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Abstract. A hash to curve function H , mapping bit strings to points on an el-
liptic curve, is often required in cryptographic schemes based on elliptic curves.
Its construction is based on a deterministic encoding and a cryptographic hash
function, which complementarily dominate its execution time. To improve the
performance of H , we propose a parallel strategy where two units execute in
tandem the internal operations of H . We instantiate this approach with a par-
allel software implementation of a hash to curve function that outputs points on
a twisted Edwards curve. A performance benchmark on Haswell and Skylake
micro-architectures shows that our parallel implementation is 1.4 times faster
than its sequential implementation.

1. Introduction
A hash function H that maps bit strings to points on an elliptic curve is commonly known
as hashing to curves. This function plays an important role when instantiating group-
based cryptographic algorithms with elliptic curves. A general strategy to define H is to
compose a deterministic encoding with a cryptographic hash function.

A deterministic encoding is a rational function that maps field elements to points
on an elliptic curve. Several works have proposed deterministic encodings (briefly re-
viewed in Section 2) that apply to different elliptic curves. Generating points in a deter-
ministic way is preferred over using probabilistic or randomized algorithms, because its
implementation is usually easier to protect against side-channel attacks.

Related works on this area focus more on the mathematical construction of de-
terministic encodings; however, less attention is given to the total cost of H . In a closer
inspection, the execution time of H is dominated by the encoding when processing short
inputs. This situation holds until an inflection point in the input’s length at which the cryp-
tographic hash function becomes the dominant part. Therefore, to reduce the execution
time of H both scenarios must be optimized.

In this work, we show how to improve the execution time of hashing to curves
through the use of parallel computing. Specifically, we show a general strategy that allows
two units to calculate in tandem the internal operations of the hash to curve function
H . We instantiate our proposal with a software implementation that uses SIMD vector
instructions. We use a twisted Edwards curve introduced by Bernstein and Lange (2007)
and derived from Curve25519. Our performance benchmarks show that the vectorized
implementation speeds up H when hashing both short and long inputs. The source codes
are publicly available at https://github.com/armfazh/fld-ecc-vec.

https://github.com/armfazh/fld-ecc-vec


2. Generating Points on Elliptic Curves

Let F be a finite field of characteristic p > 3, and E/F : y2 = x3+ax+ b be a Weierstrass
curve such that 4a3 + 27b2 ̸= 0. The set of rational points of the curve, denoted as E(F),
forms an abelian group with identity O. Let q and n denote, respectively, the cardinality
of F and E(F), these numbers are related as |n − (q + 1)| ≤ 2

√
q. The group E(F) is

finitely generated as the direct sum of cyclic subgroups. In each of these subgroups, there
exists a point called generator that has order dividing n.

An element s ∈ F is a quadratic residue (QR) in F, if there exists r ∈ F such that
s = r2, otherwise s is a quadratic non-residue (QNR) in F. Due to Euler’s criterion, the
function χ : s ↦→ s(p−1)/2 gives a method to test whether an element is a quadratic residue
on prime fields of odd order p. Thus, given s ∈ F \ {0}, it holds χ(s) = 1 if s is QR, and
χ(s) = −1 if s is QNR. Let g(x) = x3+ax+b be the right-hand side of the curve equation.
Clearly, for any x ∈ F such that g(x) is QR, it follows that (x,±

√︁
g(x)) ∈ E(F).

2.1. Deterministic Encodings

Finding a systematic method of generating non-trivial points on an elliptic curve is a
problem solved in many different ways. We summarize some well-known algorithms for
generating points.

The simplest method is by trial and error. Given E(F) as an input, first select
at random x ∈ F, which is a candidate to be the x-coordinate of a point, and calculate
g(x). If g(x) is QR, calculate y =

√︁
g(x), and a point (x, y) has been found. Otherwise,

repeat the process of sampling another candidate. The execution time of this randomized
algorithm varies at each invocation since it runs until it finds a point on the curve.

