
An Approach to Security-SLA in Cloud Computing
Environment

Carlos Alberto da Silva
Institute of Computing - Unicamp

Campinas, Brazil
beto@lasca.ic.unicamp.br

Paulo Licio de Geus
Institute of Computing - Unicamp

Campinas, Brazil
paulo@lasca.ic.unicamp.br

Abstract—The lack of novel security controls for the cloud
might arise from the fact that Cloud Computing is the con-
vergence of many different technological areas, including Utility
Computer, Computational Grid, Autonomous Computing, Virtu-
alization and Service Oriented Architectures. These underlying
areas have been independently addressed by existing general-
purpose security controls, but we noticed that each current cloud
security control was mapped to multiple controls from the exist-
ing, general-purpose control frameworks. We also noticed a great
demand for not only patterns but also specification, monitoring
and security management mechanisms for cloud environments.
We reason that this scenario might require a different approach,
one where the specification of security controls, geared to meet
the needs of services users, may be achieved through the use of
Security Service Level Agreement—Security-SLA. Security may
then be improved by automating the Security-SLA.

Keywords-Security-SLA, Security Management, Security Met-
rics, Cloud Computing Security

I. INTRODUCTION

Despite cloud services’ market growth and massive invest-
ments, there is a great concern about security in these environ-
ments. According to [1], security issues are considered as the
main obstacle against service migration to cloud environments.

The growing concern and dissatisfaction with security in
cloud services is the result of a combination of several factors,
among which may be mentioned: the lack of knowledge of
technical characteristics and risks in cloud environments [2];
the lack of well-defined interoperability standards [3]; loss of
control of data and applications [4]; the failures in computing
clouds that resulted in unavailability of services, data loss and
information leakage [2]; and the lack of guarantees related to
the safety level [5].

Driven both by the increasing demand for the use of services
in cloud computing, and the large number of security issues
in these environments, various institutions started working
on typifying services and standards specifications for inter-
operability and security in cloud computing. Although such
actions are a significant step towards the creation of secure
environments, most of these efforts are still at a preliminary
stage and will require considerable time to get mature and to
be adopted, as interests of providers and the pressure from the
consumers of services amount.

The use of levels of security service (Security-SLA) is
pointed out as an important tool for the management of
security in cloud computing [6] agreements. Despite this, one
notices in the literature a lack of concrete work dealing with
the specification and monitoring of these agreements. When
treated, the solutions describe little about the representation of
such agreements and adopt monitoring systems developed for
traditional computing architectures.

When further analyzed, those solutions do not look fully
prepared to monitor cloud environments because: i) existing
tools have little or no support for monitoring SLAs, for agree-
ment representation patterns and for managing agreements on
a level basis; ii) the information used for tracking arrangements
depend on collection mechanisms that are executed on the ma-
chine being monitored itself. In infrastructure cloud services,
virtual machines are controlled by the user, which means that
the installation of such mechanisms, in addition to depending
on the user cooperation, is still subject to incompatibilities
caused by differences between operating systems, libraries etc.
Furthermore, they are sensitive to tampering in cases where the
user is malicious; and iii) existing tools do not consider events
that occur in cloud environments, such as creation, suspension,
termination and migration of virtual machine execution.

In a bid to foster the adoption of Security-SLA mechanisms,
this article presents two contributions: a solution to automate
the creation of Security-SLA and a description of a monitoring
process for services and devices that make up cloud comput-
ing’s infrastructure.

II. THEORETICAL ASPECTS

In this section we present concepts that will help bring up
our contributions.

A. Unmeasurable Qualities

When trying to formalize risk (R), at times there is a need to
determine tangible values for intangible assets. Risk is directly
linked to the degree of probability of a threat to occur and
to the degree of negative impact of the incident caused by
the threat to the organization [7], while also measuring the
implemented protection effectiveness:

R = (GPO×GIN)
GEP

Where:978-1-4799-7162-6/14/$31.00 c©2014 IEEE

GPO: probability of occurrence of the threat;
GIN: degree of Negative Impact of the incident caused by the

threat to business;
GEP: degree of Effectiveness of the implemented protection.

