
SoK: A Performance Evaluation of Cryptographic Instruction
Sets on Modern Architectures

Armando Faz-Hernández
Institute of Computing
University of Campinas

Campinas, São Paulo, Brazil
armfazh@ic.unicamp.br

Julio López
Institute of Computing
University of Campinas

Campinas, São Paulo, Brazil
jlopez@ic.unicamp.br

Ana Karina D. S. de Oliveira
Federal University of Mato Grosso Do

Sul (FACOM-UFMS)
Campo Grande MS, Brazil
anakarina@facom.ufms.br

ABSTRACT
The latest processors have included extensions to the instruction
set architecture tailored to speed up the execution of cryptographic
algorithms. Like the AES New Instructions (AES-NI) that target the
AES encryption algorithm, the release of the SHA New Instructions
(SHA-NI), designed to support the SHA-256 hash function, intro-
duces a new scenario for optimizing cryptographic software. In
this work, we present a performance evaluation of several crypto-
graphic algorithms, hash-based signatures and data encryption, on
platforms that support AES-NI and/or SHA-NI. In particular, we re-
visited several optimization techniques targeting multiple-message
hashing, and as a result, we reduce by 21% the running time of this
task by means of a pipelined SHA-NI implementation. In public-
key cryptography, multiple-message hashing is one of the critical
operations of the XMSS and XMSSMT post-quantum hash-based
digital signatures. Using SHA-NI extensions, signatures are com-
puted 4× faster; however, our pipelined SHA-NI implementation
increased this speedup factor to 4.3×. For symmetric cryptography,
we revisited the implementation of AES modes of operation and
reduced by 12% and 7% the running time of CBC decryption and
CTR encryption, respectively.

CCS CONCEPTS
• Security and privacy→ Digital signatures;Hash functions
and message authentication codes; • Computer systems or-
ganization→ Pipeline computing; Single instruction, multiple data;

KEYWORDS
AES-NI; SHA-NI; Vector Instructions; Hash-based Digital Signa-
tures; Data Encryption

ACM Reference Format:
Armando Faz-Hernández, Julio López, and Ana Karina D. S. de Oliveira.
2018. SoK: A Performance Evaluation of Cryptographic Instruction Sets on
Modern Architectures. In APKC’18: 5th ACM ASIA Public-Key Cryptography
Workshop , June 4, 2018, Incheon, Republic of Korea. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3197507.3197511

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APKC’18, June 4, 2018, Incheon, Republic of Korea
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5756-2/18/06. . . $15.00
https://doi.org/10.1145/3197507.3197511

1 INTRODUCTION
The omnipresence of cryptographic services has influenced modern
processor’s designs. One proof of that is the support given to the
Advanced Encryption Standard (AES) [29] employing extensions to
the instruction set architecture known as the AES New Instructions
(AES-NI) [15]. Other examples in the same vein are the CRC32
instructions, which aid on error-detection codes, and the carry-
less multiplier (CLMUL), which is used to accelerate the AES-GCM
authenticated encryption algorithm [16]. All of these extensions
enhance the performance of cryptographic implementations.

Latest processors have added instructions that support crypto-
graphic hash functions. In 2013, Intel [21] announced the speci-
fication of the SHA New Instructions (SHA-NI), a set of new in-
structions for speeding up the execution of SHA1 and SHA2 hash
functions [31]. However, SHA-NI-ready processors were available
several years later. In 2016, Intel released the Goldmont micro-
architecture which targets low power-consumption devices; and
in 2017 AMD introduced Zen, a micro-architecture that supports
both AES-NI and SHA-NI.

The Single Instruction Multiple Data (SIMD) parallel process-
ing is an optimization strategy increasingly used to develop effi-
cient software implementations. The Advanced Vector eXtensions 2
(AVX2) [26] are SIMD instructions that operate over 256-bit vector
registers. The latest generations of Intel processors, such as Haswell,
Broadwell, Skylake, and Kaby Lake, have support for AVX2; mean-
while, Zen is the first AMD’s architecture that implements AVX2.

The main contribution of this work is to provide a performance
benchmark report of cryptographic algorithms accelerated through
SHA-NI and AES-NI. We focus on mainstream processors, like the
ones found in laptops and desktops, and also those used in cloud
computing environments. To that end, we revisited known opti-
mization techniques targeting the capabilities (and limitations) of
four micro-architectures: Haswell (an Intel Core i7-4770 processor),
Skylake (an Intel Core i7-6700K processor), Kaby Lake (an Intel Core
i5-7400 processor), and Zen (an AMD Ryzen 7 1800X processor).

As part of our contributions, we improve the performance of
multiple-message hashing, which refers to the task of hashing sev-
eral messages of the same length. We followed two approaches.
First, we develop a pipelined implementation using SHA-NI that
saves around 18-21% of the running time. Second, we review SIMD
vectorization techniques and report timings for the parallel hashing
of four and eight messages.

In public-key cryptography, multiple-message hashing serves as
a building block on the construction of hash-based digital signatures,
such as XMSS [8] and XMSSMT [24]. These signature schemes are
strong candidates to be part of a new cryptographic portfolio of

Session: Card-based Protocol, Implementation,
and Authentication for IoT APKC’18, June 4, 2018, Incheon, Republic of Korea

9

https://doi.org/10.1145/3197507.3197511
https://doi.org/10.1145/3197507.3197511

APKC’18, June 4, 2018, Incheon, Republic of Korea Faz-Hernández, López, de Oliveira

Algorithm 1 Definition of the Update SHA-256 function.
Domain Parameters: The functions σo , σ1, Σo , Σ1, Ch, Maj, and

the values k0, . . . ,k63 are defined in Appendix A.
Input: S is the current state, andM is a 512-bit message block.
Output: S = Update(S,M).

Message Schedule Phase
1: (w0, . . . ,w15) ← M //Split block into sixteen 32-bit words.
2: for t ← 16 to 63 do
3: wt ← σ0 (wt−15) + σ1 (wt−2) +wt−7 +wt−16
4: end for

Update State Phase
5: (a,b, c,d, e, f ,д,h) ← S //Split state into eight 32-bit words.
6: for i ← 0 to 63 do
7: t1 ← h + Σ1 (e) + Ch(e, f ,д) + ki +wi
8: t2 ← Σ0 (a) +Maj(a,b, c)
9: h ← д, д ← f , f ← e , e ← d + t1
10: d ← c , c ← b, b ← a, a ← t1 + t2
11: end for
12: (a,b, c,d, e, f ,д,h) ← S //Split state into eight 32-bit words.
13: return S ← (a + a,b +b, c + c,d +d, e + e, f + f ,д +д,h +h)

quantum-resistant algorithms [23]. For this reason, we evaluate the
impact on the performance of these signature schemes carried by
optimizations of multiple-message hashing.

Finally, we revisited software implementation techniques for
the AES modes of operation. As a result, we show optimizations
for Zen that reduce the running time of AES-CBC decryption and
AES-CTR encryption by 12% and 9%, respectively. As a side result,
we also improve the implementation of AEGIS, an AES-based algo-
rithm classified in the final round of the authenticated-encryption
competition CAESAR [4], reducing by 11% its running time.

All the source codes derived from this research work are released
under a permissive software license and can be retrieved from
[http://github.com/armfazh/FLO-shani-aesni].

2 THE SHA-256 HASH FUNCTION
In this section we briefly describe the SHA-256 algorithm and its im-
plementation considering several application scenarios. Following
the SHA specification [31], Appendix A contains explicit defini-
tions of some auxiliary functions and parameters of the SHA-256
algorithm.

The SHA-256 algorithm keeps track of a state of 256 bits. This
state is initialized with constant values and is denoted by S0 (see
Equation (18) in Appendix A). The input message M is padded
and then split into n 512-bit blocks. Each of these blocks is used
to generate a new state according to the following recurrence:
Sj = Update(Sj−1,Mj) for j = 1 to n. Thus, the SHA-256 algorithm
defines the hash ofM as SHA-256(M) = Sn . The Update function
consists of two phases: the message schedule phase and the update
state phase, both presented in Algorithm 1.

2.1 Implementing SHA-256 using SHA-NI
The SHA-NI instruction set offers native support for the most criti-
cal operations of SHA1 and SHA-256 hash functions. In particular,

Algorithm 2 The Update SHA-256 function using the SHA-NI set.
Input: S is the current state, andM is a 512-bit message block.
Output: S = Update(S,M).

