgomery ladder algorithm calculates scalar multiplications on the x-line following
a regular execution pattern, since it does not depend on the value of the scalar. This
fact is a relevant feature since scalars often represents secret values. In conjunction to its
efficiency, Montgomery ladder is a suitable method for its use in cryptographic algorithms.

Scalar Multiplication on Montgomery Curves

Multiplying a point P ∈ E(Fq) ⊂ P2 by a scalar k uses the scalar multiplication on the
x-line as a subroutine. Note that Algorithm 4.4.11 calculates x(kP ) from x(P ) and k.
However, ±kP ∈ E(Fq) are two pre-images of x(kP ); for this reason, it is required a
method that recovers the right pre-image using the information already processed.

López and Dahab [186] gave a solution to this problem in the context of binary curves.
The central idea relies on an equation that recovers the y-coordinate of kP from the
knowledge of P = (xP , yP ), x(kP ) and x(kP + P ). They observed that the latter two
points are processed by the Montgomery ladder, and correspond to the final values stored
in the accumulator points R0 and R1, respectively. Thus, if Algorithm 4.4.11 is modified
to return both accumulator points, one can use this information to univocally determine
kP . Lopez-Dahab’s method was further adapted to Montgomery curves by Okeya and
Sakurai [210] and to Weierstrass curves by Brier and Joye [56].

Recovering the y-coordinate of a point is performed as follows. Let P,Q be two affine
points on a Montgomery curve, the y-coordinate of P can be recovered from the x-coordi-
nate of P and P +Q for any point Q = (xQ, yQ) /∈ E[2] ∪ {P,−P} as

yP =
(xPxQ + 1)(xP + xQ + 2A)− 2A− (xP − xQ)

2xP+Q

2ByQ
. (4.4.13)

This formula is not defined when the y-coordinate of Q is 0, which happens when Q is a
two-torsion point. The formula also excludes Q = ±P as they represent trivial cases of
the recovering task. This equation can be easily extended to work with projective points
on E(Fq) by constructing a point (X : Y : Z) ∼ P . Algorithm 4.4.14 shows the explicit
projective formulas given by Okeya and Sakurai [210].
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Algorithm 4.4.14 Recovering the y-Coordinate of a Point on a Montgomery Curve.
Input: x(P ) = (XP : ZP ) and x(P + Q) = (XP+Q : ZP+Q) are two points on the x-line;

Q = (xQ, yQ) is an affine point such that Q /∈ E[2]∪ {P,−P} for some P,Q ∈ E(Fq).
Output: (X : Y : Z) ∈ P2 such that (X : Y : Z) ∼ P .
1: X ← 2ByQZPZP+QXP

2: Y ← ZP+Q

[︁
(XP + xQZP + 2AZP )(XPxQ + ZP )− 2AZP

2
]︁
− (XP − xQZP )

2XP+Q

3: Z ← 2ByQZP
2ZP+Q

4: return (X : Y : Z)

To obtain the y-coordinate of kP , one must instantiate the previous recovering method
with R0 = x(kP ), R1 = x(kP + P ), and P where R0 and R1 are the accumulator points
at the end of the Montgomery ladder algorithm for scalar multiplication on the x-line.

Putting all the pieces together, Algorithm 4.4.15 shows how to calculate scalar mul-
tiplications on the Fq-rational points of a Montgomery curve. If P is given in affine
coordinates, one multiplication can be saved in the ladder step since x(P ) = (xP : 1).
Therefore, let n be the size in bits of #E(Fq), the cost of a scalar multiplication kP on a
Montgomery curve is n(5M+ 4S+ 8A+ 1C) (due to scalar multiplication on the x-line)
plus 10M+1S+6A+2C (due to y-coordinate recovery) plus 1I+2M (due to conversion
of kP to affine coordinates).

Algorithm 4.4.15 Scalar Multiplication of Points on a Montgomery Curve.
Input: (n, k) are integers such that n ≥ 1 and 0 ≤ k < 2n; and P ∈ E(Fq).
Output: kP ∈ E(Fq).
1: if P = O then
2: Q← O
3: else if P ∈ E[2](Fq) then
4: Q← (k mod 2)P
5: else
6: x(kP ), x(kP + P )← ScalarMult(n, k, x(P )) //Algorithm 4.4.11
7: Q← y-Recover(x(kP ), x(kP + P ), P ) //Algorithm 4.4.14
8: end if
9: return Q

4.4.3 Parallel Montgomery Ladder Step

In this section, we propose implementation techniques for accelerating the execution time
of Montgomery ladder. In particular, we look for opportunities to run in parallel some
operations of the Montgomery ladder step formula, given in Eq (4.4.12). Thus, we enable
the use of parallel prime field operations (described in Section 3.3) and their further
implementation using vector units.

Some insights on the parallel execution of ladder step were pointed out. Bernstein’s
diagram of the ladder step, which appears in [23, App. B], gives a hint of several symme-
tries of the field operations required for its calculation. Hisil et al. [148] proposed several
scheduling of operations when two and four parallel units are available; however, it does
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not present actual implementations of them. Building on top of these works, our aim is
closing this gap by proposing parallel algorithms for the ladder step formula tailored for
their implementation in vector units.

Parallel Scheduling in Two Units

We first tried to execute the operations of the ladder step in two sets of independent
operations. For example, one possible way is to perform point doubling in one unit and
the differential addition in other unit. However, the execution time of these operations is
not even, which is not desirable in parallel environment. Because either it could derive
on a sub-par use of resources or it could require to synchronize the units, which is, in
general, an expensive task.

We arrived to a better strategy by grouping operations of the same complexity with-
out dependencies between them. In Algorithm 4.4.16, we show a parallel scheduling of
operations tailored for two parallel units.

Algorithm 4.4.16 Two-way Parallel Algorithm for Montgomery Ladder Step.
Input: x(P ) = (XP : ZP ), x(Q) = (XQ : ZQ), and x(P − Q) = (XP−Q : ZP−Q) where

P,Q ∈ E(Fq) such that P −Q /∈ {O, T }.
Output: x(2P ) = (X2P : Z2P ), and x(P +Q) = (XP+Q : ZP+Q).

Unit 1
1: l1 ← XP + ZP

2: l2 ← XP − ZP

3: l3 ← l1 × r2
4: l4 ← l3 + r3
5: l5 ← l4

2

6: X2P ← ZP−Q × l5
7: l6 ← l1

2

8: l7 ← l6 × A+2
4

9: l8 ← l6 − r6
10: XP+Q ← l6 × r6

Unit 2
r1 ← XQ + ZQ

r2 ← XQ − ZQ

r3 ← l2 × r1
r4 ← l3 − r3
r5 ← r4

2

Z2P ← XP−Q × r5
r6 ← l2

2

r7 ← r6 × A−2
4

r8 ← l7 − r7
ZP+Q ← l8 × r8

11: return (X2P : Z2P ) and (XP+Q : ZP+Q)

Algorithm 4.4.16 requires 3M2 + 2S2 + 1C2 + 4A2 two-way field operations4, where
C2 is the cost of a two-way multiplication by constant. In comparison with the original
formulas, the two-way approach requires half of the number of arithmetic operations.
Therefore, the cost of the ladder step is reduced as long as processing two-way operations
is faster than processing two consecutive operations.

The two-way scheduling proposed makes a uniform use of both units balancing the
complexity of operations performed at each step of the algorithm. By assigning operations
to units, we also consider minimizing data transfer between units. The main reason behind
this criteria is because moving data between AVX2 vector units is performed by expensive
permutation instructions.

4The cost of a n-way field operation is denoted as ( · )n.
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Parallel Scheduling in Four Units

The operations of the ladder step can also be distributed among four parallel units. For
example, Hisil et al. [148] proposed two approaches for this case. The first one has an
effective cost of 2M4 + 2S4 four-way operations; however, it is subpar since their second
approach reduces the cost to 2M4 + 1S4. This later approach distributes the differential
addition in two units and the point doubling in the other two units. However, its downside
is that some synchronization between units could be required at the end of the calculation.
Because of that, we investigate how to improve the parallel scheduling considering the use
of vector units.

We observed that the formulas for ladder step have a chain of dependencies that limits
the number of operations to be executed in parallel. The critical path in the ladder step
is a chain of multiplication → square → multiplication. Because of that, we designed a
parallel scheduling that pairs field operations of the same complexity covering the critical
path of the ladder step.

Our proposed four-way scheduling is shown in Algorithm 4.4.17. The symbol ∅ stands
for an idle operation in the unit. This algorithm takes 2M4+1S4+1C4+3A4 four-way
operations. An advantage of this algorithm is that multiplications and squares, which are
the most expensive operations, are effective operations (except in the calculation of X2P ),
then there is a low sub-utilization of computing resources.

Algorithm 4.4.17 Four-way Parallel Algorithm for Montgomery Ladder Step.
Input: x(P ) = (XP : ZP ), x(Q) = (XQ : ZQ), and x(P − Q) = (XP−Q : ZP−Q) where

P,Q ∈ E(Fq) such that P −Q /∈ {O, T }.
Output: x(2P ) = (X2P : Z2P ), and x(P +Q) = (XP+Q : ZP+Q).

Unit 1
1: e1 ← XP + ZP

2: e2 ← XP − ZP

3: e3 ← e1 × e2
4: ∅
5: e5 ← e3

2

6: ∅
7: X2P ← e5 × 1

Unit 2
f1 ← XP +XP

∅
f3 ← f1 × g1
∅
f5 ← e1

2

f6 ← f5 + f3 × A+2
4

Z2P ← f3 × f6

Unit 3
g1 ← ZQ + ZQ

∅
g3 ← e1 × h2

g4 ← g3 + h3

g5 ← g4
2

∅
XP+Q ← ZP−Q × g5

Unit 4
h1 ← XQ + ZQ

h2 ← XQ − ZQ

h3 ← h1 × e2
h4 ← g3 − h3

h5 ← h4
2

∅
ZP+Q ← XP−Q × h5

8: return (X2P : Z2P ) and (XP+Q : ZP+Q)

Table 4.4.18 summarizes the operation counts of the proposed parallel algorithms. It
can be seen that the two-way version reduces by half the number of operations, except by
the multiplication by a constant. However, the four-way scheduling shows the minimum
number of multiplications and squares. Note that they cannot run in parallel because
they are in the critical path of the Montgomery ladder step.

4.4.4 A Review of Right-To-Left Algorithms

A recent line of research suggests the use of right-to-left ladder algorithms for calculating
fixed-point multiplications. Oliveira et al. [211] showed that the Joye’s right-to-left algo-
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Table 4.4.18: Operation counts of parallel algorithms for Montgomery ladder step.

Parallel Units Field Operations1 Formula

Single 6M + 4S + 1C + 8A Equation (4.4.12) [196]
2-way 3M2 + 2S2 + 1C2 + 4A2 Algorithm 4.4.16
4-way 2M4 + 1S4 + 1C4 + 3A4 Algorithm 4.4.17
1 C denotes the cost of multiplying by a constant derived from the curve param-

eter A.

rithm [163, Alg. 4] can be used to calculate fixed-point multiplications in binary curves.
A follow up work by Oliveira, López, and Rodríguez [216] showed that a similar approach
also applies for calculating fixed-point multiplications on the x-line variety.

In this section, we give details of right-to-left algorithms for scalar multiplication on
the x-line and their adaptation for calculating fixed-point multiplications. This section
also serves as a prelude of the optimizations that we found for the three-point ladder
algorithm (described in Section 4.4.5).

Right-To-Left Ladder for Scalar Multiplication on the x-Line

Recall that the formulas for differential addition on Montgomery curves have exceptional
cases. This lack of completeness introduces an implementation issue on instantiating
Joye’s algorithm with the x-line arithmetic. Specifically, the issue appears in the first
step of the algorithm; because, it requires to calculate a differential addition with O as
the difference point, which is one of the failure cases of the formula. However, this case
only happens when the least-significant bit of the scalar is zero, so when scalars are even.

Rather than restricting the algorithm to odd scalars, Oliveira et al. [216] solved this
issue by adding a point S /∈ ⟨P ⟩ to the accumulators. Thus, the difference point is not O
avoiding the exceptional case of the formula provided that S, P −S /∈ E[2](Fq). With the
introduction of S, the result of the main loop gets perturbed and produces S+kP instead.
One way to remove S is multiplying this point by h, where h is the order of S. This latter
multiplication can be performed efficiently if h is, for example, a small number. The
result of all these modifications made on top of the right-to-left Joye’s method derived on
Algorithm 4.4.19 that calculates hkP on the x-line of a Montgomery curve.

The right-to-left algorithm has additional properties that are not present in the Mont-
gomery ladder algorithm. In the differential addition of this algorithm, the difference point
is not fixed for all loop iterations, unlike the Montgomery ladder step. This variation is
because the cswap operation selects, at each iteration, the difference point between R0

and R1. Either choice is a difference point that has Z ̸= 1 causing that the differen-
tial addition requires an additional multiplication, i.e., it takes 4M+2S field operations.
Therefore, Algorithm 4.4.19 takes n(6M+4S+8A+1C) field operations plus the cost of
a scalar multiplication by h. In summary, this algorithm is more expensive than the
left-to-right Montgomery ladder algorithm in the general case. Nonetheless, another in-
teresting property is that the right-to-left method enables the calculation of fixed-point
multiplications with a significant reduced cost.
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Algorithm 4.4.19 Right-to-Left Ladder Algorithm for Scalar Multiplication on the x-
Line [216].
Constants: x(S) and x(S − P ), where S ∈ E(Fq) has order h such that S /∈ ⟨P ⟩ and

S, P − S /∈ E[2](Fq).
Input: (n, k) are integers such that n ≥ 1 and 0 ≤ k < 2n; and x(P ) ∈ P1 such that

P ∈ E(Fq) \ {O, T }.
Output: x(hkP ) ∈ P1.
1: Let (kn−1, . . . , k0)2 be the n-bit representation of k and define k−1 = 0.
2: R0 ← x(P − S) , R1 ← x(S) , R2 ← x(P )
3: for i← 0 to n− 1 do
4: b← ki ⊕ ki−1

5: R0, R1 ← cswap
(︁
R0, R1, b

)︁
6: R2, R0 ← 2R2, R0 +(R1) R2 //Using ladder step.
7: end for
8: R0, R1 ← cswap

(︁
R0, R1, kn−1)

9: R1 ← hR1

10: return R1

Right-To-Left Ladder for Fixed-Point Multiplications

Recall that fixed-point multiplication is a particular case of scalar multiplication that oc-
curs when P is known in advance. Fixed-point multiplication algorithms have two phases.
In an off-line phase, some multiples of P are calculated and stored in a table; and during
the execution phase, these points help on the calculation of the scalar multiplication. It
is expected that the algorithm takes a fewer number of operations than the ones required
by a generic scalar multiplication algorithm.

In this setting, Oliveira et al. [216] showed optimizations on top of Algorithm 4.4.19
that allowed calculating fixed-point multiplications. Note that all point doublings of the
algorithm operate over P only, and since P is known, they can be performed off-line
and stored in a table. Hence, the calculation of the ladder step reduces to calculate one
differential addition.

An updated version of Oliveira et al.’s paper [214] showed that the differential addition
can performed faster when one of its operands is known in advance. Let P,Q ∈ P1 be
points on the x-line, where P is the fixed point; the differential addition P +(P−Q)Q, also
denoted as DiffAddFixed(µP , Q, P −Q), is calculated as

µP =
XP + ZP

XP − ZP

,

XP+Q = ZP−Q × [(XQ + ZQ) + µP (XQ − ZQ)]
2 ,

ZP+Q = XP−Q × [(XQ + ZQ)− µP (XQ − ZQ)]
2 .

(4.4.20)

This formula is defined whenever XP/ZP ̸= XQ/ZQ and XP−Q ̸= 0. However, µP is not de-
fined when XP/ZP = 1 and is zero when XP/ZP = −1; these two exceptional cases appear
if P is a point of order four. Then, P /∈

{︂(︂
1,±

√︁
(A+ 2)/B

)︂
,
(︂
−1,±

√︁
(A− 2)/B

)︂}︂
. If

µP is calculated in advance, Equation (4.4.20) takes 3M+2S+4A field operations.
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Using these observations, one can adapt the right-to-left ladder, as shown in Algo-
rithm 4.4.21, to perform fixed-point multiplications on the x-line of a Montgomery curve.

Algorithm 4.4.21 Right-to-Left Ladder Algorithm for Fixed-Point Multiplication on the
x-Line [214].
Constants: P, S ∈ E(Fq), where P is the fixed-point such that P /∈ E[4](Fq); S is a

point of order h such that S /∈ ⟨P ⟩, and S, P − S /∈ E[2](Fq).
Precompute: (µn−1, . . . , µ0), where µi = (Xi + Zi)/(Xi − Zi) ∈ Fq, and x(2iP ) =

(Xi : Zi) for all 0 ≤ i < n.
Input: (n, k) are integers such that n ≥ 1 and 0 ≤ k < 2n.
Output: x(hkP ) ∈ P1.
1: Let (kn−1, . . . , k0)2 be the n-bit representation of k and define k−1 = 0.
2: R0 ← x(P ) , R1 ← x(S) , R2 ← x(P − S)
3: for i← 0 to n− 1 do
4: b← ki ⊕ ki−1

5: R1, R2 ← cswap
(︁
R1, R2, b

)︁
6: R2 ← DiffAddFixed (µi, R2, R1) //Equation (4.4.20)
7: end for
8: R1, R2 ← cswap

(︁
R1, R2, kn−1

)︁
9: R1 ← hR1

10: return R1

Algorithm 4.4.21 takes a constant number of operations. In total, this algorithm cal-
culates n(3M+2S+4A) field operations plus a scalar multiplication by h. Regarding
memory footprint, the precomputed table stores exactly n field elements. A downside of
this algorithm is that one can not increase the table size for accelerating even more the
calculation as it usually happens on other fixed-point multiplication algorithms. Nonethe-
less, a big advantage of this algorithm is its regular-execution pattern that could prevent
of some side-channel attacks. Moreover, fetching points from the table requires non-secret
indexes; i.e., during execution, points can be taken from the table directly. The variability
inherent to the bits of the scalar is handled by the cswap function, which must inter-
change the accumulator points in constant-time. Therefore, this method is suitable for
calculating fixed-point multiplications using secret scalars.

Table 4.4.22 compares ladder algorithms for scalar multiplication on the x-line. As can
be seen, the right-to-left method is slightly slower than Montgomery ladder for performing
generic scalar multiplications. But in the fixed-point scenario, the right-to-left method is
faster taking 0.56× the cost of Montgomery ladder.

Instantiating the right-to-left ladder algorithm on the x-line brings significant improve-
ments on the calculation of fixed-point multiplications. In the following section, we show
the use of right-to-left algorithms for accelerating another point operation on the x-line.

4.4.5 A New Three-Point Ladder Algorithm

The implementation of the Supersingular Isogeny Diffie-Hellman (SIDH) protocol, intro-
duced by Jao et al. [160], uses Montgomery curves as the elliptic curve model due to the
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Table 4.4.22: Operation counts of scalar multiplication on the x-line.

Scanning
Direction Algorithm Fixed-

Point Step Ladder M-per-bit 1 Ratio

Left to right Montgomery ladder [196] No 5M + 4S 8.2M 1.00×

Right to left Algorithm 4.4.19 [216] No 6M + 4S 9.2M 1.12×
Algorithm 4.4.21 [214] Yes 3M + 2S 4.6M 0.56×

1 Assuming 1S = 0.8M.

efficiency of the operations on the x-line. Given a secret scalar k and points P,Q ∈ E(Fq),
part of this protocol requires calculating x(P + kQ) efficiently.

In this section, we propose a new algorithm that performs this operation faster than
two well-known methods. Our algorithm builds on top of the right-to-left ladder described
in the previous section. We want to remark that although this calculation is relevant for
SIDH, the results of this section apply generally to any set with a differential addition
operation defined. The results of this section were published in the TC 2017 journal
paper [103] P , which was co-authored with CINVESTAV IPN’s researchers.

Previous Methods for Calculating x(P + kQ)

A direct method is to first calculate kQ ∈ E(Fq), a scalar multiplication on the Mont-
gomery curve (using Algorithm 4.4.15), and then add P , to finally obtain x(P + kQ).
This method has a regular execution pattern; however, it requires knowledge of the y-
coordinate of P and Q. This method is dominated by the cost of the Montgomery ladder,
which takes n(6M+4S+8A), plus a constant number of field multiplications (< 30M)
due to the y-coordinate recovery and the projective point addition.

An alternative method was introduced by Jao et al. [160], who proposed a regular-
execution algorithm called three-point ladder. This ladder, shown in Algorithm 4.4.23,
performs operations on the x-line taking as input x(P ), x(Q), and x(Q− P ) to calculate
x(P + kQ). For every bit of the scalar, this algorithm performs a constant number of
operations: two differential additions and one point doubling. In the SIDH protocol,
the parameter A of the Montgomery curve is not a constant; thus, multiplying times
(A + 2)/4 must be counted as a generic multiplication. In total, Algorithm 4.4.23 takes
n(9M+6S+14A) field operations. The three-point ladder improves over the direct method
because it does not require the y-coordinate of points.

By analyzing the operations of the three-point ladder algorithm, it is clear that the
algorithm is, in essence, a Montgomery ladder plugged with a differential addition, for
which its difference point is either x(P ) or x(Q− P ) depending on the bits of the scalar.
Another similarity is that both algorithms scan the bits of the scalar from the most- to the
least-significant bit, i.e., they are left-to-right multiplication algorithms. When looking
for alternative methods, we turned our efforts on investigating the use of right-to-left
multiplication algorithms.
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Algorithm 4.4.23 Left-to-Right Three-Point Ladder Algorithm for x(P + kQ) [160].
Input: (n, k) are integers such that n ≥ 1 and 0 ≤ k < 2n; and x(P ), x(Q), and x(Q−P )

where P,Q ∈ E(Fq) such that P,Q,Q− P /∈ {O, T }.
Output: x(P + kQ) ∈ P1.
1: Let (kn−1, . . . , k0)2 be the n-bit representation of k.
2: R0 ← x(O) , R1 ← x(Q) , R2 ← x(P )
3: T0 ← x(P ) , T1 ← x(Q− P ) , T2 ← x(Q)
4: for i← n− 1 to 0 do
5: if ki = 0 then
6: (R2, R1, R0)← (R2 +(T0) R0, R0 +(T2) R1, 2R0)
7: else
8: (R2, R0, R1)← (R2 +(T1) R1, R0 +(T2) R1, 2R1)
9: end if

10: end for
11: return R2

A Faster Three-Point Ladder Algorithm

We now introduce a faster algorithm to calculate x(P + kQ). By revisiting the right-
to-left Joye’s algorithm, we found suitable conditions for its use in the SIDH setting.
Recall that the right-to-left Joye’s algorithm instantiated with operations in the x-line
results in a method for calculating x(hkP ), as shown in Algorithm 4.4.19. The additional
factor h appears as a side effect produced by the introduction of an auxiliary order-h
point S /∈ ⟨P ⟩ that avoids exceptional cases of the differential point addition. However,
if the multiplication by h is omitted, the right-to-left ladder produces x(S + kP ) instead.
Therefore, we propose Algorithm 4.4.24 that calculates x(P + kQ) given a scalar k and
x(P ), x(Q), x(Q− P ) ∈ P1, where P,Q ∈ E(Fq) such that P /∈ ⟨Q⟩.