These variables are intangible and unmeasurable. Overall,
the qualities specified in an SLA can be classified into
measurable and unmeasurable. The measurable qualities are
those that can be measured automatically by means of metrics.
While the unmeasurable qualities do not allow an automatic
measurement, they cannot be evaluated by a method that
results in a single value. In these cases, sets of secondary
metrics that measure specific aspects of unmeasurable qualities
are used.

The following are measurable qualities found in IT ser-
vices [8]:(i) accuracy: the error rate threshold for the service
during a specific period of time; (ii) availability: probability
that the service will be available when needed; (iii) capacity:
number of concurrent requests that the service supports; (iv)
cost: cost of service; (v) latency: the maximum time between
the arrival of the request and the time to complete the request;
(vi) provisioning time: time required for the service to
become operational; (vii) reliability of messages: guaranteed
delivery of messages; (viii) scalability: ability to increase the
number of operations performed successfully in a time service.

Now we list unmeasurable qualities [8]: (i) interoper-
ability: ability of intercommunication with other services; (ii)
modifiability: frequency of changes (interface or implemen-
tation) of service; (iii) security: ability to resist unauthorized
use while providing service to legitimate customers (clients/
tenants).

B. Service Level Agreement

The specification of guarantee parameters assures that the
quality of services is an essential mechanism in environments
where outsourcing is used. This section discusses the impor-
tance of service levels as a way to specify such guarantees,
its use on information technology and security services, and
finally ways of representing such agreements.

The Service Level Agreement (SLA) is part of the service
contract between provider and customer, and describes the
desired quality of service (QoS) [9]. An SLA alone does
not guarantee that the specified qualities are met, but it
defines the necessary monitoring mechanisms, points out the
responsibilities and defines punishments and compensations if
conditions are not met.

In information technology (IT) services, SLA use takes a
different approach than that of telecommunication services.
The agreement shall represent both customer’s and provider’s
expectations. As such, obligations may be specified for both
parties. The scope of information contained in the agreement
is also differentiated.

It is crucial to emphasize that, in the context of an SLA,
service level monitoring is as important as their specification.
For this purpose, metrics are used to assess compliance with
the desired qualities of service. The way these metrics are

measured depends on the type of service and quality features
that one wants to measure.

C. Security-SLA
The increasing use of outsourced IT services causes a

growing concern with issues involving privacy and security
[6]. Thus, it is natural for such issues to be addressed in
SLAs, which allow the customer to specify security levels that
must be guaranteed for the contracted services. However, the
specification of SLAs involving security features (Security-
SLA) presents challenges that involve the specification of
security levels, the representation of these levels and finally
monitoring them.

In the literature, the definition of security parameters can be
done in two ways: through security policies or from security
metrics.

The specification of security settings through policies, as
proposed in [10], considers the Security-SLA as a set of
policies expressed in standard language (e.g. WS-Policy [11]).
Although this approach is able to clearly specify the desired
levels of security, the use of policies fail when specifying
mechanisms for monitoring, and ignore the representation of
various members of SLA information.

This specification from security metrics is a commonly
used method that allows definition not only of the security
parameters but also of the monitoring process. Unlike the
specification of policies, the specification from metrics is based
on a set of security metrics that allows checking whether a
particular goal (control) is being fulfilled or not.

D. Security Metrics
Although security is an unmeasurable quality [8], [12], it is

common to use security metrics to assess the security state of
an environment.

Security metrics are tools that provide accurate and current
information about the security state of an environment, allow-
ing for an evaluation of operations and security controls in
their own environment [13].

