
Policy Modeling and Refinement for Network Security Systems

João Porto de Albuquerque1,2, Heiko Krumm2, and Paulo Lı́cio de Geus1

1Institute of Computing , State University of Campinas , 13083-970 Campinas/SP Brazil
2FB Informatik , University of Dortmund , 44221 Dortmund Germany

Abstract

In today’s network environments the integrated design and
management of different security technologies and mech-
anisms are of great interest. Especially in large net-
works, the security management should be supported by
approaches with an appropriate level of abstraction, such
that a system can be considered independently of the com-
plex configuration details of its various component mech-
anisms. Furthermore, the employment of the security ser-
vices and the design of their configurations should be sup-
ported by a structured technique that separates the consid-
eration of the system as a whole from the detailed design
of the subsystems. Pursuing these goals, this papers offers
an approach to modeling network security systems, based
on the concepts of policy-based management and model-
based management, and analyzes the policy representation
and refinement as well as the model validation enabled by
this modeling.

1. Introduction

The current network environments incorporate an ever-
increasing variety of security mechanisms in order to ful-
fill the protection needs against network-based attacks. In
this complex scenario, the importance and costs of security
management are growing rapidly. Therefore, automated
tools and methodologies are of high interest to assist man-
agement tasks such as the installation and configuration of
security services, as well as, during operation, their mon-
itoring, auditing, adaptation and reconfiguration. Further-
more, the security management should be supported by ap-
proaches with an appropriate level of abstraction, such that
the managed system could be considered independently of
the heterogeneous configuration details of the manifold of
security mechanisms and technologies used.

A prolific research branch in this direction is based upon
the modeling of a system in terms of the policies that are
applied to it. Policies are defined in this context as rules
governing the choices in behavior of a system [7] and they
can be specified in different abstraction levels. Thus, pol-

icy hierarchies [4, 9] can be built up, so that an initial set
of high-level abstract policies can be refined through inter-
mediate levels until reaching mechanically executable poli-
cies. These low-level policies could then be directly inter-
preted by policy-aware management agents (policy-based
management [7]) or converted into configuration parame-
ters for particular mechanisms.

There are a considerable number of approaches to pol-
icy specification both for security management and policy-
driven network management purposes (see [8] for a sur-
vey). However, regarding the tool-assisted building of pol-
icy hierarchies and the automation of the policy refinement
process, considerable research remains to be done.

The Model-Based Management (MBM) approach [2, 3]
supports the building of policy hierarchies by means of an
interactive graphical design. It adopts concepts of object-
oriented system design and employs a model of the system
that is vertically structured into a set of layers. The objects
and associations of a layer represent the system to be man-
aged and security policies on a certain abstraction level. A
software tool is also provided to assist the modeling of sys-
tem objects and policies, as well as to support automated
policy refinement.

A problem of MBM occurs when dealing with large sys-
tems, since the representation of the policies and objects
tends to lose much of its understandability, getting obscure
due to the great number of elements. The Diagram of Ab-
stract Subsystems (DAS) is proposed to improve the mod-
eling technique of MBM, consisting of a new abstraction
layer that offers a representation of the overall system struc-
ture segmented into Abstract Subsystems. In DAS, the de-
tails are hidden and dealt with in the internal specification
of each subsystem, thereby improving the comprehensibil-
ity and scalability of the model.

In this paper, we analyze the policy support offered by
MBM in comparison with a classification framework [8],
and point out the extensions and improvements brought
forth by the Diagram of Abstract Subsystems. Fur-
thermore, this paper shows how DAS makes possible a
model validation that performs examinations of the sys-
tem’s structural architecture in relation to the policies pre-



scribed to it. As such, the modelled policy hierarchy can be
validated according to consistency and completeness crite-
ria applied to its successive abstraction levels.

For this purpose, in the following section we introduce
MBM and in succession present the Diagram of Abstract
Subsystems approach (Section 3). Subsequently, the policy
support and refinement offered by DAS are detailed in Sec-
tion 4 and the model validation is discussed in Section 5.
Lastly, we cast conclusions for this paper in Section 6.

2. Model-Based Management

The Model-Based Management (MBM) approach [2, 3]
aims to support policy-based management by the use of an
object-oriented model of the system to be managed. Based
upon this model, a policy refinement can be accomplished
such that configuration parameters for security mechanisms
can be automatically derived.

Figure 1. Model Overview

The structure of the model is shown in Figure 1, where
three abstraction levels can be distinguished: Roles & Ob-
jects (RO), Subjects & Resources (SR), and Processes &
Hosts (PH). Each level is a refinement of the superior level
in the sense of a “policy hierarchy”[4]. The uppermost
level (RO) offers a business-oriented view of the network
whereas the lowest level is related to a technical view. The
vertical subdivisions differentiate between the model of the
actual managed system (with productive and control ele-
ments) and the policies that regulate this system. This last
category encompasses requirement and permission objects,
each of which refers to the model components of the same
level and expresses security policies.

The uppermost level (RO) is based on concepts from
Role-Based Access Control (RBAC) [6, 1]. The main
classes in this level are: Roles in which people who are
working in the modelled environment act; Objects of the
modelled environment which should be subject to access
control; and AccessModes; i.e. the ways of accessing ob-
jects. The class AccessPermission allows the performer of
a Role to access a particular Object in the way defined by
AccessMode.