The try-and-increment method shown by Boneh and Franklin (2001) does not
require random number generation. Instead, this method takes as an input u ∈ F, and
an integer k. First, start a counter i = 0 and declare x = u + i as the candidate value
for the x-coordinate. Similarly to the previous method, determine whether g(x) is QR; if
so, calculate y =

√︁
g(x), and a point (x, y) has been found. Otherwise, increment the

counter and repeat the procedure until i = k. Unlike the previous method, this algorithm
can fail after k iterations with probability 2−k. Although its execution time still varies, the
time is bounded because the algorithm performs at most k iterations. Thus, increasing k
reduces the chances of failure, but also increases its execution time.

A better approach is to use a non-randomized algorithm such as the one shown
by Skałba (2005). This method defines rational functions Xi(u) defined over F such that
X4(u)

2 = g(X1(u)) · g(X2(u)) · g(X3(u)). For those u ∈ F that satisfy this equation,
it is guaranteed that exists at least one index i ≤ 3 such that g(Xi(u)) is QR. Conse-
quently, there are at most three candidates for the x-coordinate of a point. This method
is deterministic since always finds a point (x, y) on the curve given as x = Xi(u) and
y =

√︁
g(Xi(u)). A downside of Skalba’s functions is their large degree. Later, Shallue

and van de Woestijne (2006) simplified these functions providing an efficient algorithm
for constructing points on an elliptic curve.

Several works followed a similar approach for constructing points. The general
recipe of these constructions, called deterministic encodings, is to formulate rational maps
that produce valid candidates for the coordinates of a point. The number of candidates



is always a small, fixed number. In the best case, there is only one candidate, such as in
the algorithm by Icart (2009). None of these methods requires randomization, and they
always produce a point given u ∈ U ⊆ F, where U is the domain of the rational functions.

In the literature, there exist several deterministic encodings with optimizations
tailored for specific elliptic curve models. For instance, the Simplified SWU encoding,
proposed by Brier et al. (2010), applies to elliptic curves defined over fields of charac-
teristic p ≡ 3 (mod 4). Bernstein et al. (2013) introduced the Elligator 2 encoding that
applies to Montgomery curves. This encoding extends to twisted Edwards curves using
the birational map existent between these curves. Fouque and Tibouchi (2012) showed an
encoding for the Barreto-Naehrig pairing-friendly curves. Work in progress at the Inter-
net Engineering Task Force (IETF) by Faz-Hernández et al. (2020) focuses on a standard
specification of hash to curve methods.

Another approach relies on having previous knowledge of the generator points of
the curve. Let E(F) = ⟨P1⟩× · · ·× ⟨Pt⟩ for some t > 0. Hence, any point P ∈ E(F) can
be written as a linear combination of the generator points P =

∑︁t
i=1 kiPi. Hence, one can

obtain a point on the curve sampling scalars ki at random in the range 0 ≤ ki < ord(Pi).
Although this method is also deterministic, it is not as efficient as any of the previous
methods, because scalar multiplications are more expensive than square roots.

2.2. Indifferentiable Hashing to Elliptic Curves

Let H : {0, 1}∗ → E(F) be a function that maps bit strings to points on an elliptic curve.
A common construction of H is as a function composition of a deterministic encoding
f : F → E(F) with a hash function h : {0, 1}∗ → F. Unfortunately, f ◦ h cannot be used
as a secure hash function since its output is not uniform.

Maurer et al. (2004) showed that those cryptographic schemes proved secure in the
random oracle model require that hash functions must be indifferentiable from a random
oracle. Brier et al. (2010) proved that

H(m) = f(h0(m)) + f(h1(m)) (1)

is indifferentiable whenever f is the Icart’s encoding, and h0 and h1 are independent
hash functions into F. Later, Farashahi et al. (2013) generalized this construction for any
deterministic encoding f whenever f is a well-distributed encoding. Relying on these
results, Eq. (1) provides a secure way to instantiate a hash to curve function H that is
indifferentiable from a random oracle.