Algorithm 4.4.24 Right-to-Left Three-Point Ladder Algorithm for x(P + kQ).

Input: (n, k) are integers such that n ≥ 1 and 0 ≤ k < 2n; x(P ), x(Q), x(Q − P ) ∈ P1,
where P,Q ∈ E(Fq) such that P,Q,Q− P /∈ {O, T }.

Output: x(P + kQ) ∈ P1.
1: Let (kn−1, . . . , k0)2 be the n-bit representation of k and define k−1 = 0.
2: R0 ← x(Q− P ) , R1 ← x(P ) , R2 ← x(Q)
3: for i← 0 to n− 1 do
4: b← ki ⊕ ki−1

5: R0, R1 ← cswap
(︁
R0, R1, b

)︁
6: R2, R0 ← 2R2, R2 +(R1) R0

7: end for
8: R0, R1 ← cswap

(︁
R0, R1, kn−1

)︁
9: return R1

Algorithm 4.4.24 uses three accumulator points, namely R0, R1, R2 ∈ P1. For every
bit of the scalar, the bit value determines whether R2 must be accumulated in R0 or R1.
After that, R2 is doubled unconditionally. Its loop-invariant is R0 = R2 − R1, which is
similar to the one of Montgomery ladder. At every iteration, it calculates one differential
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addition and one point doubling; so it takes n(7M+4S+8A) field operations in total
(counting the multiplication by (A+ 2)/4 as a generic multiplication).

Table 4.4.25 shows operation counts for calculating x(P + kQ). On the one hand,
the direct method is faster than Algorithm 4.4.24; however, it requires knowledge of the
y-coordinate of points when calculating the addition of P . On the other hand, Algo-
rithm 4.4.24 is 1.34× faster than the three-point ladder by Jao et al. Moreover, both
algorithms have the same interface, so it can be used as a drop-in replacement.

Table 4.4.25: Operation counts of x(P + kQ) on the x-line.

Scanning Algorithm Fixed-Point Requirements M-per-bit 1

Left to
Right

Direct Method 2 No The y-coord. of P and Q 8.6

Three-point
Ladder [160] No x(Q− P ) 13.0

Right to
Left

Algorithm 4.4.24 No x(Q− P ) 9.6

Algorithm 4.4.26 Yes x(P ), x(Q), x(Q− P ). 4.3
1 Assumes that 1S = 0.66M.
2 Cost of Montgomery ladder for x(kQ). The additional multiplications needed for recovering the
y-coordinate and adding P are not counted because they do not depend on k.

A Faster Three-Point Ladder Algorithm: The Fixed-point Case

The right-to-left three-point ladder can be accelerated when P or Q are known in advance.
Unlike Jao et al.’s three-point ladder, Algorithm 4.4.26 precomputes some points for
calculating x(P + kQ) faster. This algorithm calculates one differential addition per bit
of the scalar k. In total, it takes n(3M + 2S) field operations. In comparison with the
original three-point ladder, the right-to-left three-point ladder with precomputation shows
a 3× speedup factor for fixed-point multiplications, as shown in Table 4.4.25.

Recovering the y-Coordinate of P + kQ

For binary curves, López and Dahab [186] showed a method that recovers the y-coordinate
of kP from the coordinates of P , x(kP ) and x(P + kP ). The latter points are obtained
as part of the execution of the Montgomery ladder. Okeya and Sakurai [210] showed a
similar method for Montgomery curves.

We show a y-recovery method for the three-point ladder algorithm. More specifically,
let T0 = (x0, y0) ∈ E(Fq) be an affine point with y0 ̸= 0, and x(Ti) = (Xi : Zi) ∈ P1

for i = 1, 2, 3 are points on the x-line such that T2 = T1 + T0 and T3 = T1 − T0. Then,
following [210, Corollary 2], there is a point (X ′

1 : Y
′
1 : Z

′
1) ∼ T1 ∈ E(Fq), where

X ′
1 = 4By0Z1Z2Z3X1

Y ′
1 = (X3Z2 − Z3X2)(X1 − Z1x0)

2

Z ′
1 = 4By0Z1

2Z2Z3 .

(4.4.27)
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Algorithm 4.4.26 Right-to-Left Three-Point Ladder Algorithm for x(P + kQ) with
Fixed-Points.
Constants: x(P ), x(Q), and x(Q−P ), where P,Q ∈ E(Fq) such that P,Q−P /∈ E[2](Fq)

and Q /∈ E[4](Fq).
Precompute: (µn−1, . . . , µ0), where µi = (Xi + Zi)/(Xi − Zi) ∈ Fq, and x(2iQ) =

(Xi : Zi) for all 0 ≤ i < n.
Input: (n, k) are integers such that n ≥ 1 and 0 ≤ k < 2n.
Output: x(P + kQ) ∈ P1.
1: Let (kn−1, . . . , k0)2 be the n-bit representation of k and define k−1 = 0.
2: R0 ← x(Q− P ) , R1 ← x(P ) , R2 ← x(Q)
3: for i← 0 to n− 1 do
4: b← ki ⊕ ki−1

5: R0, R1 ← cswap
(︁
R0, R1, b

)︁
6: R0 ← DiffAddFixed (µi, R2, R1) //Equation (4.4.20).
7: end for
8: R0, R1 ← cswap

(︁
R0, R1, kn−1

)︁
9: return R1

Now, we show that the accumulator points of the right-to-left three-point ladder allows
recovering the y-coordinate of P + kQ. Since the loop-invariant of the right-to-left ladder
is R0 = R2 −R1; after n iterations, the accumulators are equal to

R0 = x((2n − (k mod 2n))Q− P )

R1 = x(P + (k mod 2n)Q)

R2 = x(2nQ) .

(4.4.28)

With these values, we calculate R3 = R2 +(R0) R1 as follows. Using these values in the
previous formula, one can recover the y-coordinate of P +kQ by setting (T0, T1, T2, T3)←
(R2, R1, R3, R0) whenever there is previous knowledge of the y-coordinate of the point
2nQ. For instance, in the fixed-point scenario, the point 2nQ can be precomputed. This
recovering method increases by one differential addition to the cost of Equation (4.4.27).

4.4.6 An Optimized Point Tripling Formula

Point tripling refers to calculate 3P given a point P . This operation is usually performed
by first calculating 2P and then adding P to it. However, some field operations can be
saved by composing the formulas for point doubling and addition.

We look for optimizations for tripling points on the x-line of a Montgomery curve.
Hence, we restrict to the case of calculating the x-coordinate of 3 iP given the x-coordinate
of P and an integer i > 0, where the points are in projective coordinates.

As a starting point, note that calculating x(3P ) using a point doubling followed by
a differential point addition takes 7M+4S+8A field operations. Subramanya Rao [258]
showed an efficient formula for point tripling. Let A be the Montgomery curve parameter
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and given x(P ) = (XP : ZP ), such a formula calculates x(3P ) = (X3P : Z3P ) as

λ =
(︂
XP

2 − ZP
2
)︂2

, γ = 4(XP
2 + ZP

2 + AXPZP ) ,

X3P = XP

(︂
λ− γZP

2
)︂2

, Z3P = ZP

(︂
λ− γXP

2
)︂2

.
(4.4.29)

This formula was derived by composing the point doubling and differential addition and
its computational cost is 6M+5S+9A field operations.

In our optimization, we consider the elliptic curve parameter A as an arbitrary value.
More generally, we represent A as a quotient A = A0/A1. We optimize the point tripling
formula observing that 2XPZP can be calculated from XP

2, ZP
2, and (XP +ZP )

2 relying
on the following equation

2XPZP = (XP + ZP )
2 − (XP

2 + ZP
2) . (4.4.30)

Thus, λ from Equation (4.4.29) is alternatively calculated as

λ =
(︁
XP

2 − ZP
2
)︁2

= (XP + ZP )
2(XP − ZP )

2

= (XP + ZP )
2
[︁
(XP

2 + ZP
2)− 2XPZP

]︁
.

(4.4.31)

Likewise, γ from Equation (4.4.29) is given as

γ = 4
(︁
XP

2 + ZP
2 + AXPZP

)︁
= 2
[︁
2(XP

2 + ZP
2 + AXPZP )

]︁
= 2
[︁
2(XP + ZP )

2 + (A− 2)(2XPZP )
]︁
.

(4.4.32)

Applying these three equations and considering that A = A0/A1, we calculate the point
x(3P ) = (X3P : Z3P ) as

λ = (2A1)(X1 + Z1)
2
[︁
(X1

2 + Z1
2)− 2X1Z1

]︁
γ = 4

[︁
(2A1)(X1 + Z1)

2 + (A0 − 2A1)(2X1Z1)
]︁

X3P = XP

(︂
λ− γZP

2
)︂2

Z3P = ZP

(︂
λ− γXP

2
)︂2

.

(4.4.33)

Algorithm 4.4.34 shows this point tripling formula. This algorithm takes 7M+5S+11A
field operations. However, to calculate x(3 iP ) one can precompute A′

0 = A0 − 2A1 and
A′

1 = 2A1 reducing its cost to 7M + 5S + 9A field operations.
Table 4.4.35 shows the cost of several tripling formulas reported in the literature. It

can be seen that our formula improves point tripling computation by 1M-1S-1A with
respect to the formula used by Costello et al. [78]. Independent work of Costello and
Hisil [76] showed formulas for point tripling of similar performance.
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Algorithm 4.4.34 Point Tripling on the x-Line.
Precompute: A′

0 ← A0 − 2A1, and A′
1 ← 2A1, where A = A0/A1.

Input: x(P ) = (XP : ZP ), where P ∈ E(Fq) /∈ {O, T }.
Output: x(3P ) = (X3P : Z3P ).

1: t0 ← XP
2

2: t1 ← ZP
2

3: t2 ← XP + ZP

4: t2 ← t2
2

5: t3 ← t0 + t1
6: t4 ← t2 − t3
7: t5 ← A′

0 × t4

8: t2 ← A′
1 × t2

9: t5 ← t2 + t5
10: t5 ← t5 + t5
11: t5 ← t5 + t5
12: t0 ← t0 × t5
13: t1 ← t1 × t5
14: t4 ← t3 − t4

15: t2 ← t2 × t4
16: t0 ← t2 − t0
17: t1 ← t2 − t1
18: t0 ← t0

2

19: t1 ← t1
2

20: X3P ← XP × t1
21: Z3P ← ZP × t0

22: return (X3P : Z3P )

Table 4.4.35: Operation counts of point tripling on the x-line.

A = A0/A1 Field Operations Precomputation Reference

A1 = 1
7M + 4S + 8A {(A+ 2)/4} Montgomery [196]

6M + 5S + 9A ∅ Subramanya [258]

5M + 6S + 7A {2A} Zanon et al. [273]

A1 arbitrary

8M + 4S + 8A {A0 + 2A1, 4A1} Costello et al. [78]

7M + 5S + 10A {A0 ± 2A1} Costello et al. [76]

7M + 5S + 9A {A0 − 2A1, 2A1} Algorithm 4.4.34 (this work)

4.5 Arithmetic of Twisted Edwards Curves

Edwards [90] showed a form of elliptic curves where the addition law is unified, i.e.,
the same formula works for both point doubling and additions. Moreover, it is also
Fq-complete under some restrictions. Having complete formulas helps to protect imple-
mentation of elliptic curve operations used in cryptographic algorithms. For instance,
adding points is performed free of exceptions, unlike other elliptic curve models, where
addition formulas have exceptional cases. Building on top of Edwards work, Bernstein
et al. [34] augmented the study of these curves and introduced several generalizations
that lead to a family of curves known as twisted Edwards curves [26], which inherit the
completeness of point addition formulas from Edwards curves.

In this section we describe the arithmetic of twisted Edwards curves; then, we propose
algorithms for evaluating point addition formula in parallel, and finally, we present efficient
methods for fixed-point multiplications.
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4.5.1 Twisted Edwards Curves

Let Fq be a field of odd characteristic, a twisted Edwards curve over Fq is defined as

E/Fq : ax
2 + y2 = 1 + dx2y2 , (4.5.1)

such that a, d ∈ Fq and ad(a − d) ̸= 0. The group law of twisted Edwards curves is
Fq-complete provided that a is a square and d is a non-square in Fq. Let P = (xP , yP )

and Q = (xQ, yQ) be two points on the curve, the coordinates of P + Q = (xP+Q, yP+Q)

are calculated as

xP+Q =
xPyQ + yPxQ

1 + dxPxQyPyQ
, yP+Q =

yPyQ − axPxQ

1− dxPxQyPyQ
. (4.5.2)

This formula works for any point on the curve including the identity element, which unlike
the Weierstrass form, is an affine point O = (0, 1).

The affine points can also be embedded into a projective space. The projective em-
bedding of the curve in P3 (and after resolving singularities) is given by the equations

aX2 + Y 2 = Z2 + dT 2 and XY = TZ . (4.5.3)

An affine point (x, y) ↦→ (x : y : xy : 1) ∈ P3 with inverse (X : Y : T : Z) ↦→ (X/Z, Y/Z)

with Z ̸= 0. There exist four points at infinity (with Z = 0) that satisfy these projective
equations. However, these points have coordinates involving the square root of d, this is
one of the reasons why choosing d as non-square in Fq causes the points be defined in an
extension of Fq. Hence, the set of Fq-rational points, denoted as

E(Fq) =
{︁
(X : Y : T : Z) ∈ P3 : aX2 + Y 2 = Z2 + dT 2 and XY = TZ

}︁
, (4.5.4)

forms an additive group having O = (0: 1 : 0 : 1) as its identity element.
Twisted Edwards curves with a = −1 have the more efficient formulas for point ad-

dition [148]. Let P = (XP : YP : TP : ZP ) and Q = (XQ : YQ : TQ : ZQ) be two projective
points on E(Fq) with a = −1, the coordinates of P + Q = (XP+Q : YP+Q : TP+Q : ZP+Q)

as calculated as

A← (YP −XP )× (YQ −XQ) , B ← (YP +XP )× (YQ +XQ) ,

C ← 2d× TP × TQ , D ← 2ZP × ZQ ,

E ← B − A , F ← D − C ,

G← D + C , H ← B + A ,

XP+Q ← E × F , YP+Q ← G×H ,

ZP+Q ← F ×G , TP+Q ← E ×H .

(4.5.5)

This formula requires 8M + 1C + 9A field operations, where C denotes the cost of
multiplying by 2d. Some operations are saved if one of the points is known in advance.
Let Q = (xQ : yQ : xQyQ : 1) be the known-point, if the values yQ − xQ, yQ + xQ, and
2dxQyQ are precomputed, the cost of point addition reduces to 7M + 7A.
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Equivalence with Montgomery Curves

Bernstein et al. [26] showed that Montgomery and twisted Edwards curves are related
through rational maps.

Given a twisted Edwards curve ax2+y2 = 1+dx2y2 where a, d ∈ Fq such that a, d ̸= 0,
one can obtain a point on a Montgomery curve Bv2 = u3 + Au2 + u where A = 2

(︁
a+d
a−d

)︁
and B = 4

a−d
using the following map

(x, y) ↦→ (u, v) =

(︃
1 + y

1− y
,

1 + y

(1− y)x

)︃
. (4.5.6)

Conversely, given a Montgomery curve Bv2 = u3+Au2+u where A,B ∈ Fq such that
A /∈ {2,−2} and B ̸= 0, one can obtain a point on a twisted Edwards curve ax2 + y2 =

1 + dx2y2 where a = A+2
B

and d = A−2
B

using the following map

(u, v) ↦→ (x, y) =

(︃
u

v
,
u− 1

(u+ 1)

)︃
. (4.5.7)

There are points for which the maps are not defined. These exceptional points are handled
as special cases during the mapping.

4.5.2 Parallel Point Addition

We describe implementation techniques for performing point addition in parallel and its
execution in SIMD units. It is known that the internal field operations of the addition
formula can run in parallel. For example, the operations can be distributed in two parallel
units as noted by Hisil et al. [148]. They presented a distribution of operations (shown
in Figure 4.5.8) that evenly assigns field operations of the same complexity to each unit.
However, we noticed that there remain some opportunities for optimizations with respect
to its actual implementation using vector units.

Unit 1 Unit 2

A1 ← YP −XP B1 ← YQ −XQ

A2 ← YP +XP B2 ← YQ +XQ

A3 ← A1 ×B1 B3 ← A2 ×B2

A4 ← TP × TQ B4 ← ZP × ZQ

A5 ← 2d× A4 B5 ← 2×B4

A6 ← B3 − A3 B6 ← B5 − A5

A7 ← B5 + A5 B7 ← A3 +B3

XP+Q ← A6 ×B6 YP+Q ← A7 ×B7

TP+Q ← A6 ×B7 ZP+Q ← B6 × A7

Figure 4.5.8: Two-way scheduling of point addition for twisted Edwards curves with
a = −1 from [148]. Underlined values represent dependencies between units.
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In particular, we observed that such a partitioning involves many data dependencies
between units. A data dependency exists whenever a unit produces a value that is an
input of an operation performed in the other unit. In practice, this kind of dependencies
introduces an extra computational cost associated to communication between units. Since
we instantiate parallel units through the AVX2 vector unit, sharing values between units
translates to moving words within vector registers. As a consequence, it requires using
permutation instructions, which are high-latency instructions that cause overheads during
execution time. Therefore, for the sake of efficiency, the design of a parallel scheduling of
operations must also consider to minimize data dependencies between units.

Taking these aspects into consideration, we propose a parallel scheduling with fewer
data dependencies between units, as shown in Figure 4.5.9. In our scheduling, every unit
operates as much as possible on values that were previously produced in the same unit,
and we pair field operations of similar complexity to balance the amount of work processed
by each unit. In comparison with the previous scheduling, ours reduces from nine to four
the number of dependencies between units, and during its implementation, we observed
a reduction of a half of the number of vector permutations for point addition.

Unit 1 Unit 2

A1 ← YP −XP B1 ← YP +XP

A2 ← YQ −XQ B2 ← YQ +XQ

A3 ← A1 × A2 B3 ← B1 ×B2

A4 ← TP × TQ B4 ← ZP × ZQ

A5 ← 2d× A4 B5 ← 2×B4

A6 ← B3 − A3 B6 ← A5 −B5

A7 ← B3 + A3 B7 ← A5 +B5

XP+Q ← A6 ×B6 YP+Q ← B7 × A7

TP+Q ← A6 × A7 ZP+Q ← B7 ×B6

Figure 4.5.9: Our proposed two-way scheduling of point addition for twisted Edwards
curves with a = −1. Underlined values represent dependencies between units.

We use the concept of n-way operations from Section 3.3 to describe the implemen-
tation of point additions. Algorithm 4.5.10 shows a sequence of two-way operations for
calculating P +Q, where P = (XP : YP : TP : ZP ) and Q is known in advance.

Analogously to the case of two units, point addition formula can also be performed
using four execution units [148]. We now extend this previous scheduling to its execution
using four units. Algorithm 4.5.11 shows the scheduling of operations to calculate point
additions for the family of curves with a = −1.

We also define a four-way point addition (1PA4) as the set of operations Pi + Qi for
0 ≤ i < 4. To implement them, we applied four-way field operations from Section 3.3 to
calculate the point addition formula. Hence, we store each coordinate of the four points
in vector registers, for example, ⟨XP0 , XP1 , XP2 , XP3⟩ is a set of vector registers containing
the X-coordinate of each point.
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Algorithm 4.5.10 Two-way Point Addition for Twisted Edwards Curves with a = −1.
Input: ⟨XP , YP ⟩, ⟨TP , ZP ⟩, ⟨YQ−XQ, YQ+XQ⟩ and ⟨2dXQYQ , 2⟩, projective coordinates

of P,Q ∈ E(Fp).
Output: ⟨XP+Q, YP+Q⟩ and ⟨TP+Q, ZP+Q⟩, projective coordinates of P +Q.
1: ⟨YP , XP ⟩ ← perm

(︁
⟨XP , YP ⟩ , 0x4E

)︁
2: ⟨XP − YP , YP +XP ⟩ ← ⟨XP , YP ⟩ ± ⟨YP , XP ⟩
3: ⟨A,B⟩ ← ⟨XP − YP , YP +XP ⟩ × ⟨YQ −XQ, YQ +XQ⟩
4: ⟨C,D⟩ ← ⟨TP , ZP ⟩ × ⟨2dXQYQ , 2⟩
5: ⟨A,C⟩ ← perm

(︁
⟨A,B⟩ , ⟨C,D⟩ , 0x20

)︁
6: ⟨B,D⟩ ← perm

(︁
⟨A,B⟩ , ⟨C,D⟩ , 0x31

)︁
7: ⟨E,F ⟩ ← ⟨B,D⟩ − ⟨A,C⟩
8: ⟨H,G⟩ ← ⟨B,D⟩+ ⟨A,C⟩
9: ⟨E,G⟩ ← blend

(︁
⟨E,F ⟩ , ⟨H,G⟩ , 0xF0

)︁
10: ⟨H,F ⟩ ← blend

(︁
⟨H,G⟩ , ⟨E,F ⟩ , 0xF0

)︁
11: ⟨F,H⟩ ← perm

(︁
⟨H,F ⟩ , 0x4E

)︁
12: ⟨XP+Q, YP+Q⟩ ← ⟨F,H⟩ × ⟨E,G⟩
13: ⟨TP+Q, ZP+Q⟩ ← ⟨H,F ⟩ × ⟨E,G⟩
14: return ⟨XP+Q, YP+Q⟩, and ⟨TP+Q, ZP+Q⟩

Performance Benchmark

We implemented the parallel strategies for point additions using the two- and four-way
prime field operations from Sections 3.4 and 3.6. We want to determine which of the
parallel variants exposed above offers a better performance.

Table 4.5.12 shows the timings obtained by our benchmark. The first row of the table
is the baseline of our comparison, since it represents a single point addition implemented
with native 64-bit instructions.

Table 4.5.12: Time in clock cycles of point addition on a twisted Edwards curve.

Operation Field
Operations

Parallel
Strategy

edwards25519 edwards448

Latency 1 Speedup Latency 1 Speedup

1 PA
7M + 7A Single 324 1.00× 820 1.00×
4M2 + 3A2 Two-way 264 1.22× 571 1.43×
2M4 + 2A4 Four-way 242 1.33× 504 1.63×

1PA4 7M4 + 7A4 Four-way 833 1.55× 1,520 2.15×
1 Entries are clock cycles measured on a Skylake processor.