Message Schedule Phase
1: LoadM into 128-bit vector registers:W0,W4,W8, andW12.
2: for i ← 0 to 11 do
3: X ← SHA256MSG1 (W4i ,W4i+4)
4: W4i+9 ← PALIGNR (W4i+12,W4i+8, 4)
5: Y ← PADDD (X ,W4i+9)
6: W4i+16 = SHA256MSG2 (Y ,W4i+12)
7: end for

Update State Phase
8: (a,b, c,d, e, f ,д,h) ← S , A =

[
a,b, e, f

]
, and C =

[
c,d,д,h

]
.

9: for i ← 0 to 15 do
10: X ← PADDD (W4i , K4i)
11: Y ← PSRLDQ (X , 8)
12: C ← SHA256RNDS2 (C, A, X)
13: A← SHA256RNDS2 (A, C, Y)
14: end for
15: (a,b, c,d, e, f ,д,h) ← S , A =

[
a,b, e, f

]
, and C =

[
c,d,д,h

]

16:
[
a,b, e, f

]
← PADDD

(
A, A
)

17:
[
c,d,д,h

]
← PADDD

(
C, C
)

18: return S ← (a,b, c,d, e, f ,д,h)

the instructions SHA256MSG1, SHA256MSG2, and SHA256RNDS2 aid
on the calculation of the Update function of the SHA-256 algorithm.

In this section, we describe the implementation of the Update
function using the SHA-NI set (see Algorithm 2). First of all, it
is required that the message block (the values w0, . . . ,w15) be
stored into four 128-bit vector registersW0,W4,W8, andW12 as
followsWi = [wi ,wi+1,wi+2,wi+3]. After that, the SHA256MSG1
and SHA256MSG2 instructions will help on the message schedule
phase for computing the valuesw16, . . . ,w63.

To have a better understanding of the design rationale of the
SHA-NI extensions, we exemplify how to calculateW16, i.e., the
first iteration of the for-loop in lines 2-7 of Algorithm 2. First, the
SHA256MSG1 instruction updates the vector register X with four
32-bit words calculated as follows:
X ← SHA256MSG1 (W0,W4)
= SHA256MSG1

([
w0,w1,w2,w3

]
,
[
w4,w5,w6,w7

])
=

[
σ0 (w1) +w0, σ0 (w2) +w1, σ0 (w3) +w2, σ0 (w4) +w3

]
.

(1)
In the next line, the PALIGNR instruction obtainsW9 from a 32-bit
shift applied to the concatenation ofW12 andW8:
W9 ← PALIGNR (W12,W8, 4)

= PALIGNR
([
w12,w13,w14,w15

]
,
[
w8,w9,w10,w11

]
, 4
)

=
[
w9,w10,w11,w12

]
.

(2)
After that, the vector Y will store the word-wise addition of the
vector registers X andW9:

Y ← PADDD(X ,W9)
=

[
σ0 (w1) +w0 +w9, σ0 (w2) +w1 +w10,

σ0 (w3) +w2 +w11, σ0 (w4) +w3 +w12
]
.

(3)

Session: Card-based Protocol, Implementation,
and Authentication for IoT APKC’18, June 4, 2018, Incheon, Republic of Korea

10

http://github.com/armfazh/FLO-shani-aesni

SoK: A Performance Evaluation of Cryptographic Instructions APKC’18, June 4, 2018, Incheon, Republic of Korea

Finally, the SHA256MSG2 instruction producesW16 from Y andW12:

W16 ← SHA256MSG2 (Y ,W12) =
[
w16, w17, w18, w19

]

=
[
σ0 (w1) + σ1 (w14) +w0 +w9,
σ0 (w2) + σ1 (w15) +w1 +w10,
σ0 (w3) + σ1 (w16) +w2 +w11,
σ0 (w4) + σ1 (w17) +w3 +w12

]
.

(4)

The remainder values W20, . . . ,W60 are calculated applying the
same strategy. To calculateW4i , i = 4, . . . , 15, depends onW4(i−1) ,
W4(i−2) ,W4(i−3) , andW4(i−4) ; from which the latter can be used to
store the new value allowing to reuse the vector register.

In the update state phase, the SHA256RNDS2 instruction assumes
that the state, say S = (a,b, c,d, e, f ,д,h), is stored into two 128-bit
vector registers as follows: A =

[
a, b, e, f

]
and C =

[
c, d, д, h

]
.

The reasoning behind this representation relies on the following
observation: after processing two iterations of the second for-loop
of Algorithm 2, some words of the state remain unmodified. Hence,
let Ai and Ci be the values of the state at the i-th iteration of the
for-loop (lines 9-14 of Algorithm 2), then Ci+2 = Ai for i ≥ 0.
Figure 1 illustrates this property.

Based on this property, the SHA256RNDS2 instruction performs
two iterations of the state update phase as follows:

Ci+2 = Ai , Ai+2 = SHA256RNDS2 (Ci ,Ai ,X) (5)

whereX is a vector register containing
[
wi +ki ,wi+1+ki+1,∅,∅

]
,

ki and ki+1 are constant values defined in Equation (19) (see Appen-
dix A), and ∅ is an unused value. Four iterations can be computed
applying once again the same property; thus we have

Ci+4 = Ai+2, and Ai+4 = SHA256RNDS2 (Ci+2,Ai+2,Y) , (6)

which is equivalent to

Ci+4 = SHA256RNDS2 (Ci ,Ai ,X) , and
Ai+4 = SHA256RNDS2 (Ai ,Ci+4,Y)

(7)

such thatY is a register containing
[
wi+2+ki+2,wi+3+ki+3,∅,∅

]
.

The registers X and Y can be computed as

X ← PADDD (K4i ,W4i)
=

[
wi + ki , wi+1 + ki+1, wi+2 + ki+2, wi+3 + ki+3

]

Y ← PSRLDQ (X , 8)
=

[
wi+2 + ki+2,wi+3 + ki+3, 0, 0

]
(8)

where K4i =
[
k4i , k4i+1, k4i+2, k4i+3

]
. As Algorithm 2 shows, this

execution pattern is repeated sixteen times to perform the 64 itera-
tions of the update state phase.

2.2 Performance Impact of SHA-NI
In this section, we contrast the performance of several implementa-
tions of SHA-256 such as the sphlib library1, the OpenSSL library2,
and the implementation using SHA-NI instructions.

In the benchmark program, we measured the number of clock
cycles that takes to hash a message; then from these measurements,
we calculate the cycles-per-byte (cpb) ratio, which is conventionally

1The sphlib library by Thomas Pornin was taken from SUPERCOP [6].
2We measured the 64-bit implementation of SHA-256 provided by OpenSSL, more
details about the optimizations of such implementation can be found at [17, 20].

a b c d e f g h

t1 + t2 a b c d + t1 e f g

t ′1 + t ′2 t1 + t2 a b c + t ′1 d + t1 e f

i

i + 1

i + 2

a b c d e f g h

Figure 1: Every two consecutive iterations of the update state
phase, it holds that the values (c,d,д,h) at the (i + 2)-th itera-
tion are exactly the values (a,b, e, f) of the i-th iteration. The
values (a,b, e, f) of the (i+2)-th iteration are calculated using
the SHA256RNDS2 instruction.

1 16 256 4K 64K 1M
21
23
25
27
29

Message size (bytes)

Ru
nn

in
g
Ti
m
e

(c
yc
le
s-
pe
r-
by

te
)

OpenSSL sphlib SHA-NI

1 16 256 4K 64K 1M
1×
2×
3×
4×
5×

Message size (bytes)

Sp
ee
du

p

Figure 2: Performance of SHA-256 on the Zen processor. On
top, it is shown the cycles-per-byte taken for hashing a mes-
sage. On the bottom, it is shown the speedup factor yielded
by using the SHA-NI set.

used as a metric of performance. Figure 2 shows the performance
behavior of three implementations on the Zen processor.

2.2.1 Analysis. For messages larger than 256 bytes, the sphlib
library takes around 9.6 cpb, whereas, the OpenSSL library offers a
better performance taking 7.7 cpb, as is shown on the top of Fig. 2.
On the other hand, the SHA-NI implementation takes 1.8 cpb; this
is approximately 5.1× faster than sphlib and is 4.2× faster than
OpenSSL. The speedup factor yielded by using SHA-NI is plotted
on the bottom of Fig. 2. We want to remark that for short-length
messages the improvement on the performance is also significant,
since it achieves a 3.0× factor of speedup. These performance num-
bers show the relevance of including specialized instruction sets
for supporting cryptographic algorithms.