The second level (SR in fig. 1) offers a system view de-
fined from the standpoint of the services that the system
will provide, and it thus consists of a more complex set
of classes. Objects of these classes represent: (a) people
working in the modelled environment (User); (b) subjects
acting on the user’s behalf (SubjectTypes); (c) services in
the network that are used to access resources (Services); (d)
the dependency of a service on other services (ServiceDe-
pendency); and lastly (e) Resources in the network.

The lowest level (PH) is responsible for modeling the
mechanisms that will be used to implement the security ser-
vices defined in SR. Therefore, PH will have even more
classes than before, representing for instance the Hosts,
with their respective network Interfaces and Processes.
ProtocolPermissions allow the transition of packets be-
tween processes. Several other classes are also defined
according to the supported mechanisms; they will not be
mentioned here for the sake of brevity.

MBM also provides a support tool, which, at first, as-
sists the user in the modeling of the system by means of a
graphical editor with additional functions for the checking
model-dependent constraints. Once the system modeling
is finished, the tool performs an automatic refinement of
the abstract security policies (in the RO level), through the
intermediary levels (SR and PH), until achieving config-
uration files for the supported security mechanisms. The
security policy support of MBM is described in the next
section.

2.1. Policy representation, semantics and refine-
ment

According to Sloman and Lupu [8], policies can be
sorted into two basic types: authorization and obligation
policies. Authorization policies are used to define access
rights for a subject (management agent, user, or role) and
can be either positive (defining the actions subjects are per-
mitted to perform on target objects) or negative (specify-
ing the actions subjects are forbidden to perform on target
objects). As such, authorization policies are used to define
access control rules implemented by several types of mech-
anisms in a network security system, such as packet filters,
Kerberos, and VPNs.

Obligation policies are, in turn, event-triggered
condition-action rules that can be used to define the activ-
ities subjects (human or automated manager components)
must perform on objects in the target domain; i.e. the duties
of these subjects. In the network security context, obliga-
tion policies can be used to specify the behavior of mech-
anisms such as logging agents, intrusion detection systems
(IDS) and watchdogs.

In MBM, authorization policies are represented by
means of AccessPermission objects (see sec. 2) in the up-



permost (RO) level. The set of AccessPermissions is given
by the modeller and acquires in this context a double mean-
ing: on the one hand it defines the explicit permission
for Roles to access Objects (in the way defined by an
AccessMode)—corresponding to the positive authorization
policies in the above classification. On the other hand, the
semantics of MBM also imply that all triples of Role, Ob-
ject and AccessMode not belonging to the set of AccessPer-
missions are implicitly forbidden—i.e. it defines implicitly
the negative authorization policies that must as well be en-
forced by the security mechanisms.

These authorization policies are, in MBM, subject to
an automatic refinement when descending the abstraction
levels of the model. In this manner, each one of the Ac-
cessPermissions is refined into one or more ServicePermis-
sions in the SR level, which expresses an authorization for
a SubjectType (on behalf of a User) to use a Service to ac-
cess a Resource. Subsequently, the ServicePermissions are
refined into a set of ProtocolPermissions at the PH level,
which in turn, for the last step of model-based security ser-
vice configuration, are evaluated by a series of backend
modules, in order to generate the adequate configuration
files for each of the supported security service products.

It should be noted that each permission set derived from
the given AccessPermissions (i.e. ServicePermissions and
ProtocolPermissions) stands also for both explicit positive
and implicit negative authorization policies. This property
must be taken into consideration during the whole process
of automatic policy refinement described above.

As for obligation policies, these are not directly repre-
sented in MBM since the modeling used in MBM builds
upon RBAC (see sec. 2), which in its basic form does not
enclose obligation policies (referred to as duties in [6]).
However, as a further development of MBM, besides the
above elements, the RO level also incorporates prescrip-
tive SecurityVector objects [5]. These SecurityVectors of-
fer an extension to the RBAC model in order to represent
the security levels that must be enforced in the context of
an AccessPermission. The security levels are defined by
the modeller and represented by a vector of desired values
(natural numbers from 1 to 5) for the security requirements
of confidentiality, integrity, availability and traceability.

Additionally, both the SR and PH levels also have Se-
curityVectors. These objects also consist of a vector of se-
curity levels, but in this case the values describe what can
be provided by the entity of the model to which they are
assigned; they are thus called warranting SecurityVectors.
As such, warranting SecurityVectors are associated to each
Service in order to represent the security levels that it is
able to warrant. In the PH level, warranting SecurityVec-
tors are associated to Trust Areas that represent groups of
PH-elements that are able to warrant the same security lev-
els.

During the process of policy refinement described
above, the security levels warranted by mechanisms are
checked against the security requirements prescribed in the
SecurityVectors of the RO level. As such, a SecurityVec-
tor with a high level of confidentiality could determine,
for instance, the decision between using an encrypted tun-
nel instead of plain text. Another practical example occurs
when a security mechanism that supports logging has this
functionality activated in order to fulfill the high traceabil-
ity level required by the prescriptive SecurityVector of its
corresponding AccessPermission. The examples show that,
though SecurityVectors do not directly represent obligation
policies, the analysis of the security requirements they ex-
press can yield configuration parameters for mechanisms
that do correspond to the “need to do” aspects in the sys-
tem, and hence to obligation policies.