3. Parallel Hashing
We are interested in accelerating the execution time of H given in Eq. (1). Note that
the input’s length can grow arbitrarily, so the evaluation of h0 and h1 can dominate the
execution time of H . However, if its length is short, the execution time of f is what
dominates the computation.

Given an input string m, we can decompose the calculation of H(m) in two parts.
From Eq. (1), it is clear that P0 = f(h0(m)) and P1 = f(h1(m)) are independent compu-
tations, and thus, they can be performed in parallel. This workload splits evenly into two
sub-tasks, whose output points are then sequentially added to produce the final result.



m

u0 = h0(m)

u1 = h1(m)

P0 = f(u0)

P1 = f(u1)
P = P0 + P1 H(m) = P ∈ E(F)

Figure 1. Parallel hashing a bit string m into a point P on an elliptic curve.

As it is shown in Figure 1, the calculation of H exhibits some degree of data-
level parallelism that allows scheduling operations independently. An advantage of this
construction is that it applies in general regardless of the hash function or encoding used.
Moreover, the parallel calculation benefits both processing short and long inputs.

To demonstrate this approach, we developed a software implementation using
SIMD vector units. In the following sections, we briefly introduce vector units, describe
the elliptic curve instance chosen, and give details of the implementation.

3.1. Parallel SIMD Computing

Hardware optimizations targeting data-level parallelism are usually present in the form of
extensions to the instruction set architecture (ISA). Thus, programmers explicitly instru-
ment code using special instructions assigning data to the parallel units for its processing.

Vector units are extensions to the ISA that execute an instruction over sets of data
simultaneously following the SIMD parallel computing paradigm. The common usage
of these extensions is to load data into vector registers (a set of words) and use vector
instructions for performing an operation over each word stored in the vector registers. For
example, let X0 and X1 be vector registers of 256-bits (storing eight 32-bit words), the
vector instruction VADD X0 X1 will perform eight 32-bit additions of the words stored
in X0 and X1.

An advantage of vector instructions is that they reduce the size of programs by
encoding in one instruction several repetitive instructions. Thus, shorter instruction en-
codings help to release pressure on instruction decoders as decoding occurs once for many
operations. In most architectures, vector instructions usually run as fast as sequential in-
structions however they process more data. However, they also fetch more data from
memory, which tends to be a costly operation.

Vector units are available in several computer architectures. For instance, the
AMD64 (also known as x64-86) architecture includes a vast number of vector instructions
named SSE and AVX (Intel Corporation, 2011). The ARM architecture also contains an
extension called ASIMD vector unit formerly known as the NEON vector unit (ARM,
2009). Similarly, the Power ISA architecture supports the AltiVec (Freescale Semicon-
ductor, 1999) vector instructions. Although these extensions are not compatible with each
other, they contain equivalent instructions that perform arithmetic and logic operations.
Their presence on several computing devices, such as conventional processors and Inter-
net servers, motivates their application on several computing fields.

3.2. Elliptic Curve Instance

Among the options for our implementation, we choose edwards25519 that is a se-
cure and well-known elliptic curve instance. It is a twisted Edwards curve derived from



Curve25519 by Bernstein and Lange (2007) and is defined over Fp , where p = 2255− 19,
by the equation

edwards25519 : − x2 + y2 = 1− 121665
121666

x2y2 . (2)

The set of rational points E(Fp) is a group of order n = hr, where the cofactor is h = 8
and r = 2252 + 27742317777372353535851937790883648493 is prime.

A suitable deterministic encoding for twisted Edwards curves is Elligator 2 intro-
duced by Bernstein et al. (2013). Although Elligator 2 applies to Montgomery curves,
the point produced by Elligator 2 can be mapped to the twisted Edwards curve using
the birational map Φ that connects these two curves. Hence, the deterministic encoding
f : Fp → E(Fp) is defined as the function composition of Elligator 2 with Φ. Algorithm 1
shows this deterministic encoding explicitly.