3 MULTIPLE-MESSAGE HASHING
This task is also known in the literature as multi-buffer hashing,
simultaneous hashing, or n-way hashing [1, 13, 17]. This workload

Session: Card-based Protocol, Implementation,
and Authentication for IoT APKC’18, June 4, 2018, Incheon, Republic of Korea

11

APKC’18, June 4, 2018, Incheon, Republic of Korea Faz-Hernández, López, de Oliveira

can be efficiently performed using parallel computing techniques,
such as the multi-core processing, the SIMD vectorization, and
the pipelining instruction scheduling. In this section, we focus on
the latter two approaches aiming to improve the performance of
SHA-256 in the multiple-message scenario.

3.1 SIMD Vectorization of SHA-256
Vectorization refers to the support given by the processor to the
parallel computing paradigm known as Single Instruction Multiple
Data (SIMD). Since 2000, commodity processors have included ex-
tensions to the instruction set architecture enabling vectorization.
One of the first instruction sets is the Streaming SIMD Extensions
(SSE) [25], which is a vector unit that operates over 128-bit registers;
thus, it is possible to compute four 32-bit operations simultane-
ously. Later, SSE was improved by the Advanced Vector eXtensions
(AVX/AVX2) [26], which is an instruction set that operates over
a bank of sixteen 256-bit registers. More recently, Intel launched
the Core-X processors, which have support for the AVX512 [27]
instruction set and contains a bank of 32 512-bit registers.

To hash n messages of the same length using vector instruc-
tions, one can modify Algorithm 1 as follows: first, replace each
32-bit word by a vector register; thus, a set of eight vector registers
A, . . . ,H will represent the state, where A = [a1, . . . ,an] is a vec-
tor register containing the word a of each message, and the same
rationale applies to the rest of the state. Since now all variables are
vectors, all the binary (scalar) operations must be replaced by the
corresponding vector instructions, which execute simultaneous op-
erations in each lane of a vector register. At the end of the algorithm,
the digest of the i-th message must be recovered concatenating the
i-th lane of each vector register A, . . . ,H . Refer to Appendix B for
a vectorized implementation of Algorithm 1.

In the literature, there exist several works that used SIMD instruc-
tions for implementing multiple-message hashing. For instance,
Gueron [17] showed the n-SMS technique that parallelizes the mes-
sage schedule phase leading to a faster single message hashing.
Following the work of Aciicmez [1], Gueron and Krasnov [18] re-
ported an implementation that uses the SSE unit to compute four
SHA-256 digests simultaneously; as a result, their implementation
runs 2.2× faster than the n-SMS single-message implementation
of Gueron [17]. They also extended the parallelization to 256-bit
registers, however, although AVX2 was not available at the time
their work was published, their estimations accurately matched the
performance exhibited by AVX2-ready processors available nowa-
days. Recently, Intel [12] contributed to the OpenSSL project with
optimized code3 that computes either four digests using SSE or
eight digests using AVX2 instructions.

We want to determine the impact on the running time when vec-
torization is applied to the multiple-message hashing scenario. To
do that, we conducted a performance benchmark of the vectorized
implementation provided by the OpenSSL library. Figure 3 shows
the result of our measurements.

3.1.1 Analysis. On Kaby Lake, to compute four hashes simul-
taneously is 2.35× faster than four consecutive invocations to the

3The OpenSSL library (v.1.0.2) contains the sha256_multi_block function, which
is located in the file http://github.com/openssl/openssl/blob/OpenSSL_1_0_2-stable/
crypto/sha/asm/sha256-mb-x86_64.pl .

256 4K 64K 1M20
21
22
23
24

Message size (bytes)

Ru
nn

in
g
Ti
m
e

(c
yc
le
s-
pe
r-
by

te
)

1 message (64-bit) 4 messages (SSE)
8 messages (AVX2)

256 4K 64K 1M20
21
22
23
24

Message size (bytes)

Ru
nn

in
g
Ti
m
e

(c
yc
le
s-
pe
r-
by

te
)

Figure 3: Performance ofmultiple-message hashing onKaby
Lake (top) and onZen (bottom). The baseline single-message
implementation is the sphlib library [6].

single-message implementation. Moreover, the AVX2 implemen-
tation is 4.5× faster than sphlib for computing eight hashes in a
row. The use of vector instructions on Kaby Lake shows a notice-
able improvement in the performance of multiple-message hashing.
However, the story is different on Zen.

The graphs in Figure 3 show that Zen offers a similar perfor-
mance than Kaby Lake for single-message hashing. The SSE imple-
mentation, which computes four hashes simultaneously, renders
a better performance on Kaby Lake. On Zen, the performance of
the AVX2 implementation shows the same performance as the one
exhibited by the SSE implementation, i.e., no benefits were observed
by running AVX2 code on the Zen micro-architecture.

This performance downgrade on Zen is because the latency
of AVX2 instructions is twice slower than the latency of the SSE
instructions. The micro-architectural design of Zen emulates a 256-
bit vector instruction splitting the workload into two parts, and then
it executes them in a 128-bit vector unit sequentially. Therefore, the
expected performance of an AVX2 code is reduced by half on Zen.

3.2 Pipelining SHA-NI Instructions
This section presents optimization strategies that rely on an efficient
instruction scheduling to leverage the capabilities of the processor’s
pipeline. First, we briefly describe how the processor’s pipeline
operates, and detail about the pipelined implementation of the
SHA-256 algorithm.

In former computer architectures and before the introduction
of Reduced Instruction Set Computer (RISC) processor’s design,
instructions do not start their execution until the previous instruc-
tions are executed completely. In this design, the processor stalls
whenever executing high-latency instructions. To remedy this issue,
RISC introduced the pipeline execution model, which is a hardware
optimization for increasing the throughput of instruction execu-
tion. In this model, once an instruction has been issued, then it
is processed by several (and simpler) stages until it is completely

Session: Card-based Protocol, Implementation,
and Authentication for IoT APKC’18, June 4, 2018, Incheon, Republic of Korea

12

http://github.com/openssl/openssl/blob/OpenSSL_1_0_2-stable/crypto/sha/asm/sha256-mb-x86_64.pl
http://github.com/openssl/openssl/blob/OpenSSL_1_0_2-stable/crypto/sha/asm/sha256-mb-x86_64.pl

SoK: A Performance Evaluation of Cryptographic Instructions APKC’18, June 4, 2018, Incheon, Republic of Korea

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

SHA256RNDS2 SHA256RNDS2

SHA256RNDS2 SHA256RNDS2

SHA256RNDS2 SHA256RNDS2

SHA256RNDS2 SHA256RNDS2

Latency
Reciprocal
Throughput

Figure 4: Pipelined execution of SHA256RNDS2 instructions.

executed. Inside the pipeline, the execution of instructions is over-
lapped; this means that at a given time, the execution of the stage t
of an instruction happens at the same time as the execution of the
stage t + 1 of the previous instruction, and also at the same time as
the execution of the stage t − 1 of the next instruction.

In addition to the latency, there exist other metrics to determine
the performance of instructions on a RISC architecture. According
to Fog’s definition [11], the throughput of an instruction is “the
maximum number of instructions of the same kind that are exe-
cuted per clock cycle”, and the reciprocal throughput refers to “the
number of cycles to wait until an execution unit starts processing
an instruction of the same type”. There is a lack of information
about these metrics on the Zen documentation; however, accurate
timings can be found using experimental measurements. The fol-
lowing table shows the timings measured by Fog for the SHA-NI
instructions on Zen:

SHA256MSG1 SHA256MSG1 SHA256RNDS2

Latency 2 3 4
Recip. Throughput 0.5 2 2

In Figure 4, we show a timeline of the pipelined execution of a
series of SHA256RNDS2 instructions. The SHA256RNDS2 instruction
takes four clock cycles to be completed; however, its reciprocal
throughput is only two cycles, this means that once a SHA256RNDS2
instruction is issued to the execution unit, a second SHA256RNDS2
instruction can be issued two clock cycles after the first one. There-
fore, by issuing two SHA256RNDS2 instructions consecutively, the
processor will take only six clock cycles to compute them instead
of taking eight clock cycles.

Observe that to achieve a pipelined execution; these instructions
must have no data dependencies; otherwise, the processor will wait
until the data dependency be resolved. After a dependence analysis
of Algorithm 2, it can be noted that in the message schedule phase,
the SHA256MSG2 instruction takes as an input the value produced
by the SHA256MSG1 instruction. Another data dependency is found
in the update state phase, where both SHA256RNDS2 instructions
dependent one to the other. Hence, these data dependencies limit
the use of the pipelining technique for single-message hashing.
However, the hashing of multiple messages is a suitable scenario
that leverages the capabilities of the processor’s pipeline.

