
Hardware-Assisted Application Misbehavior Detection

Marcus Botacin1, André Grégio1, Paulo Lício de Geus2

1 Federal University of Paraná (UFPR)

{mfbotacin, gregio}@inf.ufpr.br

2University of Campinas (Unicamp)

paulo@lasca.ic.unicamp.br

Abstract. Programming is an error-prone task, which may result in application
misbehavior. From the safety point of view, crashes are undesirable as they affect
user experience, whereas from the security point of view, vulnerability exploita-
tion can lead to security violations. Although fuzzing and other testing tech-
niques help to minimize undesirable events, they do not eliminate them. As an
additional “protection” layer, real-time monitoring can help in handling cases
of previously unaddressed violations. However, approaches like Control Flow
Integrity (CFI) are too specific to be extended to the general case. To overcome
this challenge, we propose a hardware-assisted flow learning technique able to
profile and detect deviations from the standard behavior, thus ensuring proper
application execution.

1. Introduction

Humans are prone to fail, which extends to our developed programs. An
study [DHS 2013] shows that 90% of security incidents are due to software defects. In
addition, the OWASP project classifies buggy implementation as the root cause of most
Web attacks [Morana 2010]. When systems are exploited, the impact of implementation
flaws ranges from operational issues [Guardian 2015] to financial [Register 2011] and
privacy [Forbes 2017] losses. To reduce the number of application bugs, good software
engineering is essential [DoD 2005]. In this field, fuzzy testing is noticeable for its ability
to test program paths [Li et al. 2017].

Despite all efforts, application misbehavior still appears in practice, as we can observe
in the number of exploited applications [Kaspersky 2017]. To handle those cases in ac-
tual scenarios, runtime monitoring approaches have been proposed, such as CFI poli-
cies to counter Return-Oriented-Programming (ROP) attacks [Pappas et al. 2013]. How-
ever, policy-based approaches present many drawbacks, such as requiring recompila-
tion [Tice et al. 2014] and granularity issues [Göktaş et al. 2014]. In addition, this kind
of policy is attack-specific, thus not handling other kind of flow changes. As adopting
specific policies for each attack class is impractical, there is a need for developing more
general solutions.

As an alternative approach, we propose a learning solution that profiles successful ap-
plication executions to build a baseline of integer control flow paths and compares it to
further executions to identify misbehavior cases. Such learning characteristic allows us to
detect attacks without writing specific monitoring rules.

To evaluate our proposal, we have implemented a prototype solution that performs real-
time data collection and analysis. Our solution was implemented upon a hardware-based
framework [Botacin et al. 2018], thus allowing Commercial-Off-The-Shelf (COTS) bi-
naries inspection without recompilation. In addition, collecting data at hardware level
reduces the overall imposed performance overhead of continuous system monitoring. We
have evaluated our prototype both with synthetic and real-world applications and showed
its effectiveness. In addition, we discuss how our proposal could be leveraged to enhance
existing operating systems to enrich crash reports.

The remainder of this paper work is organized as follows: In Section 2, we present related
work and how our solution differs from these; in Section 3, we introduce our proposal key
concepts; in Section 4, we discuss our solution design and implementation; in Section 5,
we evaluate our solution with synthetic and real applications, showing its effectiveness;
in Section 6, we discuss the advances and limitations presented by our proposed concept;
finally, we draw our conclusions in Section 7.

2. Related Work
Our proposed solution relates to multiple research topics, each one presented below to
better position our work among related solutions.

Fuzzing. Fuzzing solutions try to maximize the coverage of the possible execution paths
of a given binary code [Li et al. 2017, Pham et al. 2016, Böhme et al. 2016]. Our solution
relates to fuzzing ones in the sense that our learning step also tries to cover multiple paths.
However, we do not try to generate inputs to reach each code branch, but we rely on user
interactions to do so. By runtime monitoring typical application executions, our solution
is able to learn the most frequently taken branches, thus identifying when an abnormal
one is taken, which might indicate an exploitation path.

