
A policy-based framework for interoperable digital
content management

Fernando Marques Figueira Filho and
João Porto de Albuquerque and

Paulo Lı́cio de Geus
Institute of Computing

University of Campinas
13083-970 Campinas/SP Brazil

e-mail: (fernando, jporto, paulo)@las.ic.unicamp.br

Heiko Krumm
FB Informatik

Universität Dortmund
D-44221 Dortmund, Germany
e-mail: heiko.krumm@udo.edu

Abstract— Through the past years, several digital rights man-
agement (DRM) solutions for controlled dissemination of dig-
ital information have been developed using cryptography and
other technologies. Within so many different solutions, however,
interoperability problems arise, which increase the interest on
integrated design and management of these technologies. Pursu-
ing these goals, this paper presents a framework which aims at
promoting interoperability among DRM systems, using a service-
oriented architecture (SOA) and a high-level policy modeling
approach.

I. INTRODUCTION

Digital Rights Management is a collection of technologies
that enables controlled dissemination of digital information.
Today, the majority of DRM applications are used in copy-
righted content distribution, such as movies and music, but
it is expected that those technologies will also benefit, in a
near future, corporate enterprises, small content producers, and
individuals who intend to securely distribute their information.

Although there have been considerable advances in the
area, DRM systems still do not interoperate, which affects
a wide range of participants. A content producer may want
to distribute over different DRM platforms to expand his
consumer covering, while the consumer may want to use his
content in more than one specific device. Moreover, the lack
of interoperability can be used to stimulate the monopoly of
proprietary software and devices by some vendors, which can
be harmful for both users and content producers.

The main difficulties to achieve interoperability are based
on differences on formats and protocols, but also on difficul-
ties in trying to integrate management while simultaneously
operating different DRM systems. There are basically two
approaches to achieve interoperability: (a) modifying existing
systems in order to support one another—which requires
the establishment of standards and the modification of core
parts in each DRM platform; or (b) the elaboration of a
system that serves as a bridge between the platforms by using
their own native protocols and formats. As opposed to the
former, this approach does not require any modification on
the existing DRM platforms, since interoperability is achieved
through an external system which supports cross-platform

DRM functionality. Considering that modifying existing DRM
platforms deals with legal aspects and depends on industry
motivations, the approach of developing an external system
seams more feasible to achieve interoperability nowadays.

Following this approach, this paper presents an approach to
promote interoperability among DRM platforms. The frame-
work is based on the fact that in every platform, the lifetime
of contents follows basically the same steps: firstly, it is
packaged using cryptography, in order to protect it against
unauthorized users. Then, at some moment during content
distribution, it is licensed to a specific user or device. A license
is a file containing the rights and conditions, described in
a platform-specific format, which govern contents’ usage by
that particular user. Our framework relies upon the policy-
based management approach [1], representing those rights and
conditions by means of a single policy-based model, which is
generic for every DRM platform.

Interoperability is promoted by specialized framework ser-
vices which are able to interpret this policy model and generate
licenses in different formats, each one compatible with a
specific DRM platform. Content packaging is also done by the
framework, following each platform specification. Services are
distributed in a service-oriented architecture (SOA) designed
to be loosely coupled, so as new DRM technologies emerge,
new services can be easily attached to the framework. As
such, they are implemented using Web Services to provide
easier compatibility with most computer architectures and
programming languages.

The policy model is conceptually based on two other
existing models: the Role-Based Access Control (RBAC) [2]
and its extension, the Generalized RBAC [3]. These models
define policies in a higher level of abstraction relying upon
roles. Policies at this level are defined by object manipulation
in a graphical interface, similar to the one used by [4], [5].

The next section presents the conceptual models in which
our approach is based. The system architecture is analyzed
in Section III and Section IV illustrates our approach by
presenting some example scenarios. Subsequently, our imple-
mentation platform is detailed (Section V) and we discuss
some related work in Section VI. Lastly, we cast conclusions



for this paper and expectations around future work (Section
VII).

