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Abstract

Buffer overflow attacks are one of the most important attack classes because they enable an 

attacker to remotely execute arbitrary code at the target host. These attacks generaly disturb the 

network traffic at the application level by delivering anomalous data to the target applications. 

This work presents a prototype to detect anomalous network traffic containing executable code 

at the application level. This prototype is inspired by the negative selection process performed 

by  T  lymphocytes  in  the  human  immune  system.  A  case  study  with  the  DNS  protocol 

demonstrates that this can be a very promising approach.
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1 – Introduction

Computer  systems  and  communication  over  the  Internet  are  nowadays  essential, 

aggregating a high value, both in the social and economic senses. In this way, it is necessary to 

secure  these  systems,  in  order  to  prevent  malicious  actions  from  disturbing  the  normal 

utilization of the global communication environment.

However, some computer security issues have been overlooked by software developers 

and consumers, making possible the arising of situations in which security vulnerabilities might 

be exploited by malicious individuals, with severe consequences.  Considering this situation, 

several researches have been carried out in order to increase the security of computer systems, 

employing  technologies  like  firewalls,  cryptography,  vulnerability  analysis  and  intrusion 

detection.



Among several attack classes against computer systems, remote buffer overflow attacks 

are distinguished by their persistence and significance (Cowan et al., 2000), (Larochelle et al., 

2001), (Northcutt  et al.,  2001). In these attacks, someone can  send executable code to an 

application running on the target remote machine. The executable code  will travel encapsulated 

into network packets at the application level, bypassing mechanisms like packet filters. In this 

way, the executable code can be viewed as anomaly data in the application level protocols, 

especially to the applications that work basically with text-based data (e.g.,  DNS resolution 

requests, FTP commands, SMTP, IRC and others).  

This  work  presents  a  prototype  to  achieve  anomaly  detection  in  situations  such  as 

explained previously, analyzing the application level data captured from network traffic. To do 

this, we applied a technique inspired on the human immune system. As such, this work makes 

an attempt to contribute with solutions to improve the security of typical organizations.

This article  is  structured as follows.  Section 2 presents a general  view of computer 

immunology and works  on computer  security.  Section  3 presents  the technique to  achieve 

anomaly detection. Section 4 shows a prototype that works at the application level data captured 

from the network. The tests and experimental results are shown in Section 5 and Section 6 

makes conclusions about this work.

2 – The immune system and security

A  good  security  level  can  be  obtained  by  adopting  models  that  are  closer  to  the 

conditions of current computer networks, where there is a hostile, failure-prone environment. 

The human immune system is a good reference model, considering that it can protect the body 

against a large number of attacks, therefore several features that are desirable to a computer 

system.

In (de Paula, 2004) are discussed in detail several aspects of the human immune system, 

including  its  structural  organization,  operation  of  the  immune  response,  the  relationship 

between the immune system and computer security, and its principles that can be applied to 

security systems. This work, however, will focus only on this part of the biological system: the 

negative selection process performed by T lymphocytes (a kind of specialized immune cell).

2.1 – Negative selection process

The immune system defends the body against illnesses and infections. This defense is 

enabled by the capacity of recognizing the cells and foreign molecules and then of eliminating 



these substances from the body. To do this, the immune system must perform tasks of pattern 

recognition to distinguish between the cells  and substances of the body and the potentially 

malefic, foreign substances. Therefore, the detection problem of the immune system consists of 

discriminating self (body substances) from nonself (foreign substances) (Somayaji et al., 1997). 

This discrimination is  performed by the immune system through a  process  called  negative 

selection.

The negative selection process makes possible the attainment of a set of detectors that 

can perform the identification of nonself. In this process the detectors are submitted to two 

phases:

• Training or learning phase: new detectors are randomly generated and submitted to a 

large  repertory  of  body  cells.  In  this  phase,  if  a  detector  matches  some  self 

substance, it is discarded and a new detector is generated. After this training phase, 

the detectors become mature and ready for detection;

• Detection phase: when several mature detectors match some substance in the body, 

there is a nonself identification and an immune response will be initiated. 