Algorithm 1 Deterministic encoding f for twisted Edwards curves.
Input: u ∈ Fp and β is a fixed QNR in Fp.
Output: f(u) = (x, y) ∈ E(Fp).

{Elligator 2 encoding to the Montgomery curve: y02 = x0
3 + Ax0

2 + x0}
1: v = −A/(1 + βu2)
2: e = χ(v3 + Av2 + v)
3: x0 = ev − (1− e)A/2
4: y0 = −e

√
x0

3 + Ax0
2 + x0

{Φ mapping to the twisted Edwards curve: ax2 + y2 = 1 + dx2y2}
5: x = x0/y0
6: y = (x0 − 1)/(x0 + 1)
7: return (x, y)

∗For edwards25519, use p = 2255 − 19, A = 486662, β = 2, and return (
√
−486664x, y) .

The last part of H adds the points produced by the two invocations of the encoding.
Recall that some twisted Edwards curves have a Fp-complete formula for calculating
point additions. The completeness of the formula is particularly useful since the order
of the points produced by f is arbitrary. Thus, the addition of twisted Edward points
P = (xP , yP ) and Q = (xQ, yQ) is calculated as

P +Q =

(︃
xPyQ + yPxQ

1 + dxPyPxQyQ
,
yPyQ − axPxQ

1− dxPyPxQyQ

)︃
. (3)

In the implementation, we calculate the point addition and the encoding using the ex-
tended projective coordinate system introduced by Hisil et al. (2008). Thus, all point
operations are performed without field inverses, except by the one used to convert the
output point to affine coordinates. Note that in some situations this conversion might not
be needed if the output point is part of a further operation such as a scalar multiplication.

The hash functions h0 and h1 internally use SHA-512 by NIST (2008). A common
strategy for deriving two different oracles from a single hash function is to concatenate
a domain separation string. A detailed specification for securely instantiating these func-
tions is given in the IETF draft (2020).



3.3. Implementation Details
To determine the performance savings introduced by the parallel strategy proposed, we
developed both a sequential and a parallel implementation of the function H .

For the sequential implementation, we build it on top of the optimized library
by Oliveira et al. (2018) for calculating the prime field operations in Algorithm 1. For
SHA-512, we use a 64-bit implementation by Pornin, which is available at eBACS (2020).

The parallel implementation of SHA-512 is described as follows. Most of the
operations of SHA-512 are over 64-bit words, and consequently, using 128-bit vector reg-
isters allows carrying the calculation of two SHA-512 evaluations simultaneously. This
workload is easy to implement with vector instructions because it always operates on
fixed-size operands.

On the other hand, implementing prime field operations with vector instructions
is more elaborated. Operating elements of Fp requires handling large integers using, for
example, a multi-precision library such as GMP (2012). It is common that multi-precision
libraries process only one field operation at a time rather than several field operations in
parallel. In the face of this lack of support, the vectorized library by Faz-Hernández et al.
(2019) comes in useful since it supports the parallel execution of field operations through
AVX2 vector instructions. We use this library to implement Algorithm 1 scheduling two
field operations in parallel.

Some parts of H cannot run in parallel. For example, adding1 the points produced
by each encoding invocation, or converting points from projective to affine coordinates.
These tasks limit the theoretical speedup factor of the parallel implementation.

3.4. Performance Evaluation
We measured the latency of both implementations of the function H that outputs points
on the edwards25519 curve. Table 1 lists the execution times of the sequential and
parallel implementations running on Haswell and Skylake micro-architectures, together
with a breakdown of the internal operations of H .

Table 1. Latency (in 103 clock cycles) of hashing 64-byte strings to points on the
edwards25519 curve.