The strategies for monitoring cloud computing services us-
ing security metrics can be summarized as follows: i) “black-
box” external monitoring, where measurements are performed
on the host (outside the VMs) and involves the available host
OS components, such as firewall, log files, hypervisor and
virtual network interfaces; ii) “black-box” internal monitoring,
by using similar monitoring mechanisms that applies to each
kind of service offering. In the industry these services are
referred to as Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS), respectively.
In the worst case (IaaS), only Virtual Machine Introspec-
tion (VMI), given by the LibVMI library [14], is available.
Introspection allows access to the VM’s memory from the
hypervisor, enabling information query for data structures kept
by the VM’s operating system kernel.

We emphasize that all values of security metrics, generated
by static and dynamic monitoring, are converted to scale values
[0-4], representing the range of security values as [Critical,
High, Medium, Normal, Zero] [15].

III. RELATED WORK

Commercial providers offen provide their own solutions
for monitoring cloud services. The Amazon AWS platform
offers CloudWatch [16], a monitoring system offered as a
service for the control of resources and application services.
Microsoft Windows Azure Suite[17] has the Azure Fabric
Controller, responsible for monitoring and managing servers
and coordinating resources for the applications. Google App
Engine[18] provides a set of APIs that allow the use of
monitoring solutions such as CloudStatus[19].

In Emeakaroha et al. [20], it is presented a monitoring
solution called LoM2HiS that is part of an architecture to
detect SLA violations. LoM2HiS is composed of a set of
agents based on the SNMP protocol, responsible for collecting
low-level metrics and sending them to monitors, which then
aggregate them into high-level metrics to be used by the SLA
threat violation monitor.

There are two main methodologies used in the specification
of metrics for SLA-Security. One uses security policies [21]
and standards as a starting point for the derivation of metrics.
Righi et al. [22] proposed a method for metrics and parameter
values validation based on the analysis of measurements made
in the service infrastructure.

The other uses the Goal-Question-Metric (GQM) method-
ology [23], with a process originally proposed for empirical
measurements in software testing, based on well-defined goals.
The method consists of a measuring model comprised of three
levels: i) Conceptual (goal), which is the measurement target;
ii) Operating (question), in which the target is refined into a
set of operational issues; and iii) Metric, which is a set of
metrics that quantitatively answers questions specified at the
upper level. In security, this methodology is applied in several
studies, such as the GQM model being used together with the
COBIT framework [13] to specify metrics for SLA-Security
in cloud computing, and the GQM model being used to build
a metrics hierarchy to generate an index of security in cloud
computing [15].

IV. METHODOLOGY

The methodology builds on the concept that the customer,
when hiring a service in the cloud (SaaS, PaaS or IaaS),
may choose from a portfolio of security metrics that will be
continuously monitored by the environment.

Within this approach, a database holds two classes of secu-
rity metrics, according to their functionality. The infrastructure
device class consists of all the hardware devices and related
cloud software, such as networking, firewalls, routers, proxies,
operating systems etc on which monitoring agents will run
to generate security metrics. The service class consists of
all SaaS, PaaS or IaaS hardware/software components that
provide the service contracted by the customer, with the
monitoring agents running on those assets generating security
metrics about the Virtual Machine (VM).

A. Automatic Security-SLA

Figure 1 represents the proposed lifecycle of Security-
SLA management for cloud computing environments, which
is based on the following phases: (1) Definition: this phase
is focused on the selection of the infrastructure and service
security metrics, its features and the definition of quality
parameters that will be provided to customers. A database with
all the security metrics (portfolio) is offered; (2) Negotiation:
in this phase are defined values for the security metrics
parameters (range 0–4), cost to the customer and penalties
in case the Security-SLA is violated; (3) Implementation: the
security metrics are prepared according to the available infras-
tructure devices that will allow for the service execution in the
environment; (4) Execution: it is the phase when monitoring
security metrics for the infrastructure devices and service takes
place. Specified quality parameters (SLO) are evaluated for
compliance with the Security-SLA; (5) Evaluation: in this
phase the provider assesses the security quality provided; (6)
Re-negotiation: deals with the service ending, be it for reasons
of contract expiration or for Security-SLA re-negotiation.