In our implementation, we obtained 1.33× and 1.63× speedup factors, respectively,
for edwards25519 and edwards448 curves by using four-way operations. As it can be
seen, the acceleration obtained for point additions is smaller than the acceleration of the
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Algorithm 4.5.11 Four-way Point Addition for Twisted Edwards Curves with a = −1.
Input: ⟨XP , YP , TP , ZP ⟩, and ⟨YQ − XQ, YQ + XQ , 2dXQYQ , 2⟩, projective coordinates

of P,Q ∈ E(Fp).
Output: ⟨XP+Q, YP+Q, TP+Q, ZP+Q⟩, projective coordinates of P +Q.
1: ⟨YP , XP , 0, 0⟩ ← perm

(︁
⟨XP , YP , TP , ZP ⟩ , 0x44

)︁
2: ⟨YP −XP , YP +XP , TP , ZP ⟩ ← ⟨YP , XP , 0, 0⟩ ± ⟨XP , YP , TP , ZP ⟩
3: ⟨A,B,C,D⟩ ← ⟨YP −XP , YP +XP , TP , ZP ⟩ × ⟨YQ −XQ, YQ +XQ, 2dXQYQ, 2⟩
4: ⟨B,D,B,D⟩ ← perm

(︁
⟨A,B,C,D⟩ , 0xDD

)︁
5: ⟨A,C,A,C⟩ ← perm

(︁
⟨A,B,C,D⟩ , 0x88

)︁
6: ⟨B − A,D + C,B + A,D − C⟩ ← ⟨B,D,B,D⟩ ± ⟨A,C,A,C⟩
7: ⟨E,G,H, F ⟩ ← ⟨B − A,D + C,B + A,D − C⟩
8: ⟨F,H,E,G⟩ ← perm

(︁
⟨E,G,H, F ⟩ , 0x4B

)︁
9: ⟨XP+Q, YP+Q, TP+Q, ZP+Q⟩ ← ⟨E,G,H, F ⟩ × ⟨F,H,E,G⟩

10: return ⟨XP+Q, YP+Q, TP+Q, ZP+Q⟩

parallel field multiplication (cf. Tables 3.4.20 and 3.6.17). One reason that explains this
difference is due to the use of high-latency permutation instructions.

Our implementation attained larger improvements on the calculation of four-way point
additions. The timings listed in the last row of Table 4.5.12 show better acceleration
factors than calculating one point addition using, for example, four-way operations. In
addition, these factors are closer to the acceleration factors obtained for parallel prime
field multiplications. We attribute some overheads to the execution of larger codes, which
do not fit into the instruction decoding cache of the processor.

4.5.3 Fixed-Point Multiplication

We describe implementation techniques for accelerating the execution of fixed-point mul-
tiplications. To do that, we revisited a technique of Bernstein et al. [31] and based on it,
we derived a pair of optimizations targeting the use of vector SIMD units.

Before describing our optimizations, we show the original technique from [31] for cal-
culating kP . Let P be a fixed point of order r, then define n = |r|+ 1 and t = ⌈n/d⌉ for
some integer d > 0. These parameters are used to precompute a set of t look-up tables,
each one containing 2d−1 points, defined as

Tu =
{︁
Tu(v) = 2duv P | for 1 < v ≤ 2d−1

}︁
for 0 ≤ u < t. (4.5.13)

Given a pair (u, v), such that 0 ≤ u < t and −2d−1 ≤ v ≤ 2d−1, the point obtained by
querying a look-up table is defined as

ϕ(Tu, v) =

⎧⎪⎪⎨⎪⎪⎩
Tu(v), if v > 0,

−Tu(−v), if v < 0,

O, otherwise.

(4.5.14)
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We remark that this query must be performed in constant-time and avoiding access to
memory using secret indexes.

The calculation of kP relies on these parameters and proceeds as follows. First, the
scalar k must be converted to an expansion of signed digits (k0, . . . , kt−1), such that
k =

∑︁t−1
i=0 2

diki and −2d−1 ≤ ki < 2d−1. Note that to prevent against timing attacks, this
conversion must be processed in constant time; for example, following Algorithm 4.5.16.
Once the scalar has been converted, kP is calculated as follows

kP =
t−1∑︂
i=0

ϕ(Ti, ki) . (4.5.15)

This operation requires the evaluation of t− 1 point additions and t queries to the table.
Note that the choice of d introduces a trade-off between the memory footprint for storing
look-up tables and the computational cost of the scalar multiplication.

Algorithm 4.5.16 Conversion of Integers to Signed Digits.
Input: k is a positive integer, and d is an integer d > 0.
Output: (k0, . . . , kt−1), such that k =

∑︁t−1
i=0 2

diki and −2d−1 ≤ ki < 2d−1.
1: t← ⌈n

d
⌉

2: for i← 0 to t− 1 do
3: s← k mod 2d

4: c← ⌊s/2d−1⌋
5: ki ← (s ∧ ¬2d−1)− (s ∧ 2d−1) //ki is the two’s complement of s.
6: k ← ⌊k/2d⌋+ c
7: end for
8: return (k0, . . . , kt−1)

In [31, 64], it was shown how to reduce by half the number of look-up tables. This is
achieved by fixing the same digit size d and precomputing only the even-indexed look-up
tables, i.e. all Tu for u even. Then, kP is calculated as

kP =

⌈t/2⌉−1∑︂
i=0

ϕ(T2i, k2i) + 2d
⌊t/2⌋−1∑︂

i=0

ϕ(T2i, k2i+1) . (4.5.17)

This calculation requires t− 1 point additions and d point doublings. Using this strategy,
both queries ϕ(T2i, k2i) and ϕ(T2i, k2i+1) look up the same table T2i.

Now, we will describe two modifications applied to the previous technique for com-
puting four point additions simultaneously. Our description uses the parameters of the
edwards25519 and edwards448 curves.

Fixed-Point Multiplication for Edwards25519

First, we modified the previous technique in such a way that a series of four point addi-
tions can be computed simultaneously leading to a direct application of four-way point
additions. Second, by extending the previous technique, we were able to reduce by half
the number of look-up tables; thus, our implementation has smaller memory footprint.
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Our first optimization is for speeding up the calculation of kP . For edwards25519,
n = 254; thus, we selected the digit size to be d = 4 and t = 64. Taking advantage of the
associative property of point addition, we split the workload of Equation (4.5.17) in four
independent sums that can be processed in parallel as

kP =
15∑︂
i=0

ϕ(T2i, k2i)+24
15∑︂
i=0

ϕ(T2i, k2i+1)+
31∑︂

j=16

ϕ(T2j, k2j)+24
31∑︂

j=16

ϕ(T2j, k2j+1) . (4.5.18)

Hence, this algorithm can be computed using fifteen four-way point additions and sixteen
queries; after that, the partial sums are combined using four point doublings and three
point additions. An advantage of this strategy is that no permutation instructions are
required for calculating point additions since values in a lane of a vector register are
independent of values from other lanes.

In Table 4.5.19, we show the operation counts and memory requirements of the strate-
gies presented above. Unlike the original strategy in [31], our approach allows the calcu-
lation of a series of four independent additions, incurring in an overhead of three point
additions (cf. the second and third row of Table 4.5.19). Our strategy for fixed-point
multiplication, given in Equation (4.5.18), is faster whenever the calculation of four-way
point additions is faster than a two-way parallel execution.

Table 4.5.19: Operation counts of fixed-point multiplication on the edwards25519 curve.

Method Operations Points Storage Reference

Sequential 63PA 512 48KB Equation (4.5.15)
Two-way 31PA2 + 4PD 256 24KB Equation (4.5.17) ([31, 64])
Four-way 15PA4 + 3PA + 4PD 256 24KB Equation (4.5.18) (this work)
Four-way 15PA4 + 3PA + 12PD 128 12 KB Equation (4.5.20) (this work)

Our second optimization improves on the memory footprint. We note that the number
of tables can be reduced by half and use 16 rather than 32 tables. To this end, we fix
d = 4 and t = 64 as before, but we store only the tables Tu such that u ≡ 0 (mod 4) for
0 ≤ u < 64. Thus, we calculate kP using also four independent sums as follows

kP =
15∑︂
i=0

ϕ(T4i, k4i) + 24
15∑︂
i=0

ϕ(T4i, k4i+1) + 28
15∑︂
i=0

ϕ(T4i, k4i+2) + 212
15∑︂
i=0

ϕ(T4i, k4i+3) .

(4.5.20)
In this formulation, one query to a look-up table T4i can feed four points according to
the digits k4i, k4i+1, k4i+2, and k4i+3. This is particularly important since memory access
tends to be slow when fetching several vector registers.

As Table 4.5.19 shows, Equation (4.5.20) requires fifteen four-way point additions,
twelve point doublings, and three point additions. Although this method requires more
operations than the previous optimization given in Equation (4.5.18), we achieve a signif-
icant reduction on memory footprint halving the size of tables used by previous methods.
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Fixed-Point Multiplication for Edwards448

For this curve, n = 447; thus, setting the digit size d = 4 leads to t = 112 look-up tables
of eight points. Using similar observations as for edwards25519 curve, we reduce to 28
the number of tables for edwards448. Thus, we store only Tu such that u ≡ 0 (mod 4)

for 0 ≤ u < 112. Analogously to Equation (4.5.20), kP is performed as

kP =
27∑︂
i=0

ϕ(T4i, k4i) + 24
27∑︂
i=0

ϕ(T4i, k4i+1) + 28
27∑︂
i=0

ϕ(T4i, k4i+2) + 212
27∑︂
i=0

ϕ(T4i, k4i+3) .

(4.5.21)
This equation requires 27 four-way point additions, 12 point doublings, and 3 point addi-
tions. Moreover, we could go further and use only 14 tables by using the tables Tu such
that u ≡ 0 (mod 8); this calculation also requires 27 four-way point additions. However,
adding eight partial sums takes 28 point doublings and 7 point additions, which introduces
an overhead that increases the execution time of fixed-point multiplication.

4.6 Chapter Summary

The properties of elliptic curves make them an efficient choice for instantiating algorithms
based on groups with hard discrete logarithm problem. Motivated by the use of alternative
elliptic curve models and some recent advances, we investigated efficient ways to calculate
elliptic curve operations.

Regarding algorithmic optimizations, we found better algorithms for performing arith-
metic over Montgomery curves. In particular, we showed a new three-point ladder algo-
rithm, some improvements on fixed-point multiplications, and an optimized formula for
point tripling.

Under the notion of n-way prime field operations, we designed parallel algorithms for
point addition formulas of Weierstrass, Montgomery, and twisted Edwards curves. These
parallel algorithms can be implemented either in hardware or software. In our study, we
use SIMD instructions for their implementation. The design of the parallel algorithms
considered the capabilities and limitations of the vector unit studied.

All of these optimizations are of general interest. However, they become relevant when
they are applied to cryptographic algorithms, which is the subject of the next chapter.
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Chapter 5

Cryptographic Algorithms and
Protocols

We have shown how to implement operations over prime fields and elliptic curves. Now,
it is time to use these operations as building blocks for implementing cryptographic algo-
rithms and protocols. At this stage, the need for secure software development becomes
more evident since algorithms process secret data.

In this chapter, we describe implementation details of ECDH and ECDSA using the
P-384 curve; the X25519, X448, and SIDH-751 Diffie-Hellman protocols; and the Ed25519,
Ed448, qDSA, XMSS, and XMSSMT digital signature schemes. Also, we show implemen-
tation details of the SHA-256 hash function using SHA-NI instructions.

For each of them, we propose a set of implementation techniques that improve their
execution time. We demonstrate these techniques through optimized software imple-
mentations and report the results of performance benchmarks. Finally, we compare our
implementations with other state-of-the-art implementations.

5.1 Implementation of ECDH and ECDSA with P-384

Transitioning to higher security levels is commonly accompanied with overheads. Al-
though many cryptographic libraries support prime curves, most of them do not have
optimized code for the P-384 curve, which is a standardized elliptic curve providing a
security level of 192 bits.

In this section, we present implementation techniques for accelerating elliptic curve
operations on P-384. We apply the vectorized implementation of prime field arithmetic to
formulate a parallel scheduling of the complete formulas for point addition. The results
described in this section were published in the SBSeg 2016 paper [100] P .

5.1.1 Review of Standard Elliptic Curves

In 1999, the National Institute of Standards and Technology (NIST) [200] recommended
a set of fifteen elliptic curves, five of them are defined over prime fields and are known as
P-192, P-224, P-256, P-384, and P-521 covering, respectively, security levels of 80, 112,
128, 192, and 256 bits.
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The Relevance of P-384

In 2016, the National Security Agency [207] recommended the use of stronger crypto-
graphic algorithms before transitioning to quantum-resistant algorithms. The Commer-
cial National Security Algorithms (CNSA) Suite includes algorithms classified in the TOP
SECRET level of Suite B as shown in Table 5.1.1.

Table 5.1.1: Suite B of cryptographic algorithms.

Primitive Algorithm SECRET Level TOP SECRET Level

Data Encryption AES AES-128 AES-256

Hash Function SHA2 SHA-256 SHA-384

Key Agreement ECDH P-256 P-384
DH 1 2,048-bit modulus 3,072-bit modulus

Digital Signature
ECDSA P-256 P-384
DSA 1 2,048-bit modulus 3,072-bit modulus
RSA 1 2,048-bit modulus 3,072-bit modulus

1 Algorithms considered for legacy support.

In computational systems depending on a cryptographic hardware infrastructure, up-
grading to the TOP SECRET level could incur into a serious investment for updating the
whole infrastructure in cases when a higher security level is not supported. On the other
hand, in systems using a cryptographic software infrastructure, this upgrade can be per-
formed by tuning the appropriate parameters in the software library. Unfortunately, a
loss of performance can occur because some cryptographic libraries have generic, non-
optimized implementations for the higher security levels. Consequently, transitioning to
the TOP SECRET level enhances security but downgrades on performance.

Parameters of P-384

Let p384 = 2384 − 2128 − 296 + 232 − 1 be a prime number, the Weierstrass curve P-384 is
defined over Fp384 as

P-384 : y2 = x3 − 3x+B , (5.1.2)

where B = 275801935599597058778490118403890480930569058563615685214287073

01988689241309860865136260764883745107765439761230575. This curve has prime
order r = 2384 − 1388124618062372383947042015309946732620727252194336364173.

This curve can be used to instantiate the Elliptic Curve Diffie-Hellman protocol
(ECDH) [9] and the Elliptic Curve Digital Signature Algorithm (ECDSA) [8,265], which
we briefly describe below.

Protocol 5.1.3 (ECDH).

• Setup. Let λ be the security parameter. Select a prime p such that log2(p)/2 ≈ λ.
Select a Weierstrass curve E such that E(Fp) is a group of prime order r. Fix a
generator G ∈ (Fp).



172

• Key Generation. Alice selects kA ← Z/rZ uniformly at random, calculates PA ←
kAG and sends this value to Bob. Similarly to Alice, Bob generates kB and sends
PB to Alice.

• Shared Secret. Once Bob receives PA from Alice, he calculates kBPA and this point
is the shared secret. Analogously, Alice calculates kAPB, which is an equivalent point
to the one obtained by Bob.

Signature Scheme 5.1.4 (ECDSA).

• Setup. Similar setup as in ECDH, and choose a cryptographic hash function H

producing 2|p| bits.

• Key Generation. Select k ← Z/rZ uniformly at random, and calculate P ← kG.
Set k as the private key and P as the pubic key.

• Signing. Given a message M ∈ {0, 1}∗, and a secret key k. Choose k1 ← Z/rZ
uniformly at random and calculate (xR, yR) ← k1G and x ← xR mod r. If x = 0

then sample another k1. Set s ← k1
−1(H(M) + k · x) mod r. If s = 0 then sample

another k1. Declare (x, s) as the signature of M .

• Verification. Given a message M ∈ {0, 1}∗, a signature (x, s), and a public key
P ; set u1 ← s−1 · H(M) mod r and u2 ← s−1 · x (mod r). Calculate (xQ, yQ) ←
u1G+ u2P . Accept the signature if x = xQ mod r; otherwise, reject it.

Related Works

Some works in the literature have implemented optimizations targeting specific NIST
curves. For instance, Käsper [169] presented a fast implementation of the P-224 curve
using a redundant representation for implementing the prime field arithmetic. Gueron
and Krasnov [132] showed optimizations for P-256 through a more efficient calculation
of prime field multiplication leveraging the use of Montgomery-friendly primes. Granger
and Scott [121] described a novel technique for accelerating multiplications on F2521−1,
which they used for the implementation of P-521 curve operations; this latter technique
can also be extended to pseudo-Mersenne primes.

5.1.2 Implementation Details

We focus on a high-performance software implementation of P-384 curve operations. Our
optimizations target three levels. In a lower level, we showed in Section 3.5 how to perform
prime field arithmetic in parallel using the AVX2 vector unit. In an upper level, we devised
in Section 4.3.2 a scheduling of prime field operations to execute complete formulas for
point addition in parallel. Finally, at a higher level, we implemented algorithms suitable
for three special cases of scalar multiplication: the variable-point, fixed-point, and double-
point multiplications, which are the core operations of ECDH and ECDSA.
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Variable-Point Multiplication

For variable-point multiplication, we implement a regular execution algorithm described
by Bos et al. [47, Alg. 1]. For P-384, we found ω = 6 is the optimal value for the
window value, which implies to calculate a series of five point doublings followed by one
point addition. The scalar must be converted to a signed digit expansion, however, the
conversion method works only for odd numbers. We convert either k (when is odd) or
r−k (when is even), and at the end of the algorithm the point must be inverted according
to the parity of the scalar.

Note that conditionally choosing between two values must be performed in constant
time to avoid timing attacks. In order to prevent against cache attacks, we read the
entire precomputed table and conditionally select the appropriate entry. We implement
conditional selection using the CMOV instruction.

Fixed-Point Multiplication

Calculating fixed-point multiplications admits precomputing tables of points. Large ta-
bles accelerate calculations, but also increase the memory used. Since the multiplication
algorithm must read the entire table, it is desirable that a large part of the table fits on
the L1-Data memory cache, which has 32KB of capacity on the Core i7 processors.

We calculate a fix-point multiplication kP as follows. First, we precompute a table
with entries

Ti = {j24iP : even i ∈ [0, 96) and 0 ≤ j ≤ 8} . (5.1.5)

A constant-time query to this table is denoted as ϕ(Ti, j) = sgn(j)|j|24iP for 0 ≤ j ≤ 8.
At running time, we split k into 96 signed digits of four bits such that k =

∑︁95
i=0 ki2

4i.
Then, we calculate kP = Q0 + 24Q1, where Q0 =

∑︁95
i=0 ϕ(Ti, ki) for i ≡ 0 (mod 2), and

Q1 =
∑︁95

i=0 ϕ(Ti−1, ki) for i ≡ 1 (mod 2).
In total, this method requires 96 point additions and 4 point doublings. Regarding

memory footprint, the table stores 384 points in affine coordinates accounting for 36KB
of read-only memory, which is close to the size of L1-Data memory cache.

Double-Point Multiplication

The operation k0P + k1Q is used in the verification of ECDSA signatures. It is calcu-
lated using faster algorithms and does not require protection against side-channel attacks
because no private data is computed. To do so, we implement the interleaved algorithm
with ω-NAF representation as described in Algorithm 4.2.16. The values for ω are chosen
independently per scalar. In our implementation, we experimentally found that ωP = 7

and ωQ = 5 are the values that minimize the running time of double-point multiplication.

5.1.3 Performance Benchmark and Comparison

To evaluate the impact on the performance of our optimizations, we measure the running
time of ECDH shared secrets and the ECDSA signature operations using P-384. To enable
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comparisons, we also measure the performance of some publicly-available cryptographic
libraries. We choose libraries written in C/C++ supporting the P-384 curve.

• OpenSSL (v1.0.2h) is as open-source library that is in continuous development con-
taining a vast number of optimizations [263].

• Nettle (v3.2) is a low-level cryptographic library that provides a back-end function-
ality to the GnuTLS library [208].

• Previously known as PolarSSL, mbed TLS (v2.2.1) is a multi-platform library with
the aim to ease the development of cryptographic algorithms [20].

• Relic toolkit (v0.4.1) is a modern library that supports a broad range of crypto-
graphic algorithms. Measurements were performed using the default configurations,
and setting GMP as the arithmetic backend [14].

• BoringSSL (commit fe47ba2f) is a fork of the OpenSSL library modified to support
strict security requirements [116].

A comparison of the performance of these libraries is shown in Table 5.1.6.

Table 5.1.6: Timings of ECDH and ECDSA using P-384.

Software
Library

Haswell Skylake

ECDH ECDSA ECDH ECDSA
Shared
Secret Signing Verify Shared

Secret Signing Verify

mbed TLS 18.70 7.15 26.49 17.90 6.72 25.25
BoringSSL 3.60 3.78 4.47 3.43 3.67 4.33
Relic 1.79 0.89 2.40 1.52 0.77 2.06
Nettle – 0.77 2.07 – 0.62 1.57
OpenSSL 2.12 0.65 2.60 2.03 0.62 2.49
This work 1.25 0.56 1.31 1.11 0.53 1.11
1 Entries are 106 clock cycles.
2 All libraries were compiled using the GNU C Compiler v5.3.1.

From the measurements obtained, one can see the cryptographic libraries tested, with
the exception of mbed TLS, offer a similar performance for P-348. Note that none of these
libraries uses vector instructions nor implements the complete formulas. This means that
they use the faster incomplete formulas point addition. In all cases, our implementation
using the complete formulas outperforms to the other libraries.

Renes et al. [230] measured the effects of using complete formulas for point additions in
OpenSSL. As a result, they observed a slow-down factor of 1.41× in ECDH. In comparison
to incomplete formulas, the complete formulas have a significant increase on the number of
field additions. Our implementation calculates field additions 3× faster than the OpenSSL
library; however, additions are not the bottleneck of the formulas, field multiplications still
dominate the execution time. The total speedup we obtained comes from a combination
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of using a redundant representation for prime field elements and implementing operations
using AVX2 vector instructions. So we reduce the overheads of using complete formulas.

Our implementation benefits more of running in Skylake than the other libraries.
For example, the vectorized implementation running on Skylake calculates shared secrets
10% faster than running in Haswell. Other libraries only get a 5% of improvement. An
explanation for that is due to Skylake has more execution ports for vector instructions
than Haswell. If this trend continues in the upcoming micro-architectures, vectorized code
will render better performance.

5.2 Implementation of X25519 and X448

The cornerstone Miller’s paper [194] shows how to instantiate a Diffie-Hellman proto-
col using the group of points of an elliptic curve. Miller observes that the protocol is
still functional using only the x-coordinate of points. Montgomery [196] presented a
parametrization of curves that allows implementing elliptic curve operations faster than
using operations over Weierstrass curves. Later, Bernstein [23] introduced an efficient
realization of the Diffie-Hellman protocol using a Montgomery curve called Curve25519.

In this section, we give details on the implementation of X25519 and X448, two in-
stances of the Diffie-Hellman protocol using Montgomery curves called Curve25519 and
Curve448, respectively. We leverage the use of the most recent instruction sets for accel-
erating the running time of these protocols.

The contributions related to the AVX2 parallel implementation were published in the
LATINCRYPT paper [99] P . Building on top of that, we show more optimizations on the
usage of AVX2 and these results were published in the TOMS 2019 journal paper [101] P ,
which was co-authored with Ricardo Dahab at the University of Campinas.

We also present implementation techniques targeting a 64-bit implementation. These
results and a performance benchmark were published in the SAC 2017 paper [213] P ,
which was co-authored with Thomaz Oliveira and Francisco Rodríguez-Henríquez at the
CINVESTAV-IPN, and Hüseyin Hişil at the Yasar University.

5.2.1 Review of Diffie-Hellman Protocol on the x-Line

The following description shows the parameters and operations required by the Diffie-
Hellman protocol.

Protocol 5.2.1 (Diffie-Hellman on the x-Line of a Montgomery Curve).

• Setup. Given an integer λ denoting the security parameter, Alice and Bob must
agree on some public parameters. Fix a Montgomery curve E/Fp : By2 = x3 +

Ax2 + x, where p is a prime number such that log2(p)/2 ≈ λ and E(Fp) has order
hr, where r is a large prime close to p, and the cofactor is h = 2c for small c ≥ 2.
Fix a point G ∈ E(Fp) of order r. A complete setup must consider a secure instance
of an elliptic curve. We refer to SafeCurves project [36] for a comprehensive list of
security criteria.
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• Key Generation. Alice chooses a ∈ Z/rZ uniformly at random, calculates Ka =

x(aG), and transmits an encoding of Ka to Bob. Similarly, Bob selects b ∈ Z/rZ
uniformly at random, calculates Kb = x(bG), and transmits an encoding of Kb to
Alice.

