
Pipeline Oriented Implementation of NORX for ARM
Processors

Luan Cardoso dos Santos1, Julio López1

1Laboratory of Security and Cryptography - LASCA
Institute of Computation - UNICAMP
Av. Albert Einstein, 1251, Room 84
Cidade Universitária Zeferino Vaz

13083-852 Campinas SP Brazil

luan@lasca.ic.unicamp.br, jlopez@ic.unicamp.br

Abstract. NORX is a family of authenticated encryption algorithms that ad-
vanced to the third-round of the ongoing CAESAR competition for authenticated
encryption schemes. In this work, we investigate the use of pipeline optimiza-
tions on ARM platforms to accelerate the execution of NORX. We also provide
benchmarks of our implementation using NEON instructions. The results of
our implementation show a speed improvement up to 48% compared to the
state-of-art implementation on Cortex-A ARMv8 and ARMv7 processors.

Resumo. NORX é uma família de algoritmos de cifração autenticada que par-
ticipa da terceira fase do CAESAR, competição para esquemas de cifração
autenticada. Nesse trabalho, investigamos o uso de optimizações de pipeline em
plataformas ARM de forma a acelerar a execução do NORX. Também mostramos
tempos da nossa implementação usando instruções NEON. Nossos resultados
mostram melhoria de até 48% na velocidade de execução comparado com imple-
mentações estado-da-arte em processadores Cortex A ARMv8 e em processadores
ARMv7.

1. Introduction
Authenticated Encryption algorithms (AE) are symmetric-key cryptographic schemes
where the main objective is to provide simultaneously confidentiality, integrity, and authen-
tication. In an intuitive form, confidentiality means that an adversary with access to the
ciphertext and nonce cannot recover any information of the plaintext beyond its length,
and the ciphertext itself is indistinguishable from random bits. Similarly, authenticity
guarantees that a ciphertext cannot be manipulated to generate a valid authentication for
any given message.

NORX [1] is an authenticated encryption scheme currently participating in the
CAESAR [2] competition, which has the objective of choosing an authenticated encryption
algorithms that offer advantages over the AES-GCM algorithm [3], as candidates for a
future standard in authenticated encryption.

We show software optimization techniques for the NORX family of algorithms,
targeting ARM processors. We choose ARM processors due to their widespread usage in
consumer electronics, such as IOT devices, smartphones, embedded devices, and gadgets.

In this section, we will provide some background on the concepts used throughout
the paper regarding AE, cryptographic competitions, and sponge functions. In Section 2,
we will give a brief description of the NORX algorithm, and in Section 3 we will show the
main characteristics of the target architecture. Section 4 will describe our implementation
techniques and in Section 5, we will present benchmarks and discuss the results.A final
conclusion is given in Section 6.

1.1. AEAD Algorithms

An authenticated encryption scheme is an algorithm that uses a secret key and a public
nonce to process a plaintext and generate a ciphertext and an authentication tag. Further-
more, an AE scheme can also receive extra data that is authenticated together with the
plaintext. In that mode of operation, this scheme is called Authenticated Encryption with
Additional Data (AEAD). Such a scheme is useful, for example, to encrypt the body of a
message, while keeping the receiving address in plain form, and authenticating the whole.
This way, the recipient of a message can guarantee that public data was not modified by a
third party. A basic block diagram of an authenticated encryption algorithm is shown in
Figure 1.

Formally an AEAD scheme is defined by the tuple Π = (K, E ,D) and the asso-
ciated sets Nonce = {0, 1}n, Header ⊂ {0, 1}∗ and Message ⊆ {0, 1}∗. The Message
set must satisfy the membership test M ∈ Message ⇒ M ′ ∈ Message for any M ′ with
the same length of M . The keyspace K is a non-empty finite set of strings. The en-
cryption algorithm E is a deterministic algorithm that receives as input strings K ∈ K,
N ∈ Nonce, H ∈ Header and M ∈ Message. The encryption algorithm returns a string
C = EN,H

K (M) = EK(N,H,M). The decryption algorithm D is a deterministic algorithm
that receives as input the strings K ∈ K, N ∈ Nonce, H ∈ Header and C ∈ {0, 1}∗ and
returns DN,H

K (C) = DK(N,H,C), that is either a string from the set of possible messages,
or a symbol ⊥ meaning that the set of ciphertext, nounce and key is invalid. Beyond that, it
is required that DN

K(ENK (M)) = M for all K ∈ K, N ∈ Nounce and M ∈ Message, and
that |EN,H

K | = l(|M |) for some linear-time length function l [4].