II. POLICY MODEL

In this paper, policies are based in an object-oriented
model which can be divided conceptually into two levels
of abstraction—in the sense of a policy hierarchy [6]—as
depicted in Fig. 1. Policies in the abstract level are more
stable and their construction is supported by a graphical tool
called MoBaSec, which was also used in other policy-based
management applications such as [4], [5]. The abstract level is
based on the role-based access control (RBAC) concepts [2]
and on one of its extensions, the GRBAC [3].������Subject-role Right Object-role Environment-

role

User A User B Content X Content Y

Policy

abstract
level

concrete
level

Fig. 1. Policy structure

RBAC has been used to simplify permission management,
especially when users are hierarchically organized or when it
is possible to identify common characteristics among them.
Such scenario is found in various DRM business models (e.g.
service subscription or purchasing, membership of a club or
organization). Instead of associating rights to each user, rights
are assigned to subject-roles, which are in turn associated to
users. As such, in the DRM context, a subject-role is related
to a service package that users may acquire, i.e. a group of
rights over a number of digital contents that can be purchased.

Furthermore, DRM permissions commonly associate condi-
tions and restrictions to a right (e.g. play, print), based on state
information. This information is included in the license and
used by a particular DRM platform to control, for example,
the number of times a user exercises a right, the time interval
during which a content can be used, among others. GRBAC
extends RBAC through the introduction of environment-roles,
which are applied to our policy model to incorporate those
state-based conditions and restrictions.

As in [4], environment-roles are combined by means of
logical operators to compose more complex conditions. Fig.
2 shows the following policy modeled in the graphical editor:
“trial members can play music files until reaching 10 plays or
during the period of one week counting from its first use”. In
the example, “trial members” is the subject-role and “play”
is the policy right. “One week” and “10 times” are both
environment-roles connected by the logical operator OR to
compose a complex condition. GRBAC also defines object-
roles, which are used here to group contents and build policies
based on their common characteristics, such as type (audio,
video etc.) and confidentiality level. In Fig. 2, “music files” is
the object-role.

Fig. 2. MoBaSec graphical interface

The second abstraction level models offers a more concrete
view of the entities of a DRM system (e.g. users, contents) and
has a much more dynamic behavior. While the upmost level
is updated by human intervention in the graphical tool, the
second level is updated by services of our framework accord-
ing to the external DRM system activity. The architecture that
comprehends these services and its functioning are covered in
the next section.

III. FRAMEWORK ARCHITECTURE

The framework proposed in this work employs a service-
driven architecture which can be divided in platform-
dependent services and core services, as depicted in Fig. 3.
Platform-dependent services have different implementations
of the same common interface, each of them capable of
generating information in a platform-specific format. The other
services interact with the policy database and perform the core
functions of the framework.

All service interactions take into account that a previous
abstract modeling step was done interactively by the policy
modeler using the MoBaSec graphical tool (shown in Fig. 3).
This modeling consists of creating all the subject and object-
role types, as well as building the abstract level policies, as
explained in Section II. At the end of this modeling step, all
abstract level policies are stored in the policy database for
further usage.

Each DRM platform has devices that interact with a Content
Distribution System (CDS), from which it is possible to
acquire content by subscribing to a service package. Such
systems are found over the Internet and can offer different
digital content types, as for instance movie rental portals and



User device

platform-dependent

User device

user and
content

registration/
role

association

license
request

content
packaging

content
packaging

framework core

A Platform
License Server

B Platform
License Server

license
request

B Platform
Packaging

Service

Update
service

Content distribution
system

Policy
modeler

B Platform
Rights

Service

Policy
database

MoBaSec

Policy
service

framework architecture

A Platform
Packaging

Service

A Platform
Rights

Service

Encrypted
Content

Encrypted
Content

platform A platform B

abstract
modeling

service
package

subscription

Encrypted
License

Encrypted
License

service
package

subscription

content
request

content
request

Fig. 3. Framework architecture

online music stores. In Fig. 3, the CDS delivers content to
platforms A and B. For this purpose, however, it executes
some tasks not addressed by our framework: (a) it provides
user device authentication and keeps track of the correlation
between users and their devices, e.g. a user has a device of
Platform A and another of Platform B, and wishes to use the
same content on both; (b) it distributes content in the correct
format, depending on the requestor’s platform.