Security-‐SLA	

Security	
Metrics	 of	
Service	

(por4olio)	

Security	
Metrics	 of	

Infrastructure	
(por4olio)	

1.	 Defini>on	
2.	 Nego>a>on	 3. Implementation

4. Execution
5. Evaluation
6. Re-negotiation

Fig. 1. Lifecycle of a Security-SLA

Figure 2 presents a simplified overview of this Security-
SLA management process for cloud computing environments.
As today’s business systems typically consist of layers of
complex systems, user-level Security-SLAs cannot be directly
mapped to physical infrastructure. Services can be composed
of other more fundamental services, maybe even provided by
third parties. Consequently, a gradual mapping of higher-level
Security-SLA requirements onto lower levels, and aggregation
of lower-level resources to higher-level ones is crucial to allow
binding of user-level Security-SLAs to the infrastructure. This
vertical flow of information must carefully reflect service inter-
dependencies. In addition to Security-SLAs, vertical informa-
tion flow also covers monitoring, tracking and accounting data,
having to support intermediation and negotiation processes at
each layer. The Security-SLA management process may deal
with different stakeholders, namely customers, service and in-
frastructure providers, and also various business steps such as
business valuation, contracting and sales. The illustration also
shows the role of software providers responsible for creating
components with predictable behavior. In this context, one
notices the integration of multiple levels, as there are several
interested parties (suppliers of software/services/infrastructure

and customers), various roles (IT people, experts, customers),
various types of services, various aspects of service level
(availability, performance etc), all under the full lifecycle
of the Security-SLA (definition, negotiation, implementation,
execution, evaluation and re-negotiation).

Service Provider

Contracting/
Sales

SOA

SLA
Negotiation/
Aggregation

Security-SLA
(Re-)Negotiation

physical

virtual

Mapping

Sec-
SLA

Security-SLA

Customer

Infrastructure Provider

Monitoring

Software Provider

Service

Provisioning

Fig. 2. Security-SLA management in Cloud Computing

B. Monitoring

Monitoring agents are specialized programs responsible for
the monitoring process. Each program is tasked with collecting
information from existing components in the infrastructure.
Such information will be used in the Security-SLA validation.

When an agent runs, it gets the Security-SLA parameters:
service that will be monitored, execution parameters and some
metric identifiers that will be measured. “Place” specifies the
elements where the measurement is done, like VM, Firewall,
IDS/IPS etc. “Procedure” specifies whether the type is black-
box or not. “Frequency” of measurement in hours. SLO spec-
ifies the contract value in the 0–4 range. Finally, “Incidence”
specifies the percentage of samples that stayed above the SLO
value.

To validate the model, the monitoring process performs two
steps:

i) The values collected by security metrics ([0–4]) are
classified as: true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN);

ii) Validation indicators are calculated for the model:
a) Precision: represented by P = TP

TP+FP , indicates the
percentage of events correctly classified as incident
among those which were classified as incidents;

b) Recall: represented by R = TP
TP+FN , indicates the

percentage of correctly classified incidents among all
events that are effectively incidents;

c) F-measure: represented by F = 2×P×R
P+R , is the har-

monic mean between precision and recall;
d) Accuracy: represented by A = TP+TN

TP+TN+FP+FN ,
indicates the percentage of correctly classified events.

C. Case Study

A case study was developed and tested on a cloud com-
puting environment based on OpenNebula [24], on a machine
with a 2.8 GHz Intel i7 Quad core processor and 32GB RAM
running Gentoo Linux and the KVM hypervisor. The customer
chooses MySQL Enterprise Edition as a SaaS service and as

an infrastructure service Intrusion Detection and Prevention
System (IDPS). During the negotiation, the client specified that
monitoring would be performed 10 times (events in between
two samples being acumulat to the next sample). The system
under test is responsible for human resources management
at an University and holds about 400 tables, 200 users and
5 administrators. Table I describes the security metrics that
compose the Security-SLA.