In this way, the immune system decreases the risk of mature detectors matching self and 

thus  makes  possible  the  identification  of  foreign  substances  to  which  the  system was  not 

exposed before.

2.2 – Self/nonself discrimination in a computer system

The problem of protecting computer systems from intrusions can be viewed, much like 

in the immune system, as the self/nonself discrimination (Somayaji et al., 1997). In a computer 

system the self definition can be made by observing memory utilization in a host, collective 

network behavior, network traffic in a router, ingoing and outgoing TCP/IP packets of a specific 

host, sequence of instructions and even some user behavior. Also the self definition must be 

tolerant to legitimate changes (Somayaji et al., 1997), including file editing, installation of new 

applications,  addition  of  new  users,  changes  on  the  user  behavior,  and  diverse  system 

administration activities.

By applying this ideia, Forrest, Allen, Perelson e Cherukuri presented an algorithm for 

the  probabilistic  detection  of  modifications  on  protected  data  (Forrest  et  al.,  1994).  This 

algorithm,  which is based on the negative selection, works as follows:



• Generation of detectors: the detectors are strings with the same length. These strings 

are randomly generated, and each one will later be selected  as a mature detector if it 

does not match the protected data while the training phase takes place;

• Information  monitoring:  the  protected  data  is  compared  with  the detectors.  The 

activation  (matching)  of  a  detector  signals  that  an  alteration  was  made  on  the 

analyzed data.

In this algorithm, each string which constitutes a detector is defined as a sequence of 

bits. The detection has effect through the matching of r-contiguous bits between the analyzed 

data and the detectors, for  some predefined value of r. Therefore, the algorithm searches for r 

contiguous positions when the bits are the same, in a pair of strings. This algorithm was applied 

to  search  for  file  modification  through  code  insertion,  byte  mutation  and  computer  virus 

contamination. Experimental results showed efficiency and further research was carried out as a 

consequence (D’haeseleer et al., 1996).

The negative selection process and a variation of the algorithm described in this section 

constitutes the base of the prototype which will be presented in Section 4.

3 – Buffer overflow attacks

Buffer overflows are one of the most “famous” methods used by attackers in order to 

obtain high privileges and non-authorized access in a computer system. This method consists in 

supplying a large volume of data to an application, trespassing the predefined limits of data 

arrays. In this way, it is possible to inject arbitrary executable code, altering the legitimate line 

of execution of the attacked process.

The most common technique in buffer overflow attacks is based on rewriting, at the 

process stack, the return address of a procedure. In this case, the attacker sends data containing 

two parts: a malicious executable code and a new return address, which will point to this code. 

Consequently, when the actual procedure in execution ends the inserted code is executed and 

the intrusion takes place. A large number of notifications emmited by the CERT/CC (Computer 

Emergency Response Team/Coordination Center) are related to this attack category.

Technically, a buffer overflow is possible due to problems with programs which do not 

validate the input data. This security flaw happens mainly in programs implemented with a 

programming language that does not provide automatic limit checking, such as the C language, 

where basic  functions like  scanf(),  gets(),  strcpy(),  among others,  are  frequently  used.  The 

exploitation of these flaws can lead to severe damages,  for example,  such as the first large 



security incident of the Internet – the  Internet Worm, in 1988 – which, among other flaws, 

exploited the program fingerd with this technique.

The main methods applied to detect buffer overflow attacks are presented as follows:

• StackGuard (Cowan et al., 2000) are a set of compiler extensions which performs 

additional  checkings  in  the  return  address  stored  in  the  stack.  In  this  way, 

StackGuard  can  prevent  only  buffer  overflow  attacks  which  manipulate  return 

addresses,  but  not  other  pointers.  Point-Guard  (Cowan  et  al.,  2000)  is  a 

generalization  of  StackGuard  in  such  a  way  to  protect  other  code  pointers.  In 

(Larochelle et al., 2001) are presented some strategies to report flaws in the use and 

manipulation of arrays through the analysis of the program’s source code. The main 

drawback  of  these  approaches  is  that  they  make  it  necessary  to  recompile  all 

applications to be used. Perhaps by this reason they are not so largely used;