On the other hand, our framework concentrates on appro-
priate content packaging and management of usage rights. As
such, the packaging services of to the framework prepare the
content for delivery to different DRM platforms. In Fig. 3, the
framework includes a specialized packaging service for each
DRM platform with which the framework operates.

As shown in Fig. 3, a plain content file is sent by the
CDS to a specific packaging service relying upon a secure
communication channel. The packaging service then appends
the necessary headers and encrypts the content file using a pre-
generated encryption key, which is associated with a global
content identifier and stored in the policy database through a
secure requisition to the update service. The resulting content
package is then returned to the Content Distribution System
and published. After that, users can acquire the content directly
from the CDS (as in Fig. 3) or from another user—which is
called superdistribution.

The CDS stores an association between each offered service

package and a subject-role. On the other hand, the framework
stores the associations between each user and the subject-roles
in which he/she is allowed to act. When a user subscribes
to a service package, the CDS contacts the framework’s
update service to associate to the user a new subject-role,
which depends on the recently acquired service package. As
a consequence of the subscription, the user automatically
acquires all permissions associated with his new role.

Similarly, the framework stores the associations between
each content and the object-roles in which it is classified.
Before being published, the CDS uses the update service to
register the content in the framework and its associated object-
roles.

The packaged content has to be licensed before being used
by a user device. For this purpose, a license is obtained from
a License Server outside the framework (Fig. 3), which is
specific for each DRM platform. A License Server works as
a gateway between a DRM device and the framework. On
the one side, it communicates with user devices by using
native protocols through which the device is authenticated and
requests licenses. On the other side, the License Server obtains
licenses from the framework through a corresponding rights
service.

A rights service is responsible for translating a policy set to
a platform-specific format, commonly specified by a particular
Rights Expression Language (REL). Whenever a query is
made to the framework, the policy service searches the policy
database for all policies related to the user who is requesting
a license and a given content set. It then sends the resulting
policy set to the rights service, which translates the rights
information to a specific REL, packages this information in
the corresponding format, and encrypts it into a license file.
The license is then transferred to and stored in the License
Server. Lastly, the license is obtained by the user device. The
next section gives more details about service interfaces and
presents some example scenarios.

IV. EXAMPLE SCENARIOS

This section presents two example scenarios which illustrate
our approach. Framework services are detailed by showing the
invocation of their main operations in sequence diagrams. Fig.
4 shows the sequence diagram for a content distribution sce-
nario, from the deployment of a new content to the download
of this content by the user device.

In order to distribute a new content to a specific DRM
platform, the Content Distribution System must firstly register
it in the framework by invoking the registerContent() opera-
tion, then load the content using the corresponding packaging
service (loadContent()). Finally, the CDS retrieves the content
packaged in the specific format using the getPackagedCon-
tent() operation, which receives the content identification and,
among other information, the network location of the License
Server from which the content’s license can be obtained in the
future. The packaging service also generates an encryption key
and stores it by invoking the updateEncKey() operation in the
update service.



User
device

Content
distribution system

Packaging service Update
service

loadContent(ds, contentType)

user registers and
purchases a service

registerUser(name, subjectRoles)

user id

content download

packaged content

purchasing
confirmation

getPackagedContent
(contentId, headers)

packaged content package
content

ok

content id

registerContent(name, objectRoles)

updateEncKey(contentId,
platformId,encKey)

ok

Fig. 4. Content distribution scenario

The CDS interacts with the user providing a way (e.g. a
web page) by which the user registers himself and subscribes
to different service packages. At user subscription, the subject
role associated with the chosen service package is added to
the user’s current subject role set. In Fig. 4, this is done by
the registerUser() invocation.

Note that content and user registration is required just once
in the system. After registration, the user can subscribe or
unsubscribe service packages, which immediately modifies
his current subject role set and consequently his permissions.
Similarly, a content can be packaged into different formats
after registration.