Figure 1. Basic block design of an AEAD, where ciphertext and authentication
tag are produced by processing plaintext, additional data, key, and nonce.

1.2. The CAESAR competition

The algorithm considered in this paper is a competitor of the third round of CAESAR
–Competition for Authenticated Encryption: Security, Applicability, and Robustness. Fol-
lowing the footsteps of previous competitions, such as the AES, eSTREAM, and SHA,
CAESAR aims to select a portfolio of authenticated ciphers that offer advantages over

Figure 2. The basic design of a sponge function, showing the absorption and
squeeze processes [7].

NIST’s AES-GCM and that are suitable for widespread adoption. The AES competition is
regarded as one of the responsible for promoting an improvement in the scientific knowl-
edge about block ciphers. Similarly, eSTREAM [5] and SHA-3 [6] promoted research
in the areas of stream ciphers and hash functions, and it is expected that the CAESAR
competition brings the same impact in the research area of authenticated ciphers [2].

1.3. Sponge function

A cryptographic sponge function, introduced as a primitive for authenticated encryption in
[7] and as a general cryptographic function in [8][9], is an algorithm with a finite internal
state that receives as input a string of any length and produces as output a string of any
desired length. Sponge functions can be used to create various cryptographic primitives,
such as hash functions, MACs, stream ciphers, pseudorandom number generators and
authenticated encryption schemes. A sponge function can be imagined as a real-world
sponge, where data is absorbed and then squeezed from it.

A sponge is based on three main components: A state S of b bits, subdivided into
rate and capacity sections of respectively r and c bits; a round permutation function F l

of b bits with a round number l defined in terms of a permutation F of b bits as the l-fold
iteration F l(S) = F (F (...F (S))) which is used to transform the state in each round; and a
padding rule P for the input. A sponge works by initializing the state value and “absorbing”
r bits from the padded input and transforming the state with F l(S). After that, the sponge
is ready to be “squeezed”, removing up to r bits before needing to evaluate F l(S) again.
Figure 2 illustrates the operation of a sponge [7]. An example of a practical use of sponge
functions in cryptographic primitives is the SHA-3[6] hash algorithm, that uses a 1600-bit
sponge.

2. The NORX AEAD family of algorithms
NORX is an AEAD scheme created by Jean-Philippe Aumasson, Philipp Jovanovic and
Samuel Neves [10], supporting associated data in the form of both headers and trailers.
NORX also supports arbitrary parallelism and is optimized for efficient hardware and
software implementations, with a SIMD-friendly construction, no secret array indexing,
and only bitwise operations. ARX primitives are thoroughly used, without modular
additions, and is based on the monkey-duplex construction. NORX’s core permutation

Table 1. The five instances of NORX
Instance name w l p t k n
NORX64-4-1 64 4 1 256 256 128
NORX32-4-1 32 4 1 128 128 64
NORX64-6-1 64 6 1 256 256 128
NORX32-6-1 32 6 1 128 128 64
NORX64-4-4 64 4 4 256 256 128

function is based on ChaCha’s permutation [11], with the integer addition (a + b) replaced
by the approximation1a⊕ b⊕ (a∧ b)� 1, which in turn –according to the design team of
NORX– simplifies cryptanalysis and improves hardware efficiency [10].

The NORX family of algorithms is parametrized by the word size in bits w; a round
number ` with 1 ≤ ` ≤ 63; a parallelism degree p with 0 ≤ p ≤ 255 (where p = 0 defines
arbitrary parallelism) and a tag t. Regarding the key length, NORX32 uses a 128-bit key,
NORX64 a 256-bit key, while NORX16 and NORX08 use a 96-bit and an 80-bit key
respectively. The 32 and 64-bit versions of NORX also use an n = 2w bits nonce; the 8-bit
and 16-bit variants have a nonce of n = 32 bits. On the CAESAR submission, Aumasson
et al. [10] propose five instances of NORX for different uses cases. They are listed in Table
1, from the highest recommendation at the top to the lowest. The naming convention for a
specific instance of the algorithm is NORXw-l-p-t, with w, l, p and t being the instance
parameters. When the tag length is the default t = 4w, then the notation is shortened as
NORXw-l-p.

NORX parametrized with w = 32 bits is adequate for lightweight applications and
resource-constrained environments, requiring small hardware area and small ROM size for
software implementations. On the other hand, the instances with w = 64 bits are adequate
for high-performance and high-security applications, being efficient in both 64-bit and
32-bit CPUs2. Requirements for ASIC implementations are about 64 kGE, and at most
64 bytes of ROM for the initialization constants. It is also possible to implement NORX
using only one byte plus the sponge size of data in RAM [10].