• Shared Secret. Once the points are received, Alice calculates aKb and Bob calcu-
lates bKa. After that, both entities have bKa = aKb = x(abG) as a shared secret.

In this protocol, only the x-coordinate of points is sent through the communication
channel. It is possible to use point arithmetic on the x-line of a Montgomery curve without
recovering the other coordinate. The dominant operation is the scalar multiplication,
which must be processed in a secure way because the scalar is a secret value. One approach
is to use the Montgomery ladder algorithm for multiplying points on the x-line, and thus,
to achieve a regular execution of the multiplication.

Instances

The high-level description given above does not consider several criteria for choosing a
secure instance of an elliptic curve, and together with its security, efficiency plays also
important role. In 2006, Bernstein [23] introduced Curve25519, a Montgomery curve that
is defined following a rigid security criteria. The design choices for this instance take into
account also the efficiency of operations.

The Curve25519 is a Montgomery curve over Fp25519 , where p25519 = 2255−19 is a prime
number, defined by

Curve25519 : y2 = x3 + 486662x2 + x , (5.2.2)

and its order is 8r, where r = 2252 + 27742317777372353535851937790883648493. The
point (9, 147816194475895447910205935684099868872646061346164752889648818377

55586237401) generates a subgroup of order r.
Due to the main purpose of this curve was to instantiate an efficient Diffie-Hellman

protocol, the protocol instance was also referred as Curve25519. However, this clash
of names caused ambiguities between the curve and the protocol. For this reason, the
Diffie-Hellman protocol using Curve25519 is called as X25519.

Hamburg [139] presented instances of Montgomery curves for accelerating the execu-
tion of elliptic curve operations at a 128-bit security level. Hamburg proposes the use of
special primes that aids the calculation of reductions modulo p. A follow up work derived
on the proposal of elliptic curve parameters for higher security levels. In particular, using
the prime p448 = 2448 − 2224 − 1 allows to instantiate elliptic curves at 224-bit security
level. Hamburg’s parametrization derived on an elliptic curve called Goldilocks [140,141].
This curve is an Edwards curve over Fp448 defined by

Goldilocks : x2 + y2 = 1− 39081x2y2 . (5.2.3)

Its order is 4r, where r = 2446− 13818066809895115352007386748515426880336692474

882178609894547503885 is a prime number. In other contexts, this curve is also known
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as the edwards448 curve, and is isogeneous to a Montgomery curve over the same field
defined by

Curve448 : y2 = x3 + 156326x2 + x . (5.2.4)

This Montgomery curve is the one used for instantiating the X448 Diffie-Hellman protocol.

Related Works

Several works have showed optimized implementations targeting different techniques and
instruction sets. We now briefly overview milestone implementations of X25519.

In addition to the introduction of Curve25519, Bernstein [23] gives details of its im-
plementation recommending a reduced-radix arithmetic and the use of the SSE vector
unit. This vector unit extends the instruction set architecture with parallel execution of
floating-point instructions, an efficient resource available on processors at that time.

Langley [177] followed a similar strategy for prime field arithmetic. His implementa-
tion uses a redundant representation with ρ = 51 and performs operations with native
64-bit integer instructions. Later, Moon [197] published implementations of X25519 using
two machine representations of prime field elements. One of them is based on Langley’s
code, and the other one sets the digit size to ρ = 25.5, but employs the SSE2 vector unit
for performing integer arithmetic operations. At the time of their release, Moon’s imple-
mentations had a similar performance in former micro-architectures (more precisely, the
vectorized code was slightly slower, according to the timings reported in [197]). However,
at the present time, we observed a significant performance gap between these implemen-
tations. For the platforms we used in our benchmarks, the SSE2-based code is 30% slower
than the 64-bit implementation. This gap makes evident the enhancements made to the
native 64-bit multiplication instructions on the latest processors.

The release of the AVX instruction set [71], firstly introduced in the Sandy Bridge
micro-architecture, modified the execution of 128-bit vector instructions. Specifically,
the latency of some instructions was reduced, and all vector instructions were promoted
to use three-operand codes. These micro-architectural improvements were leveraged by
Chou [64], who present an implementation that processes prime field arithmetic using
128-bit AVX vector instructions. As an immediate consequence, his implementation out-
performed native 64-bit implementations on Sandy Bridge.

5.2.2 Implementation Details

Micro-architectures superseding the capabilities of Sandy Bridge include more powerful
instruction sets. For example, the succeeding processors have a AXV2 vector unit and
also support the new 64-bit integer arithmetic instructions [217]. On the presence of these
computational resources, we developed two implementations of X25519 and X448.

Vectorized Arithmetic for Montgomery Ladder

In a first stage, we look for implementation techniques that leverage the use of AVX2.
In an early exploration paper [98] P , we showed how to store field elements into 256-
bit vector registers and proposed the use AVX2 instructions for performing arithmetic
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operations. As part of our first experiments, we noticed that some simple tasks, such as
moving words within a vector register, have a higher latency in the AVX2 unit.

Later, we focused on designing a vector implementation of prime field arithmetic that
be useful for executing X25519. As a result, we employ the AVX2 vector unit to deliver
SIMD parallel processing at two levels. At the higher level, we showed how to schedule the
operations of the Montgomery ladder step to be executed in two parallel units (as shown
in Section 4.4.3). Hence, we use the 256-bit AVX2 vector unit as two independent 128-bit
units dedicated for executing the ladder step in parallel. At the lower level, the internal
operations of prime field arithmetic are also executed in parallel by each 128-bit vector
unit. Following this approach, we developed a vectorized implementation of X25519.

As part of our continuous research, we identified design choices that led to a better
utilization of AVX2. Departing from our previous report [99], we introduced two modi-
fications. First, we modified the way the digits are stored in vector registers. The new
distribution of digits allows that independent propagation of carry bits be performed in
parallel, which reduces the execution time of digit size reduction.

The second modification was motivated by the micro-architectural improvements of
Skylake. Unlike Haswell, Skylake has two units for calculating vector multiplications,
which reduces the inverse throughput of vector multiplications. This means that more
multiplications can be executed by unit of time provided that they are independent.
With this in mind, we adapted the Mastrovito multiplier to the case of prime field mul-
tiplications in order to schedule more vector multiplications independently. These two
modifications improved our previous AVX2 vector implementation and allowed to speed
up the performance of both X25519 and X448.

Implementation using 64-bit Instructions

In a second stage, we focused on a succinct implementation of X25519 and X448 using
non-vector 64-bit instructions. To do that, we employed the new instructions for integer
arithmetic [217]. It is well-known that the combination of MULX, from the BMI2 instruc-
tion set, and ADX instructions improves the execution of operand-scanning technique for
multiplying integers. Sections 3.4 and 3.6 describe the implementation of field arithmetic
for X25519 and X448, respectively.

We implement the ladder step in a similar way than the two-way version of the ladder
algorithm, but without the use of vector instructions. Instead, we blend the scheduling
of two field multiplications (or squares). This approach helps to save some cycles due to
improves the register assignment and stack usage.

Methods for Improving Key Generation

Speeding up the key generation phase is as relevant as the shared secret phase, since it
is more frequent the enforcement of ephemeral key agreements with the aim to provide
perfect forward secrecy. For this reason, we developed two approaches for performing key
generation faster.

One approach relies on using the right-to-left algorithms for fixed-point scalar multi-
plication. As was described in Section 4.4.4, the use of precomputation in the right-to-left
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ladder was firstly suggested by Oliveira et al. [211], who improved the timings of fixed-
point multiplication on binary curves. Furthermore, a similar technique also works for
scalar multiplications on the x-line of a Montgomery curve as described in Section 4.4.4.

A better approach is to offload calculations leveraging the fast point arithmetic of
twisted Edwards curves. Note that unlike Montgomery curves, the twisted Edwards
curves have complete formulas, which allows designing better algorithms for fixed-point
multiplications. For this reason, we can use the rational maps that relate Montgomery
and twisted Edwards curves for moving calculations to a more efficient curve.

Let Φ: EM → ETE and Ψ: ETE → EM be such rational mappings, and GM be the
generator point on a Montgomery curve. To calculate x(kGM), the point GM is mapped
to a point on a twisted Edwards curve, say GTE = Φ(GM). Then, we perform the fixed-
point multiplication kGTE and map back the resulting point to obtain Ψ(kGTE), which
is on the Montgomery curve; finally, we take its x-coordinate, which holds the following
relation x(Ψ(kGTE)) = x(kGM).

Although this technique is well-known, we show that the implementation of parallel
algorithms for twisted Edwards arithmetic, described in Section 4.5.3, resulted also in
improvements for calculating the key generation phase of the Diffie-Hellman protocol.

5.2.3 Performance Benchmark and Comparison

The timings reported in this section are product of a performance benchmarking on
Haswell and Skylake micro-architectures. We present measurements of the latency of
the X25519 and X448 protocols.

Timings of X25519

Table 5.2.5 shows the timings of several implementations of X25519. The second column
refers to the instruction set architecture (ISA) used by each implementation.

Table 5.2.5: Timings of X25519 shared secret.

Implementation ISA Haswell 1 Skylake 1

Moon [197] SSE2 237.6 196.2
Moon [197] x64 166.3 140.0
This work [99] AVX2 156.5 137.8
Chou [64] AVX 155.9 137.2
This work [213] x64, BMI2, ADX 144.3 111.2
This work [101] AVX2 121.0 99.4
This work [101] AVX2, AVX-512 — 87.3 2

This work [101] AVX-512 — 81.6 2

1 Entries are 103 clock cycles.
2 Measured in a Core i7-7820X SkylakeX processor with support

for AVX-512.

The timings listed in the table show a strong relation between the improvements
on the execution time of X25519 and the use of a more powerful instruction set. For
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example, Moon’s implementations maintained the speed record for long time, but when
AVX become available Chou’s implementation broke the record. We closely reached such
a record in our first AVX2 implementation (see the third row), since the timings of that
implementation were competitive with state-of-the-art implementations.

Our continued efforts on improving field arithmetic resulted in a faster vector imple-
mentations using AVX2 and AVX-512 (see the rows at the bottom). Some cycles can be
saved by compiling our AVX2 implementation enabling the use of AVX-512 instructions.
Our pure AVX-512 implementation offers extra savings on the calculation of X25519.

We set a speed record by achieving the execution of X25519 shared secrets below
the 100,000 clock cycles barrier running on a Skylake processor. Other works have ac-
complished similar speed records in former architectures using other models of elliptic
curves; for example, using GLV/GLS prime curves [97], FourQ curve [77], and Koblitz
curves [13,215]. The timings of our vector implementations show that the data structures
and the instructions used are important factors that impact on performance.

Our 64-bit implementation of X25519 does not rely on parallel computing, but also
has good performance. This is explained, in large part, because recent processors have
improved the execution of multi-precision arithmetic through the use of dedicated instruc-
tions such as the BMI2 and ADX sets. Also, it must be noted that the 64-bit instructions
have shorter binary codes, and the decoding engine of the processor can decode them
faster. On the other hand, the binary codes of vector instructions are larger and they can
only be decoded by a more complex decoding unit.

Timings of X448

A fewer number of works have reported efficient software implementations of X448. The
main reference is Hamburg’s software library [140], which employs the new 64-bit integer
instructions for performing reduced-radix multiplications over Fp448 . Table 5.2.6 lists the
timings of some implementations of X448.

Table 5.2.6: Timings of X448 shared secret.

Implementation ISA Haswell 1 Skylake 1

This work [213] x64, BMI2, ADX 693.0 513.4
Hamburg [140] x64 626.6 532.0
eBACS 2 [35] x64 532.2 459.7
This work [101] AVX2 428.1 364.2
1 Entries are 103 clock cycles.
2 The eBACS’ timings correspond to the titan0 and skylake ma-

chines.

The first row of the table shows that our implementation using 64-bit instructions is
faster in Skylake than Hamburg’s code. However, it does not have good performance on
Haswell. As noted before, the difference between these implementations relies on the use
of ADX instructions. The operand scanning method needs two steps of carry propagation.
Without ADX instructions, these two propagations must be performed sequentially, and
since the field elements are large, the latency of carry propagation gets affected negatively.
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On the other hand, with the presence of ADX instructions, the two carry propagations are
blended making the calculation of multiplications faster. This subtle difference explains
the performance of our 64-bit implementation.

Regarding our vectorized implementation, it can be observed that it gets a better mar-
gin of improvement. Our software is around 19% faster than implementations published
in eBACS [35]. We attribute these savings to the efficiency of our prime field multiplier
and the parallel execution of Montgomery ladder step. As the field elements require ex-
actly sixteen words, we were able to implement Karatsuba multiplication using vector
instructions. As a result, it is more evident the positive impact on the execution time
given by a vectorized implementation with respect to a native 64-bit implementation.

Timings of Key Generation

As described above, we implemented two methods for key generation. In the first ap-
proach, we use the right-to-left ladder applied to Montgomery curves; and in the second
approach, we performed fixed-point multiplications on the equivalent twisted Edwards
curve and mapped back the result to a point on a Montgomery curve.

Table 5.2.7 lists the timings of our implementations of key generation measured on
Haswell and Skylake processors. To calculate the percentage of savings, we take as a
baseline the fastest timing of shared secrets. We use this baseline because, in practice,
it is common that developers use the shared secret function (with the generator point as
input) to generate keys.

Table 5.2.7: Timings of the key generation phase of X25519 and X448.

Protocol Operation Reference Storage 1 Haswell 2 Skylake 2 Savings 3

X25519

Shared
Secret Algorithm 4.4.16 0 121.0 99.4 –

Key
Generation

Algorithm 4.4.21 8 90.7 72.5 27.1%
Equation (4.5.20) 12 46.0 37.1 62.7%
Equation (4.5.18) 24 43.7 34.5 65.3%

X448

Shared
Secret Algorithm 4.4.16 0 428.1 364.2 –

Key
Generation

Algorithm 4.4.21 25 401.2 320.7 11.9%
Equation (4.5.21) 36.5 129.0 107.7 70.4%

1 Entries are kilobytes.
2 Entries are 103 clock cycles.
3 Savings are calculated with respect to the timing of shared secrets in Skylake.

Using the right-to-left method (Algorithm 4.4.21), we experimentally observed that the
key generation phase is 27% faster than the calculation of shared secrets for X25519. In
the case of X448, this method is 11 % faster, which is explained because the execution time
of the shared secret function was also reduced by the two-way parallel implementation.
Regarding memory footprint, the precomputed tables consists of a field element per bit
of the key, resulting in tables of 8KB and 25KB for X25519 and X448, respectively. This
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optimization saves only the calculation of point doublings in the ladder step, unfortunately
the table’s size can not be extended to save more operations.

Moving the calculations to the twisted Edwards curve accelerates key generation sig-
nificantly. Its execution time reduces 65-70% at the price of larger precomputed tables.
It is clear that our efforts on optimizing fixed-point multiplications for twisted Edwards
curves have a positive effect beyond the scope of digital signatures.

Timings of Diffie-Hellman Protocol based on Elliptic Curves

In Table 5.2.8 we summarize the timings of several implementations of the Diffie-Hellman
protocol using different models of elliptic curves. The total time of the Diffie-Hellman
protocol is sometimes estimated as twice the time of shared secret calculation. However,
from the timings in the table, it can be seen that accelerating the key generation phase
is also a valuable optimization.

Table 5.2.8: Timings of the Diffie-Hellman protocol at the 128-bit security level.

Elliptic Curve Field Key Gen. 1 Shared Secret 1 Total 1

FourQ [77] F(2127−1)2 33.8 67.4 101.2
Koblitz (3τ -NAF) [215] F4149 69.0 69.0 138.0
Curve25519 (This work) F2255−19 43.7 121.0 164.7
KL25519(82, 77) [167] F2255−19 101.3 137.9 239.2
NIST P-256 [132] F2256−2224+2192+296−1 67.0 312.0 379.0
1 Entries represent 103 clock cycles measured on Haswell.

In comparison to standardized elliptic curves, our implementation of X25519 is 2.2×
faster than the ECDH algorithm using the P-256 curve on a Haswell micro-architecture.
Also, our implementation of X448 is 4.8× and 3.53× faster than the ECDH algorithm
using the P-384 and P-521 curves, respectively.

Some works have reported efficient implementations using different curve models. For
example, both the FourQ [77] curve and a Koblitz curve defined over F4149 [215] render
faster performance than X25519. Besides their optimized code, these developments have in
common the use of elliptic curves with efficiently-computable endomorphisms that enable
further optimizations. More recently, Karati and Sarkar [167] implemented the Kummer
curve KL25519(82, 77) using AVX2 and their implementation takes 137,900 clock cycles.
It is interesting to know if there are other curve models that improve the state of the art.

5.3 Implementation of Ed25519 and Ed448

We developed optimized implementations of two instances of the Edwards Digital Sig-
nature Algorithm (EdDSA). We show how to apply the parallel execution of operations
over prime fields and elliptic curves to the signature algorithms. The implementation
techniques for EdDSA were published in the TOMS 2019 journal paper [101] P , which
was co-authored with Ricardo Dahab at the University of Campinas.



183

5.3.1 Review of Edwards Digital Signature Algorithm

The Edwards Digital Signature Algorithm (EdDSA) is a Schnorr-based signature scheme
that uses twisted Edwards curves for performing operations. EdDSA was proposed by
Bernstein et al. [30, 31] in 2011 as an efficient method to generate digital signatures.

Signature Scheme 5.3.1 (Edwards Digital Signature Algorithm).

• Setup. Given an integer λ denoting the security parameter. Fix a twisted Edwards
curve E/Fp : ax

2 + y2 = 1+ dx2y2 such that log2(p)/2 ≈ λ and E(Fp) has order hr,
where r is a prime close to p and h = 2c for small c ≥ 2. Fix a point B ∈ E(Fp) of
order r. Define b = 8⌈(|p|+1)/8⌉, and select a cryptographic hash function H than
outputs 2b bits. Define two conversion functions as follows.

– Encode takes as input a point (x, y) ∈ E(Fp) and returns a b-bit string u that
is calculated as u = (x mod 2) ∥ y, where ∥ denotes bit concatenation.

– Decode takes as input a b-bit string u from which it parses y = (ub−2, . . . , u0)2,
verifies that y ∈ Fp, calculates x =

√︁
(y2 − 1)/(dy2 − a) ∈ Fp, and verifies that

the root exists. If ub−1 ̸= x mod 2, it sets x← −x. Finally, it returns (x, y) if
none of the verification steps failed; otherwise, it fails in constant time.

A complete setup must consider a secure instance of an elliptic curve. We refer to
SafeCurves project [36] for a comprehensive list of security criteria.

• Key generation. The secret key (sk) and public key (pk) are obtained as follows.

1. Select sk← {0, 1}b uniformly at random.

2. Obtain H(sk) = (h2b−1, . . . , h0)2.

3. Construct s = (2n +
∑︁n−1

i=c 2ihi) mod r , where n = ⌊log2(r)⌋+ 1.

4. Obtain pk = Encode(sB).

5. Return (sk,pk)

• Sign. Given the pair of keys (sk,pk) owned by the signer, the signature of a
message M ∈ {0, 1}∗ is calculated following these steps.

1. Obtain H(sk) = (h2b−1, . . . , hb, hb−1, . . . , h0)2.

2. Calculate k = H
(︁
(h2b−1, . . . , hb)2 ∥M

)︁
mod r.

3. Obtain R = Encode(kB).

4. Calculate S = k +H(R ∥ pk ∥M) · s mod r, where s is defined as in Step (3)
of key generation.

5. Return (R ∥ S) as the signature of M .

• Verification. Given the public key (pk) of the signer, the following steps must be
completed to verify whether an alleged signature (R ∥ S) of the message M is valid.

1. Obtain R′ = Decode(R) and P = Decode(pk).
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2. Check whether R′, P ∈ E(Fp) and 0 ≤ S < r.

3. Calculate h = H(R ∥ pk ∥M) mod r.

4. Check that equality 2cR′ = 2cSB − 2chP holds.

5. If none of the check steps failed, then accept the signature; otherwise, reject it.

Instances

The initial specification of EdDSA [30] recommends the use of a twisted Edwards curve
targeting the 128-bit security level. The curve used is derived from Curve25519 and is
defined over Fp25519 as

edwards25519 : − x2 + y2 = 1− 121665
121666

x2y2 . (5.3.2)

Later in 2015, Bernstein et al. [33] extended the use of EdDSA to other prime fields in
order to achieve higher security levels. RFC8032 [162] describes two instances of EdDSA.

• Ed25519. This signature instance uses the parameters of edwards25519 curve, set-
ting b = 256 and H = SHA512 [203].

• Ed448. This signature instance uses the parameters of edwards448 curve (defined
in Equation (5.2.3)) setting b = 456 and H = SHAKE256 [205] outputting 912bits.

Related Works

The introduction of EdDSA presented the first implementations of Ed25519. One of them
uses a 64-bit polynomial representation, and the other one uses redundant arithmetic
setting ρ = 51. The signing and key generation are accelerated by using precomputed
tables of 24 and 30KB, respectively.

Moon [198] developed an optimized library targeting the use of 64-bit instructions
and SSE2 vector instructions (128-bit registers). In 2015, Chou [64] reported timings of
a vector implementation targeting the Sandy Bridge micro-architecture. Both prime field
arithmetic and elliptic curve were parallelized using SSE2 and AVX instructions.

For Ed448, there are fewer points of comparison. The main reference is the Hamburg’s
library [140], an optimized library that calculates fixed-point multiplications using a signed
multi-comb algorithm [139] and uses precomputed tables of 15KB.

5.3.2 Implementation Details

For Ed25519 and Ed448, we use the AVX2 vector implementation of prime field arithmetic
described in Sections 3.4 and 3.6, respectively. For elliptic curve arithmetic, we reviewed
aspects related to the parallel execution of the point addition formula for twisted Ed-
wards curves, and we also proposed parallel implementations of fixed-point multiplication
algorithms, as shown in Section 4.5.2. The remainder of this section describes how to
ensemble all these parts together for implementing Ed25519 and Ed448.
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Implementing Key Generation and Signing

The execution time of key generation and signing is dominated by the calculation of
fixed-point multiplications. Benefiting from the fact that the point addition formula is
complete, designing a multiplication algorithm admits a more flexible way to distribute
point operations without taking care of special cases of point addition.

We analyzed several ways of getting a better utilization of AVX2. We implemented
prime field arithmetic using both two-way and four-way operations, and with them, we
constructed parallel point arithmetic. Thus, we execute one point addition per lane of
the AVX2 register, resulting in a four-way point addition operation. This operation helps
for distributing the workload of fixed-point multiplication in four additions running in
parallel. Proceeding this way, one might assume that the fixed-point multiplication using
256-bit registers takes, for example, half of the time than using 128-bit AVX registers.
However, although the algorithm is evenly parallelized, some overheads appear. Most
of them are related to fetching more data from memory. Despite the presence of these
overheads, the fixed-point multiplication runs faster injecting a significant acceleration.