• In (Xu et al., 2002) and (Suh et al., 2002) are presented hardware mechanisms to 

prevent attacks. The strategy employed by (Xu et al., 2002) works with a copy of the 

return addresses in order to discard rewritten adressses and as such is not a general 

solution  to  the  problem.  In  (Suh  et  al.,  2002)  a  mechanism is  responsible  for 

detecting unexpected deviations in the control flow of a program or the insertion of 

executable code. Therefore,  this method cannot detect attacks which change only 

adjacent data near the exploited buffer;

• In (Toth and Kruegel,  2002) is shown a very promising strategy,  used to detect 

executable code in the network traffic. It is presumed that packets can carry some 

data sequences that can be viewd as a portion of executable code. When a sufficient 

large  portion  of  “code”  is  identified,  a  possible  attack  is  detected.  Initial  tests 

showed that this strategy can be free of false-positives. However, this technique is 

very dependent of the architecture which will be the target of the attack;

• (Kruegel et al.,  2002) describes a detection method based on the behavior of the 

network traffic, considering each service in a separate way. Although this idea was 

not developed specifically for buffer overflow attacks it can be used to detect them, 

by analyzing the size of requests to network services. However, this choice suffers 

from  the  false-positive  problem  because  the  use  of  statistical  measures  slowly 

accommodates the changes in the behavior of new accesses;

Some other approaches were developed in search for solutions  to the specific buffer 

overflow problem and related attacks.  These approaches exploit  techniques that range from 



compilation  to  addition  of  dedicated  hardware.  However,  no  definitive  solution  was 

encountered yet.

4 – Prototype for anomaly detection based on the immune system

This section presents a prototype of an intrusion detection system (IDS) inspired by the 

negative selection process of the immune system. In this way, the prototype performs anomaly 

detection and can detect buffer overflows, code injection and other attacks that remotely exploit 

programs which  do not  correctly  validate  the  input  data.  The prototype  was  developed  to 

inspect the network traffic, at the application level protocols. It is important to emphasize that 

some applications can send and receive diverse data and code (e.g., FTP data connection), but 

in several cases the applications work with text-based commands (e.g.,  queries DNS and FTP 

control connection) and the attackers commonly use these channels to execute arbitrary codes 

and commands.

The detection system was developed using the C language with the Debian GNU/Linux 

3.1  operating  system,  kernel  version  2.4.27  and  the  GCC compiler  version  3.3.3.-7.  The 

hardware used during the implementation and the main tests was an AMD Athlon XP 2600+, 

1.91 GHz,  256MB DDR RAM, 40GB Ultra-DMA IDE 7200 RPM hard-disk. The network 

traffic was handled through the use of the Libpcap library version 0.8.3-3.

The implementation was done considering the DNS protocol as a case study due to its 

large utilization and frequency that this protocol is exploited in application attacks through 

buffer overflows.

 

4.1 – Libpcap library

The Libpcap a system-independent interface for packet  capture at  the user space.  It 

allows for efficient capture through the use of BPF (Berkeley Packet  Filter)  filtering.  This 

library was developed by Van Jacobson, Craig Leres and Steven McCanne, at the  Lawrence 

Berkeley National Laboratory, University of California, Berkeley. The Libpcap  is applied in 

several well-known projects, such as  TCPDump, Snort, Arpwatch, Fragrouter, among others. 

This simple,  yet  powerful library is  very suitable to work with the TCP/IP stack protocol, 

enabling a very flexible and easy handling of network traffic at the application end.

The library provides an API with diverse functions and predefined types to enable the 

capture,  processing,  storing and recovering of  packets.  The capture can  be done from any 

network interface (online) or even from a file (offline) in a standard format.



4.2 – Prototype structure

The strategy employed in the prototype, the negative selection, is presented in Figure 1. 

The section above the separation line shows the detector generation phase, while the section 

below the line shows the network traffic monitoring phase.