Control Flow Integrity (CFI). CFI policies are popular solutions to mitigate ROP at-
tacks. They enforce, for instance, that RET instructions must be preceded by CALL ones,
thus mitigating the effects of the execution of code injected via buffer overflow exploita-
tion. Solutions such as Kbouncer [Pappas et al. 2013] and ROPecker [Cheng et al. 2014]
are able to runtime monitor code execution and detect the violation of this flow integrity
policy. Our solution is related to CFI policies in the sense that we try to detect abnormal
execution paths. However, we do not rely on specific rules, such as the CALL-RET one,
but we infer implicit rules from a learning-based technique.

Branch Monitoring. Branch monitors are hardware features able to provide information
about the executed branch instructions with low overhead. Their usage goes from appli-
cation profiling [Akiyama and Hirofuchi 2017] and coverage testing [Shye et al. 2005] to
security [Botacin et al. 2018]. In this work, we rely on branch monitors to track applica-
tion executions with low performance penalty. Branch information is used as input to our
learning mechanism to decide whether taking a given path is allowed or not.

Hardware-Assisted approaches. The development of hardware extensions to han-
dle security problems is a growing field. In the literature, we can find a wide range
of proposals, from real-time Control Flow Graph (CFG) checking [Arora et al. 2005]
to syscall clustering [Das et al. 2016]. The closest related work to ours is presented
in [Zhang et al. 2004], on which authors modify a processor to detect flow transitions

which violate given policies. In this work, we propose to implement a similar concept
but using an existing hardware feature instead, the processor branch monitor. The ratio-
nale behind hardware-assisted approaches is to avoid performance degradation, therefore,
most proposals opt to move all processing components to hardware. In our understanding,
the major drawback regarding software solutions is data capture, not threat intelligence,
thus we propose moving only this first step to the hardware. In this sense, our work is re-
lated to [Ozsoy et al. 2015], which proposes a two level monitor, notifying other system
components—such as an antivirus (AV)—when a violation is detected.

3. Concepts & Solution proposal
Computer programs can be seem as Finite State Machines (FSMs), in which states are
transitioned based on the inputted data until reaching the final state, thus outputting the
computation result, as illustrated by Figure 1. If the state machine (program) is not well
modelled or implemented, undesired transitions can lead to unexpected states, which cor-
respond to bugs.

In memory, computer programs are organized as sequences of instructions. Each instruc-
tion block is responsible to change the current program state. The order that the instruc-
tions are executed defines the output result. In the FSM analogy, branch instructions are
the transition functions, as shown in Figure 2. Therefore, monitoring them allows us to
understand which states the program is leaving and entering.

Figure 1. Program as a Finite
State Machine. Data is inputted
to an initial state and transitions
lead to the final state, outputting
the computation result.

Figure 2. Program representation
in memory. Branch instructions
are responsible for state transi-
tions.

When a program is executing a given task (opening a file, for instance), its state ma-
chine traverses a given path, represented by branches. In a general way, always that the
same task is performed, the same path is traversed, thus the same branches are executed.
Therefore, if a sequence of known branches is succeeded by unknown ones, the program
is probably misbehaving—which may be related to an identified bug or even to an ex-
ploitation attempt. If we were able to know which are the usually executed branches
and runtime check the executed ones, we would be able to detect application misbehav-
ior events in runtime. In this work, we present a monitoring mechanism and a learning
solution for this task.

To implement such solution, we propose a two-phase mechanism: In the first step, a
profiling phase, our solution learns which are the allowed branches; In the second step,
the matching phase, our solution monitors the taken branches and matches them against
the database of allowed branches previously learned, as shown in Figure 3. When a
violation is detected, a warning is raised.

Figure 3. Expected Branches Policy. The solid arrows correspond to paths previ-
ously seem, thus representing expected branches. The dotted arrows represent
so-far unknown branches, which might indicate a misbehavior.

In practice, this proposal presents a significant challenge: Despite taking almost the
same branches while performing the same task, the taken paths are data-dependent.
IF-ELSE constructions for odd/even values, for instance, may lead to distinct interme-
diary paths. Our proposal to tackle these cases is to rely on user interactions to achieve
good code coverage. The hypothesis behind this decision is that the users will have ex-
ercised the most common paths after some time and that the same paths will continu-
ously be executed in the future. We consider this hypothesis as reasonable as, in fact,
most programs often execute the same set of instructions (hot code regions), such as
loops [Gordon-Ross and Vahid 2003].