The central idea of our pipelined implementation resembles the
work of Gueron [14], who implemented the AES-CTR encryption
algorithm using AES-NI instructions. In the case of SHA-256, at

256 4K 64K 1M
1

1.5

2

2.5

Message size (bytes)

Ru
nn

in
g
Ti
m
e

(c
yc
le
s-
pe
r-
by

te
)

1 message 2 messages 4 messages 8 messages

Figure 5: Performance of SHA-256 multiple-message hash-
ing measured on Zen. The single-message implementation
refers to the SHA-NI implementation (cf. Section 2.1).

every two clock cycles a SHA256RNDS2 instruction is issued to the
pipeline, such that each instruction operates over a state of a dif-
ferent message; thus, consecutive instructions do not have data
dependencies at all, and as a consequence, their execution can be
pipelined. Let k be the number of messages to be hashed; we de-
veloped pipelined implementations of SHA-256 multiple-message
hashing for k ∈ {2, 4, 8}. Appendix B shows the pipelined imple-
mentation of Algorithm 2 for k = 2. The results of the performance
benchmark are shown in Figure 5.

3.2.1 Analysis. To hash two messages, it is more convenient
to use the pipelined implementation (k = 2), which is 18% faster
than performing two consecutive hashes using the single-message
SHA-NI implementation. Similarly, for k = 4 a reduction of a 21%
of the running time is obtained. However, note that for k = 8 the
performance downgrades, which can be explained because hashing
eight messages requires a larger space to store all the states causing
that vector registers be spilled to memory more often. These results
show that a significant improvement for multiple-message hashing
is achieved using an efficient instruction scheduling of SHA-NI
instructions.

4 HASH-BASED DIGITAL SIGNATURES
We present a performance analysis of two hash-based signature
schemes that are currently considered as a work in progress to-
wards standardization by the Internet Engineering Task Force (IETF)
group [23].

The first scheme is the eXtended Merkle Signature Scheme
(XMSS) [8], which uses a Merkle tree (a binary hash-tree) in which
the leaves store a public key of a one-time signature scheme, such as
WOTS+ [22]; and every internal node stores the hash of the values
of its child nodes. Thus, the XMSS public key is the root of the
Merkle tree. Let h be the height of the tree, then XMSS can sign at
most 2h messages using 2h different key pairs, where the one-time
private keys are derived from a secret seed using a pseudo-random
number generator.

The second scheme is the Multi-Tree XMSS (XMSSMT) [24],
which is an extension of XMSS that provides a larger number of
signatures. Assuming that d |h, XMSSMT can generate at most 2h
signatures using a d-height hypertree such that each of its nodes is
an h/d-height XMSS tree.

Session: Card-based Protocol, Implementation,
and Authentication for IoT APKC’18, June 4, 2018, Incheon, Republic of Korea

13

APKC’18, June 4, 2018, Incheon, Republic of Korea Faz-Hernández, López, de Oliveira

4.1 Implementation of XMSS and XMSSMT

In both schemes, the calculation of Merkle trees is the performance-
critical operation, since a large number of hash calculations is
required. Note that the nodes at the same height can calculate their
hash values without dependency between them; hence, this is a
suitable scenario for applying the optimized implementations of
multiple-message hashing presented above.

To implement the signature schemes we use as a building block
the following software implementations of the SHA-256 algorithm:
• The sphlib [6] implementation that uses 64-bit instructions.
• The sequential SHA-NI implementation from Section 2.1.
• Vectorized implementations using 128- and 256-bit instruc-
tions from [9].
• The pipelined SHA-NI implementation from Section 3.2.

Optimal parameters for these schemes are provided in the IEFT’s
draft [23]. For example, to achieve a 128-bit post-quantum security
level it is recommended to use a hash function with an output of
n = 32 bytes, such as SHA-256 or SHAKE [32]. For XMSS, it is
suggested to set h ∈ {10, 16, 20}; and for XMSSMT setting (h,d) ∈
{(20, 2), (20, 4), (40, 2), (40, 4), (40, 8), (60, 3), (60, 6), (60, 12)}. From
these parameters, we selected h = 20 for XMSS and h = 60,d = 6
for XMSSMT since they allow the largest number of signatures. We
report in Table 1 the performance measurements.

4.1.1 Analysis of the Zen Platform. Taking as a baseline the
sphlib implementation, it can be noted that multiple-message
hashing has a higher impact on the key generation and the signing
operation and a lesser impact on the verification procedure. Note
that the running time of the key generation and the signing opera-
tion can be reduced by almost half using SSE vector instructions,
whereas the AVX2 implementation renders a poor performance
on Zen; this was already expected from the analysis presented in
Section 3.1.1.

It can be observed that for XMSS the SHA-NI implementation
yields a speedup factor between 3.5× to 4× in contrast to the 64-bit
sphlib implementation. Moreover, extra savings were achieved by
using the pipelined SHA-NI implementation, which increased the
speedup factor to 4.3× and 4.6× for XMSS and XMSSMT, respec-
tively, improving a 10% the key generation, and a 7% the signature
operation.

4.1.2 Analysis of the Kaby Lake Processor. To have a better
panorama of the performance of hash-based signatures, we re-
produce the experiments using Kaby Lake. Recall that although
Kaby Lake does not support the SHA-NI instructions, it contains a
faster vector unit. Figure 6 shows the running time to generate an
XMSS signature (h = 20) measured on Zen and Kaby Lake.

First of all, it can be observed that Zen delivers better perfor-
mance for signing using the sequential sphlib implementation.
However, the vectorized implementations offer a significant accel-
eration when running on Kaby Lake, but not in Zen. For example,
by using AVX2, an XMSS signature can be computed 4× faster than
the sequential implementation. On the other hand, Zen renders a
similar performance using the sequential SHA-NI implementation.
However, the pipelined SHA-NI implementation (from Section 3.2)
offers the fastest timings. These results show the relevance of re-
visiting optimization techniques for the SHA-NI set.

Table 1: Performance comparison of hash-based signature
schemes on Zen. For each signature operation, the first col-
umn lists the latency of the operation and the second col-
umn shows the acceleration factor (AF) with respect to the
64-bit sphlib implementation.

(a) XMSS for h = 20.

Impl. Parallel Key Gen. Sign Verify

1012 cc AF 106 cc AF 106 cc AF

sphlib No 4.50 1.00× 21.56 1.00× 2.16 1.00×
SSE 4-way 2.60 1.72× 12.76 1.68× 1.78 1.21×
AVX2 8-way 3.81 1.18× 19.56 1.10× 3.65 0.59×
SHA-NI No 1.12 4.01× 5.39 3.99× 0.61 3.51×
SHA-NI 4-Pipelined 1.01 4.46× 5.00 4.30× 0.74 2.89×

(b) XMSSMT for h = 60 and d = 6.

Impl. Parallel Key Gen. Sign Verify

109 cc AF 106 cc AF 106 cc AF

sphlib No 51.63 1.00× 46.35 1.00× 27.97 1.00×
SSE 4-way 27.44 1.88× 25.27 1.83× 18.94 1.48×
AVX2 8-way 40.11 1.29× 38.31 1.21× 36.81 0.76×
SHA-NI No 11.87 4.35× 10.69 4.34× 6.45 4.33×
SHA-NI 4-Pipelined 10.78 4.79× 9.99 4.64× 7.64 3.66×

sphlib SSE AVX2 SHA-NI 4-SHA-NI
0
5
10
15
20

Ru
nn

in
g
Ti
m
e

(1
06

cy
cl
es
)

XMSS signature (h = 20)

Zen
Kaby Lake

Figure 6: The faster implementation of SHA-256, the better
performance achieved for XMSS signature generation.

5 IMPLEMENTATION OF THE AES
The Advanced Encryption Standard (AES) is a family of block ci-
phers standardized by NIST [29] that encrypts a 128-bit message
using a secret key k to produce a 128-bit ciphertext. The algorithm
keeps track of a 128-bit state initially containing the message in-
put. Then, the state is updated by the application of the functions
AddRoundKey, SubBytes, ShiftRows, and MixColumns to produce
the ciphertext finally. The AES algorithm admits three key sizes:
128, 192, and 256 bits; this size defines the number of transforma-
tion rounds that the state is processed. A description of the AES
encryption algorithm is shown in Algorithm 3.