Figure 1. Negative selection employed in the prototype

The detectors are created through the random selection of bytes from the /bin/ls program 

file and, therefore, each detector can hold only one ASCII character. While the training phase 

happens,  these detectors  are  compared  with normal  network traffic at  the application level 

protocol (free from attacks) in the system. If a detector matches any normal network traffic (i.e., 

the detector byte is encountered in the traffic), then this detector is discarded and a new detector 

is created.  At the end of this process,  the set  of mature detectors holds only bytes that are 

improbable to appear under normal traffic conditions. The set of mature detectors is used to 

analyze  the network  traffic  at  the  monitoring phase.  When diverse  detectors  consecutively 

match a portion of network traffic, it is identified as an anomaly. These phases are detailed in 

the next sections.

4.3 – Training phase



A set containing training data is necessary to begin the training phase. This training data 

is composed by a file which contains network traffic free from attacks that is related with the 

application  protocol  under  analysis.  This  set  comprehends  the  self  data,  used  to  discard 

detectors which can produce false-positives. Therefore, this must be a very representative set of 

the normal traffic. Because the attacks are launched from the attacker to the target host, this set 

contains only packets received by the target host.

After randomly selecting the set of ASCII detectors from the /bin/ls file they are trained 

through  negative  selection.  Each  detector  has  associated  a  value  which  comprehends  its 

training level. The training level for new detectors is zero. At the begin of the training, each 

detector is compared with each byte of the training data packets. If a detector is not encountered 

in a packet, then its training level increments by one, otherwise it is discarded and replaced by a 

new detector.  The training ends when all  detectors  reach the  good training level,  which is 

defined by a constant threshold value. Figure 2 illustrates this training phase.

Figure 2. Creation of detectors and the training phase

4.4 – Monitoring phase

Once the detectors are trained,  the monitoring phase can be performed by capturing 

network traffic from a network interface in real time or from a file containing traffic previously 

captured in the TCPDump format.



As  with  the  training  phase,  each  TCP/IP  packet  is  gathered  through  Libpcap  and 

decoded up to the application layer. The application layer data are temporarily stored in an array 

of  bytes  to be compared with the mature detectors.  After  this,  the content of this  array is 

sequentially analyzed with the detectors.

When the amount of contiguous bytes of this array which matches the detectors reaches 

a  threshold,  called  detection  level,  an  anomaly  is  identified.  Figure  3  illustrates  how the 

monitoring phase works.

Figure 3. Monitoring phase and anomaly detection

5 – Tests and experimental results

During the tests, three fundamental variables were considered for the process of training 

and monitoring:

• The number of detectors: amount of detectors used in both training and detection;

• Good training level: amount of packets which are used for training each detector. 

Mature  detectors  must  reach  the  good  training  level,  or  else  be  discarded  and 

replaced;

• Detection level: number of contiguous bytes of an incoming packet which must be 

reached for an anomaly to be identified.

The tests were performed with a dataset collected in the Administration and Security 

Laboratory  at  the  Computing  Institute  of  the  State  University  of  Campinas.  This  dataset 

contains DNS queries captured during 43 days, reaching 26,2 MB of data. This set is free from 

attacks, which was verified through the Snort (Roesch, 2006) tool. Disjunct sets of queries were 

used for the training and monitoring phases. It was used a network traffic captured during an 



intrusion attempt against the  named daemon (DNS server), obtained through execution of a 

buffer overflow exploit. The results shown here were obtained as an average of  20 trials.

Table 1 presents the results of anomaly detection by varying the number of detectors. 

The good training level and the detection level assume fixed values  of 100 and 5, respectively. 

Figure 4 illustrates the mains aspects of Table 1, representing the number of detectors versus 

false positives and false negatives (in percentage) for an easier understanding.

Number of 
detectors

False 
positives

False 
negatives

Replaced 
detectors

Training 
time

Detection 
time

10 0% 85% 7 0.005s 0.900s
20 0% 50% 14 0.007s 1.330s
30 0% 35% 18 0.008s 1.680s
40 0% 35% 29 0.005s 2.020s
50 0% 25% 36 0.007s 2.380s
60 0% 25% 44 0.006s 2.740s
70 0% 10% 51 0.008s 3.070s
80 0% 5% 60 0.010s 3.420s
90 0% 0% 66 0.012s 3.780s
100 0% 0% 73 0.010s 4.130s

Table 1. Training and detection results varying the number of detectors
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              Figure 4. Number of detectors versus false positives and false negatives

By adopting only 10 detectors there is a high level of false negatives (85%), i.e., attacks 

that were not were identified. This happens because there are few detectors when compared 

with the detection level (5). Then, it is necessary that 5 contiguous bytes of the attack packet be 

some of the only 10 mature detectors. With 30 detectors the number of false negatives shows a 



steep fall, reaching  35%, however still far from an acceptable percentage. With 90 detectors the 

anomaly detection was very precise, without false positives or false negatives.

