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Abstract The constant evolution of mobile devices’ resour-
ces and features turned ordinary phones into powerful and
portable computers, leading their users to perform payments,
store sensitive information and even to access other accounts
on remote machines. This scenario has contributed to the
rapid rise of new malware samples targeting mobile plat-
forms. Given that Android is the most widespread mobile
operating system and that it provides more options regard-
ing application markets (official and alternative stores), it has
been the main target for mobile malware. As such, markets
that publish Android applications have been used as a point
of infection for many users, who unknowingly download
some popular applications that are in fact disguised malware.
Hence, there is an urge for techniques to analyze and identify
malicious applications before they are published and able to
harm users. In this article, we present a system to dynami-
cally identify whether an Android application is malicious or
not, based on machine learning and features extracted from
Android API calls and system call traces. We evaluated our
system with 7,520 apps, 3,780 for training and 3,740 for test-
ing, and obtained a detection rate of 96.66 %.
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1 Introduction

Mobile devices have been ubiquitously widespread as per-
sonal and professional tools whose computing power is
approaching that of ordinary desktop computers. Conse-
quently, smartphone users are able to do more complex tasks
with their devices, such as producing documents and spread-
sheets, making video conferences and managing their Inter-
net Banking accounts. These users are now storing all sorts
of sensitive information on their devices (e.g., bank creden-
tials, corporate documents), effectively creating an interest-
ing and potentially lucrative scenario for cybercriminals. To
take advantage of this situation, attackers are ramping up the
creation of malicious applications that affect mobile devices.

Since Android is the most widespread operating system
for mobile devices [7], it is the main target of mobile malware.
According to Juniper [11], the amount of malicious appli-
cations discovered between March 2012 and March 2013
has increased 614 %, considering all mobile platforms. In
addition, the same report states that 92 % of every malware
that affects mobile devices targets the Android operating sys-
tem. Users obtain Android applications mostly from markets,
including Google Play—Google’s official market—and oth-
ers known as “alternatives”. In order to infect users’ devices,
attackers submit to markets malware that look like legiti-
mate applications, such as games. In fact, many of the avail-
able malware are repackaged versions of legitimate applica-
tions, i.e., applications modified to include malicious code
and republished in the markets.

Some works in the literature refer to the presence of mali-
cious applications both in the official market and in alterna-
tive ones [8,24]. They show that the official market does a
better job at filtering out malicious applications, but nonethe-
less is still used as a vector to infect users. Addressing this
issue requires the development and deployment of improved
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techniques to analyze and identify malicious Android appli-
cations.

To that effect, several approaches based on static and
dynamic analysis have been proposed to detect malicious
Android applications [4,14,17,22,24], but all of them present
shortcomings regarding their detection scope or ability.
Firstly, approaches that rely on static analysis of the applica-
tion’s code have a hard time dealing with highly obfuscated
samples [12] and only analyze code packed with the applica-
tion file, missing code that can be downloaded and executed
at runtime [13]. Secondly, although Android malware sam-
ples do not make use of obfuscation techniques as heavy as
those affecting Windows desktops, the natural evolution of
Android malware will inevitably lead to the improvement
of obfuscation techniques currently used [15], turning sta-
tic analysis into a difficult proposition. Moreover, dynamic
analysis approaches usually suffer from not being able to
observe the malicious behavior of some samples due to their
ever growing awareness of the analysis environment, to the
lack of appropriate stimulation under the analysis environ-
ment or else to the inability of the malware sample under
analysis to obtain some required external data.

In general, detection techniques for Android malware
use statically extracted data from the manifest file or from
Android API function calls, as well as dynamically obtained
information from network traffic and system call tracing.
However, most articles available in the literature whose focus
lies on malware identification either use small datasets or
require manual steps at some stage of the process. In this
paper, we present a system that identifies malicious Android
applications based on a machine learning classifier, using
dynamically obtained features. These features are extracted
from Android API function calls and system call traces. We
trained our classifier with 3,780 samples and tested it with
3,740 samples (with both datasets including malicious and
benign applications), which was then able to correctly clas-
sify 96.66 % of those samples. The results obtained were
compared to the ones from other Android malware detec-
tion approaches and demonstrate the relevance of our sys-
tem. Using a larger dataset, we obtained results similar to
the state-of-the-art, including static and dynamic approaches.
Furthermore, we show that features extracted from API func-
tion calls, which, as far as we know, were not used by other
automatic and dynamic approaches, are very good for the
identification of malware.