Therefore, as both the training phase as well as the matching one consist on monitoring
taken branches during user interaction, we can build an unified framework, differing only
on the applied policy (learning or matching), which makes the solution more flexible.
Once a violation is detected, our solution notifies an upper instance about its occurrence.
Such upper instance can be an AV solution or an OS subsystem. In our proposal, we have
implemented our own AV-analogous application as an userland component.

For the sake of evaluation, we implemented an intelligence model able to apply two dis-
tinct policies: i) On the strict model, any unexpected branch is considered as a flow vio-
lation. Whereas very effective, this mode requires huge efforts regarding training to in-
crease the coverage and thus not generate false positives; ii) On the more flexible policy,
we do not look to single branches, but a series of them, by relying on a moving window.
It allows relaxing the training requirements while still detecting flow violations—ROP
payloads, for instance, are composed by a sequence of gadgets terminated by branches
(RET) [Göktaş et al. 2014]. On both policies, the misbehaving program is terminated
when the violation is detected. The number of unexpected branches within a given win-
dow to define the execution as a flow violation is given by a configurable threshold. A
threshold of 1 would turn the solution back to the strict mode.

Both presented policies rely on a non-supervised, automated learning procedure to learn
the allowed branches. A more relaxed policy could be implemented by adding user in-

teraction to the system: When a violation occurs, the user could be prompted to decide
whether the process should be terminated or the taken branches are due to a new valid be-
havior. In this case, the solution would add the so-far unknown branches to the database,
which would convert our solution on a semi-supervised approach.

4. Implementation

In this section, we present implementation details regarding the monitoring solution as
well as the learning mechanism.

4.1. Data collection

To collect data from the processor branch monitor, we relied on an branch-based frame-
work [Botacin et al. 2018]. We have set the solution to monitor only the code image
section from the target binaries, filtering them by their Process IDentifiers (PIDs).

As our running operating system is Address Space Layout Randomization (ASLR)-
enabled, branches from distinct executions are not directly comparable, as base addresses
differ. To allow the comparison, we implemented an address normalization procedure,
discarding branch base addresses and considering only their offsets inside the code im-
ages. The offset values are unique for each binary regardless of distinct executions. The
effect of such procedure is shown in Table 1.

Table 1. ASLR-aware data collection. Offset normalization. Despite the distinct
image base addresses, branch offsets are unique.

Branch Execution 1 Execution 2 Execution N Offset
I 0x7FF1D30 0x7FF3D30 0x7FF5D80 0x1D30
II 0x7FF1E30 0x7FF3E30 0x7FF5E80 0x1E30
II 0x7FF1EF0 0x7FF3EF0 0x7FF5F40 0x1EF0

4.2. Automated Learning Approach

As the branch-based framework is able to provide us with all required branch information,
we need only to collect data from a given path (source and target addresses) and store
them on a database of allowed branches. For each taken branch address, we store their
immediate successors, on a multi-level hash structure, as shown in the Figure 4. The
hash-based indexing allows us to check whether a given branch is expected in O(1) at the
same time we do not have to worry about repeated entries.

Figure 5 shows an example of the training procedure in action while learning the al-
lowed paths from Code 1. The zero (0) flag indicates that the first taken branches were
unknown—as the database was not previously populated—thus causing the system to
learn. In the second time the same addresses were identified, the system already had such
data in the database, as shown by the hit (1) flag.

4.3. Detection

In the detection phase, branches are sampled on a moving window way. For each taken
branch within a given moving window, the next allowed branches are looked for in the

Figure 4. Branch Database. Source addresses
are used to index allowed target addresses.
Unidentified entries are considered as unex-
pected branches.

Figure 5. Automated
learning. Flags 1
and 0 indicate, re-
spectively, whether a
given branch was ex-
pected (allowed) to
occur or not.

database. If the following branch instruction is found, the allowed flag is set. Other-
wise, the not_allowed flag is set. This procedure is repeated for all instructions within
the current window. The ratio of not_allowed over allowed branches is compared
against a threshold (according the considered policy), thus leading to the misbehavior con-
clusion in case of a high score. Figure 6 shows the detection window of a given branch
violation.