As can be noted, there is no false positives,  due to the good training level  adopted. 

Although there are few detectors, they are well trained (this issue is discussed after the next 

table) and as such do not match the legitimate packets. The number of replaced detectors during 

the training phase is greater when the number of detectors is increased, since there are more 

detectors which can match the self packets. The training time has a slight variation possibly 

because the replaced detectors will initiate their training later, delaying the training process. The 

detection time is also greater when the number of detectors is increased because there are more 

detectors to be compared with the self packets. 

Table 2 presents the results by varying the good training level. The number of detectors 

and the detection level assume fixed values of 100 and 5, respectively. Figure 5 illustrates the 

good  training level versus false positive and false negative levels (in percentage).

Good training 
level

False 
positives

False 
negatives

Replaced 
detectors

Training 
time

Detection 
time

1 0,51% 10% 22 0.014s 3.802s
5 0,20% 10% 30 0.011s 3.960s
10 0,19% 10% 35 0.014s 4.015s
15 0,1% 10% 45 0.016s 4.012s
20 0,06% 5% 51 0.011s 4.080s
25 0,001% 0% 64 0.011s 4.179s
30 0% 0% 68 0.016s 4.173s
35 0% 0% 69 0.013s 4.185s
50 0% 0% 69 0.017s 4.183s
100 0% 0% 76 0.018s 4.212s

Table  2. Training and detection results varying the good training level

A little percentage of false positives is identified when the good training level varies 

from 1 to 25 packets. However, this level cannot be simply ignored, due to the large number of 

packets analyzed during the  anomaly detection. The problem happens due to the new detectors 

being compared with an insufficient amount of normal (self) packets during the training phase. 

When the good training level reaches 30 the false positive problem is eliminated.
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            Figure 5. Good training level versus false positives and false negatives

False  negatives  happen at  a  larger  rate,  following a  constant  factor  up to  the good 

training level  reaching 15.  This also happens because the detectors were exposed to a low 

amount of self data during training phase, enabling the subsequent misdetection of self instead

of detecting nonself. When the good training level reaches 25 packets, the false negative level 

falls to zero. The number of replaced detectors during training phase is greater when the good 

training level is increased, since it is more likely for a detector to match self packets when the 

number of packets is larger. The training time remains basically constant, because the number 

of detectors are all the same. The detection time also does not change significantly by the same 

reason. In this work, the good training level is by default 100, using a very low number of self 

packets at the training phase.

Table 3 presents the results by varying the detection level. The good training level and 

the number of detectors assume both a fixed value of 100. Figure 6 illustrates the detection level 

versus false positive and false negative levels (in percentage).

A low, but unacceptable value (due to the number of packets analyzed) level of false 

positives was identified when the detection level was set to 1. In this case, the anomaly happens 

if only one byte of the packet matches any detector,  which is very likely if the number of 

detectors is 100. When the detection level reaches 2 and 3  the number of false positives is low. 

When the detection level reaches 4, the false positive level reaches zero.

 Detectio
n level

False 
positives

False 
negatives

Replaced 
detectors

Training 
time

Detection 
time

1 7,40% 0% 77 0.012s 4.165s
2 0,07% 0% 75 0.013s 4.166s



3 0,008% 0% 76 0.013s 4.175s
4 0% 0% 74 0.012s 4.177s
5 0% 0% 71 0.013s 4.178s
6 0% 5% 79 0.015s 4.177s
7 0% 10% 74 0.009s 4.178s
8 0% 25% 74 0.012s 4.178s
9 0% 100% 77 0.015s 4.176s
10 0% 100% 75 0.013s 4.178s

Table 3. Training and detection results varying detection level
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           Figure 6. Detection level versus false positives and false negatives

On the other hand, when the detection level reaches 6 the false negatives begin to appear 

(5%). When the detection level reaches 9 no attack is identified, with 100% of false negatives. 