In the following sections, we will show in more details the specification of NORX,
as given in [10].

2.1. NORX’s mode of operation

NORX follows a duplexed sponge layout, as shown in Figure 3. NORX’s construction
allows parallel processing of the payload, defined by p. For serial processing, with p = 1,
the layout of NORX is that of a standard duplexed sponge. For a value p > 1, the number
of parallel processing lanes is given by the value of p; for example, Figure 3 illustrates the
case of p = 2. For p = 0, the number of processing lanes is bounded by the size of the
payload itself, making the layout of NORX similar to that of the PPAE construction [12].

1This approximation is derived from the identity a+ b = (a⊕ b) + (a ∧ b)� 1.
2A draft of these use-cases can be found in the CAESAR mailing list at the address https://groups.

google.com/forum/#!topic/crypto-competitions/DLv193SPSDc.

Figure 3. The layout of NORX with parallelism degree p = 2. Notice that
the sponge is divided into multiple execution lanes in the payload processing
step. Those lanes can be computed in parallel, as there is no data dependency
amongst them. When p = 1 a single lane is executed, making the payload pro-
cessing similar to header and trailer processing. Based on a figure from [10].

2.2. NORX permutation function

NORX’s core is the permutation function F `(), applied to the NORX internal state S, with
` being the number of rounds. The state is a concatenation of 16 w-bit words in the form
S = s0 ‖ · · · ‖ s15, where the words s0, · · · , s11 are called the rate words, where data
is injected and extracted from, and the remaining words s12, · · · , s15 are called capacity
words. Conceptually, the state can be viewed as a 4× 4 matrix:

S =

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

A single permutation F () processes the state S by applying the G function to the

matrix’s columns and then diagonals. The G function is described in Algorithm 1, and the
permutation F is specified in Algorithm 2.

Algorithm 1 NORX G permutation function
1: Function G
2: input: a, b, c, d . Four words of the State
3: a← (a⊕ b)⊕ ((a ∧ b)� 1)
4: d← (a⊕ d) ≫ r0
5: c← (c⊕ d)⊕ ((c ∧ d)� 1)
6: b← (c⊕ b) ≫ r1
7: a← (a⊕ b)⊕ ((a ∧ b)� 1)
8: d← (a⊕ d) ≫ r2
9: c← (c⊕ d)⊕ ((c ∧ d)� 1)

10: b← (c⊕ b) ≫ r3
11: output: a, b, c, d
12: end Function

NORX’s encryption and decryption primitives can be described by Algorithm 3
and 4, where header, branch, payload, merge, trailer and tag are domain

Algorithm 2 NORX F round function
1: Function F
2: input: S,G() . Norx State s0 · · · s15 and G() function
3: /* Processing the columns */
4: s0, s4, s8, s12 ← G(s0, s4, s8, s12)
5: s1, s5, s9, s13 ← G(s1, s5, s9, s13)
6: s2, s6, s10, s14 ← G(s2, s6, s10, s14)
7: s3, s7, s11, s15 ← G(s3, s7, s11, s15)
8: /* Processing the diagonals */
9: s0, s5, s10, s15 ← G(s0, s5, s10, s15)

10: s1, s6, s11, s12 ← G(s1, s6, s11, s12)
11: s2, s7, s8, s13 ← G(s2, s7, s8, s13)
12: s3, s4, s9, s14 ← G(s3, s4, s9, s14)
13: output: S
14: end Function

separation constants; K is the key, N is the nonce, A is the additional data to be processed
before the plaintext, Msg is the plaintext, Z is the additional data to be processed after the
plaintext, Tag is the authentication tag, and Cipher is the ciphertext. For more details
on the algorithm’s description, the reader is invited to read chapter 2 of [10].

Algorithm 3 NORX AEAD encryption
1: Function ENCRYPT(K,N,A,Msg, Z)
2: S ← initialise(K,N)
3: S ← absorb(S,A, header)
4: S̄ ← branch(S, |Msg|, branch)
5: S̄, Cipher ← encrypt(S̄,M, payload)
6: S ← merge(S̄, |M |, merge)
7: S ← absorb(S,Z, trailer)
8: S, Tag ← finalise(S, tag)
9: return Cipher, Tag

10: end Function

3. Platforms - ARM processors
In this section, we will briefly describe the target architecture of this work. The ARM
–Advanced RISC Machine– architecture is a mainly 32-bit architecture owned by the
British company ARM Holdings. The ARM architecture was introduced in 1985, and with
more than 86 billion chips produced up to 2016, it has a big share of the consumer and
embedded processor market [13].