TABLE I
SECURITY METRICS CHOSEN BY THE USER

Item Description (Metric) Value of Metric
2 Infrastructure Cloud Computing Met2 ≥ 3
2.4 Intrusion Detect and Prevention System Met2.4 ≥ 3
2.4.1 Packet Fragmentation Met2.4.1 ≥ 4
2.4.2 Stream Segmentation Met2.4.2 ≥ 3
2.4.3 Remote Procedure Call Fragmentation Met2.4.3 ≥ 3
2.4.4 Recovery from Abnormal System Shutdown Met2.4.4 ≥ 4
2.4.5 Security Events Records Met2.4.5 ≥ 4
2.4.6 Evasion Attacks Met2.4.6 ≥ 3
9 SaaS - Cloud Computing Met9 ≥ 3
9.1 Database - MySql Met9.1 ≥ 2
9.1.1 Default User Service Account Met9.1.1 ≥ 2
9.1.2 Insecure User Account Met9.1.2 ≥ 2
9.1.3 Default TCP Port Met9.1.3 ≥ 2
9.1.4 SQL Injection Met9.1.4 ≥ 2

1) IDPS Metrics: As an example of the IDPS metric, the
following parameters were chosen:
Metric Name: Stream Segmentation
Description: The Stream Segmentation Security Metric

(Met2.4.2) is monitoring unusual activity on the network,
like the remote host advertising a zero window size,
dropped TCP connections and session timeouts. By ma-
nipulating the way in which a TCP stream is segmented,
it is possible to evade detection by some firewalls and
IDPS. When doing that, an attacker could overwrite a
portion of a previous segment in a stream with new data
in a subsequent segment. This method could allow the
attacker to hide or obfuscate the attack on the network.

Formula: Met2.4.2 = Count(Incidents)
SLO Value: 3
Incidence: 90.00%

Table II describes the distribution of sample values (0–4
range) for the Stream Segmentation Metric (Met2.4.2), for
each monitored incident and their percentage of occurrence.

TABLE II
SAMPLES OF STREAM SEGMENTATION METRIC

Met2.4.2 Incidents Percentage
4 32 0.15%
3 1,505 6.96%
2 15,219 70.37%
1 4,422 20.45%
0 448 2.07%

Based on data from Table II, Figure 3(a) presents the
visual result of monitoring the Stream Segmentation Metric
(Met2.4.2) during the evaluated time span (1 to 10, i.e. the
radii in the illustration). The hired SLO value was ≥ 3, the

measured average MA value was 2 in the period, and Incidence
total was 7.11% (percentage of incidents of levels 3 and 4: 0.15
+ 6.96), however this is in sharp contrast with the contracted
value of 90.00%. Therefore, one can conclude that not only
there is a problem with the hired security level, but the relation
between the measured 7.11% and the expected 90.00% values
for the Incidence also suggests that the delivered security is
very poor.

2) MySQL Metrics: Heuristics. We implemented two
heuristic algorithms to compute the incidents over the MySQL
service:

a. Log: Uses black-box external monitoring, analyzes log
files of the database, and identifies and records incidents.
Let n be the number of records in the log file, m the
number of operations and l the number of permissions.
The asymptotic complexity is O(n logml)

b. Interface: Uses black-box internal monitoring, runs a
PHP code inside the system interface and each command
in the interface, verifies and records the incidents. Let
n be the number of commands in the interface, m the
number of operations and l the number of permissions.
Its asymptotic complexity is O(nml)

As an example of MySQL metric, the following parameters
were chosen:
Metric Name: Insecure User Account Security
Description: The Insecure User Account Security Metric

(Met9.1.2) is monitoring whether the customer used a
default user account instead of an administrator account.
The transaction log for the database is checked for the
combination: source (Administrator or User), type of
operation (select, update, drop, alter and create), and
permission of the operation.