The main contributions of this paper are:

– We developed an analysis system to monitor Android
API function calls as well as system calls, in order to
gather information (features) required to detect malicious
behavior. Currently available systems are tied to Android
OS versions (some of them to older versions, such as 2.x)
or to the SDK-provided emulator, whereas our approach

is independent of the emulator and much more portable
as it does not modify Android OS;

– From that, we developed a system that classifies appli-
cations as benign or malicious and tested it with thou-
sands of apps, correctly classifying 96.66 % of them. To
accomplish better training and accuracy, we extract novel
features showing that those based on API function calls
greatly increase the detection rate.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a background about Android malware and
presents related work. The developed system is introduced
in Sect. 3, whereas evaluation results and discussion are pre-
sented in Sect. 4. Section 5 discusses some of the limitations
and, in Sect. 6, we conclude this paper and discuss some
follow-up work.

2 Background and related work

Based on reports from antivirus companies, the authors
of [6] describe the behavior of 46 malware samples col-
lected between January 2009 and June 2011. The malicious
behaviors identified were the following: user information
stealing; premium calls and SMS messages1; SPAM SMS
messages; novelty and amusement2; user credential stealing;
search engine optimization; and ransom.

A similar study is presented in [23], but in this case the
authors analyzed the samples manually. They used a dataset
of 1,260 Android malware samples, which were collected
between August 2010 and October 2011 and were separated
in 49 malware families. The authors describe the behavior of
these samples and show information regarding their time of
discovery in the official market and in alternative ones. For
each family, they specify how the malware is installed, how
the malicious behavior is activated and what the malicious
payload is. Also, the authors indicate the events monitored
by the malware and the exploits used by them for privilege
escalation.

Android malware detection is a critical task towards pro-
tecting users of application markets and improving these
markets’ vetting processes. However, detection is intimately
bound to analysis, since features must be extracted so as to
generate signatures or behavioral profiles. There are systems
proposed in the literature that aim to analyze apps from mar-
kets in order to detect the presence of malware among them,
as well as others solely with the purpose of providing useful
information about static and dynamic characteristics of an
unknown application. We discuss some of these systems in
the following sections.

1 These actions generate costs to the user.
2 Some samples performed actions that seemed to be only useful for
the amusement of the author.
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2.1 Android malware analysis

Enck et al. [5] propose TaintDroid, a dynamic taint analysis
system, which tracks sensitive data flow to detect when it is
sent over the network. TaintDroid instruments the Android
virtual machine interpreter and some APIs to accomplish
system-wide taint tracking, but it does not handle native
code. Their results show that seemingly unsupicious appli-
cations often disclose sensitive data, such as location, UUID
and phone number. Although based on permissions granted
by users, the data exposure monitoring process requires the
application to be dynamically analyzed.

DroidBox [3] is a dynamic analysis system that builds
upon TaintDroid and provides API calls, network data and
data leaks, besides other important information.

Andrubis [10], which has a publicly available submission
interface, is a system whose goal is to analyze Android appli-
cations using static and dynamic techniques. In the static
analysis step, Andrubis collects information about required
permissions, components to communicate with the operat-
ing system, intent-filters and URLs found in the bytecode.
Dynamically-based information collection is accomplished
through instrumentation of the Dalvik VM, taint tracking
and network traffic capture. Andrubis is based on Taint-
Droid, DroidBox and other related projects. Yan and Yin
propose DroidScope [20], a virtual machine introspection-
based analysis system that bridges the semantic gap recon-
structing OS-level and Java-level semantic views from out-
side. They also developed additional analysis tools to provide
taint tracking and several levels of instruction tracing.

Spreitzenbarth et al. [16] present Mobile-Sandbox, a sys-
tem that combines static and dynamic analysis techniques
to obtain Android applications’ behavior. Mobile-Sandbox’s
static analysis includes parsing the manifest file and the
extracted bytecode, and aims to guide the dynamic analy-
sis process, which is based on TaintDroid and DroidBox.
In addition, Mobile-Sandbox monitors native code using the
ltrace tool and analyzes network traffic captured during
the application’s execution. Another system that uses both
static and dynamic analysis is AASandbox [2]. During sta-
tic analysis, the system decompiles the application to Java
code and look for suspicious patterns, such as the use of
Runtime.exec() and functions related to reflection. Dur-
ing the dynamic step, AASandbox runs the application on a
controlled environment and monitors system calls using a
kernel module.