Alternatively, we looked for optimizations on memory footprint. Like previous imple-
mentations, we use 24KB read-only memory for precomputed tables. We noticed that
splitting the workload in eight independent sums then half of the table can be saved,
as shown in Section 4.5.3. Using AVX-512, an eight-way SIMD calculation is straight-
forwardly achieved. However with AVX2, these eight sums are executed by sequentially
running two batches of four-way point additions. Therefore, we can calculate fixed-point
additions slightly slower but using only 12KB of read-only memory.

We replicate these techniques for Ed448 and we observed significant overheads. We
attribute this performance degradation to the size of operands. For example, any four-
way operation requires more than the sixteen vector registers available in the AVX2
vector unit. We observed a better register usage in the AVX-512 unit, which has double
capacity. Choosing the size of the look-up tables for fixed-point multiplications presents a
compromise between time and space. In our implementation, we favored performance and
used a table with 36.75KB. On the other hand, Hamburg’s library uses a signed multi-
comb algorithm that allows using smaller look-up tables with 15KB. We acknowledge
that there could exists better ways of scheduling of operations in parallel that alleviate
the issues we found when calculating Ed448 operations.

Implementing the Verification Procedure

The execution time of the verification procedure is dominated by the calculation of a
double-point multiplication. We implemented the interleaving algorithm [112] in con-
junction with the Non-Adjacent Form (ω-NAF) representation [252], as it was described
in Algorithm 4.2.16. Unlike the algorithms for fixed-point multiplication, this algorithm
exhibits an inherently sequential pattern of operations. In this case, a simultaneous cal-
culation of point additions is difficult to be performed since point additions are arbitrarily
processed whenever a non-zero digit is found.

As an alternative method, we take advantage of the degree of parallelism present
inside the point addition formulas. In Section 4.5.2, we show that the point addition
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can be distributed among four processing units. Hence, we use four-way prime field
operations to implement Algorithm 4.5.11 using the AVX2 instructions. As a result, the
point additions required by the double-point multiplication algorithm are performed in
parallel internally. We experimentally searched optimal values for ωP and ωQ arriving at
ωP = 5 for the arbitrary point, and ωQ = 7 for the known point.

5.3.3 Performance Benchmark and Comparison

To determine the impact of our implementation techniques, we measured the running
time of key generation, signing, and verification; and compared our implementation with
the fastest publicly-available implementations of EdDSA.

Timings of Ed25519

Figure 5.3.3 shows a breakdown of the internal operations of Ed25519 comparing to
Moon’s implementation. As can be seen, our implementation achieved a noticeable ac-
celeration factor of 1.55× for fixed-point multiplications. This factor matches with the
speedup factor of the parallel four-way addition from Table 4.5.12. In this case, comput-
ing four point additions in parallel was crucial for accelerating fixed-point multiplications,
and consequently, the running time of signature generation was reduced as well.
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Figure 5.3.3: Performance profiling of Ed25519 signature operations.

At a first glance, one may state that the latency of Ed25519 signatures is highly dom-
inated by the cost of the scalar multiplication. However, Figure 5.3.3 shows that the
calculation of a multiplicative inverse takes a significant portion of the time for gener-
ating signatures. Indeed, the cost of this operation gets more significant as the time of
calculating a scalar multiplication is reduced. For example, in Moon’s implementation,
the multiplicative inverse represents a 25.3% of the calculation of signatures, whereas in
our library, the multiplicative inverse takes 30.6% of the total time. Therefore, the cost
of this operation must not be disregarded.

On the other hand, although the signature verification procedure requires two costly
operations such as an inverse and a square root, here the double-point multiplication
widely dominates the cost of verification, as shown in Figure 5.3.3. For this operation, we
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leveraged the parallel execution of the internal prime field operations required for point
addition. Our implementation is 1.39× faster for double-point multiplications. So, this
optimization introduces a 24% reduction of the time of signature verification.

Timings of Ed448

Figure 5.3.4 shows a breakdown of the internal operations of Ed448 comparing to Ham-
burg’s implementation. The impact of using four-way point additions results in a 1.43×
speedup factor for fixed-point multiplications.
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Figure 5.3.4: Performance profiling of Ed448 signature operations.

We want to emphasize the improvements achieved in the calculation of multiplicative
inverses and square roots over Fp448 . This optimization acquires more relevance at this
level, since Ed448 signature operations are 4-5 % faster when using the AVX2 implemen-
tation of the multiplicative inverses and square roots.

The timings of double-point multiplication reduce by implementing point additions
with four-way operations. As Figure 5.3.4 shows, our code is 1.25× faster for calculating
double-point multiplications providing a 17% of savings in signature verification.

Timings in Haswell and Skylake

Table 5.3.5 summarizes the timings of several implementation found in eBACS, a website
that contains a number of software implementations contributed for public scrutiny.

In Haswell and Skylake, the performance of our implementation outperforms the tim-
ings of state-of-the-art implementations. Note that Moon’s 128-bit implementation may
serve as a baseline for comparing the performance achieved by using 256-bit instructions.
Our 256-bit implementation is almost twice as fast as Moon’s 128-bit implementation,
which is the acceleration expected by moving from a 128- to a 256-bit vector unit.

Particularly on Skylake, the running time of the signing procedure is 19% faster
than the time achieved by the 64-bit Moon’s implementation; note that although both
implementations use a look-up table of 24KB, ours is faster due to the use of the AVX2
vector unit. Moreover, using a look-up table of half the size (12KB), our implementation
is still 13% faster.
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As it can be seen in Table 5.3.5, our library is 29% faster for Ed448 signing when is
compared to Hamburg’s implementation running on Skylake. We estimate that a parallel
implementation of a signed multi-comb algorithm will lead to similar timings as the ones
we reported using a table of 21 KB. The parallel implementation of comb-based algorithms
is left as future work.

Table 5.3.5: Timings of Ed25519 and Ed448.

S. M. Implementation ISA Mult. Instr. ROM 3 Keygen 1 Sign 1 Verify 1

E
d2

55
19

H
as

w
el

l

Moon [198] SSE2 PMULUDQ 24 88.2 91.4 293.9
slide [35] 2 x64 MULQ 30 66.2 61.4 185.3
titan0 [35] 2 x64 MULQ 30 57.7 61.2 182.8
Moon [198] x64 MULQ 24 56.3 59.2 193.9
This work AVX2 VPMULUDQ 12 45.9 51.5

18.47% 13.00% 156.0
This work AVX2 VPMULUDQ 24 42.8 48.6 14.66%

23.97% 17.90%

Sk
yl

ak
e

Moon [198] SSE2 PMULUDQ 24 72.1 75.3 233.8
skylake [35] 2 x64 MULQ 24 54.7 49.8 163.2
Moon [198] x64 MULQ 24 46.1 48.9 163.7
This work AVX2 VPMULUDQ 12 36.9 42.3

19.95% 13.42% 123.3
This work AVX2 VPMULUDQ 24 34.8 39.5 24.44%

24.51% 19.22%

E
d4

48 H
as

w
el

l

slide [35] 2 x64 MULX 15 193.8 203.4 673.9
titan0 [35] 2 x64 MULX 15 176.6 185.0 586.3
Hamburg [140] x64 MULX 15 159.7 169.8 596.2
This work AVX2 VPMULUDQ 36 126.7 132.7 465.8

20.66% 21.84% 20.55%

Sk
yl

ak
e skylake [35] 2 x64 MULX 15 153.0 160.7 498.6

Hamburg [140] x64 MULX 15 145.6 155.5 507.6
This work AVX2 VPMULUDQ 36 104.9 110.1 409.5

27.95% 29.19% 17.87%
1 Entries are 103 clock cycles and numbers in italics are the percentage of savings with respect to the

fastest previous implementation.
2 The entries correspond to slide/20160806, titan0/20171218, and skylake/20161026 implementations

reported in eBACS.
3 Denotes the number of kilobytes of read-only memory for precomputed tables.

5.4 Implementation of qDSA using Curve25519

The Quotient Digital Signature Algorithm (qDSA) was recently introduced aiming to
have key compatibility with the X25519 Diffie-Hellman protocol. Due to the novelty of
qDSA, there remains a need for an optimized implementation that allows identifying the
real impact of this new algorithm. We present a secure and efficient implementation of
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qDSA using Curve25519. The results presented in this section were published in the
SPACE paper [95] P , which was co-authored with Hayato Fujii and Diego Aranha at the
University of Campinas.

5.4.1 Review of the Quotient Digital Signature Algorithm

Renes and Smith [231] proposed a signature scheme called Quotient Digital Signature
Algorithm (qDSA) which is based on the Schnorr [238] and EdDSA signature schemes.
Unlike other algorithms, qDSA performs operations over a Kummer variety. Given an
elliptic curve group E(Fq), the Kummer variety associated to it is the quotient group
E(Fq)/ ∼ where P ∼ Q iff Q = −P for all P,Q ∈ E(Fq). For example, by using
Montgomery curves, the Kummer variety resultant is the x-line, which is isomorphic to a
one-dimensional projective space P1(Fq). Although the Kummer variety does not preserve
the group law of E(Fq), it is still possible to compute multiplications by integers inheriting
the hardness of the elliptic curve discrete logarithm problem.

Signature Scheme 5.4.1 (Quotient Digital Signature Algorithm with Montgomery
Curves).

• Setup. Given an integer λ denoting the security parameter. Fix a Montgomery
curve E/Fp : By2 = x3+Ax2+x, where p is a prime number such that log2(p)/2 ≈ λ

and E(Fp) has order hr, where r is a large prime close to p, and the cofactor is h = 2c

for small c ≥ 2. Fix a point G ∈ E(Fp) of order r. Select a cryptographic hash
function H that outputs 2N bits, where N = 8⌈|p|/8⌉. A complete setup must
consider a secure instance of an elliptic curve. We refer to SafeCurves project [36]
for a comprehensive list of security criteria.

• Key Generation. Select a bit string d ∈ {0, 1}N uniformly at random and obtain
H(d) = d1 ∥ d0, where d0 and d1 are interpreted as N -bit integers. Calculate
Q = x(d0G) and normalize this point to obtain Q = (xQ : 1). Finally, set (d0, d1) as
the secret key, and xQ as the public key.

• Signing. Let (d0, d1) and xQ be the signer’s keys, the signature of a message
M ∈ {0, 1}∗ is calculated as follows. Obtain k0 = H(d1 ∥ M) mod r, and calculate
(xR : 1) = x(k0G) using this value to obtain k1 = H(xR ∥ xQ ∥ M). Finally,
calculate s = k0 − k1 · d0 mod r, and declare (xR, s) as the signature of M .

• Verification. Let xQ be a public key, and (xR ∥ s) is an alleged signature of
a message M ∈ {0, 1}∗. First, calculate k1 = H(xR ∥ xQ ∥ M) mod r, and R0 =

x(sG). Then, set Q = (xQ : 1) and obtain R1 = x(k1Q). Finally, if Check(xR, R0, R1)
returns True, accept the signature; otherwise, reject it.

• Check. Given xR ∈ Fp and x(P ), x(Q) ∈ P1 such that P,Q ∈ E(Fp), determines
whether (xR : 1) ∈ {x(P + Q), x(P − Q)}. To do that, assume x(P ) = (XP : ZP )
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and x(Q) = (XQ : ZQ), define f(x) = f2x
2 + f1x+ f0 where

f0 = (XPXQ − ZPZQ)
2 ,

f1 = −2(XPXQ + ZPZQ)(XPZQ +XQZP )− 4AXPXQZPZQ ,

f2 = (XPZQ −XQZP )
2 .

(5.4.2)

Then, if f(xR) = 0, return True; otherwise, return False.

Instances

The authors of qDSA instantiated a signature algorithm using Curve25519. Thus, in
addition to the parameters of the curve, they set N = 256 and choose H as the SHAKE128
function outputting 512 bits [205].

Another way to instantiate qDSA is using Kummer surfaces. For example, a recent
work by Renes and Hisil [147] propose an implementation of qDSA using a Kummer line
derived from the Jacobian of a genus two curve.

5.4.2 Implementation Details

The implementation of qDSA has several parts in common with X25519; mainly, the
prime field arithmetic. We use our 64-bit implementation optimized with BMI2 and
ADX instruction sets, which was shown in Section 3.4. Moreover, we present some other
contributions that are particular to the signature algorithm.

For elliptic curve arithmetic, we apply right-to-left algorithms for accelerating fixed-
point multiplications showing how to avoid the use of low-order points. In addition, we
show a method that verifies signatures unequivocally. Finally, we present a performance
benchmark of our implementation. All these modifications help to improve the perfor-
mance and security of all qDSA operations.

Integrating Right-to-Left Fixed-Point Ladder

The running time of qDSA is dominated by the calculation of four scalar multiplications.
Particularly, three of them are fixed-point multiplications, which makes this scenario
suitable for using algorithms with precomputation.

We adapted the right-to-left ladder that is used in the implementation of the Diffie-
Hellman protocol, shown in section 4.4.4, to the case of qDSA. Recall that the goal of
Algorithm 4.4.21 is to calculate x(hkG) for some scalar k and curve cofactor h ≥ 4. This
algorithm first calculates x(S + kG) for some S /∈ ⟨G⟩. By multiplying this point by h,
the point S will vanish assuming S has order four, and it results in x(hkG).

Due to qDSA works on the x-line of a Montgomery curve, we implement Algo-
rithm 4.4.21 for calculating fixed-point multiplications. This algorithm has several ad-
vantages such as it follows a regular execution pattern and uses non-secret indexes for
accessing to points stored in the precomputed tables. However, the algorithm internally
uses low-order points, which could bring undesired properties to the signature algorithms.
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Circumventing the Use of Low-Order Points

We introduce a set of modifications to avoid using low-order points in the right-to-left
ladder. The misuse of low-order points could introduce some vulnerabilities [94] that
could be even more devastating in the case of digital signatures [253]. Therefore, it is
imperative to protect the implementation against this potential threat.

We show how to avoid the use of the low-order point S. First, note that replacing
S by O in Algorithm 4.4.21 causes a failure only when the least-significant bit of k

is zero; nonetheless, it always computes the correct point multiplication whenever k is
odd. This observation indicates that by setting S = O, the algorithm calculates scalar
multiplications for odd scalars only.

Clearly, if G has odd order r (which is the case as r is prime), the parity of an element
in {1, . . . , r−1} determines a bijection between the disjoint sets of even and odd elements.

Proposition 5.4.3. Let r be an odd number. For any value a such that 0 < a < r define
b = r − a; we have that if a is even, then b is odd.

Proof. Note that b is bounded as 0 < b < r. Since a < r, then b = r − a > 0. Suppose
that b ≥ r, then by the definition of b, we have that r − a ≥ r, i.e., a ≤ 0, which is a
contradiction, since a > 0; thus, 0 < b < r. Since r is odd and a is even, then there exist
some i, j ∈ Z such that b = r− a = 2i+ 1− 2j = 2(i− j) + 1; showing that b is odd.

We show modifications in the multiplication algorithm for supporting even scalars.
Using this proposition, one can calculate x(kG) as x(k′G), for k′ = r − k, whenever the
scalar k is even. If this operation were performed using affine points, the point k′G should
be inverted to obtain kG. Fortunately, this is not needed because we are operating on the
x-line, which maps the points kG and k′G to the same element. Among the changes made
on the algorithm, now it starts calculating k′ = r−k, and selecting the appropriated scalar
between k and k′. This selection introduces a time variability in its execution; hence, it
must be processed using a regular execution pattern. This task can be achieved using
the cswap function. Thus, after computing the conditional swap, the scalar selected
will always be odd allowing to start the main-loop of the algorithm from the second
iteration. Therefore, the multiplication algorithm can now support any positive scalar
without employing low-order points. All these modifications do not interfere significantly
with the performance of the algorithm. Thus, the implementation of qDSA leverages the
speed of the fixed-point right-to-left ladder.

5.4.3 Unequivocal Verification Methods

The central operation of the verification procedure is that given an alleged signature
(xR, s), it must determine whether xR is the x-coordinate of R0+R1, where R0 = sG and
R1 = k1Q for a scalar k1 that depends on the message and the public key.

The authors of qDSA provided a function, called Check, that verifies a weaker relation.
In their method, the signature is accepted whenever f(xR) = 0, where f is the quadratic
polynomial f(x) = f2x

2 + f1x + f0 as defined in Equation (5.4.2). This method works
since one of the roots of f is xR. Unfortunately, one disadvantage of this approach is that
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there exists another value, say x′, that also passes this verification procedure. Specifically,
x′ is the other root of f , which corresponds to the x-coordinate of R0 − R1. Therefore,
(xR, s) and (x′, s) are valid signatures.

Although a low adversarial advantage can be exploited from this relaxed verification
method, it has a high risk to introduce a misuse of the cryptographic scheme, such as
the ones reported in [91,93,158]. To avoid potential issues in future implementations, we
looked for an alternative method that verifies signatures unequivocally.

Our Proposed Unequivocal Verification Method

Let xS and xD be, respectively, the x-coordinate of R0 + R1 and R0 − R1 for two points
R0, R1 ∈ E(Fp). Given a signature (xR, s), we look for a relation that allows us to
determine whether xR is equal to xS from the x-coordinate of R0 and R1. This is a
stronger relation than the one Check asserts, i.e., whether xR ∈ {xS, xD}.

Inspired by Montgomery’s insights [196], we started with the following relations that
are valid for Montgomery curves:

xS + xD = β/α , (5.4.4)

xS × xD = γ/α , (5.4.5)

xS − xD = δ/α , (5.4.6)

such that α, β, γ and δ are defined as

α = (xR0 − xR1)
2 , β = 2(xR0 xR1 + 1)(xR0 + xR1) + 4AxR0 xR1 ,

γ = (xR0 xR1 − 1)2 , δ = −4ByR0yR1 .
(5.4.7)

First, note that the coefficients of f are derived by solving Equation (5.4.4) for xD, and
plugging this into Equation (5.4.5) resulting in a second-degree polynomial function of xS.
Thus, f can be written as f(x) = αx2−βx+γ. On the other hand, solving Equation (5.4.4)
for xS and substituting this into Equation (5.4.5) yields in a second-degree polynomial
function of xD that has the same coefficients as f . This means that both xS and xD are
the roots of f . Unfortunately, f does not help to distinguish between xS and xD.

Our key idea is to obtain a (linear) polynomial that has a zero in xS. To that end,
we start by solving Equation (5.4.6) for xS and substituting this into Equation (5.4.5);
thus we obtain g0(x) = αx2− δx−γ. Analogously, we apply the same procedure, but this
time solving for xD, and we obtain g1(x) = αx2 + δx − γ. So far, we have that g0 ̸= g1,
which means that by using g0, we are now able to distinguish between xS and xD, since
g0(xS) = 0 and g0(xD) ̸= 0. However, g0 has zeros in xS and in −xD.

We unequivocally identify xS using f(x) = (x−xS)(x−xD) and g0(x) = (x−xS)(x+xD)

as follows. Assuming x ̸= 0 and since f(xS) = 0 and g0(xS) = 0, we define

h0(x) = (f + g0)/x = 2αx− δ − β ,

h1(x) = f − g0 = (δ − β)x+ 2γ ,
(5.4.8)

where xS is a zero of both polynomials.
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Listing 5.4.9 shows a SageMath [229] computer script that validates the formulas
presented in this section. The derivation of these formulas can be easily extended to use
projective points.

Our signature verification method proceeds as follows. Given a signature (xR, s),
calculate α, β, and δ from the coordinates of R0 and R1. Then, the signature is valid if
h0(xR) = 0. Alternatively, calculate γ instead of α and accept the signature if h1(xR) = 0.
We have shown two relations that allow to verify a signature unequivocally.

Listing 5.4.9 SageMath script for the validation of formulas in Q.
 1 R.<x1,y1,x2,y2,A,B> = PolynomialRing(Rationals(),6,"x1,y1,x2,y2,A,B")
 2 I = R.ideal([
 3   B*y1**2-x1**3-A*x1**2-x1,
 4   B*y2**2-x2**3-A*x2**2-x2 ])
 5 FQuo = Frac(R.quotient(I))
 6 evaluate = lambda F,X: FQuo(F.subs(x=X).rational_simplify())
 7
 8 def addMontgomery(X1,Y1,X2,Y2):
 9   global A, B

 10   Xs = B*((Y1-Y2)/(X1-X2))**2-A-X1-X2
 11   Ys = (2*X1+X2+A)*(Y2-Y1)/(X2-X1)-B*(Y2-Y1)**3/(X2-X1)**3-Y1
 12   return Xs,Ys
 13
 14 xs,ys = addMontgomery(x1,y1,x2,y2)
 15 xd,yd = addMontgomery(x1,y1,x2,-y2)
 16
 17 alpha = (x1-x2)**2
 18 betta = 2*(x1*x2+1)*(x1+x2)+4*A*x1*x2
 19 gamma = (x1*x2-1)**2
 20 delta = -4*B*y1*y2
 21
 22 relAdd = FQuo(xs+xd)
 23 relPro = FQuo(xs*xd)
 24 relDif = FQuo(xs-xd)
 25 # Verifying Relations
 26 assert( relAdd == betta/alpha )
 27 assert( relPro == gamma/alpha )
 28 assert( relDif == delta/alpha )
 29 # Renes&Smith’s f polynomial and testing its zeros
 30 f = alpha*x**2-betta*x+gamma
 31 assert( evaluate(f,xs) == evaluate(f,xd) == 0 )
 32 # Defining g0 and g1 and testing their zeros
 33 g0 = alpha*x**2-delta*x-gamma
 34 g1 = alpha*x**2+delta*x-gamma
 35 assert( evaluate(g0, xs) == evaluate(g0,-xd) == 0 )
 36 assert( evaluate(g1,-xs) == evaluate(g1, xd) == 0 )
 37 # Defining h0 and h1 and testing their zeros
 38 h0 = 2*alpha*x-delta-betta
 39 h1 = (delta-betta)*x+2*gamma
 40 assert( evaluate(h0,xs) == evaluate(h1,xs) == 0 )
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Trade-off Analysis of Our Method

In contrast to the original procedure, our verification method requires calculating δ, which
assumes knowledge of the y-coordinate of R0 = sG and R1 = hQ. Recovering the y-
coordinate of R0 and R1 requires some auxiliary points namely R2 = (s + 1)G and
R3 = (h + 1)Q, which are also calculated by the Montgomery ladder algorithm. Thus,
following [210, Theorem 2], we have

yR0 =
[︁
(xR0xG + 1)(xR0 + xG + 2A)− 2A− (xR0 − xG)

2xR2

]︁
/ (2ByG)

yR1 =
[︁
(xR1xQ + 1)(xR1 + xQ + 2A)− 2A− (xR1 − xG)

2xR3

]︁
/ (2ByQ) .

(5.4.10)

Then, δ can be written as δ = −4ByR0yR1 = T/(ByGyQ), where T is

T =−
[︁
(xR0xG + 1)(xR0 + xG + 2A)− 2A− (xR0 − xG)

2xR2

]︁
×
[︁
(xR1xQ + 1)(xR1 + xQ + 2A)− 2A− (xR1 − xG)

2xR3

]︁
.

(5.4.11)

A relevant observation is that the verifier must know yGyQ. There are several alternatives
to obtain this value. The simplest solution is to append yGyQ (or (ByGyQ)

−1) to the
public key for calculating δ straightforwardly. The downside of this approach is that the
public key’s size doubles.