In 2010, Intel released the AES-NI set [15], which contains six
instructions dedicated to calculating parts of the AES algorithm.
In particular, the AESENC and AESENCLAST instructions encapsulate
the operations performed in each round. Thus, Algorithm 3 can be
implemented replacing the lines 4-7 by an AESENC instruction and

Session: Card-based Protocol, Implementation,
and Authentication for IoT APKC’18, June 4, 2018, Incheon, Republic of Korea

14

SoK: A Performance Evaluation of Cryptographic Instructions APKC’18, June 4, 2018, Incheon, Republic of Korea

Algorithm 3 The AES block cipher encryption algorithm.
Input: M is a 128-bit message, and k is a secret key such that

(|k |,nr) ∈ {(128, 10), (192, 12), (256, 14)}.
Output: C is a 128-bit ciphertext such that C = AESk (M).
1: (K0, . . . ,Knr) ← KeyExpansion(k)
2: S ← AddRoundKey(M,K0)
3: for i ← 1 to nr − 1 do
4: S ← SubBytes(S)
5: S ← ShiftRows(S)
6: S ← MixColumns(S)
7: S ← AddRoundKey(S,Ki)
8: end for
9: S ← SubBytes(S)
10: S ← ShiftRows(S)
11: C ← AddRoundKey(S,Knr)
12: return C

AESENC(S,Ki)

AESENCLAST(S,Knr)

the lines 9-11 by an AESENCLAST instruction. The resultant AES-NI
implementation renders a faster performance since a large part of
its execution is performed by hardware.

A mode of operation is an algorithm to encrypt arbitrary large
messages using a block cipher. The most used modes of operation
for AES are the Cipher Block Chaining (CBC) and the Counter mode
(CTR) [30]. In the CBC mode, encryption is a sequential process;
whereas decryption exhibits a large degree of parallelism. Likewise,
the CTR mode is an embarrassingly parallel workload.

The Zenmicro-architecture offers a new capability for improving
the execution of the AES algorithm. It includes two AES execution
units, one more unit than Intel processors. This fact motivated us
to revisit implementation techniques of the CBC and CTR modes
and to show some optimizations that take advantage of these units.

5.1 Multiple-Message Encryption
To determine the impact on performance due to the inclusion of
a second AES-NI unit, we perform a benchmark of the multiple-
message encryption using the AES-128-CBCmode. In this task, each
message is independent of each other; hence, no data dependencies
occur at all. Figure 7 shows our measurements.

5.1.1 Analysis. For encrypting a message, the fastest timing was
obtained by Kaby Lake (2.33 cpb), whereas Zen is slightly slower
taking 2.44 cpb. On the other hand, as the number of messages
increases, Zen executes AESENC instructions more efficiently than
the other processors; for instance, Zen is 42% faster than Skylake
to encrypt k = 8 messages. However, although Zen has two units,
Kaby Lake reduced such advantage to 33%.

5.2 Pipelining CBC Decryption and CTRModes
It is well known that the running time of these modes of operation
can be accelerated through proper usage of the processor’s pipeline.
Gueron [14] showed that encrypting a set of w > 1 consecutive
blocks leads to a better performance. His idea relies on calculating
the first round of each block, i.e., a series ofw AESENC instructions
is issued; after that, the second round of each message is processed;
and this strategy is repeated until the last round. Since each AESENC

k Hsw Sky Kaby Zen

1 4.49 2.71 2.33 2.44
2 2.25 1.37 1.17 1.24
4 1.13 0.69 0.60 0.63
6 0.81 0.65 0.56 0.43
8 0.76 0.63 0.54 0.36 1 2 4 6 81×2×

4×
6×
8×

Messages (k)

Sp
ee
du

p Zen
Haswell
Skylake
Kaby Lake

Figure 7: The table entries represent the cpb taken for en-
crypting k messages of 1MB using the AES-128-CBC mode.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

AESENC(m0)

AESENC(m4)

AESENC(m8)

AESENC(m12)

AESENC(m1)

AESENC(m5)

AESENC(m9)

AESENC(m13)

AESENC(m2)

AESENC(m6)

AESENC(m10)

AESENC(m14)

AESENC(m3)

AESENC(m7)

AESENC(m11)

AESENC(m15)

Unit 1

Unit 2

Figure 8: Instruction scheduling of AESENC instructions on
Zen. Four AESENC instructions can be issued to each unit.

instruction operates on a different state, no data dependencies will
occur, and the processor’s pipeline will be able to execute them
overlapped.

A detailed analysis of pipelined implementations was presented
by Bogdanov et al. [7]. They refer to w as the parameter that ex-
presses the parallelism degree of the instruction, and its optimal
value is given as the product of the latency times the throughput of
the instruction. Thus, according to the measurements obtained by
Fog [11], the optimal value for the AESENC instruction is as follows:

Haswell Skylake Kaby Lake Zen
Latency 7 4 4 4
Reciprocal throughput 1 1 1 0.5
Parallelism degree (w) 7 4 4 8

Like Kaby Lake, Zen executes the AESENC instruction in four clock
cycles; however, since Zen has twoAES units, then two independent
AESENC instructions can start its execution at the same time, which
explains a (fractional) reciprocal throughput of 0.5 cycles. See in
Figure 8 the pipelined execution on two units. Note that the opti-
mal value ofw is composed of the optimal value of each unit; thus,
wZen = number of units × latency × throughput-per-unit = 8. In
Figure 9, we report measurements of several pipelined implementa-
tions of AES-CBC decryption and AES-CTR encryption.

5.2.1 Analysis. Both Skylake and Kaby Lake obtain the fastest
timing usingw = 2 for CBC decryption; however, the timings are
not improved for larger values ofw . Similarly, the CTR encryption
reaches its fastest timing usingw = 4. In these two platforms, no

Session: Card-based Protocol, Implementation,
and Authentication for IoT APKC’18, June 4, 2018, Incheon, Republic of Korea

15

APKC’18, June 4, 2018, Incheon, Republic of Korea Faz-Hernández, López, de Oliveira

Haswell Skylake Kaby Lake Zen
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Ru
nn

in
g
Ti
m
e

(c
yc
le
s-
pe
r-
by

te
) AES-128-CBC Decryption

Haswell Skylake Kaby Lake Zen
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Ru
nn

in
g
Ti
m
e

(c
yc
le
s-
pe
r-
by

te
) AES-128-CTR Encryption

Sequential w = 2 w = 4 w = 8

Figure 9: Performance of AES-128 encryption of 1MB mes-
sage using CBC decryption and CTR encryption. The w pa-
rameter indicates the number of independent AESENC in-
structions issued to the pipeline.

benefits were observed by encrypting w = 8 consecutive blocks.
However, Haswell saves additional clock cycles settingw = 8. For
example, the running time of CBC decryption decreases from 0.72
to 0.63 cpb (12.5% faster) and the running time of CTR encryption
reduces from 0.82 to 0.74 cpb (9.75% faster).

On the other hand, significant savings were observed for Zen.
The w = 4 pipelined implementation is twice as fast as using the
sequential implementation for both modes of operation leading to
0.42 cpb for both CBC decryption and CTR encryption. Moreover,
we observed extra savings by using thew = 8 pipelined implemen-
tation, which reduces to 0.37 cpb (11.9% faster) the running time of
CBC decryption and to 0.39 cpb (7.1% faster) the running time of
CTR encryption.

5.3 Improving the Implementation of AEGIS
AEGIS is an authenticated encryption algorithm proposed by Wu
and Prenel [35] that is currently classified in the final round of the
CAESAR competition [4]. This cipher uses the AESENC instruction
as a building block to update an 80-byte state. Thus, given a 128-bit
message blockmi and the state Si = {ai ,bi , ci ,di , ei }, the Update
function is defined as: Si+1 = Update(Si ,mi) such that:

ai+1 = AESENC(ei ,ai ⊕mi) , bi+1 = AESENC(ai ,bi) ,
ci+1 = AESENC(bi , ci) , di+1 = AESENC(ci ,di) ,
ei+1 = AESENC(di , ei) .

(9)

As it can be noted, the five calls to AESENC instruction are pairwise
independent, which allows benefiting from the processor’s pipeline.

Based on the AEGIS implementation available in SUPERCOP [6],
we modify it by grouping blocks of four AESENC instructions corre-
sponding to the update of b, c , d , and e blocks. The invocation of the
last AESENC instruction is slightly modified; instead of passing as
input ai ⊕mi , we pass a memory address that points to the message
blockmi ; thus, the a block is computed as

ai+1 = AESENC(ei ,ai ⊕mi) = AESENC(ei ,mi) ⊕ ai (10)

This equivalence works because the AddRoundKey function is an
XOR between the state and the round key. This subtle change
accelerates its execution since the latency of the memory access
is covered by the latency of AESENC. The original implementation
takes 0.34 cpb in Zen; whereas our optimization leads to 0.30 cpb,
which is 11% faster.