2.2 Android malware detection

Zhou et al. [24] propose DroidRanger, a two-scheme sys-
tem based on signatures and heuristics that intends to detect
Android malware. On the one hand, the signature-based
scheme relies on common permissions and behavioral foot-

prints to identify samples from known families. On the other
hand, the heuristics-based filtering scheme identifies suspi-
cious behaviors (e.g., downloading and executing code from
Web and dynamic loading of native code). Applications iden-
tified as suspicious are manually analyzed and if they are
indeed malicious, the information necessary to detect sam-
ples from the same family in the signature-based step are
manually extracted.

Zheng et al. [22] propose DroidAnalytics, a system to
automatically collect, analyze and detect Android malware
that makes use of repackaging, code obfuscation or dynamic
payloads. Collection is accomplished by an extensible appli-
cation crawler that receives marketplaces (official and alter-
natives) or URLs as input. Collected applications are then dis-
assembled so as to obtain Android API calls. These API calls
are used within a three-level signature generation process,
which extracts malware features at the opcode level to iden-
tify variants. The dynamic analysis step consists of running
samples that present network behavior, inside an emulator,
in order to download additional pieces of code.

Sanz et al. [14] introduce PUMA, an Android malware
detection method based on machine learning that uses infor-
mation obtained from application’s permissions. To evaluate
their method, they collected 1,811 supposedly benign appli-
cations of several categories from Android Market and 249
unique malicious samples from the VirusTotal database. The
features used to represent each sample are based on the set of
permissions and the device’s features required by the appli-
cation. Using this information, the authors evaluated eight
algorithms available in the WEKA framework and concluded
that RandomForest provided the best results.

Elish et al. [4] propose a tool to determine whether
unknown applications are malicious or not based on static
data dependence analysis, aiming to identify software execu-
tion patterns related to the correlation of user inputs with criti-
cal function calls. They construct a data dependence graph for
each analyzed application, which can then be used in compar-
isons to identify stealthy Android malware. Although their
results show that the analyzed malware samples are distin-
guishable from the legitimate applications, since the former
performed sensitive function calls without any user input.

Wu et al. [19] propose DroidMat, a detection system
based on clustering techniques applied to statically extracted
features from the application’s manifest file (permission,
component and intent information) and permission-related
Android API call traces from the application’s bytecode. The
process for evaluating the system applied four combinations
of clustering and classification algorithms to analyze a dataset
of 1,500 benign applications (downloaded from GooglePlay)
and 238 malicious ones, and resulted in 97.87 % accuracy.

Another system that performs Android malware detection
using features obtained statically is DREBIN [1]. This sys-
tem uses machine learning and features extracted from the
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Fig. 1 System overview

manifest and the dex code of applications. The authors per-
formed experiments with 123,453 benign samples and 5,560
malicious samples and the system obtained 93 % of accuracy.

Su et al. [17] present a smartphone dual defense protection
framework to perform detection of malicious applications,
using machine learning, as they are submitted for release
on Android markets. Their approach consists of dynamically
analyzing a new application to collect two sets of features:
one related to system call tracing and the other related to
network traffic statistics. A system call monitoring process
makes use of the Linux’s strace tool and restricts itself to
15 (of almost 300) of them that are related to process, mem-
ory and I/O activities. The tcpdump tool is used to capture
network traffic, from which TCP/IP flows are extracted. The
training of the system calls classifier involved 200 benign and
180 malicious applications, whereas the training of the net-
work classifier involved 60 benign and 49 malicious applica-
tions. Both classifiers are based on WEKA’s implementation
of J.48 and RandomForest algorithms. The authors selected
70 benign and 50 malicious applications to evaluate their
classifiers and obtained an accuracy rate of 94.2 and 99.2 %
for J.48 and RandomForest, respectively.

3 System overview

Figure 1 presents the system overview. To identify mali-
cious applications, the developed system obtains informa-
tion about the application’s behavior using dynamic analysis.
This process is explained in Sect. 3.1. The obtained informa-
tion is comprised by Android API function calls and system
calls, and is fed to a processor, which extracts features from
the information. These features are composed by the fre-
quency of use of API functions and system calls, and are
used by a classifier to categorize the application as malicious
or benign. The feature extraction and classification processes
are explained in Sect. 3.2.