Description Operation Haswell Skylake

Seq. Par. ∆ Seq. Par. ∆

Hash ui = hi(m) |i=0,1 3.3 1.9 43.2 % 3.3 1.8 44.9 %
Encoding Pi = Φ(f(ui)) |i=0,1 35.2 19.2 45.4 % 27.6 15.7 43.0 %
Point addition P = P0 + P1 0.6 0.6 – 0.5 0.5 –
Point to affine (x, y) = P 15.1 15.1 – 11.9 11.9 –

Hash to curve H(m) 57.5 40.4 29.7 % 46.0 32.7 28.8 %

The ∆ column represents the percentage of improvement of hashing with the parallel implemen-
tation versus the sequential implementation. Haswell is a Core i7-4770 processor, and Skylake is
a Core i7-6700K processor. Measurements were taken disabling the frequency scaling and multi-
threading modes, and the source codes were compiled with Clang v5.0.1.

1Note that it is possible to run the internal operations of the point addition formula in parallel.



The execution times shown in Table 1 correspond to hashing short inputs. As can
be seen, the cost of SHA-512 only represents a small fraction of the total cost of H; on the
other hand, the cost of the deterministic encoding amounts 60 % of the total. Hence, it is
expected that executing the encoding in parallel reduces the execution time of H to a great
extent. According to our measurements, the vectorized implementation is 29% faster than
the sequential implementation, and this improvement is consistent in both architectures.

Another metric to compare our implementation with related works is the time con-
sumed by the Elligator 2 map. Aranha et al. (2014) reported 36,590 cycles on Haswell to
calculate the map. Using the Sodium library by Denis (2019), we measured 88,500 cycles
on Haswell. In the same architecture, our sequential implementation takes 35,200 cycles
calculating two map evaluations. Moreover, our vectorized implementation outperforms
all these timings since it takes 19,200 cycles executing two Elligator 2 maps in parallel.
This speedup is mainly due to the time saved by performing field exponentiations in par-
allel. These exponentiations are required to calculate inversions, square-roots, and testing
quadratic residuosity.

We also measured the execution time of H as a function of the input’s length.
Figure 2 shows the speedup factor of the parallel implementation over the sequential
implementation. From the graph, one can see that running the deterministic encoding
in parallel yields a speedup factor of 1.40. This factor holds for inputs shorter than 1 KB,
which corresponds to the block size of SHA-512. However, when hashing longer inputs
most of the time is spent on calculating SHA-512 in parallel, and the speedup factor
increases getting closer to the ideal factor (2.0).
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Figure 2. Speedup factor for hashing to edwards25519 obtained by the vector-
ized implementation over the sequential implementation.

As can be seen, there is a gap on the speedup factors yielded by Haswell and
Skylake. When SHA-512 dominates the execution (long inputs), the processor executes
mostly binary operations, as opposed to execute integer additions and multiplications re-
quired by the prime field operations when the encoding dominates (short inputs). Skylake
has more vector execution units than Haswell, which explains the gap on speedup when
processing SHA-512. A similar gap also exists in the execution of prime field arithmetic;
however, it was counteracted because the sequential implementation is also accelerated
by the ADX instructions available in Skylake.



4. Final Remarks

A hash to curve function H outputting points on an elliptic curve presents two scenarios.
When the input is shorter than a certain threshold, the deterministic encoding dominates
its execution time; otherwise, the cryptographic hashing function is the dominant part.

We presented a parallel strategy for improving the execution time of H . To do
that, we leveraged the data-level parallelism in its definition in such a way that its time-
consuming operations run in parallel. We experimentally verified our approach with a
vectorized software implementation. In a performance benchmark, the vectorized im-
plementation is 1.40× faster than its sequential counterpart when processing short-sized
inputs. Moreover, this speedup factor increases when hashing inputs longer than the block
size of the underlying hash function. These results provide evidence that the parallel strat-
egy proposed improves the performance of H for short and long inputs.

A path for further investigation is the application of the proposed methodology
to different computing environments, such as hardware implementations or vector units
available in other architectures. It also remains as future work to investigate the improve-
ments on hashing when other elliptic curves or deterministic encodings are used.
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