6 FINAL REMARKS
Part of this study determined the performance improvements car-
ried by the use of the SHA-NI, the AES-NI, and the SIMD instruction
sets available on modern computer architectures.

Regarding SHA-NI extensions, we looked for optimizations that
allow efficient use of these instructions. Consequently, we revisited
known software optimization techniques, such as vectorization and
pipelining, to provide faster implementations of both public-key
and symmetric-key cryptographic algorithms.

In the case of public-key cryptography, we optimized the exe-
cution of multiple-message hashing, since it is a critical operation
of hash-based digital signatures. We evaluated the performance of
XMSS and XMSSMT using several optimization variants. For exam-
ple, a pipelined SHA-NI implementation yields a speedup factor of
4.3× in the calculation of XMSS signatures and 4.6× in the calcu-
lation of XMSSMT signatures with respect to an optimized 64-bit
implementation of SHA-256.

For symmetric-key encryption, we measure the impact on the
performance of data encryption by using two AES units. For exam-
ple, Kaby Lake can decrypt data using the CBC mode at a rate of
0.53 cpb using aw = 8 pipelined implementation, whereas Zen is
30% faster taking 0.37 cpb.

We want to highlight that the architectural design of the AVX2
vector unit of Zen affects the performance of AVX2 code negatively.
This poor performance was not only observed for hashing but also
on AVX2 code supporting the X25519 Diffie-Hellman function [10].

Future works. Note that SIMD parallel implementations can also
be extended for using AVX512 instructions [27]; thus, the multiple-
message hashing will process sixteen messages simultaneously.
Following an analogous analysis that the one performed by Gueron
and Krasnov [19]; preliminary evaluation of an implementation
of SHA-256 using AVX512 reveals that the number of instructions
does not increase significantly, which could lead to performance
improvements on the forthcoming AVX512-ready processors.

It would be interesting to reproduce our experiments on ARM
processors that support the ARMv8 Cryptographic Extensions [3]
and/or the Scalable Vector Extensions [34], however the perfor-
mance evaluation in this platform turns to be more complex due to
the wide variety of processor’s implementations.

Finally, the optimizations presented in this work are also appli-
cable to other algorithms, such as the SPHINCS+ [5] hash-based
signature scheme, which was recently submitted to the NIST’s Post-
Quantum call for proposals [33]; and Deoxys [28] and COLM [2],
AES-based authenticated encryption algorithms also contending in
the CAESAR competition.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees for their
valuable comments. The authors acknowledge support during the

Session: Card-based Protocol, Implementation,
and Authentication for IoT APKC’18, June 4, 2018, Incheon, Republic of Korea

16

SoK: A Performance Evaluation of Cryptographic Instructions APKC’18, June 4, 2018, Incheon, Republic of Korea

development of this research from Intel and FAPESP under project
“Secure Execution of Cryptographic Algorithms” under Grant No.
14/50704-7.

A DEFINITIONS USED ON SHA-256
ALGORITHM

The SHA-256 algorithm [31] requires some auxiliary functions and
constants, which are listed in this section.

Notation: entries of the matrix are given in base 16; the variables
x , y, and z denote 32-bit words; the operators ∧, ⊕, and ¬ denote,
respectively, the AND, XOR, and NOT boolean operations; and the
symbols≪ and≫ denote, respectively, a left and right 32-bit shift.

Rot(x ,n) = (x ≫ n) ⊕ (x ≪ (32 − n)) (11)
σ0 (x) = Rot(x , 7) ⊕ Rot(x , 18) ⊕ (x ≫ 3) (12)
σ1 (x) = Rot(x , 17) ⊕ Rot(x , 19) ⊕ (x ≫ 10) (13)
Σ0 (x) = Rot(x , 2) ⊕ Rot(x , 13) ⊕ Rot(x , 22) (14)
Σ1 (x) = Rot(x , 6) ⊕ Rot(x , 11) ⊕ Rot(x , 25) (15)

Ch(x ,y, z) = (x ∧ y) ⊕ (¬x ∧ z) (16)
Maj(x ,y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ y) (17)

To initialize the state, use the following values:

S0 =

[
a b c d
e f д h

]
=

[
6a09e667 bb67ae85 3c6ef372 a54ff53a

510e527f 9b05688c 1f83d9ab 5be0cd19

]
(18)

The following matrix contains 64 constant values known as ki :

K0
K4
...

K60

=

k0 . . . k3
...
. . .

...

k60 . . . k63

=

428a2f98 71374491 b5c0fbcf e9b5dba5

3956c25b 59f111f1 923f82a4 ab1c5ed5

d807aa98 12835b01 243185be 550c7dc3

72be5d74 80deb1fe 9bdc06a7 c19bf174

e49b69c1 efbe4786 0fc19dc6 240ca1cc

2de92c6f 4a7484aa 5cb0a9dc 76f988da

983e5152 a831c66d b00327c8 bf597fc7

c6e00bf3 d5a79147 06ca6351 14292967

27b70a85 2e1b2138 4d2c6dfc 53380d13

650a7354 766a0abb 81c2c92e 92722c85

a2bfe8a1 a81a664b c24b8b70 c76c51a3

d192e819 d6990624 f40e3585 106aa070

19a4c116 1e376c08 2748774c 34b0bcb5

391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3

748f82ee 78a5636f 84c87814 8cc70208

90befffa a4506ceb bef9a3f7 c67178f2

(19)

B SOURCE CODE OF THE UPDATE FUNCTION
We show a fragment of C-language code that shows the usage of
SSE/AVX2 and SHA-NI instructions on the implementation of the
Update function of SHA-256. Add the compiler flags -mssse3 and
-msha to enable SSE and SHA-NI instruction sets.

 1 /* @author: Armando Faz (2017) - Public Domain */
 2 #include <stdint.h>
 3 #include <immintrin.h>
 4
 5 uint32_t K[64] = {0x428a2f98, 0x71374491, ..., 0xc67178f2};
 6
 7 #define VEC __m128i
 8 #define LOAD(X) _mm_load_si128((VEC *)X)
 9 #define STORE(X,Y) _mm_store_si128((VEC *)X,Y)