3.1 Data extraction

To obtain its behavior, the application is first instrumented
by APIMonitor3, a tool that modifies the application so

3 https://code.google.com/p/droidbox/wiki/APIMonitor.

that calls to certain functions are registered, along with the
parameters passed and the return value. We modified the
default_api_collection4 file, used by APIMonitor,
to include methods related to network access, process execu-
tion, string manipulation, file manipulation and information
reading. The instrumented version of the application is exe-
cuted for five minutes in the standard Android emulator—
distributed with the Android SDK.

The analysis of Android API function calls is important
because it allows the extraction of high-level information
about the behavior of applications. However, some applica-
tions use native code instead of Android API functions. Thus,
through the strace tool, we also monitor the system calls
executed by the application. Section 3.1.1 presents examples
of registered API function calls and system calls.

The advantages of our monitoring process are not need-
ing to modify the Android code and also being indepen-
dent of the virtualization platform. Analysis systems that
use a modified version of Android, such as TaintDroid [5],
Andrubis [10] and Mobile-Sandbox [16], need to be con-
stantly updated to the newest version of the Android sys-
tem, a task that is quite time-consuming, so that they are
able to analyze samples that target that particular version
of the operating system. Moreover, systems that use virtual
machine introspection, such as Droidscope [20], are depen-
dent on the virtualization platform (e.g., Qemu) and cannot
be used on a different virtualization platform or on a bare-
metal one.

On the negative side, the disadvantages of our moni-
toring system are the use of a monitoring tool inside the
analysis environment and the modification of the analyzed
sample. These actions make the system more detectable by
malware, which can stop the execution or execute benign
actions when it becomes aware of the analysis. The previ-
ously mentioned systems that use virtual machine introspec-
tion or a modified version of Android do not suffer from
that. Although in these cases the monitoring tool cannot
be detected, the malware sample can still detect the vir-
tual or emulated environment, if it is not a bare-metal plat-
form.

4 This file defines the functions that are monitored.
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3.1.1 Log examples

Listings 1 and 2 present examples of API function calls
registered by the instrumented application. Listing 1 presents
a call to a function that sends an SMS message. In this case the
destination number is “7132” and the message is “846978”.
Listing 2 presents a call to a function the executes a process.
The executed process is /data/data/org.zenth.
oughtflashrec/cache/asroot and the parameters
are /data/data/org.zenthought.flashrec/
cache/explXXXXXX, /data/data/org.zenthou-
ght.flashrec/cache/dump_image, recovery
and /mnt/sdcard/recovery-backup.img.

Listing 1 Call to send an SMS message

Landroid/telephony/SmsManager;−>sendTextMessage(Ljava/lang/
String;=7132

| Ljava/lang/String;=null
| Ljava/lang/String;=846978
| Landroid/app/PendingIntent;=null
| Landroid/app/PendingIntent;=null)V

Listing 2 Call to execute a process

Ljava/lang/Runtime;−>exec([Ljava/lang/String;={
/data/data/org.zenthought.flashrec/cache/asroot,
/data/data/org.zenthought.flashrec/cache/explXXXXXX,
/data/data/org.zenthought.flashrec/cache/dump_image,
recovery,
/mnt/sdcard/recovery−backup.img})Ljava/lang/Process;=Process[

id=541]

Listing 3 presents two calls to the execve system call.
They were both used to obtain information about the device,
one focusing on CPU information and the other on memory
information.