4.4. Semi-Supervised Learning Approach
This approach can be considered as an extension of the detection mechanism. However,
when a violation is identified, the monitored program is not immediately terminated, but
the user is prompted to decide which action will be taken. If the user specifies the unex-
pected branches are allowed, the solution adds them to the database. The next time these
branches were executed, they will be considered as expected, thus not triggering warnings
anymore. Figure 7 shows the solution asking user to validate a given violation detection
as a true violation.

Figure 6. Misbehavior Detection.
Solution detects violations using
a threshold value over data from
a moving window.

Figure 7. Semi-supervised learn-
ing. Solution asks for user confir-
mation.

5. Evaluation
In this section, we evaluate our solution’s proper working. We first validate it with a
synthetic example to demonstrate its correctness. Secondly, we evaluate its use against a
real world exploit, demonstrating its application on practical scenarios.

5.1. Validation

To validate our proposal, we developed the synthetic example presented in Code 1:
1 main(){
2 char string[MAX_STRING];
3 int loop=0;
4 int opt=0;
5 do{
6 scanf("%d",&opt);
7 if (opt>0){
8 printf("Greater than zero\n");
9 }else if(opt<0){

10 printf("Smaller than zero\n");
11 }else{
12 printf("Bad choice\n");
13 // An string overflow here
14 // changes the loop control variable
15 scanf("%s",string);
16 }
17 }while(!loop);
18 printf("Should never be executed\n");

Code 1. Validation code. It presents three distinct paths. The latter also presents
an overflow vulnerability which allows the execution of a so-far unreachable
code.

This code presents 3 main decision paths:

1. Input values greater than zero trigger the first printf as they follow only the first
path and return to the loop.

2. Input values smaller than zero trigger the second printf as they follow only the
second path and return to the loop.

3. The zero value triggers the third path, which fills the buffer with an user-supplied
string. There is a clear buffer overflow regarding the scanf statement, as the
string is allocated in the stack right before the loop control variable. Overflowing
such variable would flip loop bits, causing execution to exit the loop, thus calling
the last printf, which should had never be executed.

Our evaluation consisted in the following steps: i) training the solution for the paths 1
and 2; ii) running the solution with the trained dataset and ensure both trained paths are
properly flagged as allowed; iii) exercise the third path, with no overflow, which should
trigger the supervised learning, as this path was not trained in the last step. iv) Consider
the violation as legitimate execution, thus forcing the solution to add the new branches to
the database; v) exercise the same path, without triggering detection, because the solution
learned this path as allowed in the last step; vi) Exercise the third path with overflow,
thus triggering the detection mechanism; vii) finally, flag execution as a violation, forcing
application to quit. Our solution has proven to be able to pass all described tests.

5.2. Real Application

We also evaluated our solution effectiveness on a real scenario. To do so, we launched
a real ROP attack, based on a known exploit [Knaps 2015], against a real-world applica-

tion (Easy File Share). After the learning step, the software was monitored while being
exploited. The identified unexpected branches are shown in Code 2.

1 Unexpected Branches: [0x150C, 0x1C80C, 0x13020]
2 Unexpected Branches: []
3 Unexpected Branches: [0x1731A, 0xD31A, 0x7C81A, 0x33B1A, 0x2AC1A, 0

xFC21A, 0x12941A, 0x29A1A]

Code 2. Real application under a ROP-based attack. Differences between the
expected and the observed branches.

We notice that while some branches sources were succeeded by the same branch targets
than in the training step, thus triggering an empty difference set, some branches were
followed by unexpected ones, showing our solution’s ability to detect abnormal behavior
in real scenarios.

5.2.1. Enriching Crash Reports

In addition to enabling real time detection, the presented experiment suggested our solu-
tion can also be used in other contexts. Inspired by BranchTrace [Willems et al. 2012], we
believe crash reports can be enriched by including branch data. As an example, consider
the execution of the vulnerable file sharing application as presented above. At a given
point, the branch window present the following consecutive target branches: 0x34A3
(1) and 0x6fB8 (0). This means that the first branch target was expected whereas
the second was an unexpected branch resulting from the execution of the previous code
block, as well as its predecessor branches. If such information were submitted to the ap-
plication developers, it could help them to find the bug cause in an easier way, because
the buggy construction is probably located around the unexpected branch. In fact, by
disassembling the code surrounding these branches, we identified the following pieces of
code, as shown in Figure 8.