User
device License server Policy

service

request license
getPolicies

(userId,contentIds)

policy objects

interpret policy
objects and
generate license

license file

Rights Service

search on
policy
database

getEncKey
(contentIds,platformId)

encryption keys

generateLicense(userId,
contentIds,params)

license file

Fig. 5. Licensing scenario

Fig 5 depicts a licensing scenario, which relies upon two
other framework services (namely, rights service and policy
service), a user device, and the corresponding License Server.
The user device and the License Server communicate using a
native protocol, by which the user device requests a license to

a specific content set1.
If the required license was previously generated and is

already stored in the License Server, it is returned to the user
device. Otherwise, the License Server has a client application
which contacts the framework’s rights service, passing the
user and content identifications, as well as parameters with
platform-dependent information. When receiving a license
request, the rights service invokes the policy service by calling
the getPolicies() operation, which searches the database for
all policies related to that particular user and content set.
The encryption keys used to package the content set are also
retrieved by the getEncKey() operation. The keys are thus
included in the license together with the rights information that
were translated to a native format from the selected policies.
Finally, the license file is returned to and stored in the License
Server.

V. IMPLEMENTATION PROTOTYPE

The framework is currently being developed in Java and
integrated with the Nokia’s S40 DRM platform [7]. This plat-
form has a SDK composed by an emulator of the S40 Series
cell phone and follows the Open Mobile Alliance (OMA) 1.0
specification [8]. OMA is an open standard widely adopted by
mobile devices manufacturers and defines the rights expression
language (REL), and the content package format, among
other information used to implement the platform-dependent
services of the framework.

A simple test application runs within a Java servlet con-
tainer. It provides a web page by means of which a user
might subscribe to the different service packages previously
modeled with the graphical editor. Each subscription triggers
invocations of the framework’s update service relying upon
the HTTP and SOAP protocols. Furthermore, a content can be
downloaded from this web page to the emulator, which must
activate the content before using it by acquiring a license from
the License Server.

The License Server in turn consists of a WAP gateway de-
veloped to interact with the cell phone emulator. This gateway
serves as a bridge between the framework’s rights service and
the emulator, distributing licenses to this by pushing them over
WAP messages.

VI. RELATED WORK

This paper is an extension of a recently accepted work [9].
Some other recent work analyzes interoperability issues, as

in Sun’s project called DReaM [10], which also employs a
service-oriented architecture. However, the “play once” license
is assumed to be the common denominator for each DRM
system, which limits the use of more complex usage rules.

Coral Consortium approaches the interoperability problem
by developing a framework which attempts to fulfill the same
requirements addressed in this paper. They provide the concept
of rights token, which is a platform-agnostic representation of
permissions and usage rights similar to a policy in our model,

1Under some DRM specifications, a single license can reference more than
one content, e.g a multipart content composed by an image and a ringtone.



but without any tool assistance to design policies. The work
group has recently published a whitepaper [11] describing the
framework integration with Microsoft Windows Media DRM.

In a wider context, our work is related to the Model-based
Management (MBM) [12], [13]. This approach employs an
object-oriented layered model that aims at providing a smooth
transition from an abstract view of the system to be managed
and the policies that apply to it down to reaching a detailed
system representation at the most inferior layer. It was already
applied to the management of different security mechanism
types, such as Virtual Private Networks [12], and to the
integrated management of a number of network security mech-
anisms in large-scale, complex network environments [13], [5].
Furthermore, the SIRENA project [4] shows that the MBM
approach can be profitably used with the GRBAC to address
requirements of dynamic environment conditions. This is the
inspiring direction taken by this work.

VII. CONCLUSION

This work has presented a framework that offers a policy-
based approach to the management of users’ rights over digital
content. The framework is specially conceived to achieve
interoperability among the several existing DRM systems,
relying upon a SOA architecture. A graphical policy editor is
provided to edit an abstract set of high-level business policies
that consist of service packages, i.e. groups of permissions
over classes of digital objects. A number of Web Services
is responsible for the establishment of the more dynamic
model relationships such as the subscription of users to service
packages, and the deployment of new content. As such, this
separation between a more stable set of abstract policies and
on-demand lower-level associations affords a more concise and
intuitive graphical view of the business policies, improving
their manageability while still coping with the highly dynamic
nature of DRM relationships.

The core of the framework consists of two platform-
independent Web Services that query and update the policy
repository. Another set of platform-specific Web Services
interface between existing DRM systems and the core services
of the framework. The effort to make an existing DRM system
to use our framework thus consists of the implementation of
specific applications to serve as gateways between the existing
DRM system and the framework services. In the DRM systems
we have analyzed—including Nokia’s S40 platform used in
our implementation prototype—this has turned out to be a
task of relatively low complexity. In this manner, the most
different flavors of DRM systems are able to work according
to the same set of policies, which are centrally managed by
our framework.