Listing 3 Examples of registered system calls

execve(‘‘/system/bin/cat’’, [‘‘/system/bin/cat’’, ‘‘/proc/cpuinfo
’’],

[‘‘ANDROID_SOCKET_zygote=9’’, ‘‘
ANDROID_BOOTLOGO=1’’,

‘‘EXTERNAL_STORAGE=/mnt/sdcard’’, ‘‘
ANDROID_ASSETS=/system/app’’,

‘‘PATH=/sbin:/vendor/bin:/system/s’’...,
‘‘ASEC_MOUNTPOINT=/mnt/asec’’, ‘‘

LOOP_MOUNTPOINT=/mnt/obb’’,
‘‘BOOTCLASSPATH=/system/framework/’’..., ‘‘

ANDROID_DATA=/data’’,
‘‘LD_LIBRARY_PATH=/vendor/lib:/sys’’..., ‘‘

ANDROID_ROOT=/system’’,
‘‘ANDROID_PROPERTY_WORKSPACE=8,327’’...]) = 0

execve(‘‘/system/bin/cat’’, [‘‘/system/bin/cat’’, ‘‘/proc/meminfo
’’],

[‘‘ANDROID_SOCKET_zygote=9’’, ‘‘
ANDROID_BOOTLOGO=1’’,

‘‘EXTERNAL_STORAGE=/mnt/sdcard’’, ‘‘
ANDROID_ASSETS=/system/app’’,

‘‘PATH=/sbin:/vendor/bin:/system/s’’...,
‘‘ASEC_MOUNTPOINT=/mnt/asec’’, ‘‘

LOOP_MOUNTPOINT=/mnt/obb’’,

‘‘BOOTCLASSPATH=/system/framework/’’..., ‘‘
ANDROID_DATA=/data’’,

‘‘LD_LIBRARY_PATH=/vendor/lib:/sys’’..., ‘‘
ANDROID_ROOT=/system’’,

‘‘ANDROID_PROPERTY_WORKSPACE=8,327’’...]) = 0

3.1.2 Analysis stimulation

Some actions of the malware are only carried out if certain
events are observed or if certain interactions with the graphic
interface are performed. To stimulate these actions we auto-
matically generate random events with the MonkeyRunner
tool, which is distributed with the Android SDK, and cre-
ate some events related to phone calls, SMS messages, geo-
graphic location and battery state, using the emulator.

As the events that interact with the graphic interface are
generated randomly, they may not lead the application to
execute the malicious code. One way to solve that is manu-
ally interacting with the applications during the analyzes, but
when analyzing a large number of applications, it becomes
too time-consuming. Another way to do this is by statically
identifying which interactions are necessary to reach the rel-
evant portions of the code and provide these interactions dur-
ing the analysis. This approach is used by [21], but their sys-
tem requires a modified version of the Android OS, which
may be a problem, as discussed earlier. Another way to do
this would be to identify the necessary interactions as done
by [21], but generate them without needing a modified ver-
sion of the OS. We leave this as a future work.

To make the analysis system more similar to the system of
a real user, making it harder for malware to identify it is being
analyzed, we changed the IMEI and phone number of the
device [18]. Moreover, we added some contact information.

3.2 Malware identification

The attributes used to classify the applications as malicious or
benign are extracted from the data obtained during dynamic
analysis. More precisely, we extract the amount of calls to
each one of the 74 monitored Android API functions and the
amount of calls to each one of 90 system calls5.

For example, after an analysis, if the API function calls
log produced the results illustrated in Listings 1 and 2,
and the system call trace produced Listing 3, the attributes
of the evaluated sample would be the following array:
1,1,0,...,0,2,0,...,0, in which the first two “1”
refer to the android/telephony/SmsManager;->
sendTextMessage and the java/lang/Runtime;
->execAPI function calls, and the following “zeroes” refer
to the frequency of the other API function calls, whereas the

5 The lists of API functions and system calls used are presented in
http://pastebin.com/T7Yfbksq and http://pastebin.com/5Xyjh8GS.
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Table 1 The amount of malicious and benign samples in the training
and testing datasets

Training Testing Total

Malicious 2,295 2,257 4,552

Benign 1,485 1,483 2,968

Total 3,780 3,740 7,520

“2” refer to the execve system call, followed by a sequence
of “zeroes” related to the remaining system calls’ frequen-
cies.

To create the classifier we first evaluated several algo-
rithms, using the Weka [9] framework, and the one that per-
formed best was RandomForest (with 100 trees). This exper-
iment is detailed in Sect. 4.2.

4 Evaluation

This section describes the datasets used in the evaluations,
the comparison of algorithms performed to select which one
would compose the classifier and the test carried out to eval-
uate the classification system, including a comparison with
other systems.