The legitimate call starts executing at line 1. This function body is responsible for ma-
nipulating the stack and then calling a function pointed by the ecx register (line 12),
previously loaded from the stack (line 11). As this branch leads to an unexpected tar-
get, it suggests the stack may have been corrupted. The call target code pops a value from
the stack and returns (lines 13-15). The execution jumps to an unknown location
(line 16), followed by a nop sled (line 17), until reaching another code portion
(line 17). In fact, by knowing the exploit, we can verify that the stack was effectively
corrupted: the POP-POP-RET sequence is a ROP-like gadget, followed by the usual JMP
to the payload, which aligns itself through NOPs, until reaching the malicious shellcode.

5.3. Overhead

In addition to effective, we must ensure our developed solution does not impose signif-
icant overhead penalty, so the original application keeps running well. From the data
capture point of view, as our solution is based on a branch monitor framework, our solu-
tion’s overhead is bounded by the performance penalty imposed by it (20%, on average).
We highlight, however, that the framework was originally set to use a small interrupt
threshold of a single instruction, which increases performance penalty. We can reduce the

Figure 8. Exploit Execution. After a buffer overflow, the stack holds user-injected
addresses which are used to redirect the flow to a malicious code portion acting
as a shellcode-analogous.

performance penalty by using a larger interrupt threshold, as we do not need branch-by-
branch execution support.

In practice, our measurements indicate that the overhead is application and context-
dependent, as each one presents a distinct rate of taken branches. A high-branch-density
application will be more interrupted than an I/O-bound application, for instance. In our
tests, the vulnerable test program presented the lowest overhead footprint, as all their
branches fit on a single OS page. On the other hand, the Chrome browser execution
is severely affected, because each newly opened tab creates a new system process, thus
executing a huge amount of branches.

We also observed distinct performance penalty impacts according the core the monitored
application is running. OS schedulers often cause the CPU core 0 to present higher loads
whereas the other cores present lower ones. When running in a heavy-loaded core, such
as core 0, the overhead is increased, because our solution has to filter out much more
data—we remark that the framework captures data in a system-wide way. On the other
hand, the solution presents smaller overheads when running in the other processor cores.

6. Discussion and Future Work

In this section, we discuss the impact of our proposed solution and how it could be inte-
grated into real, practical systems.

6.1. Advances, Implications & Limitations

The presented solution is our first attempt to solve the misbehavior detection problem by
using hardware assistance. It enables us to perform the task without significant perfor-
mance penalty, which is a hard-to-achieve requirement for this security solution class.

We showed that our solution is feasible on real cases and that the presented development
implicates on an increased bug detection capabilities on many branch-monitor-equipped
systems. Moreover, as it is based on a hardware-feature, it is able to monitor COTS
binaries, without requiring code instrumentation and/or modification. We believe this is a
significant contribution towards increased bug detection.

As a short-term limitation, the branch monitor framework is limited to collect data on
a system-wide manner, thus imposing the overhead of monitoring all running processes
(which are further filtered in software). This limitation can be overcome by using emerg-
ing hardware features, such as the Intel’s Processor Tracer (PT) [R. 2013].

In the long-term, we believe that the major challenge that such kind of approach is sub-
ject to is the solution’s capability to decide whether a given misbehavior is derived from
an exploit or from an ordinary bug. Such information is critical to perform real time
threat detection in a more complete way. Such development is beyond implementation
constraints as it is also limited by theoretical aspects.

6.2. OS self-monitoring proposal

Our presented evaluation showed that our solution is able to identify application misbe-
haviors without any prior written rules. Although the results are preliminary, we believe
that many systems and applications could benefit from using such kind of approach.

As an example, we suggest using our approach for OS self-monitoring. Currently, modern
operating systems already collect telemetry data [ZDNet 2016] from running applications.
These systems could also be extended to monitor applications executions, profile them and
detect abnormal behaviors, as we proposed.

In addition to detection, systems could also be able to launch automatic remediation pro-
cedures, such as automatic backup recovery or some other system configuration restore,
when a misbehavior were detected.