Another solution is appending an extra bit to the public key. The verification proce-
dure calculates {y′, y′′} = ±

√︁
B−1(xQ

3 + AxQ
2 + xQ) and uses yQ(0), the least-significant

bit of yQ, for selecting one of the roots. Hence, if y′ ≡ yQ(0) (mod 2), it sets yQ ← y′;
otherwise it assigns yQ ← y′′. After that, it calculates yGyQ. Note that yG must be also
known, fortunately, this is a fixed parameter of the scheme. This method has the advan-
tage that the public key size is not increased significantly; for example using Curve25519,
(xQ, yQ(0)) fits in N = 256 bits. The cost of verification increases by one square-root and
a few multiplications. This approach is summarized in Algorithm 5.4.12. We want to
remark that verifying qDSA signatures unambiguously requires that the verifier knows
both the y-coordinate of G (which is a fixed parameter) and the y-coordinate of Q.

Algorithm 5.4.12 Unequivocal Verification Procedure for qDSA.
Constants: (xG, yG) are the affine coordinates of G ∈ E(Fp).
Input: (xR, s) is a signature, M ∈ {0, 1}∗ is a message, and (xQ, yQ(0)) is the signer’s

public key.
Output: True, if the signature is valid; otherwise, False.
1: k1 ← H(xR ∥ xQ ∥M) mod r
2: Q← (xQ : 1), R0 ← x(sG), R1 ← x(k1Q)
3: {y′, y′′} ← ±

√︁
B−1(xQ

3 + AxQ
2 + xQ).

4: Set yQ ← y′, if y′ ≡ yQ(0) mod 2; otherwise, yQ ← y′′.
5: Calculate α, β, and δ. //Equation (5.4.7)
6: if h0(xR) = 0 then //Equation (5.4.8)
7: return True
8: else
9: return False

10: end if
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5.4.4 Performance Benchmark and Comparison

We focused on the development a software library that supports qDSA using Curve25519.
First of all, we want to highlight the acceleration introduced by the right-to-left fixed-point
multiplication. We measured the percentage of improvement in the execution time of the
qDSA operations. Table 5.4.13 shows the timings on Haswell and Skylake processors.

Table 5.4.13: Timings of qDSA using the right-to-left fixed-point ladder.

Operation Montgomery ladder Right-to-left ladder Savings

Key Generation 1 171.5 103.8 39.5%
Signing 1 197.3 130.1 34.1%
Verification 1 347.3 279.5 19.5%

Code size 2 30,037 41,000 -36.4%
1 Entries in the row are 103 clock cycles measured in Haswell.
2 Entries in the row are bytes.

The inclusion of optimized prime field arithmetic and the fixed-point multiplication al-
gorithm reduces the execution time of qDSA considerably. The unique pointer to another
implementation of qDSA is the reference implementation [231], which is not optimized for
64-bit architectures. The impact of the right-to-left ladder is more evident on key gen-
eration and signing achieving, respectively, a 39% and 34% reduction in their execution
time. Likewise, verification of signatures is also accelerated by 19%.

Regarding memory footprint, the last row of Table 5.4.13 shows the overhead intro-
duced by integrating the use of precomputation. Thus, by including the 8KB table stored
as read-only memory, the code’s size of our implementation increases in around 36%. We
recall using precomputation always incur on trade-offs between space and time; the best
approach depends on several engineering aspects.

In Table 5.4.14, we summarize the timings of our qDSA implementation measured in
Haswell and Skylake processors, and compares the timings of the new verification method.

Table 5.4.14: Timings of qDSA operations.

Operation Haswell 1 Skylake 1

Key Generation 103.8 86.8
Signing 130.1 114.6
Original Verification 279.5 231.1
Unequivocal Verification 309.6 253.5
1 Entries are 103 clock cycles.

Our method calculates one square-root and a few multiplications to recover the y-
coordinate of the public key. These extra operation amounts an overhead of 9.7% of the
execution time. This timing penalty is compensated by the security benefits that our
verification method provides, and it prevents issues that could appear in the future.
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Comparison of Digital Signature Schemes

Table 5.4.15 shows a performance comparison of several digital signature algorithms.

Table 5.4.15: Timings of qDSA and other digital signature schemes.

Algorithm Instance Implementation Sign/sec Verify/sec

RSA 2048 OpenSSL v1.0.2 1,618 36,576
DSA 2048 OpenSSL v1.0.2 2,071 1,883
ECDSA P-256 OpenSSL v1.0.2 25,344 10,198
EdDSA Ed25519 Moon [198] 48,701 17,167
qDSA Curve25519 This work 25,109 12,109

As expected, the qDSA’s signing procedure has a better performance than RSA and
DSA signature schemes. In addition, qDSA generates signatures as fast as ECDSA does;
however, the qDSA’s verification procedure is faster. This positions qDSA as a more effi-
cient alternative for deploying digital signatures than standardized signature algorithms.

The calculation of Ed25519 signatures is approximately twice as fast as the calculation
of qDSA signatures. One of the reasons that explains this performance gap relies on the
properties of the elliptic curve model used by each scheme. On twisted Edwards curves,
the point addition formula is complete allowing to associate point additions in many dif-
ferent ways. This benefits Comb-based fixed-point algorithms, which have more degrees
of freedom on their operation and it allows the use of larger precomputed tables. For
example, Moon’s [198] implementation uses a table of 24 KB, whereas Chou’s [64] imple-
mentation increases table’s size to 30KB for further speed. Contrary, our implementation
of qDSA using Curve25519 uses a table of 8 KB, which is a third of the table size used in
Ed25519’s implementations.

Future Work

If more speed is needed, two optimizations can be incorporated to our implementation.
First, one can replace the 64-bit implementation with the AVX2 vector implementation,
which performs Montgomery ladder faster as it runs in parallel. Second, qDSA can be
also implemented using elliptic curve operations using twisted Edwards arithmetic. Thus,
qDSA can obtain a performance closer to the Ed25519’s one.

5.5 Implementation of SIDH-751

Isogeny-based cryptography is a recent line of research of quantum-resistant cryptography.
This approach relies on the difficulty of finding isogenies between elliptic curves, rather
than on the hardness of the discrete logarithm problem. Inherited from elliptic curves,
one salient feature of isogeny-based cryptography is the use of short key sizes, and are
actually the shortest in comparison to other quantum-resistant algorithms.

One of the first algorithms of isogeny-based cryptography is a Diffie-Hellman protocol
proposed by Stolbunov and Rostovtsev [236, 257] in 2006. Its security is based on the
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difficulty of finding isogenies between (ordinary) elliptic curves. Later in 2011, Jao and
De Feo [160] introduced the Supersingular Isogeny Diffie-Hellman (SIDH) protocol, which
works with supersingular curves rather than ordinary curves. Significant progress in this
area has been made. CSIDH [62] is an alternative method to SIDH that retakes the initial
ideas of Stolbunov to work with ordinary curves. Also, hash functions [63] and digital
signature schemes, such as CSI-FiSh [82] and SQISign [39], have been proposed.

In 2015, NIST initiated a Post-Quantum Cryptography project [206] looking for stan-
dardization of quantum-resistant algorithms. The only isogeny-based algorithm in this
contest is the Supersingular Isogeny Key Encapsulation (SIKE) [159] mechanism. SIKE
uses SIDH as a subroutine. The most recent breakthrough in the area was by Castryck
and Decru [61], who showed a key recovery attack on SIKE breaking its security.

One issue isogeny-based algorithms have in common is that they are time consuming.
In this section, we present several algorithmic optimizations targeting both elliptic-curve
and field arithmetic operations for SIDH-751, an instance of the SIDH protocol. These
contributions were published in the TC 2017 journal paper [103] P , which was co-authored
with Francisco Rodríguez-Henríquez and Eduardo Ochoa at the CINVESTAV IPN.

We remark that the contributions presented in this section remain valid despite the
recent attack on SIKE mentioned above. Our algorithmic optimizations and implementa-
tion techniques are of general interest since they target the arithmetic of finite fields and
elliptic curve operations.

5.5.1 Review of Supersingular Isogeny Diffie-Hellman

The Supersingular Isogeny-based Diffie-Hellman (SIDH) protocol was proposed by Jao,
De Feo and Plût [160,161]. The core operation is the calculation of smooth-degree isoge-
nies between supersingular curves.

Protocol 5.5.1 (Supersingular Isogeny Diffie-Hellman Protocol).

• Setup. Given an integer λ denoting the security parameter, fix a supersingular
elliptic curve E over Fp2 , where p is a number of the form

p = lA
eAlB

eBf − 1, (5.5.2)

where lA and lB are small prime numbers, eA and eB are positive integers, and f is
chosen such that p is prime. Choose p such that λ ≈ log2(p)/6. Fix a pair of points
that generate the r-torsion E[r] for r equal to rA = lA

eA and rB = lB
eB . Thus,

⟨PA, QA⟩ = E[rA] and ⟨PB, QB⟩ = E[rB].

• Key Generation. Alice selects mA, nA ∈ Z/rAZ uniformly at random and calcu-
lates an isogeny ϕA : E → EA whose kernel is generated by mAPA + nAQA. Alice
uses this isogeny to calculate ϕA(PB) and ϕA(QB). Then, she sends these points
to Bob together with a description of EA. Bob acts analogously interchanging the
subindexes A and B.

• Shared Secret. Once Alice received {EB, ϕB(PA), ϕB(QA)} from Bob, she cal-
culates an isogeny ϕAB : EB → EAB whose kernel is generated by mAϕB(PA) +
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nAϕB(QA). Then, Alice calculates the j-invariant of EAB which is the resultant
shared secret. If Bob performs analogous operations (interchanging the subindexes
A and B), he will obtain the same j-invariant value.

The main parameters of SIDH are the prime1 that defines the field and the elliptic
curve model. The authors of SIDH considered convenient to chose lA = 2, lB = 3, and
f as small as possible. To instantiate an elliptic curve efficiently, both Montgomery and
twisted Edwards curves provide better performance than using the arithmetic of the short
Weierstrass model. However, since isogeny formulas can also be expressed as a function
of the x-coordinate of points, the x-line of a Montgomery curve is the model chosen for
SIDH. De Feo [81] presented several sets of parameters to instantiate SIDH.

Sampling Torsion Points

For generating the kernel of an isogeny, both Alice and Bob must sample an r-torsion
point uniformly at random from E[r] for r ∈ {rA, rB}. Since E[r] ∼= Z/rZ × Z/rZ,
any r-torsion point can be expressed as k0P + k1Q where {P,Q} is a basis of E[r], and
k0, k1 ∈ Z/rZ are chosen at random. Compounded to the problem of obtaining a torsion
point, it must be noted that the point is considered secret as well as the operations for
calculating it. Hence, the scalars are considered as secret values and the torsion point
must be calculated without leaking any information.

This problem can be simplified under certain assumptions. First, if k0 is a unit (i.e.,
it has multiplicative inverse), the point P + k0

−1k1Q = P + kQ where k ∈ Z/rZ is also
an r-torsion point suitable for generating the kernel of an isogeny. Second, since these
operations are performed over points on the x-line of a Montgomery curve, sampling an
r-torsion point reduces to the problem of securely calculating x(P + kQ) given a secret
scalar k and points P,Q ∈ E[r].

Jao et al. [160] addressed this issue with an algorithm called three-point ladder that
calculates x(P + kQ). This algorithm closely matches the regular execution pattern of
Montgomery ladder algorithm, but has a higher cost by taking two differential additions
and one point doubling per bit of k. Note that this method does not improve the operation
counts of the two-dimensional ladder algorithm, which could be used in principle to cal-
culate an r-torsion point as x(k0P +k1Q) using the algorithm shown by Bernstein [24,37].

The three-point ladder increases the size of the keys interchanged. The algorithm
requires that both participants send to each other an isogeny evaluation of the difference
of the base points. For example, Alice must also send the point ϕA(PB −QB) to Bob.

Instances

SIDH-751: Costello et al. [78] instantiated SIDH with p751 = 23723239−1 targeting the 128-
bit security level. The initial curve is E/Fq : y

2 = x3+x, where Fq
∼= Fp751 [i]/(i

2+1). The
base points are chosen such that PA, PB ∈ E(Fp751), and QA = τ(PA) and QB = τ(PB),
where τ : (x, y) ↦→ (−x, yi) is the distortion map.

1Some primes used in the SIDH protocol are Pierpont primes (a prime number of the form p = 2i3j−1,
for i, j > 0, is known as a Pierpont prime [59, 224]) By extending this definition, a generalized Pierpont
(GP) prime has the form p = ±1 + Πk

i=1(pi)
ei , where pi are distinct primes.
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5.5.2 Implementation Details

We describe optimizations and implementation techniques for the SIDH protocol. Some of
them apply generally, and others could require some modifications for using in instances
different than SIDH-751. We propose a new three-point ladder algorithm for calculating
x(P + kQ) and is used sampling torsion points. This algorithm also admits the use of
precomputed values. We also present an optimized point tripling formula and compare
the performance of our implementation.

Field Arithmetic

Techniques for implementing of prime field arithmetic and the quadratic extension field
were presented at Section 3.7. In particular, we show that reductions modulo p can be
performed faster by avoiding loop-carried dependencies during the REDC algorithm.

Faster Sampling Torsion Points

We found a faster algorithm for calculating x(P + kQ), which is the core operation of
sampling torsion points. In Section 4.4.5, we presented Algorithm 4.4.24 in the context
of arithmetic for Montgomery curves. In this setting, this algorithm stands as an efficient
method that accelerates the task of sampling torsion points in the SIDH protocol. More
specifically, our algorithm reduces the number of point operations with respect to the
original three-point ladder by Jao and De Feo, it saves one differential addition per bit of
k, which represents a theoretical improvement equivalent to 1.34× speedup factor. Our
algorithm has the same interface as three-point ladder, so a few changes are needed to
integrate it in existing implementations.

Our algorithm offers more savings during the key generation phase. Recall that in
this phase the input points are known and fixed as they form a basis of the initial curve.
Because of that, our algorithm can leave out the calculation of point doublings, and
calculate only one differential addition per bit of k. Every point doubling, previously
required in the general case, is now precomputed and the point can be stored in a table.

As a proof of concept, we integrated our three-point ladder algorithm in the SIDH
v2 implementation by Costello et al. [78]. We found a limitation in the key generation
phase caused by the choice of SIDH-751 parameters. By construction, all base points were
chosen in such a way that their x-coordinate is an element of the prime field, which allows
sampling r-torsion points with faster arithmetic. To keep operations on the prime field,
our algorithm requires that x(Q−P ) ∈ P1(Fp); unfortunately, this is not the case for the
SIDH-751 parameters because x(Q− P ) = ( (xP

2 + 1)i : 2xP ) /∈ P1(Fp). Consequently, it
would appear that the point selection method restricts the use of our algorithm.

We show that the direct method for calculating x(P + kQ) can also benefit from
precomputation. The central idea is using the right-to-left ladder with precomputation
(Algorithm 4.4.21) to calculate x(kQ), then recovering its y-coordinate, and adding P .
This method takes one differential addition per bit of k plus a constant number of mul-
tiplications. Note that all of these operations are performed using prime field arithmetic.
In comparison to the original three-point ladder, this approach is around 3× faster.
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A relevant aspect of the right-to-left ladder is to find a suitable point S /∈ ⟨Q⟩. We
must guarantee that x(S−Q) ∈ P1(Fp) and that S has low order h, which makes cofactor
multiplication cheaper. A natural choice to obtain low-order independent points is that
Alice uses Bob’s points, and vice versa. For example, one can set

S =

{︄
SA = [3eB−1]QB , for Alice,

SB = [2eA−2]QA , for Bob,
(5.5.3)

which are, respectively, points of order three and four.

Integrating the Point Tripling Formula

Calculating an isogeny of degree three, which is often needed by Bob during the SIDH
protocol, requires of a point of order three. To obtain this point, Bob has available a
point R ∈ E(Fq) of order 3e for some positive integer e. Thus, by calculating 3e−1R , Bob
will obtain a point of order three. This latter operation can be performed iterating point
tripling over R. For this reason, there is a need for efficient formulas for point tripling.

In Section 4.4.6, we showed improvements on point tripling on the x-line of a Mont-
gomery curve. Our formula considers that the Montgomery curve parameter A is given
as an arbitrary rational value, i.e., A = A0/A1. Once this parameter is known, a pair of
field additions can be calculated once and apply our formula at a lower cost.

5.5.3 Performance Benchmark and Comparison

We measured the performance of our implementation integrating the changes proposed for
SIDH. Section 3.7.1 presented timings of the reduction modulo p751; and in this section,
we summarize the impact of the remainder contributions.

Impact of Point Tripling Formula

The new point tripling formula saves up to 400 clock cycles corresponding to the cost of
1M-1S-1A (cf. Table 4.4.35). This reduction in the cost of the point tripling computation
yields a slight acceleration of the whole SIDH protocol of around 1-2 % of its execution.

Impact of Three-Point Ladder

We determined the effect of including only the new three-point ladder algorithm in the
SIDH v2 implementation. The timings measured are shown in Table 5.5.4.

These timings corroborate the theoretical estimations given in Table 4.4.25. In the
variable-point scenario, the SIDH v2 library executes a three-point ladder multiplication
in 11.2 × 106 Haswell clock cycles. However, using the new three-point ladder, the same
calculation is performed 1.38× faster. At protocol level, this optimization saves 6-7% of
the time of the shared secret phase. In the fixed-point case, our approach is 1.7× faster
than the previous methods implemented in the SIDH v2 library. The precomputed table
takes 35KB of read-only memory. Note that a large part of the table could fit in the
Level-1 Data cache memory that has 32KB of capacity.
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Table 5.5.4: Timings of x(P + [k]Q) for SIDH-751.

Scenario Field Haswell 1 Skylake 1 Algorithm

Fixed-point
Fp2

6.7 4.9 Direct method. 2

3.9 2.9 This work [103, Alg. 3]

Fp
2.5 1.7 Direct method. 2

1.5 1.0 This work [103, Alg. 4]

Variable-point Fp2
11.2 8.1 Three-point ladder
8.0 5.9 This work (Algorithm 4.4.24)

1 Entries are 106 clock cycles.
2 The direct method is calculating x(kQ) using Montgomery ladder, recovering its y-

coordinate, and adding P .

Our implementation contains some countermeasures against timing attacks. In partic-
ular, the right-to-left three-point ladder is implemented using a regular execution pattern,
and precomputed tables are accessed using non-secret values.

Performance of SIDH-751

Table 5.5.5 shows the timings of the SIDH-751 protocol. The speedups show a high cor-
relation with the acceleration of multiplications on the quadratic extension field reported
in Section 3.7. For all of the SIDH operations, the performance measured on Skylake was
between 1.38 to 1.41 times faster than the one measured on the Haswell processor. We at-
tribute this acceleration as a consequence of using the BMI2 and ADX integer instruction
sets supported in Skylake.

Table 5.5.5: Timings of SIDH-751.

Protocol
Phase

Haswell Skylake

CLN 2 This work Speedup CLN 2 This work Speedup

Key
Generation

Alice 48.3 38.0 1.27× 35.7 26.9 1.33×
Bob 54.5 42.8 1.27× 39.9 30.5 1.31×

Shared
Secret

Alice 45.7 34.3 1.33× 33.6 24.9 1.35×
Bob 52.8 39.6 1.33× 38.4 28.6 1.34×

1 Entries are 106 clock cycles.
2 Timings of the SIDH v2 implementation by CLN [78].

These implementation techniques are not strictly bidden to the SIDH-751 instance,
since the same techniques can be applied to other instances with few changes in the
parameters. We have shown that the implementation of the quadratic extension relies
on the special shape of the prime modulus. This constraint is not difficult to fulfill
as SIDH requires working with this primes to instantiate supersingular curves. Some
other contributions such as the point tripling and the three-point ladder algorithm are of
independent interest for other applications.
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5.6 Implementation of SHA-256

The Secure Hash Standard (SHA) [203] defines a family of cryptographically secure hash
functions. Belonging to this family, the SHA-256 provides a security level of 128 bits
against collision attacks. This function is widely used in practice in cryptographic algo-
rithms such as signature schemes.

In this section, we show how to implement SHA-256 using the SHA New instructions
(SHA-NI) [136]. We first review the SHA-256 algorithm and describe details about its
implementation. We show results of performance benchmarks of several implementations,
which allows us to determine the impact of this hardware extension.

5.6.1 The SHA-256 Algorithm

SHA-256 takes as input an arbitrary-length message M ∈ {0, 1}∗. The message must be
padded in such a way that its length in bits is a multiple of 512. After performing a
padding rule, the message is split into n blocks of 512 bits denoted as Mj, for j = 1 to n.

The SHA-256 algorithm uses a 256-bit state that is initialized as

S0 =

[︃
a b c d

e f g h

]︃
=

[︃
0x6a09e667 0xbb67ae85 0x3c6ef372 0xa54ff53a

0x510e527f 0x9b05688c 0x1f83d9ab 0x5be0cd19

]︃
. (5.6.1)

Each message block is used to generate a new state according to the following recurrence:

Sj = Update(Sj−1,Mj), for j = 1 to n. (5.6.2)

Thus, the hash of M is defined as SHA-256(M) = Sn.
Before presenting the definition of the Update function, we review some notation and

auxiliary functions. SHA-256 is a word-oriented algorithm because its operations are
performed on words of 32-bits. Let x, y, and z denote generic 32-bit words; and ∧, ⊕,
and ¬ denote, respectively, the AND, XOR, and NOT Boolean operations; and≪ and≫
denote, respectively, a logical left and right 32-bit shift. The Update function also defines
some auxiliary functions and a set of 64 constant values, which are conveniently displayed
in matrix form:

Rot(x, n) = (x≫ n)⊕ (x≪ (32− n)) (5.6.3)

σ0(x) = Rot(x, 7)⊕ Rot(x, 18)⊕ (x≫ 3) (5.6.4)

σ1(x) = Rot(x, 17)⊕ Rot(x, 19)⊕ (x≫ 10) (5.6.5)

Σ0(x) = Rot(x, 2)⊕ Rot(x, 13)⊕ Rot(x, 22) (5.6.6)

Σ1(x) = Rot(x, 6)⊕ Rot(x, 11)⊕ Rot(x, 25) (5.6.7)

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z) (5.6.8)

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ y) (5.6.9)
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⎡⎢⎢⎢⎣
K0

K4

...
K60

⎤⎥⎥⎥⎦ =

⎡⎢⎣ k0 . . . k3
... . . . ...

k60 . . . k63

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0x428a2f98 0x71374491 0xb5c0fbcf 0xe9b5dba5

0x3956c25b 0x59f111f1 0x923f82a4 0xab1c5ed5

0xd807aa98 0x12835b01 0x243185be 0x550c7dc3

0x72be5d74 0x80deb1fe 0x9bdc06a7 0xc19bf174

0xe49b69c1 0xefbe4786 0x0fc19dc6 0x240ca1cc

0x2de92c6f 0x4a7484aa 0x5cb0a9dc 0x76f988da

0x983e5152 0xa831c66d 0xb00327c8 0xbf597fc7

0xc6e00bf3 0xd5a79147 0x06ca6351 0x14292967

0x27b70a85 0x2e1b2138 0x4d2c6dfc 0x53380d13

0x650a7354 0x766a0abb 0x81c2c92e 0x92722c85

0xa2bfe8a1 0xa81a664b 0xc24b8b70 0xc76c51a3

0xd192e819 0xd6990624 0xf40e3585 0x106aa070

0x19a4c116 0x1e376c08 0x2748774c 0x34b0bcb5

0x391c0cb3 0x4ed8aa4a 0x5b9cca4f 0x682e6ff3

0x748f82ee 0x78a5636f 0x84c87814 0x8cc70208

0x90befffa 0xa4506ceb 0xbef9a3f7 0xc67178f2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.6.10)

The Update function consists of two phases called message schedule and update state
as shown in Algorithm 5.6.11.