4.1 Datasets

The malicious application dataset is composed by sam-
ples from the “Malgenome Project” [23] and from a tor-
rent file acquired from VirusShare (http://tracker.virusshare.
com:6969/), totalling 4,552 samples. To compose the benign
dataset we developed a crawler to collect applications
from the AndroidPIT market (http://www.androidpit.com/).
Through it, we gathered 3,831 applications to compose the
benign dataset. These applications were submitted to Virus-
Total, a system that uses more than 40 antivirus systems to
scan the submitted file, and the ones that were detected by at
least one antivirus were removed. Hence, the benign dataset
contains 2,968 applications. In order to compose the train-
ing and testing datasets, we randomly split the malicious and
benign datasets. Table 1 shows the amount of malicious and
benign samples in the training and testing datasets.6

4.2 Evaluation of classification algorithms

In order to identify which algorithm to use in the classifier, we
compared the results obtained using several machine learn-
ing algorithms (the same ones used in [14]). For this test we

6 The lists with the SHA-1 hash values of the samples used
can be found at http://pastebin.com/0K9Xxj7U (training/malicious),
http://pastebin.com/FCp9pCsK (training/benign), http://pastebin.com/
ZwLnDPJd (testing/malicious) and http://pastebin.com/apV32ywX
(testing/benign).

Table 2 The algorithms and configurations used in the evaluation to
select the algorithm to be used by our classifier

Algorithm Configurations

RandomForest Number of trees {10, 50, 100}

J.48 Default

SimpleLogistic Default

NaiveBayes Default

BayesNet Search algorithm {K2, TAN}

SMO Kernel {PolyKernel, NormalizedPolyKernel}

IBk Value of k {1, 3, 5, 10}

Table 3 Comparison of the detection using several classification
algorithms over the training dataset with 10-fold validation

Algorithm Accuracy (%)

RandomForest 10 93.20

RandomForest 50 95.65

RandomForest 100 95.96

J.48 93.04

NaiveBayes 82.39

SimpleLogistic 67.92

BayesNet TAN 74.53

BayesNet K2 89.92

SMO PolyKernel 75.03

SMO NPolyKernel 85.45

IBk 1 89.92

IBk 3 87.60

IBk 5 86.85

IBk 10 83.70

used the training dataset mentioned before. Table 2 presents
the algorithms and configurations used in the comparison.
Furthermore, Table 3 presents the accuracy yielded by the 10-
fold validation performed using each algorithm. The accu-
racy was calculated as Accuracy = (T P+T N )

(T P+T N+F P+F N )
,

with FP being false-positive, FN being false-negative, TP
being true-positive and TN being true-negative. The algo-
rithm that achieved th best results was RandomForest with
100 trees. The RandomForest algorithm generates several
decision trees and chooses the one with the best results.

4.3 Detection evaluation

As the RandomForest algorithm (with 100 trees) yielded the
best results in the previous experiment, we used it to evaluate
our detection system. We trained the classifier using the train-
ing dataset and used it to classify the testing dataset. Table 4
presents the confusion matrix with the results of this test.
From the 2,257 malicious applications used for testing,
2,168 were correctly classified and 89 were false-negatives,
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Table 4 Confusion matrix with the detection results using the
RandomForest (100) algorithm

Results Correct class Total

Malicious Benign

Malicious 2,168 36 2,204

Benign 89 1,447 1,536

Total 2,257 1,483 3,740

i.e., malicious applications classified as benign. From the
1,483 benign applications, 1,447 were classified as such,
whereas 36 were considered malicious, comprising the false-
positives. The values of false-positive, false-negative, true-
positive, true-negative, accuracy (A), recall (R), precision
(P), harmonic mean (F-measure) and the amount of correctly
classified samples are shown in Table 5. The recall was cal-
culated as Recall = (T P)

(T P+F N )
, the precision was calculated

as Precision = (T P)
(T P+F P)

and the harmonic mean was calcu-

lated as F-measure = (2∗R∗P)
(R+P)

.

4.4 Discussion

Table 6 presents the comparison of the results obtained by
our system with the results presented in [1,14,17,19]. The
PUMA [14], DREBIN [1] and DroidMat [19] systems stat-
ically extract features, whereas our system and the one pre-
sented in [17] do it dynamically. Though the results obtained
by DroidMat are a little better than ours, systems that rely on
static analysis to obtain information from the code may fail
when dealing with highly obfuscated samples and samples
that download and execute code at runtime, as mentioned
before. Moreover, our evaluation used a significantly larger
number of malicious samples than PUMA and DroidMat.