 10 #define ADD(X,Y) _mm_add_epi32(X,Y)
 11 #define SHL(X,Y) _mm_slli_epi32(X,Y)
 12 #define SHR(X,Y) _mm_slli_epi32(X,Y)
 13 #define HIGH(X) _mm_srli_si128(X,8)
 14 #define AND(X,Y) _mm_and_si128(X,Y)
 15 #define ANDN(X,Y) _mm_andnot_si128(X,Y)
 16 #define OR(X,Y) _mm_or_si128(X,Y)
 17 #define XOR(X,Y) _mm_xor_si128(X,Y)
 18 #define BROAD(X) _mm_set1_epi32(X)
 19 #define ALIGNR(X,Y) _mm_alignr_epi8(X,Y,4)
 20 #define L2B(X) _mm_shuffle_epi8(X,_mm_set_epi32(\
 21 0x0c0d0e0f,0x08090a0b,0x04050607,0x00010203))
 22 #define SHA(X,Y,Z) _mm_sha256rnds2_epu32(X,Y,Z)
 23 #define MSG1(X,Y) _mm_sha256msg1_epu32(X,Y)
 24 #define MSG2(X,Y) _mm_sha256msg2_epu32(X,Y)
 25 #define CVLO(X,Y,Z) _mm_shuffle_epi32(_mm_unpacklo_epi64(X,Y),Z)
 26 #define CVHI(X,Y,Z) _mm_shuffle_epi32(_mm_unpackhi_epi64(X,Y),Z)
 27 #define ROT(X,N) OR(SHR(X,N),SHR(X,32-N))
 28 #define sigma0(X) XOR(ROT(X,7),XOR(ROT(X,18),SHR(X,3)))
 29 #define sigma1(X) XOR(ROT(X,17),XOR(ROT(X,19),SHR(X,10)))
 30 #define Sigma0(X) XOR(ROT(X,2),XOR(ROT(X,13),ROT(X,22)))
 31 #define Sigma1(X) XOR(ROT(X,6),XOR(ROT(X,11),ROT(X,25)))
 32 #define Ch(X,Y,Z) XOR(AND(X,Y),ANDN(X,Z))
 33 #define Maj(X,Y,Z) XOR(AND(X,Y),XOR(AND(X,Z),AND(Y,Z)))
 34 #define calcWi(W,t) ADD(sigma0(W[t-15]),\
 35 ADD(sigma1(W[t-2]),ADD(W[t-7],W[t-16])))
 36 #define calcT1(E,F,G,H,Ki,Wi) \
 37 ADD(H,ADD(Sigma1(E),ADD(Ch(E,F,G),ADD(Ki,Wi))))
 38 #define calcT2(A,B,C) ADD(Sigma0(A),Maj(A,B,C))
 39
 40 /* 1) Vectorized Implementation */
 41 void Update_AVX2(VEC * state, VEC * msg_block) {
 42 int i=0; VEC a,b,c,d,e,f,g,h,ki,T1,T2,M[64];
 43 a = state[0]; b = state[1]; c = state[2]; d = state[3];
 44 e = state[4]; f = state[5]; g = state[6]; h = state[7];
 45 for(i=0;i<16;i++) {
 46 ki = BROAD(K[i]); M[i] = msg_block[i];
 47 T1 = calcT1(e,f,g,h,ki,M[i]); T2 = calcT2(a,b,c);
 48 h=g; g=f; f=e; e=ADD(d,T1); d=c; c=b; b=a; a=ADD(T1,T2);
 49 }
 50 for(i=16;i<64;i++) {
 51 ki = BROAD(K[i]); M[i] = calcWi(M,i);
 52 T1 = calcT1(e,f,g,h,ki,M[i]); T2 = calcT2(a,b,c);
 53 h=g; g=f; f=e; e=ADD(d,T1); d=c; c=b; b=a; a=ADD(T1,T2);
 54 }
 55 state[0] = ADD(state[0],a); state[1] = ADD(state[1],b);
 56 state[2] = ADD(state[2],c); state[3] = ADD(state[3],d);
 57 state[4] = ADD(state[4],e); state[5] = ADD(state[5],f);
 58 state[6] = ADD(state[6],g); state[7] = ADD(state[7],h);
 59 }
 60 /* 2) Pipelined SHA-NI Implementation (k=2) */
 61 void Update_SHANI(uint32_t state0[8], uint8_t * msg0,
 62 uint32_t state1[8], uint8_t * msg1) {
 63 int i=0,j=0,i1=0,i2=0,i3=0;
 64 VEC X0,Y0,A0,C0,W0[4],X1,Y1,A1,C1,W1[4],Ki;
 65
 66 X0 = LOAD(state0+0); X1 = LOAD(state1+0);
 67 Y0 = LOAD(state0+1); Y1 = LOAD(state1+1);
 68 A0 = CVLO(X0,Y0,0x1B); A1 = CVLO(X1,Y1,0x1B);
 69 C0 = CVHI(X0,Y0,0x1B); C1 = CVHI(X1,Y1,0x1B);
 70
 71 for(i=0; i<4; i++) {
 72 Ki = LOAD(K+i);
 73 W0[i] = L2B(LOAD(msg0+i)); W1[i] = L2B(LOAD(msg1+i));
 74 X0 = ADD(W0[i],Ki); X1 = ADD(W1[i],Ki);
 75 Y0 = HIGH(X0); Y1 = HIGH(X1);
 76 C0 = SHA(C0,A0,X0); C1 = SHA(C1,A1,X1);
 77 A0 = SHA(A0,C0,Y0); A1 = SHA(A1,C1,Y1);
 78 }
 79 for(j=1; j<4; j++) {
 80 for(i=0, i1=1, i2=2, i3=3; i<4; i++) {
 81 Ki = LOAD(K+4*j+i);
 82 X0 = MSG1(W0[i],W0[i1]); X1 = MSG1(W1[i],W1[i1]);
 83 Y0 = ALIGNR(W0[i3],W0[i2]); Y1 = ALIGNR(W1[i3],W1[i2]);
 84 X0 = ADD(X0,Y0); X1 = ADD(X1,Y1);
 85 W0[i] = MSG2(X0,W0[i3]); W1[i] = MSG2(X1,W1[i3]);
 86 X0 = ADD(W0[i],Ki); X1 = ADD(W1[i],Ki);
 87 Y0 = HIGH(X0); Y1 = HIGH(X1);

Session: Card-based Protocol, Implementation,
and Authentication for IoT APKC’18, June 4, 2018, Incheon, Republic of Korea

17

APKC’18, June 4, 2018, Incheon, Republic of Korea Faz-Hernández, López, de Oliveira

 88 C0 = SHA(C0,A0,X0); C1 = SHA(C1,A1,X1);
 89 A0 = SHA(A0,C0,Y0); A1 = SHA(A1,C1,Y1);
 90 i1 = i2; i2 = i3; i3 = i;
 91 }
 92 }
 93 X0 = CVHI(A0,C0,0xB1); X1 = CVHI(A1,C1,0xB1);
 94 Y0 = CVLO(A0,C0,0xB1); Y1 = CVLO(A1,C1,0xB1);
 95 X0 = ADD(X0,LOAD(state0+0)); X1 = ADD(X1,LOAD(state1+0));
 96 Y0 = ADD(Y0,LOAD(state0+1)); Y1 = ADD(Y1,LOAD(state1+1));
 97 STORE(state0+0,X0); STORE(state1+0,X1);
 98 STORE(state0+1,Y0); STORE(state1+1,Y1);
 99 }

Listing 1: Implementation of the Update function using:
1) SSE vectors; 2) pipelined SHA-NI extensions.

REFERENCES
[1] Onur Aciicmez. 2005. Fast hashing on Pentium SIMD architecture. Master’s thesis.

Oregon State University. http://ir.library.oregonstate.edu/concern/graduate_
thesis_or_dissertations/mk61rk723

[2] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. 2013. Parallelizable and Authenticated Online Ci-
phers. In Advances in Cryptology - ASIACRYPT 2013, Kazue Sako and Palash
Sarkar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 424–443. https:
//doi.org/10.1007/978-3-642-42033-7_22

[3] ARM. 2017. ARMArchitecture Reference Manual. ARMv8, for ARMv8-A architecture
profile. ARM. https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.
pdf

[4] Daniel J. Bernstein (Ed.). 2013. CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness. Cryptographic competitions. https://
competitions.cr.yp.to/caesar-submissions.html

[5] Daniel J Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,
and Zooko Wilcox-O’Hearn. 2015. SPHINCS: practical stateless hash-based
signatures. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, Berlin, Heidelberg, 368–397. https:
//doi.org/10.1007/978-3-662-46800-5_15

[6] Daniel J. Bernstein and Tanja Lange. 2017. eBACS: ECRYPT Benchmarking
of Cryptographic Systems. (Dec. 2017). http://bench.cr.yp.to/supercop.html
Published: Accessed on 20 December 2017.

[7] Andrey Bogdanov, Martin M. Lauridsen, and Elmar Tischhauser. 2015. Comb
to Pipeline: Fast Software Encryption Revisited. In Fast Software Encryption:
22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Re-
vised Selected Papers, Gregor Leander (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 150–171. https://doi.org/10.1007/978-3-662-48116-5_8

[8] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. 2011. XMSS - A Prac-
tical Forward Secure Signature Scheme Based on Minimal Security Assumptions.
In Post-Quantum Cryptography, Bo-Yin Yang (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 117–129. https://doi.org/10.1007/978-3-642-25405-5_8

[9] Ana Karina D. S. de Oliveira and Julio López. 2015. An Efficient Software Imple-
mentation of the Hash-Based Signature Scheme MSS and Its Variants. In Progress
in Cryptology – LATINCRYPT 2015, Kristin Lauter and Francisco Rodríguez-
Henríquez (Eds.). Springer International Publishing, Guadalajara, Mexico, 366–
383. https://doi.org/10.1007/978-3-319-22174-8_20

[10] Armando Faz-Hernández and Julio López. 2015. Fast Implementation of
Curve25519 Using AVX2. In Progress in Cryptology – LATINCRYPT 2015 (Lecture
Notes in Computer Science), Kristin Lauter and Francisco Rodríguez-Henríquez
(Eds.), Vol. 9230. Springer International Publishing, Guadalajara, Mexico, 329–345.
https://doi.org/10.1007/978-3-319-22174-8_18

[11] Agner Fog. 2017. Instruction tables: Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs. Technical University
of Denmark. http://www.agner.org/optimize/instruction_tables.pdf.