Algorithm 5.6.11 Update Function for SHA-256.
Input: S ∈ {0, 1}256 is the state, and M ∈ {0, 1}512 is a message block.
Output: S = Update(S,M).

Message Schedule Phase
1: (w0, . . . , w15)←M
2: for t← 16 to 63 do
3: wt ← σ0(wt−15) + σ1(wt−2) + wt−7 + wt−16

4: end for

Update State Phase
5: (a, b, c, d, e, f, g, h)← S //Split state into eight 32-bit words.
6: for i← 0 to 63 do
7: t1 ← h+ Σ1(e) + Ch(e, f, g) + ki + wi

8: t2 ← Σ0(a) + Maj(a, b, c)
9: h← g, g ← f , f ← e, e← d+ t1

10: d← c, c← b, b← a, a← t1 + t2
11: end for
12: (a, b, c, d, e, f , g, h)← S //Split state into eight 32-bit words.
13: return S ← (a+ a, b+ b, c+ c, d+ d, e+ e, f + f, g + g, h+ h)

5.6.2 Implementation Details

We describe how to use SHA-NI instructions for implementing the message schedule phase.
First of all, it is required that the message block (the values w0, . . . , w15) be stored into
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four 128-bit vector registers W0, W4, W8, and W12 as follows Wi = [wi, wi+1, wi+2, wi+3].
After that, the SHA256MSG1 and SHA256MSG2 instructions will help on the message schedule
phase for calculating the values w16, . . . , w63. To have a better understanding of the design
rationale of SHA-NI, we describe the steps to calculate W16 as follows:⎡⎢⎢⎢⎣

w16

w17

w18

w19

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
w0

w1

w2

w3

⎤⎥⎥⎥⎦+ σ0

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
w1

w2

w3

w4

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

⏞ ⏟⏟ ⏞
SHA256MSG1

+

⎡⎢⎢⎢⎣
w9

w10

w11

w12

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞
PALIGNR⏞ ⏟⏟ ⏞

PADD

+ σ1

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
w12

w13

w14

w15

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

⏞ ⏟⏟ ⏞
SHA256MSG2

The SHA256MSG1 instruction updates the vector register X with four 32-bit words as

X ← SHA256MSG1 (W0,W4)

= SHA256MSG1
(︁[︁
w0, w1, w2, w3

]︁
,
[︁
w4, w5, w6, w7

]︁)︁
=
[︁
σ0(w1) + w0, σ0(w2) + w1, σ0(w3) + w2, σ0(w4) + w3

]︁
.

(5.6.12)

In the next step, the PALIGNR instruction obtains W9 from a 32-bit shift applied to the
concatenation of W12 and W8 as

W9 ← PALIGNR (W12,W8, 4)

= PALIGNR
(︁[︁
w12, w13, w14, w15

]︁
,
[︁
w8, w9, w10, w11

]︁
, 4
)︁

=
[︁
w9, w10, w11, w12

]︁
.

(5.6.13)

Then, the vector Y will store the word-wise addition of the vector registers X and W9 as

Y ← PADDD(X,W9)

=
[︁
σ0(w1) + w0 + w9, σ0(w2) + w1 + w10,

σ0(w3) + w2 + w11, σ0(w4) + w3 + w12

]︁
.

(5.6.14)

Finally, the SHA256MSG2 instruction produces W16 from Y and W12 as

W16 ← SHA256MSG2 (Y,W12) =
[︁
w16, w17, w18, w19

]︁
=
[︁
σ0(w1) + σ1(w14) + w0 + w9,

σ0(w2) + σ1(w15) + w1 + w10,

σ0(w3) + σ1(w16) + w2 + w11,

σ0(w4) + σ1(w17) + w3 + w12

]︁
.

(5.6.15)

The remainder values W20, . . . ,W60 are calculated repeating the same strategy. Hence,
calculating W4i, for i = 4, . . . , 15, depends on W4(i−1), W4(i−2), W4(i−3), and W4(i−4);
the latter register can be overwritten to store W4i allowing to reuse vector registers.
Figure 5.6.16 illustrates the operation of SHA256MSG1 and SHA256MSG2 instructions.

Now we describe the implementation of the update state phase. The SHA256RNDS2
instruction, part of SHA-NI, assumes that S is stored into two 128-bit vector registers as
follows A =

[︁
a, b, e, f

]︁
and C =

[︁
c, d, g, h

]︁
. The reasoning behind this representation
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w7 w6 w5 w4

xmm0

w3 w2 w1 w0

xmm1

+ + + +

σ0 σ0 σ0 σ0

x3 x2 x1 x0

xmm2

(a) SHA256MSG1 instruction.

y3 y2 y1 y0

xmm0

w15 w14 w13 w12

xmm1

+ + + +

w16w17w18w19 xmm2

σ1σ1

σ1σ1

(b) SHA256MSG2 instruction.

Figure 5.6.16: SHA-NI instructions for message schedule phase.

relies on the following observation: after processing two iterations of the second for-loop
of Algorithm 5.6.22, some words of the state remain unmodified. More generally, let Ai

and Ci be the values of the state at the i-th iteration of the for-loop, then it holds that
Ci+2 = Ai for i ≥ 0. Figure 5.6.21 illustrates this property.

Based on this property, the SHA256RNDS2 instruction performs two iterations of the
state update phase as follows

Ci+2 = Ai, and Ai+2 = SHA256RNDS2 (Ci, Ai, X) (5.6.17)

where X is a vector register containing
[︁
wi + ki, wi+1 + ki+1,∅,∅

]︁
, where ki and ki+1 are

constant values defined in Equation (5.6.10), and ∅ is an unused value. Four iterations
can be performed applying again the same property; thus we have

Ci+4 = Ai+2, and Ai+4 = SHA256RNDS2 (Ci+2, Ai+2, Y ) , (5.6.18)

which is equivalent to

Ci+4 = SHA256RNDS2 (Ci, Ai, X) , and
Ai+4 = SHA256RNDS2 (Ai, Ci+4, Y )

(5.6.19)
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such that Y is a register containing
[︁
wi+2 + ki+2, wi+3 + ki+3,∅,∅

]︁
and the register X

and Y are calculated as

X ← PADDD (K4i, W4i) =
[︁
wi + ki, wi+1 + ki+1, wi+2 + ki+2, wi+3 + ki+3

]︁
Y ← PSRLDQ (X, 8) =

[︁
wi+2 + ki+2, wi+3 + ki+3, 0, 0

]︁
,

(5.6.20)

where K4i =
[︁
k4i, k4i+1, k4i+2, k4i+3

]︁
. This execution pattern is repeated sixteen times

to perform 64 iterations of the update state phase. The complete implementation of
SHA-256 using SHA-NI is shown in Algorithm 5.6.22.

ai

bi

ci

di

ei

fi

gi

hi

ai+1

bi+1

ci+1

di+1

ei+1

fi+1

gi+1

hi+1

ai+2

bi+2

ci+2

di+2

ei+2

fi+2

gi+2

hi+2

T2 i T2 i+1

T1 i T1 i+1

ki wi ki+1 wi+1

= ai= ai

= bi

= ei

= fi

Figure 5.6.21: Every two consecutive iterations of the update state phase, it holds that
the values (c, d, g, h) at the (i+2)-th iteration are exactly the values (a, b, e, f) of the i-th
iteration. For this reason, the values (a, b, e, f) of the (i + 2)-th iteration are calculated
using the SHA256RNDS2 instruction.

5.6.3 Performance Benchmark and Comparison

A performance benchmark allows us determine the effects of using SHA-NI. We took two
implementations as a baseline for making comparisons. One of the fastest implementa-
tions found in SUPERCOP [35] is the sphlib implementation that was written by Thomas
Pornin. Also, OpenSSL [263] has a 64-bit implementation based on optimization tech-
niques described in [128,135]. We measured the number of clock cycles taken for hashing
messages. From these measurements, we calculate the cycles-per-byte (cpb) ratio, which
is conventionally used as a metric of performance. Figure 5.6.23 shows the performance
of these implementations running on Zen.

For messages larger than 256 bytes, the sphlib library takes around 9.6 cpb, whereas,
the OpenSSL library offers a better performance taking 7.7 cpb. On the other hand, the
SHA-NI implementation takes 1.8 cpb; this is approximately 5.1× faster than sphlib and
is 4.2× faster than OpenSSL.
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Algorithm 5.6.22 SHA-256 Update Implemented with SHA-NI.
Input: S ∈ {0, 1}256 is the state, and M ∈ {0, 1}512 is a message block.
Output: S = Update(S,M).

Message Schedule Phase
1: Load M into 128-bit vector registers: W0, W4, W8, and W12.
2: for i← 0 to 11 do
3: X ← SHA256MSG1 (W4i, W4i+4)
4: W4i+9 ← PALIGNR (W4i+12,W4i+8, 4)
5: Y ← PADDD (X, W4i+9)
6: W4i+16 = SHA256MSG2 (Y, W4i+12)
7: end for

Update State Phase
8: (a, b, c, d, e, f, g, h)← S
9: A←

[︁
a, b, e, f

]︁
and C ←

[︁
c, d, g, h

]︁
.

10: for i← 0 to 15 do
11: X ← PADDD (W4i, K4i)
12: Y ← PSRLDQ (X, 8)
13: C ← SHA256RNDS2 (C, A, X)
14: A← SHA256RNDS2 (A, C, Y )
15: end for
16: (a, b, c, d, e, f , g, h)← S
17: A←

[︁
a, b, e, f

]︁
and C ←

[︁
c, d, g, h

]︁
18:
[︁
a, b, e, f

]︁
← PADDD(A, A) and

[︁
c, d, g, h

]︁
← PADDD(C, C)

19: return S ← (a, b, c, d, e, f, g, h)

The speedup factor observed by using SHA-NI is plotted on the right of Figure 5.6.23.
We want to remark that for short-length messages the improvement on the performance
is also significant, since it achieves a 3.0× factor of speedup. The improvement on the
running time is an evidence of the relevance of including specialized instruction sets that
support cryptographic algorithms.
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Figure 5.6.23: Performance of SHA-256 measured on Zen. Plots display the cycles-per-
byte taken for hashing a message and the speedup factor yielded by using SHA-NI.
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5.7 Implementation of XMSS and XMSSMT

In public-key cryptography, the construction of hash-based digital signatures is getting
more attention as they are part of a new cryptographic portfolio of quantum-resistant
algorithms [151]. We study the implementation of XMSS [58] and XMSSMT [153] hash-
based signature schemes.

In this section, we focus on two approaches that improve the performance of SHA-256
in the multiple-message scenario, and evaluate the impact on the performance of these
signature schemes. The results presented in this section were published in the APKC
2018 paper [102] P , which was co-authored with Ana K. D. S. de Oliveira at the Federal
University of Mato Grosso do Sul.

5.7.1 Review of Hash-based Signatures

The first scheme is the eXtended Merkle Signature Scheme (XMSS) [58], which uses a
Merkle tree (a binary hash-tree) in which the leaves store a public key of a one-time
signature scheme, such as WOTS+ [152], and the private keys are derived from a pseudo-
random number generator fed by a secret seed. In the Merkel tree, every internal node
stores a value v that is the hash of its left and right children, i.e., v = H(vL, vR). Thus,
the XMSS public key is the root of the Merkle tree. Let h be the height of the tree, then
XMSS can sign at most 2h messages using 2h different key pairs.

The second scheme is the Multi-Tree XMSS (XMSSMT) [153], which is an extension of
XMSS that provides a larger number of signatures. Assuming that d divides h, XMSSMT

can generate at most 2h signatures using a d-height hypertree such that each of its nodes
is an h/d-height XMSS tree.

In both signature schemes, the calculation of Merkle trees is the performance-critical
operation, since a large number of hash calculations is required. Note that the nodes
at the same height can calculate their hash values without dependency between them,
this means that this workload has a high degree of parallelism. Hence, this is a suitable
scenario for applying optimizations based on parallel computing.

A multiple-message hashing is the task of hashing several messages of the same length
independently. Multiple-message hashing is also known in the literature as multi-buffer
hashing, simultaneous hashing, or n-way hashing [2, 118,128].

Instances

A set of parameters for these schemes are given in RFC-8391 [151]. For example, to
achieve a 128-bit post-quantum security level, it is recommended to use a hash function
with an output of n = 32 bytes, such as SHA-256 or SHAKE [205].

For XMSS, it is suggested to set h ∈ {10, 16, 20}; and for the XMSSMT scheme setting
(h, d) ∈ {(20, 2), (20, 4), (40, 2), (40, 4), (40, 8), (60, 3), (60, 6), (60, 12)}. From these
parameters, we selected h = 20 for XMSS and h = 60, d = 6 for XMSSMT because they
allow the largest number of signatures.
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5.7.2 Implementation Details

To accelerate the calculation of hash-based signatures, we focus on the efficient imple-
mentation of multiple-message hashing. It is clear that the use of SIMD vectorization
is suitable in this scenario as several works in the literature have proposed. For this
reason, we proceed with an alternative and more efficient approach that relies on the
application of SHA-NI extensions. We show how to efficiently use these instructions for
multiple-message hashing and compare with SIMD processing.

SIMD Multiple-Message Hashing

In order to hash n messages of the same length using vector instructions, one can modify
Algorithm 5.6.11 as follows. First, replace each 32-bit word by a vector register; thus, a
set of eight vector registers A, . . . , H will represent the state, where A = [a1, . . . , an] is a
vector register containing the word a of each message. The same rationale applies to the
rest of the state.

Since now all variables are vectors, every scalar operation must be replaced by its
corresponding vector instruction, which simultaneously executes operations in each lane
of a vector register. At the end of the algorithm, the digest of the i-th message must be
recovered concatenating the i-th lane of each vector register A, . . . , H.

Related Works

In the literature, there exist several works that used SIMD instructions for implementing
either single or multiple message hashing.

Gueron [128] showed the n-SMS technique that parallelizes the message schedule phase
leading to a faster single message hashing. Following the work of Aciiçmez [2], Gueron and
Krasnov [129] reported an implementation that uses the SSE unit to perform four SHA-256
digests simultaneously. As a result, their implementation runs 2.2× faster than the n-SMS
single-message implementation of Gueron [128]. They also extended the parallelization to
256-bit registers, however, although AVX2 was not available at the time their work was
published, their estimations accurately match the performance exhibited by processors
supporting AVX2.

Intel [117] contributed to the OpenSSL library with optimized code for multiple-
message hashing. In v1.0.2, OpenSSL has a function, called sha256_multi_block2, that
calculates either four digests using SSE or eight digests using AVX2 instructions.

Pipelining SHA-NI Instructions

We present optimization strategies that schedule SHA-NI instructions leveraging the ca-
pabilities of the processor’s pipeline.

In addition to the latency, there exist other metrics to determine the performance
of processor instructions. According to Fog’s definition [109], the throughput of an in-
struction is “the maximum number of instructions of the same kind that are executed per

2Located at: https://github.com/openssl/openssl/blob/OpenSSL_1_0_2-stable/crypto/sha/
asm/sha256-mb-x86_64.pl.

https://github.com/openssl/openssl/blob/OpenSSL_1_0_2-stable/crypto/sha/asm/sha256-mb-x86_64.pl
https://github.com/openssl/openssl/blob/OpenSSL_1_0_2-stable/crypto/sha/asm/sha256-mb-x86_64.pl
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clock cycle”, and the reciprocal throughput refers to “the number of cycles to wait until
an execution unit starts processing an instruction of the same type”. There is a lack of
information about these metrics on the Zen documentation; however, accurate timings
can be found using experimental measurements. The following table shows the timings
measured by Fog for the SHA-NI instructions on Zen:

SHA256MSG1 SHA256MSG1 SHA256RNDS2

Latency 2 3 4
Recip. Throughput 0.5 2 2

The SHA256RNDS2 instruction takes four clock cycles to be completed; however, its
reciprocal throughput is only two cycles, this means that once a SHA256RNDS2 instruction
is issued to the execution unit, a second SHA256RNDS2 instruction can be issued two clock
cycles after the first one. Therefore, by issuing two SHA256RNDS2 instructions consecu-
tively, the processor will take only six clock cycles to compute them instead of taking
eight clock cycles. Figure 5.7.1 shows a pipelined execution of SHA256RNDS2 instructions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

SHA256RNDS2 SHA256RNDS2

SHA256RNDS2 SHA256RNDS2

SHA256RNDS2 SHA256RNDS2

SHA256RNDS2 SHA256RNDS2

Latency

Reciprocal

Throughput

Figure 5.7.1: Pipeline execution of SHA256RNDS2 instructions.

Observe that to achieve an execution in pipeline; these instructions must have no data
dependencies; otherwise, the processor will wait until the data dependency be resolved.
After a dependence analysis of Algorithm 5.6.22, it can be noted that in the message
schedule phase, the SHA256MSG2 instruction takes as an input the value produced by the
SHA256MSG1 instruction. Another data dependency appears in the update state phase,
where both SHA256RNDS2 instructions dependent one to the other. Hence, these data
dependencies limit the use of the pipelining techniques for single message hashing. How-
ever, hashing multiple messages is a suitable scenario that leverages the capabilities of
the processor’s pipeline.

The central idea of our pipelined implementation resembles Gueron’s approach [125]
for implementing the AES-CTR encryption algorithm using AES-NI instructions. In the
case of SHA-256, at every two clock cycles one SHA256RNDS2 instruction is issued to the
pipeline, such that each instruction operates over a state of a different message. Thus,
consecutive instructions do not have data dependencies at all, and as a consequence, their
execution can be executed by the processor’s pipeline. Let k be the number of messages to
be hashed simultaneously, we developed pipelined SHA-NI implementations of SHA-256
multiple-message hashing for k ∈ {2, 4, 8}.
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5.7.3 Performance Benchmark and Comparison

Timings of SIMD Hashing

We want to determine the impact on the running time when vectorization is applied to the
multiple-message hashing scenario. To do that, we conducted a performance benchmark
of the vectorized implementation provided by the OpenSSL library. Figure 5.7.2 shows
the result of measuring the performance of the sha256_multi_block function.

256 4K 64K 1M
20
21
22
23
24

Message size (bytes)

T
im

e
(c

yc
le

s-
pe

r-
by

te
) Kaby Lake

1 message (64-bit)
4 messages (SSE)
8 messages (AVX2)

256 4K 64K 1M
20
21
22
23
24

Message size (bytes)

T
im

e
(c

yc
le

s-
pe

r-
by

te
) Zen

Figure 5.7.2: Timings of multiple-message hashing on Kaby Lake and Zen. The base-
line single-message implementation is the sphlib implementation by Pornin (taken from
SUPERCOP [35]).

On Kaby Lake, calculating four hashes simultaneously is 2.35× faster than four con-
secutive invocations to the single-message implementation. Moreover, the AVX2 imple-
mentation is 4.5× faster than sphlib for calculating eight hashes in a row. The use of
vector instructions on Kaby Lake shows a noticeable improvement in the performance of
multiple-message hashing. However, the story is different on Zen.

The graphs in Figure 5.7.2 show that Zen offers a similar performance as Kaby Lake
for single-message hashing. The SSE implementation, which computes four hashes simul-
taneously, renders a better performance on Kaby Lake. However on Zen, the performance
of the AVX2 implementation shows the same performance as the one exhibited by the
SSE implementation, i.e., no benefits were observed by running AVX2 code on the Zen
micro-architecture.

This performance downgrade on Zen is because the latency of AVX2 instructions is
twice slower than the latency of the SSE instructions. The micro-architectural design of
Zen emulates a 256-bit vector instruction splitting the workload in two parts, and then it
executes them in a 128-bit vector unit sequentially. Therefore, the expected performance
of any AVX2 code is reduced by half on Zen.
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Timings of Pipelined SHA-NI Hashing

The results of the performance benchmark are shown in Figure 5.7.3. To hash two mes-
sages, it is more convenient to use the pipelined implementation (k = 2), which is 18%

faster than performing two consecutive hashes using the single-message SHA-NI imple-
mentation. Similarly, for k = 4 a reduction of a 21% of the running time is obtained.
However, note that for k = 8 the performance downgrades, which can be explained because
hashing eight messages requires a larger space to store all the states causing that vector
registers be spilled to memory more often. These results show that a significant improve-
ment for multiple-message hashing is achieved using an efficient instruction scheduling of
SHA-NI instructions.
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Figure 5.7.3: Timings multiple-message SHA-256 hashing on Zen. The single-message
implementation is the SHA-NI implementation of Algorithm 5.6.22.

Timings of Hash-based Digital Signatures

We compare the performance of the signature schemes using as a building block the follow-
ing implementations of SHA-256. The sphlib implementation that uses 64-bit instructions;
the sequential SHA-NI implementation of Algorithm 5.6.22; vectorized implementations
using 128- and 256-bit instructions from [83]; the pipelined SHA-NI implementation from
this section. Table 5.7.4 list the timings measured on Zen of these implementations.

Taking as a baseline the sphlib implementation, it can be noted that multiple-message
hashing has a higher impact on the key generation and the signing operation and a lesser
impact on the verification procedure. Note that the running time of the key generation
and the signing operation can be reduced by almost half using SSE vector instructions,
whereas the AVX2 implementation renders a poor performance on Zen; this was already
expected from the measurements presented for multiple-message hashing.

It can be observed that for XMSS the SHA-NI implementation yields a speedup factor
between 3.5× to 4× in contrast to the 64-bit sphlib implementation. Moreover, extra
savings were achieved by using the pipelined SHA-NI implementation, which increased
the speedup factor to 4.3× and 4.6× for XMSS and XMSSMT, respectively, improving a
10% the key generation, and a 7% the signature operation.
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Table 5.7.4: Timings of XMSS and XMSSMT measured on Zen.

(a) Timings of XMSS-SHA2_20_256.

Impl. Parallel Key Gen. 1 Signing 2 Verify 2

sphlib No 4.50 1.00× 21.56 1.00× 2.16 1.00×
SSE 4-way 2.60 1.72× 12.76 1.68× 1.78 1.21×
AVX2 8-way 3.81 1.18× 19.56 1.10× 3.65 0.59×
SHA-NI No 1.12 4.01× 5.39 3.99× 0.61 3.51×
SHA-NI 4-Pipelined 1.01 4.46× 5.00 4.30× 0.74 2.89×
1 Entries are 1012 clock cycles.
2 Entries are 106 clock cycles.

(b) Timings of XMSSMT-SHA2_60/6_256.

Impl. Parallel Key Gen. 1 Signing 2 Verify 2

sphlib No 51.63 1.00× 46.35 1.00× 27.97 1.00×
SSE 4-way 27.44 1.88× 25.27 1.83× 18.94 1.48×
AVX2 8-way 40.11 1.29× 38.31 1.21× 36.81 0.76×
SHA-NI No 11.87 4.35× 10.69 4.34× 6.45 4.33×
SHA-NI 4-Pipelined 10.78 4.79× 9.99 4.64× 7.64 3.66×
1 Entries are 109 clock cycles.
2 Entries are 106 clock cycles.