The 32-bit ARM processors feature a Load/Store architecture without support
for unaligned memory accesses, uniform 16×32-bit registers, and mostly a single clock
cycle execution. Beyond that, the processors also feature conditional execution for most
instructions and a 32-bit barrel shifter that can be used without affecting the performance
with most arithmetic instructions and addresses calculations. The architecture can be
divided into three main family lines: Cortex-M, Cortex-A, and Cortex-R. The Cortex-M

Algorithm 4 NORX AEAD Decryption
1: Function DECRYPT(K,N,A,Cipher, Z, T)
2: S ← initialise(K,N)
3: S ← absorb(S,A, header)
4: S̄ ← branch(S, |C|, branch)
5: S̄,Msg ← decrypt(S̄, C, payload)
6: S ← merge(S̄, |C|, merge)
7: S ← absorb(S,Z, trailer)
8: S, Tag′ ← finalise(S, tag)
9: if Tag′ == T then return Msg, Tag

10: else
11: return ⊥ . Symbol for failed decryption
12: end if
13: end Function

cores are the simplest ones, with a focus on embedded systems with a low footprint and
low energy requirements. The Cortex-A cores are more powerful, with the focus on power
efficiency and they are deployed in a wide range of products. Lastly, the Cortex-R cores are
suitable for high-performance real-time systems, where a high reliability is needed [14].

In this paper, the software implementations focus on the Cortex-A cores, namely
Cortex-A7, A15, and A53, mainly for their large use in consumer electronics such as
smartphones and tablets. Benchmarks of the implementations were also carried on the
embedded processors containing Cortex-M4, M3, and M0 cores, as a way to evaluate the
optimization impact on simpler processors.

The main characteristics of the target cores of this work are as follows [14]:

• Cortex-A7: Currently the most power efficient ARMv7-A core, with over a billion
shipped units in production. The processor is capable of 40-bit physical addressing
and has an eight-stage in-order pipeline. The A7 core is compatible with higher
performance cores such as the Cortex-A15 and A17 for use with the big.LITTLE
technology, where high-performance cores are combined with highly efficient cores
in a heterogeneous computation approach.
• Cortex-A15: A high-performance ARMv7-A core, well suited to consumer items

such as smartphones and embedded applications. As with other processors of the
same line, it is capable of 40-bit physical addressing. It also features a 15 stage
pipeline for integer calculations.
• Cortex-A53: An ARMv8-A core capable of seamlessly running both 32-bit and 64-

bit code, and is made as an efficient 64-bit core for a low area and power footprint.
Like the Cortex-A7, it is capable of being deployed together with high-end CPUs
for chips with heterogeneous cores. The Cortex-A53 uses an efficient eight-stage
in-order pipeline.

4. Implementation and Techniques
In the next sections, we discuss the optimization techniques applied to NORX, in order to
obtain better performance in comparison to the state-of-art implementation [15]. Profiling
the code to identify hotspots of interest to optimize was the first step in this work. For that,

the Linux tool perf was used to analyze the code. Results are shown in Figure 4. Notice
that the call for sha256_compress, responsible for 8.86% of overhead, is not a part of
NORX. Instead, it is used to generate pseudorandom inputs for the algorithm benchmark,
and should not be considered into optimization efforts.

Figure 4. The result of the analysis of NORX, showing that the round function
is responsible for about 70% of overhead. Tests carried out on an Odriod XU4
device, with a Cortex-A15 core.

4.1. Improving the use of the processor’s pipeline

The function G is executed on the columns and then on the diagonals of the 4× 4 matrix
representation of NORX State, using Algorithm 5 for each column and diagonal. Since
there is no dependency between each column and diagonal, the function G can be rewritten
in a way that each step of G is executed right after the other, for each column or diagonal.
This way, the execution can be arranged in groups of two columns or four columns. This
approach allows a better use of the pipeline, improving the execution performance. Figure
5 illustrates the idea behind both approaches to optimize the function G.