Formula: Met9.1.2 = Count(Incidents)
SLO Value: 2
Incidence: 80.00%

Table III describes the distribution of sample values (0–4
range) for the Insecure User Account Metric (Met9.1.2), for
each monitored incident and their percentage of occurrence.

TABLE III
SAMPLES OF INSECURE USER ACCOUNT METRIC

Met9.1.2 Incidents Percentage
4 5,678 19.84%
3 18,104 63.25%
2 3,624 12.66%
1 1,000 3.49%
0 215 0.75%

Based on data from Table III, Figure 3(b) presents the
visual result of monitoring the Insecure User Account Metric
(Met9.1.2), during the evaluated time span (1 to 10, i.e. the
radii in the illustration). The hired SLO value was ≥ 2, the
measured average MA value was 3 in the period, and Incidence
total was 95.75% (percentage of incidents of levels 2 to 4:
19.84 + 63.25 + 12.66), yielding a value well above the
contracted 80.00%. Therefore, one can conclude that security

0	

1	

2	

3	

4	
1

2

3

4

5

6

7

8

9

1
0

SLO	

MA	

Aveg-‐2.4.2	

(a) Stream Segmentation

0	

1	

2	

3	

4	
1

2

3

4

5

6

7

8

9

1
0

SLO	

MA	

Aveg-‐9.1.2	

(b) Insecure User Account

Fig. 3. Behavior of the Security Metrics

as contracted has not only been met, but in fact the relative
position of the 95.75% figure towards the hardest target of
100% suggests that security was quite good.

V. CONCLUSIONS AND FUTURE WORK

We presented a substantial contribution to make an auto-
matic way of contracting a Security-SLA using as basis a
portfolio of security metrics for the infrastructure and services
classes. We also introduced a new model to view information
about security through a range of values (0–4) and treated the
problem of managing intangible and unmeasurable numbers.
Moreover, we proposed a new way of managing security
levels (top-down view) that considers values for each security
metric with its respective risk, Quality of Service (QoS) and
impact. Separating Security-SLA in two reference security
value classes allows for an abstracted visualization of security
and helps to easily spot which security items present values
below the expected values. Thus, the customer may have
a more tangible feeling of how the hired service is being
protected.

As future work, we consider the development of dynamic
mappings between security metrics to automatically identify
services running on the VM whose type of service was
not specified. This would be based on monitoring security
anomalies and matching them against performance signatures,
and new, non-invasive techniques to monitor and compute the
risk and impact over the environment.

ACKNOWLEDGMENT

The authors would like to thank CAPES and Fundect
(Process #23/200.308/2009) for his financial support.

REFERENCES

[1] Ian Foster and Yong Zhao and Ioan Raicu and Shiyong Lu, Cloud
Computing and Grid Computing 360-Degree Compared, Grid Computing
Environments Workshop (GCE ’08), pages 1-10, 2008.

[2] Shashikala P. Subashini and Veeraruna R. Kavitha, A survey on security
issues in service delivery models of cloud computing, Journal of Network
and Computer Applications, pages 1-11, 2011.

[3] Christina N. Hoefer and Georgios Karagiannis, Taxonomy of cloud
computing services, Proceedings of the 4th IEEE Workshop on Enabling
the Future Service-Oriented Internet (EFSOI’10), pages 1345–1350, 2010.

[4] Ronald L. Krutz and Russell Dean Vines, Cloud Security: A Comprehen-
sive Guide to Secure Cloud Computing, pages 384, John Wiley & Sons,
Inc., 2010.

[5] ENISA, Cloud Computing: Benefits, risks and recommendations for
information security, European Network and Information Security, 2009.

[6] Martin Gilje Jaatun and Karin Bernsmed and Astrid Undheim, Security
SLAs - An Idea Whose Time Has Come?, pages 123-130, Lecture Notes
in Computer Science, Springer Berlin/Heidelberg, 2012.