3. Diagram of Abstract Subsystems (DAS)

From the previous discussion of MBM, one can notice
that the complexity of the PH level—which shall depict the
entire system, with its processes, hosts, network interfaces
etc.—increases rapidly as the size of the modelled system
grows. Consequently, models of large real systems tend to
become quite confusing. In order to overcome this prob-
lem, a new layer has been introduced in the modeling: the
Diagram of Abstract Subsystems (DAS).

DAS is a layer located immediately below the service-
oriented view of the system (SR level in fig. 1) and above
the PH layer. Its main objective is to describe the overall
structure of the system in a modular fashion; i.e. to cast the
system into its building blocks (ASs) and to indicate the
connections between them.

Therefore, a DAS is a graph comprised of Abstract Sub-
systems (ASs) as nodes, and with edges that represent the
possibility of bidirectional communication between two
ASs. An AS, in turn, is an abstract view of a system seg-
ment; i.e. a simplified representation of a given group of
system components. As such, an AS is itself a subgraph of
a DAS and may contain the following types of elements:

Actors: groups of individuals in a system which have an
active behavior; i.e. they initiate communication and
execute mandatory operations according to obligation
policies.

Mediators: elements that intermediate communications,
receiving requests, inspecting traffic, filtering and/or
transforming the data flow according to the authoriza-
tion policies; they can also perform mandatory opera-
tions based on obligation policies, such as registering
some information about data flows.



RO level

SR level

DAS

Figure 2. Three-layered Model

Targets: passive elements; they contain relevant informa-
tion, which is accessed by actors.

Connectors: represent the interfaces of one AS with an-
other; i.e. they allow information to flow from, and to,
an AS. scalability

Each one of these element types represent a group of
entities in the actual system, e.g. hosts, processes, proto-
cols, network interfaces, network connections. The objects
in DAS thus represent aggregates of such entities, grouped
according to a policy-oriented view of the system, in order
to present only the relevant aspects for a global view of the
system structure.

A model example is shown in Figure 2, in which a DAS
(at the bottom) is represented together with the levels RO
and SR. This model represents a typical network environ-
ment, for which three AccessPermissions are defined at the
uppermost level (RO), in order to regulate the access rights
of the users in the internal network with respect to e-mail
transactions, as well as to allow the users to receive e-mails
from the Internet. At the bottom of this figure, the DAS
for this environment illustrates the concepts previously ex-
plained in this section.

To complete the modeling, each AS in a DAS is ex-
panded into a detailed view of the actual mechanisms of the
system; i.e. the PH level. Figure 3 shows the PH level for
the AS “internal network” as an example. Comparing the
simplified view (in the DAS of fig. 2) and the detailed one

(fig. 3), it can be observed that modeling through abstract
subsystems offers concrete advantages in the conciseness
and understandability of the model, as well as providing an
intelligible view of the system architecture.

Figure 3. Expanded AS

Aside from the aforementioned modeling improve-
ments, the DAS is also advantageous to policy support and
model validation. These topics will be presented in the fol-
lowing sections.

4. Policy Support and Hierarchy

Along with the ASs, DAS also has objects to represent
the security policies applied to the elements of the system.



Services

Access Permission

Actors
Mediators
Targets

AS

ATPathPermission

warranting

Security
Requirements

Security
Assumptions

prescription

Security
Assumptions

warranting

maximisation

DAS

RO level

SR level

Requirements

Security

transfer

Service Permission
prescription

Security
Assumptions

warranting

refinement

 

refinementmapping

Authorization

Abstract Security prescription

Requirements

Managed System Requirements
Policies

Figure 4. Policies and Security Requirements in the
System

An overview of the hierarchical structure of these policy
types is presented in Figure 4 with special emphasis on
DAS (several details of the other levels were omitted). In
the right hand columns of this figure, one can notice that
the policy support is subdivided in two parallel tracks, cor-
responding to two policy types: authorization policies and
security requirements. These tracks are discussed in more
detail below.

The authorization policies in DAS are represented by
a set of ATPathPermission objects, which are not directly
modelled by the user, but rather automatically generated
from the ServicePermissions and their related objects of the
SR level (see sec. 2.1). Each ATPathPermission is a path in
the graph and represents the permission for an Actor (initial
node) to reach a certain Target (final node) passing through
the required Mediator and Connector nodes. As such, an
ATPathPermission is the abstraction refinement of a Servi-
cePermission (see sec. 4).

Furthermore, there are also two types of SecurityVec-
tor (see sec.2.1) objects present in the DAS that represent
security requirements. The first type consists of a set of
prescriptive SecurityVectors (henceforth called SecurityRe-
quirements), each one of which is related to a Target in or-
der to specify the required security levels for this entity.
The SecurityRequirement for a Target is calculated from
the ones that are associated to the corresponding Service
and Resource objects (in the SR level). These, in turn, are
mapped from the abstract prescriptive SecurityRequirement
vector attributed by the modeller to the corresponding Ob-
ject and AccessMode in the RO level (see fig. 4).