Timings Running on Kaby Lake

To have a better panorama of the performance of hash-based signatures, we reproduce
the experiments using Kaby Lake. Recall that although Kaby Lake does not support the
SHA-NI instructions, it contains a faster vector unit. Figure 5.7.5 shows the running time
to generate an XMSS signature (h = 20) measured on Zen and Kaby Lake.
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Figure 5.7.5: Performance comparison of XMSS-SHA2_20_256 running on Kaby Lake
and Zen.

First of all, it can be observed that Zen delivers better performance for signing us-
ing the sequential sphlib implementation. However, the vectorized implementations offer
a significant acceleration when running on Kaby Lake, but not in Zen. For example,
by using AVX2, an XMSS signature can be computed 4× faster than the sequential
implementation. On the other hand, Zen renders a similar performance using the sequen-



214

tial SHA-NI implementation. However, the pipelined SHA-NI implementation offers the
fastest timings. Therefore, we have shown that the performance of hash-based signatures
can be accelerated either by using the fast AVX2 unit on Kaby Lake or using a pipelined
SHA-NI implementation on Zen.

Future Work

Note that SIMD parallel implementations can also be extended for using AVX-512 in-
structions [72]; thus, the multiple-message hashing will process sixteen messages simulta-
neously. Following an analogous analysis that the one performed by Gueron and Kras-
nov [133]; preliminary evaluation of an implementation of SHA-256 using AVX-512 reveals
that the number of instructions does not increase significantly, which could lead to per-
formance improvements on the forthcoming AVX-512 processors.

It would be interesting to reproduce our experiments on ARM processors that support
the ARMv8 Cryptographic Extensions [18] and/or the Scalable Vector Extensions [254],
however the performance evaluation in this platform turns to be more complex due to the
wide variety of processor’s implementations.

Finally, the optimizations presented in this work are also applicable to other algo-
rithms, such as the SPHINCS+ [32] hash-based signature scheme, which is participating
on the NIST’s Post-Quantum Standardization [206].

5.8 Chapter Summary

In this chapter we showed how to optimize implementations of Diffie-Hellman protocols
and digital signature schemes based on elliptic curves. We showed some algorithmic
optimizations that reduce the number of operations to be computed. In addition, we
adapt some algorithms in such a way they benefit from parallel computing. In particular,
we showed that scheduling prime field and elliptic curve operations in parallel improves
their execution time. This was experimentally demonstrated with our vectorized software
and backed with performance benchmarks. The sum of all of these optimizations improves
the execution time of the algorithms studied.
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Chapter 6

Conclusions

In the past few years, we have accompanied a research trend that proposes the use of
modern elliptic curve models in the design of new public-key cryptographic algorithms.
Adjacently, we have also witnessed an incessant inclusion of new hardware extensions
to the computer architecture supporting mainly the SIMD parallel computing. In these
circumstances, our research investigates how to efficiently use these computer architec-
ture extensions, such as SIMD and others, with the aim to accelerate the execution of
cryptographic algorithms, and with special interest in those based on elliptic curves.

6.1 Concluding Remarks

Based on the experimentation performed during our investigation, we conclude that the
application of SIMD vector instructions does reduce the execution time of both prime field
operations and elliptic curve arithmetic resulting in observable improvements in high-level
cryptographic algorithms. However, we remark that in order to get better performance
several changes in the algorithms are needed. Some of them are naturally motivated by
the SIMD parallel computing paradigm, but others arose from the instruction set used in
the implementation.

To benefit from the SIMD approach, we proposed some parallel algorithms and adapted
several others to increase the degree of parallelism of their internal operations. For in-
stance, the machine representation of integers leverages the large size of operands to
perform smaller operations in parallel. For higher level operations, we implemented vec-
torized code for running prime field operations in parallel, and extended this idea to elliptic
curve operations. Our parallel algorithms are applicable to any computing environment
that supports SIMD processing.

Our investigation provided explicit optimizations and implementation techniques that
resulted in a faster execution of cryptographic algorithms than those existent in the state
of the art. Our software implementations render better performance when using AVX2
vector instructions for the X25519 and X448 Diffie-Hellman protocols, and the Ed25519
and Ed448 digital signature schemes. We also identified trade-offs and limitations of these
developments, which can provide insights for future improvements.
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6.2 Retrospective

We want to provide some observations collected in retrospective about some issues and
challenges we faced. We believe these comments are primary input for future developments
and research projects.

6.2.1 Specialized Literature

Practitioners on this area have a few resources for the development of secure and efficient
software. For instance, several number theory or cryptography books contain descrip-
tions for performing multi-precision arithmetic. Most of them describe the algorithms
narrowing to a basic set of computer instructions. However, current processors contain
several layers of optimizations for maximizing the number of instructions per clock cycle.
Thus, developers lacks of documentation that explains how to take advantage of these
hardware extensions since there are almost no resources specialized in their application
to cryptography.

In our case, we relied mainly on the official Intel manuals and white papers as well as
on the Fog’s manuals [109]. All of them are a reliable source of information about SIMD
instructions. Another invaluable source of bit tricks we used can be found at [10,19,269].
But none of them is actually focused on the security of software. Because of that, we
believe our work serves as a guide for developing high-performance cryptographic software
covering modern elliptic curve algorithms and the most recent computer architectures.

6.2.2 Programming Languages

On the availability of more computational resources, programming languages should offer
support for accessing these resources more easily. For example, the SSE and AVX/AVX2
instructions are available through a library of C functions (also known as intrinsics).
However, not all programming languages provide a way for accessing SIMD instructions
directly. One solution is given by some advanced compilers that have the ability to issue
SIMD instructions; however, although this works well on easily-recognizable workloads,
the most common case is resorting to write code in assembly language.

We also found a lack of tools that explicitly leverage the internal parallelism inside
the execution engine of processors. Even in the assembler language, the programmer is
not able to force the use of certain hardware optimizations such as pipelining or being
able to scheduling instructions to different execution units (ports). For example, it would
be valuable for the programmer a way for explicitly indicating which instructions can
run in pipeline. Armed with these kind of tools, programmers could improve the task of
optimizing programs.

Compilation and Measurements

Vector instructions are exposed to the programmer as C functions, which allowed us to
write software in C language without recurring to assembler code. We found advanta-
geously to use intrinsics as a clean way for accessing to low-level instructions, and also
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because it off-loads to the compiler all the register allocations and the stack management.
However, compilers could introduce unexpected effects on the performance of programs
with intrinsics.

Compilers have different algorithms for producing assembler code. For example, it is
common that compilers reorder instructions and assign registers in different ways. For this
reason, vectorized implementations written with intrinsics are susceptible to changes not
only on the compiler used, but also to the compiler version. It was common sometimes that
a newer compiler version alters (positively or negatively) the performance of a program.
Therefore, we recommend always report timings precisely indicating the name of the
compiler, its version, and the compiler flags used to enable fair comparisons.

It remains open to provide the programmer with a better way (or tools) for using SIMD
instructions. For example, this could be done by unifying the way that compilation of
SIMD instructions is performed, in such a way it is reproducible across different compilers.

6.2.3 Usage of AVX2

Limitations of AVX2

During our study we encounter some limitations of the AVX2 vector unit. High-latency
instructions were the main obstacle we found for improving performance. The vector
integer multiplier and some permutation instructions are notorious cases.

The vector integer multiplication is an expensive instruction. Compounded to that,
the lack of a 64-bit vector multiplier imposed a limitation on the representation of field
elements using digits shorter than 32 bits. For example, de Valence [85] showed an
implementation using a 52-bit multiplier (available in AVX-512-IFMA set) that improves
the latency of field operations. To our perspective, a fast, wider integer multiplier is a
critical piece for accelerating integer multiplication, and consequently, speeding up high-
level operations.

Permutation instructions are mainly used for accommodating words inside vector reg-
isters. Moving words between registers can be regarded as negligible or with low impact
on the performance; however, it is not the case. Some permutation instructions are three
times slower than arithmetic instructions, which produces a negative effect on the perfor-
mance of operations.

Due to these limitations, a north star that guided our optimizations was to minimize
the use of these costly instructions, which limited at a certain degree the way we perform
certain operations. If permutation instructions become faster, a better organization of
words may lead to faster implementations. For this reason, we reshaped the execution
flow and the storage of words in vector registers so more operations can run in parallel.

Prime Field Arithmetic

There are some crucial points that we identified when implementing finite field arithmetic
using AVX2 instructions.

The representation of field elements heavily depends on the instruction set. The lack
of certain instructions in AVX2 conducted us to design different implementations. For
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example, neither the SSE nor the AVX/AVX2 instruction sets include a vector instruction
for addition with carry. The absence of this sole functionality avoids (in part) the use
of saturated arithmetic. Therefore, we had to found an alternative representation that is
more appropriate given the instructions available.

Unsaturated arithmetic is suitable for SIMD processing. A redundant representation
has a higher degree of parallelism. In fact, large-integer operations, such as additions, are
executed faster when the propagation of carry bits is postponed. Also, the propagation of
carry bits is also performed in parallel. We note that it is convenient to maintain operands
in this representation, and avoid moving back and forth between representations. One
downside of this approach is to manage the grow in size of digits to prevent a loss of
precision in the computation. Programmer must keep track of the operands’ size and
perform a propagation of carry bits from time to time. A systematic method that identifies
when to perform propagation is subject of further study.

Applying SIMD Broadly

We showed that SIMD instructions can perform not only finite field operations, but also
higher-level operations such as point additions or scalar multiplications. For example, we
achieve good performance by processing several point additions simultaneously. Initially,
we started with the notion of n-way field operations, and then we extend this idea to
construct n-way point additions. We could go further to perform, for example, n-way
digital signatures. This parallel approach works well when processing independent batches
of signatures (this requires to transpose the inputs to be easily loaded into vector registers).
Nonetheless, although batching signatures could be a real workload, the most common
case is to process one signature at a time; this is one of the reasons why we focused on
reducing the latency of a single signature.

6.2.4 New Instructions

We describe some feature requests for designers of hardware processors that we identify
as useful for cryptography.

Dynamic Execution of Vector Instructions

It is common to see that vectorized implementations start by detecting the processor’s
capabilities through CPUID instruction, and then, branching to different parts of code
that are optimized for each instruction set. As a result, a single algorithm has as many
implementations as the instructions sets. Having several code paths is more difficult to
maintain in the long term.

One proposed solution to this problem is writing code using SIMD vectors of arbi-
trary size. That is, during execution time, the processor will execute these high-order
vector instructions using vector (and a combination of scalar) instructions according to
the capabilities of the processor. This execution mode is more ambitious since it can be
regarded as auto-vectorization at run-time (performed entirely by hardware) rather than
performed at compilation time.
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Native Support for Fixed-Precision Modular Arithmetic

This feature could be in the form of a set of instructions parametrized by the size (in
words) of the integer modulus.

For instance, suppose that AX and BX are pointers to an array of four integers rep-
resenting field elements, and CX is a pointer to a prime modulus stored in four machine
words; then the instruction

FP_ADD AX, BX, CX, 4

computes an addition of AX + BX mod CX.
Analogously, we could include instructions for subtractions and multiplications. An

advantage of this approach is that the hardware will be in charge of the correctness and the
security (ensuring a constant-time execution). This approach off-loads to the processor a
common source of failures and vulnerabilities often found in software implementations of
cryptographic algorithms.

Instructions for Handling Keys

Most computer architectures do not provide mechanisms to manipulate secret data. For
example, keys are fetched from memory and stored in general-purpose registers, just like
any other piece of data. To make a distinction, processors could include secure (restricted-
access) registers to store key material rather than using general-purpose registers. The
difference relies on the accessing control to the data stored in these registers.

This idea also applies to the instructions accessing key material. For example, in the
Montgomery ladder, the bits of the key are used to move elements conditionally. It would
be helpful to have an assembler instruction that has exclusive access to the bits of the
key. A strong premise is the inclusion of countermeasures against side-channel attacks.

6.3 Summary of Contributions

We give a brief overview of our contributions.

6.3.1 Algorithmic Optimizations

For Montgomery curves, we introduced a new three-point ladder algorithm that calculates
the x-coordinate of P + kQ. Our algorithm improves in three aspects. First, it requires
fewer operations than previously-known algorithms [78, 161]. Second, when P and Q

are known in advance, the algorithm allows faster execution employing precomputation.
Third, if precomputation is used, fetching data from the pre-computed tables requires
non-secret indexes. This algorithm is suitable for the Diffie-Hellman protocol, specially
when the points are public and fixed. Also, it improves the sampling of r-torsion points
in the SIDH protocol. We showed its immediate application on concrete cryptographic
algorithms, such as X25519, X448, qDSA with Montgomery curves, and the SIDH/SIKE
protocol. All of these algorithms have better performance when using the three-point
ladder algorithm. This improvement is independent of the computer’s architecture.
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We showed an optimized formula for tripling points on Montgomery curves. This
operation is relevant on multi-base scalar multiplication methods and on isogeny-based
cryptography. In latter case, SIDH evaluates 3iP for some integer i > 0. We proposed
an efficient way to compute point tripling, reducing the number of field operations. We
acknowledge some trade-offs against formulas independently proposed in [76,273].

6.3.2 Implementation Techniques

On the availability of extensions to the instruction set architecture, we focus on their
efficient application to accelerate the arithmetic of prime fields and elliptic curves.

Implementations using SIMD Extensions

We initially focus on the SIMD parallel processing for field arithmetic. Our study covered
four families of prime moduli. For each family, we showed how to perform field operations
using scalar and vector instructions. Our benchmark analysis showed that improvements
in performance are more significant when operating over larger numbers. For smaller
prime fields, the cost of manipulating data inside vector registers resulted in a notorious
overhead limiting the amount of improvement.

We show other ways of using SIMD units efficiently by taking the SIMD’s approach to
higher abstraction levels. We follow the notion of n-way operations using the n words of a
vector register for calculating n field operations in parallel. This approach was motivated
due to the overheads of using SIMD instructions to perform single field operations. As a
direct application of n-way field operations, we turned our attention to investigate parallel
algorithms for elliptic curve arithmetic.

For Montgomery curves, we showed how to calculate the Montgomery ladder step
using two parallel units. The common implementation strategy for these two models
consisted on using the 256-bit AVX2 vector unit for simulating two 128-bit parallel units.
Thus, each 128-bit unit can also be seen as two 64-bit parallel units that are dedicated
to field arithmetic. By following this approach, we reduce the number of permutation
instructions minimizing the overhead observed on the implementation of field arithmetic.

For Edwards curves, we focused on parallel algorithms for point addition, point dou-
bling, and scalar multiplication. Our implementation strategy was to perform 4-way
operations using the 256-bit vector unit. Then, we implemented point addition (and dou-
bling) using 4-way field operations. Additionally, we constructed a 4-way point addition
that allowed us to perform parts of the scalar multiplication in parallel. The design of all
parallel algorithms minimizes the use of costly permutation instructions. We accelerated
the calculation of scalar multiplications on Edwards curves. For Weierstrass curves, we
split the calculation of the Fq-complete formulas for point addition and doubling.

With savings in both the prime field arithmetic and the elliptic curve arithmetic, we
applied them to some cryptographic algorithms. We developed vectorized implementa-
tions of the ECDH and ECDSA with the P-384 curve; the X25519, X448, and SIDH
Diffie-Hellman protocols; and the Ed25519 and Ed448 digital signature schemes. In all
cases, we observed improvement on performance by using AVX2 vector instructions.
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Implementations using other Extensions

In addition to the SIMD extensions, we studied the efficient application of other hardware
extensions such as BMI2, ADX, and SHA-NI instruction sets.

We developed efficient implementations of field arithmetic using MULX (from the BMI
instruction set) and ADCX/ADOX (from the ADX instruction set) instructions. Using
these instructions, our implementations render better performance than using previous
basic instructions. Nonetheless, vectorized implementations offer superior improvements
in prime fields of larger size.

The availability of SHA-NI allowed us to evaluate the performance of SHA-256. First,
we showed a pipelined implementation that performs a 4-way version of the SHA-256
function. We applied this function to the XMSS and XMSSMT hash-based signatures.
Using SHA-NI, we observed that signature operations run up to four times faster than
using a non-hardware aided implementation. We also show that its performance is slightly
better than implementing 4-way SHA-256 with a SIMD vector instructions.

6.4 Future Work

In some parts of the document we have indicated several paths for further research. Now
we made additional suggestions that can provide a better understanding of the SIMD
instructions and their usage in other applications.

The number of extensions for cryptographic applications is increasing. As shown in
Chapter 2, processors will be able to perform vectorized AES and Galois field operations.
Although some estimations of performance were provided by Drucker et al. [89] based on
the number of instructions, it remains unknown to what extent these new instructions
accelerate data encryption.

More SIMD extensions are released in the AVX-512 instruction set. It is interesting to
investigate the performance of these new instructions, and also their use in cryptographic
algorithms, and in particular, to elliptic curve arithmetic.

Most of the proposals contending at the NIST Post-Quantum competition [206] present
implementations accelerated with vector instructions. In this case, the workload of algo-
rithms is quite diverse, which makes that the requirements, implementation techniques,
and optimizations be too specific rather than general. It is interesting to see more appli-
cations of the AVX-512 instructions to quantum-resistant algorithms. For example, the
optimizations proposed for SIDH/SIKE can also be extended to use AVX-512. We de-
veloped a pipelined implementation of SHA-256 for XMSS and XMSSMT; however, other
algorithms such as SPHINCS [32] can also benefit from this implementation.

We hope our work and the ideas here presented motivate future projects, students,
and researchers. We encourage them to extend and improve our results augmenting the
knowledge base of this gratifying field of study called cryptography.
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Appendix A

Research Production

This chapter provides detailed bibliographical information of the articles published in
peer-reviewed venues.

A.1 Journal Articles

A.1.1 A Faster Implementation of SIDH

This article presents theoretical and implementation improvements for the SIDH proto-
col. Our main contribution is a new three-point ladder algorithm for calculating P + kQ

in the SIDH setting. We also show an optimized formula for point tripling on Mont-
gomery curves. This paper was written in collaboration with Eduardo Ochoa-Jiménez
and Francisco Rodríguez-Henríquez at the CINVESTAV-IPN.
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A.1.2 High-Performance Implementation of ECC

The article shows software implementation techniques for X25519, X448, and EdDSA.
We contribute with a detailed description about the use of vector instructions on the
implementation of field arithmetic and elliptic curve operations. This paper was written
in collaboration with Ricardo Dahab at the University of Campinas.
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A.2 Publications in Conference Proceedings

A.2.1 Software Implementation of Prime Fields

This extended abstract shows early results on the implementation of prime field arith-
metic. We describe a redundant representation for large integer arithmetic, and present
preliminary timings.

Faz-Hernández A. and López J. (2014). On Software Implementation of Arithmetic
Operations on Prime Fields using AVX2. In Anais do XIV Simpósio Brasileiro em
Segurança da Informação e de Sistemas Computacionais (SBSeg 2014). 14, 338-
341. Sociedade Brasileira de Computação. https://doi.org/10.5753/sbseg.
2014.20148
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  month     = nov, year = {2014},
  issn      = {2176-0063}, pages = {338-341},
}

A.2.2 Curve25519 using AVX2

This article presents software implementation techniques that leverage the use of AVX2
instructions to calculate arithmetic operations over F2255−19, and its impact on the X25519
Diffie-Hellman protocol.

Faz-Hernández, A., and López, J. (2015). Fast Implementation of Curve25519 Using
AVX2. Lecture notes in computer science. Progress in Cryptology – LATINCRYPT
2015. 329-345. Springer International Publishing. https://doi.org/10.1007/
978-3-319-22174-8_18
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A.2.3 How to Precompute a Ladder

This article shows the application right-to-left ladder algorithms for implementing the
X25519 and X448 Diffie-Hellman protocols. We contribute with optimized 64-bit im-
plementations of field arithmetic and Montgomery ladder algorithms. This paper was
written in collaboration with Thomaz Oliveira and Francisco Rodríguez-Henríquez at the
CINVESTAV-IPN, and Hüseyin Hişil at the Yasar University.

Oliveira, T., López, J., Hışıl, H., Faz-Hernández, A., and Rodríguez-Henríquez,
F. (2017). How to (Pre-)Compute a Ladder. Lecture notes in computer science.
Selected Areas in Cryptography – SAC 2017. 172–191. Springer International
Publishing. https://doi.org/10.1007/978-3-319-72565-9_9
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  series    = {{Lecture Notes in Computer Science}},
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A.2.4 Speeding up the P-384 Curve

This article presents the use of vector instructions on the parallel implementation of elliptic
curve operations using the P-384 curve. This paper received the “Honorable Mention
Award” given by the conference committee.

Faz-Hernández A. and López J. (2016). Speeding up Elliptic Curve Cryptography
on the P-384 Curve. Anais do XVI Simpósio Brasileiro em Segurança da Informação
e de Sistemas Computacionais. 170-183. Sociedade Brasileira de Computação.
https://doi.org/10.5753/sbseg.2016.19306
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  issn      = {2176-0063}, pages = {170-183},
}

A.2.5 Implementation of qDSA

This article presents an optimized software implementation of qDSA, a new digital sig-
nature that uses Montgomery curves. We contribute with 64-bit implementations and an
alternative method for verifying qDSA signatures. This paper was written in collaboration
with Hayato Fujii and Diego Aranha at the University of Campinas.

Faz-Hernández, A., Fujii, H., Aranha, D. F., and López, J. (2017). A Secure and
Efficient Implementation of the Quotient Digital Signature Algorithm (qDSA). Lec-
ture notes in computer science. Security, Privacy, and Applied Cryptography Engi-
neering. 170–189. Springer International Publishing. https://doi.org/10.1007/
978-3-319-71501-8_10
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  series    = {{Lecture Notes in Computer Science}},
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A.2.6 Performance Evaluation of Cryptographic Instructions

This article shows the implementation of symmetric-key encryption algorithms and hash
functions using dedicated hardware instructions. We contribute with optimized code using
the SHA new instructions. This paper was written in collaboration with Ana D. S. de
Oliveira at the Federal University of Mato Grosso do Sul.

Faz-Hernández, A., López, J., and de Oliveira, A. K. D. S. (2018). SoK: A Per-
formance Evaluation of Cryptographic Instruction Sets on Modern Architectures.
In APKC ’18: Proceedings of the 5th ACM on ASIA Public-Key Cryptography
Workshop. 9-18. ASIA CCS ’18: ACM Asia Conference on Computer and Com-
munications Security. https://doi.org/10.1145/3197507.3197511
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A.2.7 Vectorization of Hash to Curve Functions

This article presents vectorization techniques for a hash to curve function and their im-
plementation using AVX2 vector instructions.

Faz-Hernández A. and López J. (2020). Generation of Elliptic Curve Points in
Tandem. Anais do XX Simpósio Brasileiro em Segurança da Informação e de Sis-
temas Computacionais (SBSeg 2020). 97-105. Sociedade Brasileira de Computação.
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A.3 Book Chapters

A.3.1 Implementation of Cryptographic Algorithms

This chapter is an introductory-level course about the implementation of basic crypto-
graphic algorithms. The manuscript was written in Portuguese and in collaboration with
Roberto Cabral and Diego Aranha at the University of Campinas.

Faz-Hernández A. and López J. (2015). Implementação Eficiente e Segura de Al-
goritmos Criptográficos. Minicursos do XV Simpósio Brasileiro em Segurança da
Informação e de Sistemas Computacionais. 93-140. Sociedade Brasileira de Com-
putação. https://doi.org/10.5753/sbc.9004.8.3
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