We plan to include support to other DRM systems in
our prototype, so that their integration can be tested and
evaluated. An aspect to be developed in future work is the
policy translation procedure to be applied when using several
DRM platforms. Currently, we are capable to translate a policy
into the rights expression syntax that follows the OMA DRM
specification or to any other with similar representation power.

However, if we take into account the simultaneous use of a
less powerful rights expression language—in which there is no
sufficient directives to represent all policy variations of OMA
REL—then a translation may not produce an equivalent result,
causing inconsistency. One solution to this problem is achieved
by translating a non-mappable policy to a more restrictive set
of rights, or even considering a smarter policy search algorithm
which takes into account the DRM platform when selecting
the policy set to be translated. As such, we would ensure that
a user do not receive unintended rights over any content, but
rather is less empowered that it could be (if using a more
capable platform) due to technological restrictions.

REFERENCES

[1] M. Sloman, “Policy driven management for distributed systems,” Journal
of Network and Systems Management, vol. 2, no. 4, pp. 333–360, 1994.

[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” IEEE Computer, vol. 29, no. 2, pp. 38–47,
1996.

[3] M. J. Covington, M. J. Moyer, and M. Ahamad, “Generalized role-
based access control for securing future applications,” in 23rd National
Information Systems Security Conference Proceedings, 2000.

[4] S. Illner, H. Krumm, I. Lück, A. Pohl, A. Bobek, H. Bohn, and
F. Golatowski, “Model-based management of embedded service systems
- an applied approach,” in Proc. 20th Int. IEEE Conf. on Advanced
Information Networking and Applications (AINA2006), vol. 2. Vienna:
IEEE Computer Society Press, April 2006, pp. 519–523.

[5] J. Porto de Albuquerque, H. Isenberg, H. Krumm, and P. L. de Geus,
“Improving the configuration management of large network security
systems,” in Ambient Networks: 16th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, DSOM 2005,
Proceedings, ser. Lecture Notes in Computer Science, vol. 3775. Berlin
Heidelberg, Germany: Springer-Verlag, October 2005, pp. 36–47.

[6] M. Sloman, “Policy hierarchies for distributed systems management,”
in IEEE Journal on Selected Areas in Communications, Dec 1993, pp.
1404–1414.

[7] Nokia. (2006) Forum Nokia. [Online]. Available:
http://forum.nokia.com/

[8] OMA DRM V. 1.0, Open Mobile Alliance, 2004.
[9] F. M. F. Filho, J. Porto de Albuquerque, and P. L. de Geus, “A service-

oriented framework to promote interoperability among drm systems,” in
9th IFIP/IEEE International Conference on Management of Multimedia
and Mobile Networks and Services, MMNS 2006, Proceedings, ser.
Lecture Notes in Computer Science. Springer Verlag, October 2006.

[10] G. Fernando, T. Jacobs, and V. Swaminathan. (2005) Project DReaM
- An Architectural Overview. White Paper. Open Media Commons.
[Online]. Available: http://www.openmediacommons.org/

[11] C. Consortium. (2006) Providing Interoperability with Windows
Media DRM. White Paper. Coral Consortium. [Online]. Available:
http://www.coral-interop.org/

[12] I. Lück, S. Vögel, and H. Krumm, “Model-based configuration of
VPNs,” in Proc. 8th IEEE/IFIP Network Operations and Management
Symposium NOMS 2002, R. Stadtler and M. Ulema, Eds. Florence,
Italy: IEEE, 2002, pp. 589–602.

[13] J. Porto de Albuquerque, H. Krumm, and P. L. de Geus, “On scalability
and modularisation in the modelling of security systems,” in Computer
Security - ESORICS 2005, 10th European Symposium on Research in
Computer Security, Milan, Italy, September 12-14, 2005, Proceedings,
ser. Lecture Notes in Computer Science, vol. 3679. Berlin Heidelberg,
Germany: Springer-Verlag, September 2005, pp. 287–304.