The second type of SecurityVector represents the secu-
rity levels that can be assured by elements in DAS. For each
ATPathPermission, a detailed warranting SecurityVector
(henceforth called SecurityAssumption) is calculated as the
maximum security level that is assured by the Services that
take part in the corresponding ServicePermission. Each
of these Services has itself a related SecurityAssumption,

representing the security levels that it is capable to pro-
vide. This security level determination models situations
in which a certain Service (with particularly desirable se-
curity properties) can be utilized in order to improve the
security level of a ServicePermission.

SecurityAssumptions have also to be manually assigned
by the modeller to each Actor, Target and Mediator in a
DAS, according to the security levels that can be warranted
by the corresponding mechanisms in the PH level. If an
element of these types does not have an associated Secu-
rityAssumption, the minimum value for each security level
is assumed. In order to offer a more compact representa-
tion of these relationships, an AS as a whole can also be
associated to one SecurityAssumption in order to represent
contextual information; i.e. this association would have the
meaning that all of the elements inside this AS share certain
security properties. This is useful, for instance, to model
the fact that an internal network should have a higher con-
fidentiality level than a public network.

5. Abstraction Refinement and Model Valida-
tion

Although the fully automated derivation of low-level,
executable policies from a set of abstract specifications is,
in the general case, not practical [8, 9], our modeling tech-
nique makes possible an automation of the building of a
policy hierarchy on the basis of a system’s model that is
structured in different abstraction levels. In this process,
the analysis of the system’s objects, relationships and poli-
cies at a certain abstraction level enables the generation of
lower level policies, based also on the system’s model in
the lower level and on the relations between entities of the
two layers. As such, the model entities of a certain level
and their relationships supply the contextual information
needed to automatically interpret and refine the policies of
the same level.

To be practically useful, however, the validation criteria
of consistency and completeness must be assured between
the different model layers. We understand that two pol-
icy sets pertaining to adjacent abstraction levels are con-
sistent when there are no conflicts both inside the gener-
ated lower-level set as well as in relation to the specified
high-level policies. In the context of our modeling, this im-
plies that all accesses enabled by lower-level policies are
correspondingly allowed by the given higher-level policy
set. On the other hand, the completeness of the refinement
is established when all higher-level policies are effectively
enforced by the lower-level set.

These criteria should be verified on each step of the pol-
icy refinement that was described in the previous section.
In our model, the validation starts at the SR level and veri-



fies the aforementioned criteria in the refinement from this
level to the DAS, and from the latter to the PH-level mod-
els. As such, the validation is performed in two phases.
The first phase will have as scope the whole system, and
its goal will be to apply the above criteria to the refinement
from the service-oriented view of the system (in which a
policy consists of a permission for a user to employ a ser-
vice to access a resource) to its structural representation in
a DAS (whose polices are enabled paths in the network by
means of which an actor is allowed to access a target).

The second phase, in turn, has a local scope and aims at
checking whether the abstract view of each subsystem (AS)
corresponds to the subsystem elements in the PH level. Fig-
ure 5 depicts the validation scheme of the second test phase.
This figure shows that the local conditions LC1 and LC2
are verified in each subsystem, in order to compare its ab-
stract representation in DAS with the detailed information
of the network mechanisms in the PH level. The assump-
tions made between the interconnection of the subsystems
(CA1) and the configuration of the PH mechanisms (CA2)
are also represented in Figure 5.

PH
CA1 CA1

PH3PH2PH1 PHPerm

ATPPAS3AS2AS1

LC1, LC2LC1, LC2 LC1, LC2 CA2 VT1

DAS

Figure 5. Validation Scheme

Further, we prove in general (by means of theorem VT1)
that if the local conditions are asserted and our composition
assumptions hold, then the whole PH level is valid in rela-
tion to the DAS.

The following sections will be dedicated to examining
each one of these phases and then to analyze the whole
validation process. For this purpose, in the next section we
first present a formalization of the relevant model entities.

5.1. Model Formalization

Since the validation starts at the SR level, we first con-
sider the entities of this level. The basic object types (see
sec. 2) are thus formally defined by means of the disjoint
sets: Usr encompassing the User objects of the system; Sty
for the SubjectType objects; Srv for the Services; Rsc for
the Resources.

Additionally, the relations between objects are defined
as follows:

• SrvDep ⊂ Srv× Srv×Rsc, to express that a service

depends on another to access a resource;

• SP ⊆Usr×Sty×Srv×Rsc, representing ServicePer-
mission objects (see sec. 2);

In order to facilitate the model validation of the next
sections, we define, along with the set of positive autho-
rization policies SP, a set of negative authorization policies
SP, which is complementary to the former one. This sec-
ond set is due to the double semantic of ServicePermissions
in our modeling (see sec. 2.1).

The security requirements, in turn, are represented by
the function srq, which gives the prescriptive SecurityVec-
tor associated to Services and Resources (see sec. 4):
srq(x : Srv ∪ Rsc) → SecVector.

For the DAS level, the following basic sets are defined:
Act comprising the Actor objects; Med for Mediators; Tar
for Targets, Conn for Connectors; and AS for ASs. DAS
itself is hence defined as the graph DAS = (V,E), where
V := Act ∪ Med ∪ Tar ∪ Conn and E is a set of edges
that connect the nodes in V . Further object relations are
represented by:

• RAct ⊂ Act ×UsrSty, encompassing abstraction re-
finements from a pair of User and SubjectType objects
to an Actor;

• RMed ⊂ Med ×Srv, for refinements from Services to
Mediators.