[7] NIST Cloud Computing Security Reference Architec-
ture, NIST Special Publication 500-299, is available at
collaborate.nist.gov/twiki-cloud-computing/pub/Cloud Com-
puting/CloudSecurity/NIST security Reference Architecture

2013.05.15 v1.0.pdf. Accessed in July 05, 2014.
[8] Philip Bianco and Grace A. Lewis and Paulo Merson,

Service Level Agreements in Service-Oriented Architecture
Environments, Carnegie Mellon University (SEI), 2008, available
in http://www.sei.cmu.edu/reports/08tn021.pdf. Accessed April 09, 2014.

[9] Diana Berberova and Boyan Bontchev, Design of Service Level Agree-
ments for Software Services, Proceedings of the International Conference
on Computer Systems and Technologies and Workshop for PhD Students
in Computing (CompSysTech ’09), ACM, 2009.

[10] Valentina Casola and Antonino Mazzeo and Nicola Mazzocca and
Massimiliano Rak, A SLA evaluation methodology in Service Oriented
Architectures, Quality of Protection, pages 119-130, Volume 23, Springer
US, 2006.

[11] W3C, Web Services Policy 1.5 - Framework, World Wide Web Con-
sortium, Available in http://www.w3.org/TR/ws-policy/. Accessed in July
05, 2014.

[12] Leanid Krautsevich and Fabio Martinelli and Artsiom Yautsiukhin,
Formal approach to security metrics: what does more secure mean
for you?, Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume, pages 162–169, ACM, 2010.

[13] Nia Ramadianti Putri and Medard Charles Mganga, Enhancing Infor-
mation Security in Cloud Computing Services using SLA Based Metrics,
School of Computing - Blekinge Institute of Technology, 2011.

[14] VMITools. Virtual machine introspection tools. Available in
https://code.google.com/p/vmitools/. Accessed in July 05, 2014.

[15] Carlos Alberto da Silva, Anderson Soares Ferreira, and Paulo Licio
de Geus. A metho- dology for management of cloud computing using
security criteria. In Proceedings of the IEEE Latin American Conference
on Cloud Computing and Communications, LatinCloud12, Porto Alegre,
Brazil, November 2012.

[16] Amazon Web Services, Inc. Amazon CloudWatch. Available in
http://aws.amazon.com/cloudwatch. Accessed in July 05, 2014.

[17] Microsoft Corporation. Microsoft Windows Azure. Available in
http://www.windowsazure.com. Accessed in July 05, 2014.

[18] Google, Inc. Google App Engine. Available in
https://developers.google.com/appengine/. Accessed in July 05, 2014.

[19] Hyperic. CloudStatus. Available in http://www.
hyperic.com/products/cloud-status-monitoring. Accessed in July 05,
2014.

[20] Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer, and Schahram
Dustdar. Low level metrics to high level slas - lom2his framework:
Bridging the gap between monitored metrics and sla parameters in
cloud environments. In International Conference on High Performance
Computing and Simulation, 2010, HPCS10, pages 4854. IEEE Computer
Society, 2010.

[21] Ronda R. Henning, Security Service Level Agreements: Quantifiable
Security for the Enterprise?, Proceedings of the 1999 Workshop on New
Security Paradigms (NSPW ’99), pages 54–60, ACM, 1999.

[22] Rafael R. Righi and Felipe R. Pellissari and Carlos B. Westphall,
Sec-SLA: Specification and validation of Metrics for Security Oriented
Service Level Agreements, IV Workshop in Computing Systems Security,
SBC, Porto Alegre-RS, Brazil, 2004.

[23] Victor R. Basili and Gianluigi Caldiera and H. Dieter Rombach, The goal
question metric approach, Encyclopedia of software engineering, Volume
2, pages 528–532, 1994.

[24] OpenNebula. OpenNebula Project. Available in
http://www.opennebula.org/. Accessed in July 05, 2014.