Algorithm 5 NORX original implementation of G function
1: Function G
2: input: a, b, c, d . Four words of the State
3: a = (a⊕ b)⊕ ((a ∧ b)� 1)
4: d = d⊕ a
5: d = ROR(d,r0)
6: c = (c⊕ d)⊕ ((c ∧ d)� 1)
7: b = b⊕ c
8: b = ROR(b,r1)
9: a = (a⊕ b)⊕ ((a ∧ b)� 1)

10: d = d⊕ a
11: d = ROR(d,r2)
12: c = (c⊕ d)⊕ ((c ∧ d)� 1)
13: b = b⊕ c
14: b = ROR(b,r3)
15: output: a, b, c, d
16: end Function
17: Function F
18: input: S,G() . Whole Norx State and permutation function.
19: (s0, s4, s8, s12)← G(s0, s4, s8, s12) . column step
20: (s1, s5, s9, s13)← G(s1, s5, s9, s13)

21: (s2, s6, s10, s14)← G(s2, s6, s10, s14)
22: (s3, s7, s11, s15)← G(s3, s7, s11, s15)
23: (s0, s5, s10, s15)← G(s0, s5, s10, s15) . diagonal step
24: (s1, s6, s11, s12)← G(s1, s6, s11, s12)
25: (s2, s7, s8, s13)← G(s2, s7, s8, s13)
26: (s3, s4, s9, s14)← G(s3, s4, s9, s14)
27: output: S
28: end Function

Figure 5. Illustration of two possible ways to reinterpret the G function; on the
left, the original one. On the center, the 4-way pipeline, and on the right, the
two-way pipeline. Notice that it is only shown the first column transformation.

In this way, the optimized code of function G for a 4-way pipeline is described
in Algorithm 6 and the same function, optimized for a 2-way pipeline is described in
Algorithm 7. In those algorithms ROR(a, r) is the bitwise right rotation of a by r bits;
ROR({a, b, c, d}, r) is each word in the tuple {a,b,c,d} rotated by r bits and
r1, r2, r3, r4 are NORX rotation constants. Notice that, in order to execute a complete
F () function, G4() must be called twice, with a different argument order in the second call
to execute the diagonal step. Similarly, G2() must be called a total of four times in order
to execute the column and diagonal steps.

Algorithm 6 The function G with 4-way pipeline optimization
1: Function G4
2: input: S . Whole Norx State
3: s0 = (s0 ⊕ s4)⊕ ((s0 ∧ s4)� 1)
4: s1 = (s1 ⊕ s5)⊕ ((s1 ∧ s5)� 1)
5: s2 = (s2 ⊕ s6)⊕ ((s2 ∧ s6)� 1)
6: s3 = (s3 ⊕ s7)⊕ ((s3 ∧ s7)� 1)
7: s12 = s12 ⊕ s0 ; s13 = s13 ⊕ s1
8: s14 = s14 ⊕ s2 ; s15 = s15 ⊕ s3
9: {s12, s13, s14, s15} = ROR({s12, s13, s14, s15},r0)

10: s8 = (s8 ⊕ s12)⊕ ((s8 ∧ s12)� 1)
11: s9 = (s9 ⊕ s13)⊕ ((s9 ∧ s13)� 1)
12: s10 = (s10 ⊕ s14)⊕ ((s10 ∧ s14)� 1)
13: s11 = (s11 ⊕ s15)⊕ ((s11 ∧ s15)� 1)
14: s12 = s12 ⊕ s0 ; s13 = s13 ⊕ s1
15: s14 = s14 ⊕ s2 ; s15 = s15 ⊕ s3
16: {s4, s5, s6, s7} = ROR({s4, s5, s6, s7},r1)
17: s0 = (s0 ⊕ s4)⊕ ((s0 ∧ s4)� 1)

18: s1 = (s1 ⊕ s5)⊕ ((s1 ∧ s5)� 1)
19: s2 = (s2 ⊕ s6)⊕ ((s2 ∧ s6)� 1)
20: s3 = (s3 ⊕ s7)⊕ ((s3 ∧ s7)� 1)
21: s12 = s12 ⊕ s0 ; s13 = s13 ⊕ s1
22: s14 = s14 ⊕ s2 ; s15 = s15 ⊕ s3
23: {s12, s13, s14, s15} = ROR({s12, s13, s14, s15},r2)
24: s8 = (s8 ⊕ s12)⊕ ((s8 ∧ s12)� 1)
25: s9 = (s9 ⊕ s13)⊕ ((s9 ∧ s13)� 1)
26: s10 = (s10 ⊕ s14)⊕ ((s10 ∧ s14)� 1)
27: s11 = (s11 ⊕ s15)⊕ ((s11 ∧ s15)� 1)
28: s12 = s12 ⊕ s0 ; s13 = s13 ⊕ s1
29: s14 = s14 ⊕ s2 ; s15 = s15 ⊕ s3
30: {s4, s5, s6, s7} = ROR({s4, s5, s6, s7},r3)
31: output: S
32: end Function