• RTar ⊂ Tar× SrvRsc, representing refinements from
Service and Resource pairs to a Target;

• as : V → AS, a function that maps the association of
nodes in V to abstract subsystems in AS.

The authorization policies in this level are represented
by ATPP objects (Actor-Target Path Permissions, see
sec. 4), defined as paths in the graph of the form:

AT PP ⊂ {〈v1� vk〉 : v1 ∈ Act, vk ∈ Tar,

v2, . . . ,vk−1 ∈ Med ∪ Conn,(
v j,v j+1

) ∈ E (1 ≤ j < k)}
(We shall henceforth use the symbol� to denote paths in
a graph.)

The abstraction refinement relation from a service per-
mission to an ATPP is represented by the set RAT PP ⊆
AT PP×SP.

In order to represent the security levels that can be as-
sured by individual elements in DAS (see sec. 4), a function
sa is defined as sa(x) : x → SecVector; where x pertain to
one of the sets: AS, V or AT PP.

The PH level, in turn, is also represented by a graph
PH := (VPH ,EPH). Since this level contains a series of



component types that are not relevant for the validation bel-
low, they will not be mentioned here. On the other hand,
the following relation sets are defined:

• RPHAct ⊂ VPH × Act, representing the refinements
from Actors to elements of the PH level;

• RPHTar ⊂ VPH × Tar, for refinements from Targets
to PH level nodes;

• RPH ⊂VPH ×V , representing the general refinements
from components of DAS to PH level nodes;

• as : VPH → AS, overriding of function as to map the
association of PH nodes to abstract subsystems in AS.

The set of PHPermission objects represent the autho-
rization policies in this lowermost level. This permissions
are also paths in the PH-level graph defined as:

PHPerm ⊂ {〈v1� vm〉 : v1, . . . ,vm ∈VPH ,(
v j,v j+1

) ∈ EPH (1 ≤ j ≤ m)}
Along with the above model’s entities, we define a pred-

icate that reflects the functioning of the system:

accessPH : VPH ×VPH → boolean

accessPH(v1,v2) =
{

1 if element v1 can access v2

0 otherwise

Having completed our definitions, we now proceed to
the first validation phase.

5.2. Global Conditions and Assumptions

The first global check that is performed in the model
certifies that: (GC1) for each ServicePermission a corre-
sponding ATPathPermission has to be found in the DAS.
This means that all the security policies in the SR level are
structurally feasible in the DAS; i.e. that the authorization
policies prescribed in the SR level are effectively enabled
by its corresponding policies in the DAS.

The correspondence relation, used in the latter condi-
tion, between a ServicePermission and an ATPathPermis-
sion—which will be referred to by sp and at pp—is intu-
itively satisfied when: (i) the Actor of at pp is related to
the User and SubjectType of sp, (ii) the Target of at pp is
related to the Service and Resource of sp, and (iii) each
Service in the service dependencies of sp is related to a
Mediator of at pp. Furthermore, the compliance of at pp
with the security levels prescribed by SecurityRequirement
vectors (see sec. 4) must be verified. This compliance is
established if: (iv) each of the elements in at pp (Actors,
Mediators and Targets) is able to provide security levels
equal to or greater than the maximum between the values

prescribed by the SecurityRequirements of the correspond-
ing Service and Resource objects (this comparison is per-
formed on the numerical value attributed by the modeler to
each dimension of the involved security vectors; it is fur-
ther elaborated in [5]).

With these considerations, we can formally define CG1
as follows:

Global Condition 1 (GC1)

∀ sp(usr,sty,srv,rsc) ∈ SP

∃ at pp〈v1� vm〉 ∈ AT PP :

(sp,at pp) ∈ RAT PP∧ (v1,usr,sty) ∈ RAct

∧ (vm,srv,rsc) ∈ RTar

∧ ∀ srvd : ∃ (srvd,srv,rsc) ∈ SrvDep ⇒
∃ v j : (v j,srvd) ∈ RMed, (1 < j < m)

∧ minq≤m
q=1 esa[vq,at pp] ≥ max(srq[srv],srq[rsc])

The effective security levels that can be assured by each
node of the DAS (given by the function esa above) are,
in turn, calculated as the maximum between the values as-
sured by the node itself (represented by its corresponding
SecurityAssumption), the security levels associated to the
AS to which the node belongs, and the SecurityAssumption
associated to the ATPathPermission (see sec. 4). In this
respect, the maximization of the values reflects the result
of the collaboration of different mechanisms and context
information to the effective security level achieved by an
individual in the system. The auxiliary function esa is thus
defined as:

esa(v : V, at pp : AT PP) =
max(sa[v],sa[as[v]],sa[at pp])

Subsequently, it should be asserted that: (GC2) for each
negative authorization policy in the SR level (i.e. elements
of the auxiliary set SP), all the paths between its related
Actor and Target objects in the DAS must be disabled. As
such, only the paths that are allowed by security policies in
the SR level will enabled in the DAS. This condition can
be formally expressed as:

Global Condition 2 (GC2)

∀ sp (usr,sty,srv,rsc) ∈ SP

∀ (act,usr,sty) ∈ RAct, ∀ (tar,srv,rsc) ∈ RTar

� p〈v1� vn〉 : v1 = act, vn = tar,

(vi,vi+1) ∈ E (1 ≤ i < n), enabled(p)

Along with this last condition, we assume that all the
DAS elements are configured in such a way that they only
enable communication corresponding to an ATPathPermis-
sion to pass through. This particularly concerns Mediators,



which are presumed to disable all the paths passing through
them that are not allowed by an element of AT PP. This
premise reflects the correct implementation of the mecha-
nisms and is formalized in the axiom GA1:

Global Axiom 1 (GA1)

∀ p〈v1� vn〉 : v1, . . . ,vn ∈V, (vi,vi+1) ∈ E (1 ≤ i < n)
enabled(p) ⇔∃ at pp ∈ AT PP : p ⊆ at pp

Therefore, the completeness of the abstraction refinement
SR level → DAS results from GC1 and GA1, since for
each sp ∈ SP there is a implementing at pp ∈ AT PP (GC1),
which in turn has a corresponding enabled path in DAS
(GA1); i.e. for each service permission in the SR level
there is an enabled path in DAS. The consistency criterion
is then satisfied by the assurance of GC2, for it implies that
only the paths corresponding to service permissions of the
SR level are enabled in DAS.

5.3. Local Conditions

In a second phase, in order to verify whether each
PH subsystem is a valid refinement of the respective AS,
checks are performed that are analogous to the ones previ-
ously described, but restricted now to the scope of a partic-
ular subsystem. The first test, similar to GC1, certifies that:
(LC1) for each structural connection between two elements
in an AS, say A and B, a PH-model path must exist between
each object that refines A and each object that refines B.

Local Condition 1 (LC1)

∀ (vAS
1 ,vAS

2 ) ∈ E

∃ p
〈
vPH

1 � vPH
n

〉
: vPH

1 , . . . ,vPH
n ∈VPH ,

(vPH
i ,vPH

i+1) ∈ EPH (1 ≤ i < n),

(vAS
1 ,vPH

1 ) ∈ RPH, (vAS
2 ,vPH

n ) ∈ RPH

Then, following on in analogy to GC2, it should be at-
tested that: (LC2) there exists no “not allowed” connec-
tions between PH-model objects. As regards the DAS,
however, we do not have a set of negative authorization
policies in order to determine the invalid connections, as
in the SR level. Nevertheless, both levels have the double
semantics of explicit positive and implicit negative autho-
rization policies. That implies all the disabled paths in a
DAS represent forbidden communication.

Therefore, in order to assure the compliance of each PH
subsystem to its corresponding AS in this respect, we assert
that for all paths between two PH level objects, say C and
D, which are related to objects in the AS, say E and F, there
must be an enabled path in the AS between E and F.

Local Condition 2 (LC2)

∀ p
〈
vPH

1 � vPH
n

〉
: vPH

1 , . . . ,vPH
n ∈VPH ,

(vPH
i ,vPH

i+1) ∈ EPH (1 ≤ i < n),

(vPH
1 ,vAS

1 ), (vPH
n ,vAS

m ) ∈ RPH

∃ q
〈
vAS

1 � vAS
m

〉
: vAS

1 , . . . ,vAS
m ∈V,

(vAS
j ,vAS

j+1) ∈ E (1 ≤ j < m), enabled(q)

∧ ∀ vAS
k (1 < k < m) ⇒
∃ (vPH

l ,vAS
k ) ∈ RPH (1 < l < n)

5.4. Composition Assumptions

Besides the local conditions, an assumption must be
made about the interconnection between the PH subsys-
tems. In the DAS, the connection between two ASs is al-
ways performed through a pair of Connector objects (one
in the first AS and another on the second AS). These Con-
nectors are abstract passive entities that are refined into
PH-level objects representing communication devices, e.g.
ethernet networks, network interfaces (see fig. 3 for an in-
stance). Since the models in the PH level are segmented
into ASs (i.e. each AS has a separate PH model as depicted
in fig. 5), the interconnection between PH-level nodes that
refine Connectors is not represented in these local dia-
grams. Nevertheless, an enabled PH-level connection be-
tween two objects of different PH subsystems (correspond-
ing to different ASs) is assumed to be present if, and only if,
there is a corresponding structural connection in the DAS.
This assumption is defined by the axiom CA1:

Composition Axiom 1 (CA1)

(vPH
1 ,vPH

2 ) ∈ EPH :

as[vPH
1 ] �= as[vPH

2 ]

⇔∃ (vDAS
1 ,vDAS

2 ) ∈ E :

(vPH
1 ,vDAS

1 ), (vPH
2 ,vDAS

2 ) ∈ RPH,

as[vDAS
1 ] = as[vPH

1 ], as[vDAS
2 ] = as[vPH

2 ]

As in the DAS, it is also necessary to make considera-
tions about the configuration of the mechanisms of the PH
level. Our assumption here is that all security mechanisms
and equipments in the PH level will be correctly and as
strictly as possible configured; i.e. each PH-level object
must restrict the information flow, as effectively as it is able
to, in order to allow only the communication corresponding
to what is enabled by its related element in the AS. Since
the DAS objects are assumed to be configured according
to the ATPathPermissions of the system (GA1), in order to
formalize this assumption we use the set PHPerm of PH-
Permissions, each one of which is an enabled path in the



PH level related to one ATPathPermission. We state then
that for each possible access between two PH objects (rep-
resented by the function accessPH ) there must be a related
element in PHPerm:

Composition Axiom 2 (CA2)

accessPH(v1,v2) ⇔∃ 〈v1� v2〉 ⊆ p ∈ PHPerm

Notice that, analogously to GA1, this assumption also re-
flects the presumed correct implementation of the mecha-
nisms.