The features used by our system and the one presented by
Su et al. [17] have some elements in common. Their system
uses the frequency of use of 15 system calls and 9 features
from network traffic, whereas our system uses the frequency
of use of 90 system calls and also the frequency of use of 74
Android API functions. We argue that the API calls provide
important information for the classification. To corroborate
that assertion, we performed another experiment, using the
same datasets presented before, for training and testing, but
this time we used three additional sets of features: the fre-
quency of the 15 syscalls used by Su et al.; the frequency of

Table 6 Comparison of the results obtained by our system with the
results presented in related work, showing the number of malicious and
benign samples used in the evaluation test, the accuracy obtained and
whether the system extracts features statically or dynamically

System Samples
(Mal./Ben.)

Accuracy
(%)

Type

DroidMat [19] 238/1,500 97.87 Static

PUMA [14] 249/1,811 86.41 Static

DREBIN [1] 5,560/123,453a 93 Static

Su et al. [17] 50/70 99.20 Dynamic

Our system 2,257/1,483 96.82 Dynamic

a This is the total dataset used by them, including testing and training.
They randomly split the dataset into training (66 %) and testing (33 %),
10 times, and average the results

Table 7 Comparison of the features used by our system with the
features used by Su et al. [17]

Feature set FP FN Accuracy (%)

Freq. of API function calls +
freq. of system calls

36 89 96.82

Freq. of API function calls +
freq. of 15 system calls

39 93 96.62

Freq. of 15 system calls 180 191 89.70

Freq. of API function calls 73 190 93.33

the 15 syscalls used by Su et al. plus the frequency of API
calls; the frequency of API calls. The results of this test along
with the detection rate obtained by the previous test (the eval-
uation of our system) are presented in Table 7 and show that
using the features related to API calls greatly improved the
detection rate.

Besides the classification using 15 system calls, the sys-
tem presented by Su et al. has also a classifier that uses fea-
tures extracted from network traffic. This classifier is used
to detect malicious samples that were not identified by the
first classifier and that match a certain heuristic. From the
191 malicious samples incorrectly labeled by the classifier
that used 15 system calls, 150 matched the heuristic used in
their work. Considering the best scenario, in which these 150
samples are correctly identified using their classifier that uses
network features, the accuracy would be 93.02 %, which is
still considerably lower than the value of 96.82 % obtained by
our system. This is another evidence of the benefits obtained
using the features related to Android API function calls. A
possible reason for the accuracy obtained by Su et al. being

Table 5 Values of false-positive (FP), false-negative (FN), true-positive (TP), true-negative (TN), accuracy (A), recall (R), precision (P), harmonic
mean (F-measure) and correctly classified samples (CC) obtained in the system evaluation

FP FN TP TN A R P F-measure CC

2.43 % 3.94 % 96.06 % 97.57 % 96.82 % 96.06 % 97.53 % 96.79 % 96.66 %
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greater in the evaluation test presented in their work is the
use of too few samples.

5 Limitations

The main limitations of the developed system are related to
shortcomings inherent to dynamic analysis approaches. The
analysis system may fail to observe the malicious behavior
of samples in some situations, due to problems when gath-
ering resources, to the lack of the necessary stimulation or
to the detection of the analysis environment. If, for exam-
ple, the malware tries to obtain some piece of code from
the Internet or tries to connect to a command and control
server to get instructions, but the connection fails, the sample
may stop executing without performing malicious actions. In
addition, the malware sample may execute malicious actions
only when certain interactions with the user interface are
performed or when certain events, such as receiving an SMS
message, occur. If the system fails to simulate these events,
the malicious behavior will not be shown. Lastly, malware
may detect the analysis environment and stop executing or
execute innocuous actions, so the system will not obtain
information about them. This detection can be carried out
by the identification of virtualized or emulated environment,
or the identification of monitoring tools.

6 Conclusions and future work

In this paper we presented a system that uses machine learn-
ing to classify Android applications as malicious or benign
using information about the use of Android API functions
and system calls. To gather the information needed by the
detection system, we implemented a dynamic analysis sys-
tem. To evaluate the capabilities of the detection system, we
trained it with 3,780 applications and tested it using 3,740
samples, obtaining an accuracy of 96.82 %. This result was
compared to other detection systems, which demonstrated
the relevance of our approach.

Future work includes the following: using attributes
obtained from the network traffic and attributes obtained sta-
tically to enhance the detection capabilities of our system;
detecting the evasion of sensitive information using signa-
tures; making a public submission interface available to other
researchers and common users, so they can check whether
a given application is malicious; developing a non-random
way to stimulate the malware using information obtained
from the code without the need to modify the Android OS.
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