Even on unrecoverable cases, the profiled data could be sent to application maintainers as
part of bug and/or crash reports, enriching the existing fault data collection mechanisms,
so that developers would be able to more precisely identify which instruction block trig-
gered the faulting behavior.

6.3. Usage Scenarios and Policies

Our proposed solution is suitable to operate on distinct scenarios. As an example, its
permanent, real-time capabilities make it a candidate to monitor critical systems, where
faults must be immediately identified.

In addition, we believe there is a real demanding field regarding the monitoring of recently
installed applications, third-party software components and unpatched systems. Our sys-
tem could be launched by the OS, for instance, when a new application is installed, thus
starting the profiling step. After some time monitoring the application without any signif-
icant occurrence, the mechanism could be turned off.

6.4. A Cooperative Learning Model

Our solution relies on user interaction to learn the allowed branches. On the one hand, it
covers most of exercised behavior by a given user, regardless of the usage pattern. On the
other hand, rare but legitimate paths may be not learned if not previously exercised.

Whereas user-based coverage may be enough for most cases, some scenarios may require
a really increased branch coverage. Therefore, more branches should be exercised, thus
making our approach closer to the fuzzing ones. However, as we intend to provide an
alternative to these, it is not reasonable to generate multiple random inputs to exercise our
solution. Thus, an alternative approach must be developed.

A way of achieving high coverage is to perform a distributed learning procedure, clus-
tering the branches taken on multiple machines. It could be implemented by regularly
sending the newly learned branches to a remote repository and downloading new allowed
paths definitions, as an next-generation AV definition update.

We believe that such kind of implementation is more more feasible for immediate appli-
cation in a mobile software ecosystem, because their application stores already update
applications’ configurations based on performance data [Google].

6.5. Future Work

As future work, we will extend our framework in two ways: i) by investigating new,
additional hardware features which could enable us to profile applications and establish an
execution baseline without significant performance impact; and ii) by extending our threat

intelligence component to perform more complex matches. Machine-learning solutions
could be used, for instance, to predict whether given unexpected branches constitute a
violation or not.

7. Conclusions
In this paper, we presented a hardware-assisted, branch learning solution able to detect
application misbehavior by comparing a given branch trace to a learned profile. We eval-
uated the proposed solution with conceptual and real applications demonstrating its ability
to handle buggy and exploitable software. We also discussed the conceptual application
of such solution as an Operating System built-in feature.

The code of all presented examples and of our developed detector is available
at https://github.com/marcusbotacin/BranchMonitoringProject/
tree/master/Misbehavior.Detection.

References
Akiyama, S. and Hirofuchi, T. (2017). Quantitative evaluation of intel pebs overhead

for online system-noise analysis. In Proceedings of the 7th International Workshop
on Runtime and Operating Systems for Supercomputers ROSS 2017, ROSS ’17, pages
3:1–3:8, New York, NY, USA. ACM.

Arora, D., Ravi, S., Raghunathan, A., and Jha, N. K. (2005). Secure embedded processing
through hardware-assisted run-time monitoring. In Design, Automation and Test in
Europe, pages 178–183 Vol. 1.

Böhme, M., Pham, V.-T., and Roychoudhury, A. (2016). Coverage-based greybox fuzzing
as markov chain. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 1032–1043, New York, NY, USA.
ACM.

Botacin, M., Geus, P. L. D., and Grégio, A. (2018). Enhancing branch monitoring for
security purposes: From control flow integrity to malware analysis and debugging.
ACM Trans. Priv. Secur., 21(1):4:1–4:30.

Cheng, Y., Zhou, Z., Yu, M., Ding, X., and Deng, R. H. (2014). Ropecker: A generic and
practical approach for defending against rop attacks. .

Das, S., Xiao, H., Liu, Y., and Zhang, W. (2016). Online malware defense using at-
tack behavior model. In 2016 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1322–1325.

DHS (2013). Software assurance. https://www.us-cert.gov/sites/
default/files/publications/infosheet_SoftwareAssurance.
pdf.

DoD (2005). Secure software engineering. http://www.sis.pitt.edu/
jjoshi/Devsec/secureSoftware.pdf.