5.5. DAS/PH Validation

In order to prove that the local conditions and assump-
tions are sufficient to validate the abstract refinement from
the DAS to the PH level we must consider now these lay-
ers as a whole, thus achieving a generalized result from
the previous considerations (as illustrated in fig. 5). Hence,
we must demonstrate that, provided all the previous con-
ditions and assumptions hold, an access, in the PH level,
from a process to a system resource can be performed if,
and only if, it is allowed in DAS; i.e. iff the correspond-
ing abstraction of the process (Actor) is permitted to access
the abstraction of the resource (Target) by means of an AT-
PathPermission. Theorem VT1 formalizes this assertion
(the abstraction relations are respectively mapped by the
auxiliary functions A and T ).

Validation Theorem 1 (VT1)

accessPH(p,o) ⇔∃ 〈A[p]� T [o]〉 ∈ AT PP

The proof for the left to right direction of the theorem is
based on an induction in the number of ASs for which the
assertion is valid. For the basis, the two PH objects per-
tain to the same AS (as[p] = as[o]), and thus CA2 implies
there is a path 〈p� o〉 in the PH model. Then, from LC2,
and considering that these objects are related to their cor-
responding abstract entities in DAS (a = A[p], t = T [o]),
this results in that there is a corresponding enabled path
〈a� t〉 in DAS. Now, GA1 implies this enabled path must
be allowed by an ATPathPermission. Q.E.D.

In the general case, CA2 implies the PH-path that leads
process p to system resource o spans n ASs and can be for-
mally described as:

〈
v1� v j,v j+1� o

〉
, where v1 = p and

as[v1] = as[v2] = · · · = as[v j] (they all pertain to the same
AS). We first apply the basis case to the subpath

〈
p� v j

〉
,

obtaining that it is allowed by some at pp ∈ AT PP. From
CA1, results then v j and v j+1 are correspondingly refine-
ments from two connectors, say c1 and c2, such that there is
a connection (c1,c2)∈ E. Since connectors are always pas-
sive elements (see sec. 3), all enabled paths in the DAS that

reach c1 will be also capable of reaching c2, and this im-
plies (GA1) that at pp also allows the path

〈
v1� v j,v j+1

〉
;

i.e. there is an enabled path ep1 〈A[p]� c1,c2〉 in DAS.
Now, for the subpath

〈
v j+1� o

〉
the induction hypothesis

can be applied (it spans n− 1 ASs), resulting in that it is
allowed by some ATPathPermission that thus contains the
path ep2 〈c2� T [o]〉. The concatenation of ep1 and ep2

(eliminating the common element c2) thus achieves an en-
abled path in the DAS 〈A[p]� T [o]〉, and GA1 implies in
this case there is a related ATPathPermission. Q.E.D.

The opposite direction of the theorem asserts that for
each ATPathPermission that allows a certain actor A[p] to
access a target T [o], there must be a corresponding access
possibility in the PH level. An induction in the number
of ASs spanned by the ATPathPermission (said at pp) will
be then used. For the basis, at pp is local to an AS and,
since all connections in at pp are, by definition, also con-
nections in the AS, the existence of a corresponding en-
abled path 〈p� o〉 in the PH subsystem is given by condi-
tion LC1. Thus, from CA2, this results in that this enabled
path (which must be contained in a PHPermission) implies
the access from p to o is possible. Q.E.D.

Assuming now that at pp spans k ASs, it can be repre-
sented as a path of the form: 〈A[p]� c1,c2� T [o]〉, where
the subpath 〈A[p]� c1〉 is contained entirely in one AS.
The existence of an enabled path in the PH level between
each pair of objects in this subpath is then given by the
LC1, corresponding to a PH-path in the form sp1

〈
p� v j

〉
.

CA1 asserts that there is a PH-level connection corre-
sponding to (c1,c2), said (v j,v j+1). Thus, for the path
〈c2� T [o]〉 the induction hypothesis can be applied, since
it now spans k−1 ASs, achieving that there is a correspond-
ing enabled PH path sp2

〈
v j+1� o

〉
. From the concate-

nation of sp1 and sp2, this results in an enabled PH-path
〈p� o〉, and CA2 thus implies the access from p to o is in
this case possible. Q.E.D.

Therefore, the theorem VT1 results in that the valida-
tion criteria are satisfied in the abstraction refinement from
the DAS to the PH level, when the local conditions and as-
sumptions hold. Since the compliance of the DAS with the
service-oriented view of the SR level was shown to be as-
sured by the appliance of the global conditions and axioms
(see sec. 5.2), thus we prove the seamless validity of the
refinement from the SR level to the PH level according to
the criteria of consistency and completeness.