Algorithm 7 The function G with 2-way pipeline optimization
1: Function GH
2: input: s0, s1, s4, s5, s8, s9, s12, s13
3: . Either two columns or diagonals of State.
4: s0 = (s0 ⊕ s4)⊕ ((s0 ∧ s4)� 1)
5: s1 = (s1 ⊕ s5)⊕ ((s1 ∧ s5)� 1)
6: s12 = s12 ⊕ s0
7: s13 = s13 ⊕ s1
8: s12 = ROR(s12,r0)
9: s13 = ROR(s13,r0)

10: s8 = (s8 ⊕ s12)⊕ ((s8 ∧ s12)� 1)
11: s9 = (s9 ⊕ s13)⊕ ((s9 ∧ s13)� 1)
12: s4 = s4 ⊕ s8
13: s5 = s5 ⊕ s9
14: s4 = ROR(s4,r1)
15: s5 = ROR(s5,r1)
16: s0 = (s0 ⊕ s4)⊕ ((s0 ∧ s4)� 1)
17: s1 = (s1 ⊕ s5)⊕ ((s1 ∧ s5)� 1)
18: s12 = s12 ⊕ s0
19: s13 = s13 ⊕ s1
20: s12 = ROR(s12,r2)
21: s13 = ROR(s13,r2)
22: s8 = (s8 ⊕ s12)⊕ ((s8 ∧ s12)� 1)
23: s9 = (s9 ⊕ s13)⊕ ((s9 ∧ s13)� 1)
24: s4 = s4 ⊕ s8
25: s5 = s5 ⊕ s9
26: s4 = ROR(s4,r3)
27: s5 = ROR(s5,r3)
28: output: s0, s1, s4, s5, s8, s9, s12, s13
29: end Function
30: Function G2

31: input: S,GH() . Whole Norx State and the 2-col permutation
32: (s0, s1, s4, s5, s8, s9, s12, s13)← GH(s0, s1, s4, s5, s8, s9, s12, s13)
33: (s2, s3, s6, s7, s10, s11, s14, s15)← GH(s2, s3, s6, s7, s10, s11, s14, s15)
34: output: S
35: end Function

In algorithm 7, the even numbered lines execute G() on a line or column of the
internal state, while the odd numbered lines execute the same instruction on a independent
line or column of the state. This allows issue of independent xor instructions, such as in
lines 6 and 7. Similarly, the same will happen with and and lsh instructions. The same
idea is applied further on 6, but instead of only issuing instructions for two independent
sets of state words, the whole state is operated at once. This allows the code to issue most
of instructions in sets of four, without dependencies amongst them. This is specially useful
for processors with a deep pipeline.

Regarding the security of those optimizations, we used Flowtracker to analyze the
behavior of the algorithm, and the code runs in constant time. Beyond that, NORX is
resistant against side-channel attacks by design, with cryptanalysis regarding differential,
algebraic, fixed-point, slide, and rotational attacks, [10]. Furthermore, there are no table-
lookups, no branching, or loops dependent on secret data. For implementation correctness,
we compared our outputs with the reference algorithm, using the same set of input data.
We verified internal consistency using encryption-decryption of random sets of plaintext,
nonce, and keys.

4.2. Code improvements
A few minor improvements were also applied on the code. The ones with a positive impact
on the code performance were:

• Extensive use of preprocessor macros and function inlining, which avoids overhead
while still keeping code readability.
• Avoid the use of temporary variables whenever possible, doing most of the encryp-

tion, decryption, and additional data processing in place.
• Using a prefix operation instead of a postfix one on loop counters yields small

improvements, more visible on Cortex-M based processors.
• Initialize the sponge using constants instead of calculating it as
F 2(0 ‖ 1 ‖ 2 ‖ · · · ‖ 15), where each number j is represented as using w bits.
• Where possible, concatenate shift and rotate operations together with arithmetic

operations, as to allow the use of the target processor’s barrel shifter, making the
shift operation free.

Other approaches were tested, such as replacing memcpy() calls with loops, manually
unrolling loops and changing memory alignment. Those did not impact the performance
in any significant way, resulting in negligible variations in cycle count.