Forbes (2017). Google just discovered a massive web leak... and
you might want to change all your passwords. https://
www.forbes.com/sites/thomasbrewster/2017/02/24/
google-just-discovered-a-massive-web-leak-and-you-might-want-to-change-all-your-passwords/
#50e20e923ca3.

Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., and Portokalidis, G. (2014).
Size does matter: Why using gadget-chain length to prevent code-reuse attacks is
hard. In 23rd USENIX Security Symposium (USENIX Security 14), pages 417–432,
San Diego, CA. USENIX Association.

Google. Política de privacidade do google. https://policies.google.com/
privacy.

Gordon-Ross, A. and Vahid, F. (2003). Frequent loop detection using efficient non-
intrusive on-chip hardware. In Proceedings of the 2003 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, CASES ’03, pages 117–
124, New York, NY, USA. ACM.

Guardian, T. (2015). Us aviation authority: Boeing 787 bug could cause ’loss of
control’. https://www.theguardian.com/business/2015/may/01/
us-aviation-authority-boeing-787-dreamliner-bug-could-cause-loss-of-control.

Kaspersky (2017). Era of exploits: number of attacks using software vulnerabilities on the
rise. https://usa.kaspersky.com/about/press-releases/2017_
era-of-exploits-number-of-attacks--using-software-vulnerabilities-on-the-rise.

Knaps (2015). Easy file sharing web server 7.2 - remote buffer overflow (seh) (dep by-
pass with rop). https://www.exploit-db.com/exploits/38829/. Ac-
cess Date: 2017.

Li, Y., Chen, B., Chandramohan, M., Lin, S.-W., Liu, Y., and Tiu, A. (2017). Steelix:
Program-state based binary fuzzing. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, pages 627–637, New York,
NY, USA. ACM.

Morana, M. (2010). Vulnerability analysis, secure development and risk management
of web 2.0 applications. https://www.owasp.org/images/c/c1/OWASP_
Cincy_Web2_Threats_and_Countermeasures.pdf.

Ozsoy, M., Donovick, C., Gorelik, I., Abu-Ghazaleh, N., and Ponomarev, D. (2015).
Malware-aware processors: A framework for efficient online malware detection. In
2015 IEEE 21st International Symposium on High Performance Computer Architec-
ture (HPCA), pages 651–661.

Pappas, V., Polychronakis, M., and Keromytis, A. D. (2013). Transparent ROP exploit
mitigation using indirect branch tracing. In Presented as part of the 22nd USENIX Se-
curity Symposium (USENIX Security 13), pages 447–462, Washington, D.C. USENIX.

Pham, V.-T., Böhme, M., and Roychoudhury, A. (2016). Model-based whitebox fuzzing
for program binaries. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ASE 2016, pages 543–553, New York, NY, USA.
ACM.

R., J. (2013). Processor tracing. https://software.intel.com/en-us/
blogs/2013/09/18/processor-tracing. Access Date: May/2017.

Register, T. (2011). Finance software bug causes $217m in investor losses. https:
//www.theregister.co.uk/2011/09/22/software_bug_fine.

Shye, A., Iyer, M., Reddi, V. J., and Connors, D. A. (2005). Code coverage testing using
hardware performance monitoring support. In Proceedings of the Sixth International
Symposium on Automated Analysis-driven Debugging, AADEBUG’05, pages 159–
163, New York, NY, USA. ACM.

Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano, L., and
Pike, G. (2014). Enforcing forward-edge control-flow integrity in GCC & LLVM. In
23rd USENIX Security Symposium (USENIX Security 14), pages 941–955, San Diego,
CA. USENIX Association.

Willems, C., Hund, R., Fobian, A., Felsch, D., Holz, T., and Vasudevan, A. (2012). Down
to the bare metal: Using processor features for binary analysis. In Proceedings of
the 28th Annual Computer Security Applications Conference, ACSAC ’12, pages 189–
198, New York, NY, USA. ACM.

ZDNet (2016). Windows 10 telemetry secrets: Where, when, and why
microsoft collects your data. http://www.zdnet.com/article/
windows-10-telemetry-secrets/.

Zhang, T., Zhuang, X., Pande, S., and Lee, W. (2004). Hardware supported anomaly
detection: down to the control flow level. http://hdl.handle.net/1853/96.