Considering the evaluation of the conditions described
in the previous sections, one can percieve an additional
benefit that comes from the modeling technique presented
in this paper: the possibility of splitting up the process of
system analysis. Indeed, while the global conditions (GC1
and GC2) must be checked in the abstract view of the entire
system (the DAS), in contrast, the conditions LC1 and LC2
only have a local scope. They can thus be performed in-



dependently on each AS and are restricted to consider only
the elements inside the boundaries of a subsystem. Clearly,
this analysis splitting contributes to a more scalable mod-
eling, especially if we observe that the evaluation of the
global conditions (that will be performed in a smaller, sim-
plified view of the system) are more complex and compu-
tationally consuming than the local ones.

Further, the view of the system offered by the PH level is
near enough to the implementation, such that it can be used
to generate configuration files to the supported equipments
and security mechanisms. This generation will be then
based on the enabled paths that pass through each object,
whose characteristics will be analyzed and converted into
low-level configuration parameters. For the AS of Figure 3,
for instance, an enabled path from the hosts “Workstation1”
and “Workstation2” to the “Proxy Server” (through the pro-
cesses “Netscape” and “Squid-Proxy” as well as through
the corresponding protocol and interface objects) is ana-
lyzed and coverted into configuration parameters for the
security mechanism “web proxy” in order to allow this ac-
cess. As such, if we assume the correct generation of the
configuration parameters from the PH level model, then the
policies in the SR level will be correctly implemented; i.e.
the actual system’s mechanisms will be configured exactly
in conformance with the high-level policy specification.

6. Conclusion

This paper has introduced a modeling technique that ex-
tends the Model-Based Management to enhance the han-
dling of very large computing environments. We have
briefly discussed the modeling improvements achieved by
the Diagram of Abstract Subsystems and presented in detail
the support this diagram offers to security policies.The sup-
ported policy types were analyzed and their relation with
the other abstraction level entities was established.

We have also presented a model structure validation
method that is made possible by our modeling technique.
Since the modeling is based upon a policy-oriented view of
the system, it enables—in addition to its main objective of
automated policy refinement up to the generation of low-
level configuration parameters for security mechanisms—
the validation of the structural architecture of the system
vis-à-vis its security policies, such that the criteria of con-
sistency and completeness of the abstraction refinement can
be proved. Moreover, we have shown that this validation
can be performed in a modular fashion, which is more ap-
propriate when dealing with large models.

Our approach is assisted by a software tool, which en-
closes a diagram editor (by means of which figs. 2 and 3
were drawn) and, once the modeling is complete, applies
the checks described in Section 5 to the model. The tool
has been used to perform a series of case studies and the

results have presented enhancements both in modeling and
analysis. The experience has also shown that, in practice,
the modelled network systems are frequently not capable
of enforcing the given high-level policies. In this case, the
conditions we have presented (GC1, GC2, LC1 and LC2)
can not be satisfied, and the tool offers indications to the
necessary modifications on the system in order to make it
congruous to the policies.

Future work includes integrating techniques for improv-
ing the visualization and navigation of the models.

7. Acknowledgments

We would like express gratitude to Helen Mary Murphy
Peres Teixeira for reviewing, and to the German Academic
Exchange Service (DAAD) for the scholarship funding.

References

[1] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A role-based
access control model and reference implementation within a
corporate intranet. ACM Transactions on Information and
System Security, 2(1):34–64, February 1999.

[2] I. Lück, C. Schäfer, and H. Krumm. Model-based tool-
assistance for packet-filter design. In E. Lupu M. Sloman,
J. Lobo, editor, Proc. IEEE Workshop Policy 2001: Policies
for Distributed Systems and Networks, number 1995 in Lec-
ture Notes in Computer Science, pages 120–136, Heidelberg,
2001. Springer Verlag.

[3] I. Lück, S. Vögel, and H. Krumm. Model-based configura-
tion of VPNs. In R. Stadtler and M. Ulema, editors, Proc.
8th IEEE/IFIP Network Operations and Management Sym-
posium NOMS 2002, pages 589–602, Florence, Italy, 2002.
IEEE.

[4] J. D. Moffett and M. S. Sloman. Policy hierarchies for dis-
tributed system management. IEEE JSAC Special Issue on
Network Management, 11(9), 11 1993.

[5] G. Rothmaier. Model-based security management: Abstract
requirements, trusts areas, and configuration of security ser-
vices. Master’s thesis, University of Dortmund, Germany,
2001. in German.

[6] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE Computer,
29(2):38–47, 1996.

[7] M. Sloman. Policy driven management for distributed
systems. Journal of Network and Systems Management,
2(4):333–360, 1994.

[8] M. Sloman and E. C. Lupu. Security and management policy
specification. IEEE Network, Special Issue on Policy-Based
Networking, 16(2):10–19, March/April 2002.

[9] R. Wies. Using a classification of management policies for
policy specification and policy transformation. In Adarsh-
pal S. Sethi, Yves Raynaud, and Fabienne Fure-Vincent, ed-
itors, Integrated Network Management IV, volume 4, pages
44–56, Santa Barbara, CA, 1995. Chapman & Hall.