5. Benchmarks and results
The benchmarks were carried out on an Odroid XU4 device running Arch Linux for
the Cortex-A7 and Cortex-A15 cores, and on an Odroid-C2 device for the Cortex-A53,
running the same OS. The code was compiled using GCC 6.3.1. Each test consists of
the encryption of random data from /dev/urandom with lengths between 128 bytes

to 1 megabyte in powers of two increments. Tests were also carried on an Arduino
Zero, with a Cortex-M0 core; an Arduino Due with a Cortex-M3 core and a Teensy
3.2 with a Cortex-M4 core. On the Cortex M4, M3, and M0 devices, the codes were
compiled using arm-none-eabi-gcc 4.8.3. The compilation flags used were:
-O3 -Wall -Wextra -std=c99 -fno-schedule-insns -fomit-frame-pointer

-Wno-old-style-declaration -funroll-loops -fpeel-loops We consider that
the cycle counter on the target processors show consistent values, and it is adequate to
compare our implementations with the reference ones. For ARM-v7-A architecture, the
following inline assembler code is used to enable the access to performance counter, and
return the value of the performance registers which can be used to measure elapsed clock
cycles between calls of the instruction asm("mrc p15, 0, %0, c9, c13, 0"
: "=r"(value));. For AArch64 compatible processors, the following code is used:
asm ("mrs %0, pmccntr_el0" : "=r" (r)); .

Lastly, these calls are done before and after the call to the encryption or decryption
function, and with the difference between the two measures, the average cycle per byte
is measured, and the median of multiple measurements is reported in this work. This
methodology is similar to the one used by SUPERCOP (System for Unified Performance
Evaluation Related to Cryptographic Operations and Primitives)[16].

Table 2. Cycles per byte for NORX encryption. Plaintext length of 256KiB on the
32bit processors. The best result for each plataform and cypher is in bold type.

Ref. code 4x pipe 2x pipe Speedup

NORX 3261 Cortex A7 29.45 29.70 24.72 16%
Cortex A15 17.77 14.23 15.16 20%

NORX 6461 Cortex A7 48.52 50.09 46.65 4%
Cortex A15 33.83 26.76 28.33 21%

NORX 3264 Cortex A7 28.46 33.74 26.50 7%
Cortex A15 16.88 15.26 15.37 10%

Table 3. Cycles per byte for NORX encryption on the 64-bit platform. Plaint text
length of 256KiB. The best result for each plataform and cypher is in bold type.

Ref. 4x pipe 2x pipe Speedup
NORX 3261 19.55 10.94 12.27 44%
NORX 6461 10.29 5.84 6.58 43%
NORX 3264 19.42 12.08 13.06 38%

In Table 2, we show the results for the 32-bit processors, namely Cortex A7 and
A15; in Table 3 we show the results for the 64-bit Cortex A53 processor; lastly, in Table 4,
we show the results on Cortex-M processors. We choose to show the average CBP –cycle
per byte– with an input length of 256KiB since it better dilutes the overhead values, without
risking overflow on the cycle counting registers, except in the Cortex-M based processors,
due to memory constraints.

For the 32-bit variant of NORX, a 4× pipeline implementation is faster than the
reference code in up to 20% on a 32-bit ARM and 44% on the 64-bit Cortex-A53. Our
optimized implementation is faster than the reference NEON implementation: the 2×
pipeline implementation is 12% faster than the reference code on the Cortex A7 core; the

Table 4. Perfomance of NORX3261 (cycles per byte) on 32-bit Cortex-M architec-
ture.

Cortex
model Size

No pipeline
optimizations Ref. code 4x pipe 2x pipe

M0 8KiB 99.52 100.12 111.84 99.96
M3 32KiB 49.96 50.49 67.21 66.26
M4 16KiB 49.96 50.49 47.28 66.26

4× pipeline implementation is 22% faster on the Cortex A15. While NORX has a SIMD
friendly construction, with the internal state fitting in four 128-bit NEON registers, there
are two extra transformations needed in each application of the function G in order to
align the words between the column and diagonal steps. This transformation requires three
extra pairs of SIMD load and store instructions, two vext.8 instructions, and a vwsp
instruction. We believe that this, together with the extra cost needed to transfer data from
the NEON registers back to the ARM registers every round, coupled with the optimal
usage of the pipeline makes our solution better than using SIMD instructions for these
cores.