This fact is due to the rigorous rule imposed to the anomaly detection: at least 9 contiguous 

bytes  must  match  the  mature  detectors,  making  the  detection  strongly  specific  and  very 

improbable for general attacks. As can be noted, a little change in the detection level leads to 

drastic changes in the false positive and false negative levels. In this way, this parameter must 

be chosen very carefully to obtain the desired objective. Only at the levels 4 and 5 there is no 

false positives nor false negatives, achieving a good anomaly detection. As such, in this work 

the detection level was chosen to be 5.

The number of replaced detectors and the training time do not have any relationship 

with  the  detection  level,  because  they  act  in  different  phases.  The  detection  time remains 

constant because the detection level assumes very close values during the tests.



5.1 – Improving the detection

The detection performance can be improved by adopting a simple hash table. The length 

of this table can be 256 due to the fact that mature detectors can assume only values between 0 

and 255. In this way, each byte of the network traffic is used to directly access the hash table. If 

the accessed position has the value 1 then the byte under analysis matches a detector.  The 

training phase remains the same.

The performance tests were done with a new computer system because the previous 

system was unavailable: an Ubuntu 6.10 operating system, kernel version 2.6.17 and the same 

previous version of GCC compiler and Libpcap library. The hardware used during the tests was 

an Intel Core Duo 1.73GHz, 2GB DDR2 SDRAM, 120GB SATA 5400 RPM hard-disk.

Our previous tests showed that the detection time remains almost always constant. This 

time will be changed when the number of detector is changed. By considering this, Table 4 

presents detection times varying the number of detectors, when no hash table is used and when 

the hashing is applied. Figure 7 illustrates these results. As can be noted, the detection using a 

hash table is faster then without the hashing. The hashing remains the detection time constant 

(about 0.4 seconds) while the detection without a hash table tends to linearly increase with the 

increasing  number  of  detectors.  In  this  way,  the  hashing  is  a  good  solution  to  achieve 

performance during the detection phase.

Number of 
detectors

Detection time 
without hash table

Detection with 
hash table

10 0.762s 0.438s
20 1.134s 0.438s
30 1.379s 0.433s
40 1.693s 0.462s
50 2.007s 0.439s
60 2.319s 0.437s
70 2.736s 0.435s
80 3.050s 0.440s
90 3.353s 0.436s
100 3.672s 0.438s

Table 4. Detection times without and with the use of a hash table
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Figure 7. Detection level versus false positives and false negatives

6 – Conclusion

We have presented a prototype inspired by the negative selection of the human immune 

system to achieve anomaly detection. The detectors are very simple (only isolated bytes) that do 

not match the normal network traffic. However, experimental results showed that this can be a 

very  promising  method  to  detect  attacks  that  disturbs  the  normal  behavior  of  text-based 

application protocols. 

Neither dedicated hardware nor recompilation techniques are required by the prototype 

unlike other methods such as described in Section 3. By working at the packet level, it is also 

possible not only to detect intrusions, but also to stop attacks before some flaw can be exploited. 

Although other works were carried out as a consequence of (D’haeseleer et al., 1996) these 

researches does not examine the network traffic at the application level, but only network and 

transport level protocols which can be free from attacks (at these levels) during an application 

level attack.

The main prototype’s variables are discussed and after the tests we suggest some values 

to these variables in such way that the detection can be practical. We also have presented an 

improvement in the detection phase in order to achieve an acceptable performance during the 

detection phase.

Future work comprehends an expansion of the prototype to support the test with other 

application protocols, like HTTP, FTP (control connection), IMAP, POP and others. In this 

case, each application protocol can have its own set of detectors that will be very specific for 



that protocol. It is also planned to study other representation of detectors and new algorithms for 

both training and detection phases, including methods considering partial matching of detectors.
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