[12] Vinodh Gopal, Sean Gulley, Wajdi Feghali, Dan Zimmerman, and Ilya Albrekht.
2015. Improving OpenSSL Performance. Technical Report. Intel Corporation.
https://software.intel.com/en-us/articles/improving-openssl-performance

[13] Vinodh Gopal, Jim Gullford, Wajdi Feghali, Erdinc Ozturk, Gil Wolrich, and
Martin Dixon. 2010. Processing Multiple Buffers in Parallel to Increase Perfor-
mance on ® Intel Architecture Processors. Technical Report 324101. Intel Cor-
poration. https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/communications-ia-multi-buffer-paper.pdf

[14] Shay Gueron. 2009. Intel’s New AES Instructions for Enhanced Performance
and Security. In Fast Software Encryption: 16th International Workshop, FSE 2009
Leuven, Belgium, February 22-25, 2009 Revised Selected Papers, Orr Dunkelman
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 51–66. https://doi.org/10.
1007/978-3-642-03317-9_4

[15] Shay Gueron. 2010. Intel® Advanced Encryption Standard (AES) New Instructions
Set. Technical Report. Intel Corporation. http://www.intel.com/content/dam/doc/
white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf

[16] Shay Gueron and Michael Kounavis. 2010. Efficient implementation of the Galois
Counter Mode using a carry-less multiplier and a fast reduction algorithm. Inform.
Process. Lett. 110, 14 (2010), 549–553. https://doi.org/10.1016/j.ipl.2010.04.011

[17] Shay Gueron and Vlad Krasnov. 2012. Parallelizing message schedules to acceler-
ate the computations of hash functions. Journal of Cryptographic Engineering 2,
4 (01 Nov 2012), 241–253. https://doi.org/10.1007/s13389-012-0037-z

[18] Shay Gueron and Vlad Krasnov. 2012. Simultaneous Hashing of Multiple
Messages. Journal of Information Security 3, 4 (Oct. 2012), 319–325. https:
//doi.org/10.4236/jis.2012.34039

[19] S. Gueron and V. Krasnov. 2016. Accelerating Big Integer Arithmetic Using Intel
IFMA Extensions. In 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH).
IEEE, Santa Clara, CA, USA, 32–38. https://doi.org/10.1109/ARITH.2016.22

[20] Jim Guilford, Kirk Yap, and Vinodh Gopal. 2012. Fast SHA-256 Implementa-
tions on Intel ® Architecture Processors. Technical Report 327457-001. Intel Cor-
poration. https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/sha-256-implementations-paper.pdf

[21] Sean Gulley, Vinodh Gopal, Kirk Yap, Wajdi Feghali, Jim Gullford, and Gil
Wolrich. 2013. Intel ® SHA Extensions New Instructions Supporting the Se-
cure Hash Algorithm on Intel ® Architecture Processors. Technical Report. In-
tel Corporation. https://software.intel.com/sites/default/files/article/402097/
intel-sha-extensions-white-paper.pdf

[22] Andreas Hülsing. 2013. W-OTS+ – Shorter Signatures for Hash-Based Signature
Schemes. In Progress in Cryptology – AFRICACRYPT 2013, Amr Youssef, Abderrah-
mane Nitaj, and Aboul Ella Hassanien (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 173–188. https://doi.org/10.1007/978-3-642-38553-7_10

[23] Andreas Hülsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz
Mohaisen. 2018. XMSS: Extended Hash-Based Signatures. Internet-Draft draft-irtf-
cfrg-xmss-hash-based-signatures-12. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures Work in
Progress.

[24] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. 2013. Optimal Pa-
rameters for XMSSMT . In Security Engineering and Intelligence Informatics, Al-
fredo Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar Weippl, and Lida
Xu (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 194–208. https:
//doi.org/10.1007/978-3-642-40588-4_14

[25] Intel Corporation. 2009. Define SSE2, SSE3 and SSE4. http://www.intel.com/
support/processors/sb/CS-030123.htm. (Jan. 2009).

[26] Intel Corporation. 2011. Intel® Advanced Vector Extensions Programming Ref-
erence. https://software.intel.com/sites/default/files/m/f/7/c/36945. (June 2011).

[27] Intel Corporation. 2016. Intel® Architecture Instruction Set Extensions Program-
ming Reference. Intel Corporation. https://software.intel.com/sites/default/files/
managed/b4/3a/319433-024.pdf

[28] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. 2014. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Advances in Cryptology – ASIACRYPT
2014: 20th International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, Palash Sarkar and Tetsu Iwata (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 274–288. https://doi.org/10.1007/978-3-662-45608-8_15

[29] National Institute of Standards and Technology. 2001. Advanced Encryption
Standard (AES). Technical Report FIPS PUB 197. NIST, Gaithersburg, MD, USA.
https://doi.org/10.6028/NIST.FIPS.197

[30] National Institute of Standards and Technology. 2001. Recommendation for
Block Cipher Modes of Operation. Technical Report NIST SP 800-38A. NIST,
Gaithersburg, MD, USA. https://doi.org/10.6028/NIST.SP.800-38A

[31] National Institute of Standards and Technology. 2002. Secure Hash Standard.
Technical Report FIPS PUB 180-2. NIST, Gaithersburg, MD, USA. https://doi.
org/10.6028/NIST.FIPS.180-4

[32] National Institute of Standards and Technology. 2015. FIPS PUB 202 SHA-3
Standard: Permutation-Based Hash and Extendable-Output Functions. Technical
Report. Gaithersburg, MD, USA. https://doi.org/10.6028/NIST.FIPS.202

[33] National Institute of Standards and Technology. 2016. Post-Quantum Cryp-
tography Standardization. Technical Report. NIST, Gaithersburg, MD, USA.
https://www.nist.gov/pqcrypto

[34] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,
G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker. 2017.
The ARM Scalable Vector Extension. IEEE Micro 37, 2 (Mar 2017), 26–39. https:
//doi.org/10.1109/MM.2017.35

[35] Hongjun Wu and Bart Preneel. 2014. AEGIS: A Fast Authenticated Encryption
Algorithm. In Selected Areas in Cryptography – SAC 2013: 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers,
Tanja Lange, Kristin Lauter, and Petr Lisoněk (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 185–201. https://doi.org/10.1007/978-3-662-43414-7_10

Session: Card-based Protocol, Implementation,
and Authentication for IoT APKC’18, June 4, 2018, Incheon, Republic of Korea

18

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/mk61rk723
http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/mk61rk723
https://doi.org/10.1007/978-3-642-42033-7_22
https://doi.org/10.1007/978-3-642-42033-7_22
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
http://bench.cr.yp.to/supercop.html
https://doi.org/10.1007/978-3-662-48116-5_8
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-319-22174-8_20
https://doi.org/10.1007/978-3-319-22174-8_18
http://www.agner.org/optimize/instruction_tables.pdf
https://software.intel.com/en-us/articles/improving-openssl-performance
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
https://doi.org/10.1007/978-3-642-03317-9_4
https://doi.org/10.1007/978-3-642-03317-9_4
http://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://doi.org/10.1016/j.ipl.2010.04.011
https://doi.org/10.1007/s13389-012-0037-z
https://doi.org/10.4236/jis.2012.34039
https://doi.org/10.4236/jis.2012.34039
https://doi.org/10.1109/ARITH.2016.22
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/sha-256-implementations-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/sha-256-implementations-paper.pdf
https://software.intel.com/sites/default/files/article/402097/intel-sha-extensions-white-paper.pdf
https://software.intel.com/sites/default/files/article/402097/intel-sha-extensions-white-paper.pdf
https://doi.org/10.1007/978-3-642-38553-7_10
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
http://www.intel.com/support/processors/sb/CS-030123.htm
http://www.intel.com/support/processors/sb/CS-030123.htm
https://software.intel.com/sites/default/files/m/f/7/c/36945
https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf
https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://www.nist.gov/pqcrypto
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1007/978-3-662-43414-7_10

	Abstract
	1 Introduction
	2 The SHA-256 Hash Function
	2.1 Implementing SHA-256 using SHA-NI
	2.2 Performance Impact of SHA-NI

	3 Multiple-Message Hashing
	3.1 SIMD Vectorization of SHA-256
	3.2 Pipelining SHA-NI Instructions

	4 Hash-based Digital Signatures
	4.1 Implementation of XMSS and XMSS^MT

	5 Implementation of the AES
	5.1 Multiple-Message Encryption
	5.2 Pipelining CBC Decryption and CTR Modes
	5.3 Improving the Implementation of AEGIS

	6 Final Remarks
	Acknowledgments
	A Definitions used on SHA-256 Algorithm
	B Source Code of the Update Function
	References