For the 64-bit variant of NORX, a 2× pipeline is better suited for the Cortex-A7
processor, and a 4× pipeline for the Cortex-A15 processor, due to the differences in pipeline
length. With SIMD instructions being adequate for larger volume of data, NORX6461 on
the 32-bit platform shows better performance using SIMD instructions, mainly due to the
64-bit word rotations being expensive using the 32-bit ARM registers, in comparison to
the neon approach, where the rotations of two words can be done at the same time in the
128-bit register. For Cortex A53, both pipeline implementations show satisfactory results,
being 43% faster than the reference code. In relation to a NEON implementation, the 4×
pipeline implementation is 39% faster and the 2× pipeline implementation is 31% faster.
Similar to NORX3261, the presence of a native 64-bit register and a deep pipeline with 8
stages makes a pipeline oriented approach superior to the SIMD alternative.

The multisponge approach, NORX3264, shows similar behavior to that of the
32-bit single-sponge algorithm. Table 2 and Table 3 show the execution times for a single
thread implementation running on a single core. The multisponge algorithm is better suited
for a multithread implementation, with each thread being responsible for a instance of the
internal state. Our tests show that such an approach can result in up to 76% speedup, in
relation to the single thread implementation.
6. Conclusions
This work shows how a pipeline oriented optimization can yield significant performance
improvements on an authenticated encryption algorithm, specifically NORX, outperform-
ing NEON vectorial code in some situations, while at the same time using only portable
C code. These optimizations also result in little to no performance penalties on smaller
Cortex-M cores. We believe that these techniques can also be applied to other algorithms
that use similar constructions, resulting in a better performance with little drawbacks.

7. Aknowledgements
This work was supported by LG Electronics via the ”Crypto for IOT” project. The second
author was partially supported by a research productivity grant from CNPq. We thank

Diego Aranha for helping with the benchmark platforms.

References
[1] J. Aumasson, P. Jovanovic, and S. Neves, “NORX v3.0,” norx.io/data/norx.pdf, Sep. 2016.

[Online]. Available: norx.io/data/norx.pdf

[2] C. CAESAR, “Competition for authenticated encryption: Security, applicability,
and robustness,” http://competitions.cr.yp.to, Apr. 2013. [Online]. Available:
http://competitions.cr.yp.to

[3] M. J. Dworkin, “Recommendation for block cipher modes of operation: Galois/counter
mode (gcm) and gmac,” Special Publication (NIST SP)-800-38D, 2007.

[4] P. Rogaway, “Authenticated-encryption with associated-data,” in ACM Conference on
Computer and Communications Security. ACM, 2002, pp. 98–107.

[5] M. Videau, “estream,” in Encyclopedia of Cryptography and Security (2nd Ed.). Springer,
2011, pp. 426–427.

[6] B. Preneel, “AHS competition/sha-3,” in Encyclopedia of Cryptography and Security (2nd
Ed.). Springer, 2011, pp. 27–29.

[7] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Duplexing the sponge: single-pass
authenticated encryption and other applications,” IACR Cryptology ePrint Archive,
vol. 2011, p. 499, 2011.

[8] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Sponge functions,” in ECRYPT
hash workshop, vol. 2007. Citeseer, 2007.

[9] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “On the indifferentiability of the
sponge construction,” in EUROCRYPT, ser. Lecture Notes in Computer Science, vol.
4965. Springer, 2008, pp. 181–197.

[10] J. Aumasson, P. Jovanovic, and S. Neves, “NORX: parallel and scalable AEAD,” in
ESORICS (2), ser. Lecture Notes in Computer Science, vol. 8713. Springer, 2014,
pp. 19–36.

[11] D. J. Bernstein, “Chacha, a variant of salsa20,” in Workshop Record of SASC, vol. 8, 2008.

[12] A. Biryukov and D. Khovratovich, “PAEQ: parallelizable permutation-based authenticated
encryption,” in ISC, ser. Lecture Notes in Computer Science, vol. 8783. Springer,
2014, pp. 72–89.

[13] A. Holdings, “Arm: Media fact sheet,” https://www.arm.com/-/media/arm-com/news/
ARM-media-fact-sheet-2016.pdf?la=en, Sep. 2016. [Online]. Available: https:
//www.arm.com/-/media/arm-com/news/ARM-media-fact-sheet-2016.pdf?la=en

[14] ——, “Processors cortex-a,” http://www.arm.com/products/processors/cortex-a, Mar. 2017.
[Online]. Available: http://www.arm.com/products/processors/cortex-a

[15] J. Aumasson, P. Jovanovic, and S. Neves, “Norx reference implementations (software),”
https://github.com/norx/norx, 2015.

[16] D. J. Bernstein, “Supercop: System for unified performance evaluation related to crypto-
graphic operations and primitives,” 2009.

