
Security Testing Methodology for Evaluation of Web
Services Robustness - Case: XML Injection

Marcelo Invert Palma Salas, Paulo Lício de Geus, Eliane Martins
Institute of Computing, UNICAMP, Campinas, Brazil

E-mail: {mpalma, paulo}@lasca.ic.unicamp.br
eliane@ic.unicamp.br

Abstract—Web services, due to their distributed and open
nature, raise new challenges for information security. This tech-
nology is susceptible to XML Injection attacks, which would allow
an attacker to collect and manipulate information in order to
insert malicious code in servers and clients. Different studies show
that current detection methods for these vulnerabilities, such
as penetration testing and fuzzy scanning, generate many false
positives and negatives. The fault injection technique has greater
flexibility to modify the tests and find vulnerabilities, consequently
improving robustness in web services. This research describes a
fault injection technique for evaluation of web services robustness
with WS-Security (UsernameToken) and the development of a
set of rules for vulnerability analysis and the reduction of false
positives and negatives. Furthermore, the results show that 82%
of web services tested are vulnerable to XML Injection attacks,
the most employed attack against web applications according to
the OWASP Top 10.

Keywords—Web services; XML Injection; fault injection; WS-
Security; UsernameToken.

I. INTRODUCTION

Security incidents take place due to exploitation of vulner-
abilities made during system development or failures not found
in the development platform. There are numerous causes for
vulnerabilities, among which we mention system complexity
and the lack of a mechanism to check the inputs provided
to programs (e.g. web services). An attack that exploits such
vulnerabilities, maliciously or not, may compromise any of
the information security attributes1. The result of a successful
attack is an intrusion to the system [1].

Injection Attacks, such as XML Injection or Cross-site
Scripting (XSS) may be consequences of intercepting and
modifying messages. The targets of these attacks are search for
vulnerabilities in the server-side, in order to execute malicious
commands and to access unauthorized data or even to gain
control of the server. Among injection attacks are: XML
Injection, SQL Injection, XPath Injection, Cross-site Scripting
(XSS), Cross-site Request Forgery (XSRF), Fuzzing Scan,
Invalid Types, Parameter Tampering, Malformed XML and
Frankenstein Message (Timestamp Tampering) [2], [3], [4].

XML Injection is an attack technique used to manipulate
or compromise the logic of web services through the insertion
of an unwanted content or structures into a SOAP message.
Moreover, the XML Injection attack can cause the insertion of
malicious content into the resulting SOAP message/document,
i.e. malware [3], [4].

1Confidentiality, integrity and availability.

In this research, we propose to use a variation of the
security testing methodology oriented to communication pro-
tocols [5] with the objective to evaluate the robustness of web
services through of XML Injection attacks. For this purpose,
we develop scripts for WSInject fault injector. This tool can
emulate different types of attacks such as XML Injection,
Cross-site Scripting (XSS), Brute Force attacks, Middleware
Hijacking, among others.

The results show that 82% of the web services tested
have vulnerabilities to this attack, e.g. the response returned
information about path directory, database, function library,
among others. The use of UsernameToken does not guarantee
a meaningful reduction of vulnerabilities. In this case, it is rec-
ommended the use of XML Encryption and XML Signature.
The former encrypts information between the client and the
server while the latter can be used to verify if the information
was not modified during its communication [2].

Finally, this paper is organized as follows. Section II
describes fault tolerance, fault injection techniques and XML
Injection attack used in this research. Besides to describe the
challenges and related works in web services Security, the
Section III analyzes the security in web services through fault
injection technique. The security testing methodology for web
services is described in Section IV. Section V shows our
approach and experimental study. Section VI concludes the
article, emphasizing its main contributions and addressing for
future work.

II. FAULT TOLERANCE AND FAULT INJECTION
TECHNIQUE IN WEB SERVICES

In 1990, the IEEE defined “fault tolerance” as the ability of
a system or component to continue normal operations even in
the presence of faults [6]. Prevention and removal of faults,
however, are not sufficient when the system requires high
reliability and availability. In such cases, the system must
be built using fault tolerance techniques to ensure its correct
operation, even under faults, errors and defect events.

In this research, we use this sequence
(faultÝerrorÝflaw) to find faults through the model of
attackÝvulnerabilityÝintrusion, applied to malicious faults.
This model limits the fault space of interest to the composition
(attack+vulnerability)Ýintrusion [7]. Fig. 1 classified –in
schematic form– the security faults types such as malicious
faults (attacks) and accidental faults.



Fig. 1. Security threats and vulnerabilities.

A. Fault Injection Technique

By following the best practices of software testing and
standards, languages and techniques have been developed in
order to analyze and detect vulnerabilities on systems [1]. One
such technique is fault injection.

Fault Injection can be used to assess aspects of computing
systems dependability through observation of its behavior
under a stressful environment. This technique emulates errors,
failures or anomalies in the target system through of a fault
injector tool. Also, this technique can be used to validate fault
tolerant systems, assisting in the removal and prevention of
faults while minimizing its occurrence and severity [8].

In this technique, the tests consist of two input sets: the
workload and the faultload. The former represents the usual
entry to the system that serves to activate its functionality,
while the latter represents the faults to be introduced.

However, the use of this technique over black-box testing
can generate a high percentage of false positive and negative.
In order to reduce erroneous responses, is recommended to
develop a set of rules to validate each response (see Sec. V-B).

For our research, we use the WSInject fault injector. This
tool allows us to emulate XML Injection, inserting code –as
part of SOAP message– and record the answers in its database.

The use of the fault injection technique, when compared
to others, allows for the emulation of various types of attacks
by varying parameters and data, including penetration testing
and fuzzing scan techniques.

B. XML Injection Attack

XML Injection is a type of Injection Attack that modifies
the SOAP message structure (or any other XML document)
by insertion, removal or duplication of labels (tags). The goal
of this attack is to insert malicious content in the resulting
message. If the web service considered a valid message, its
processing can cause undesirable effects such as disclosure

information of the path directory, access to databases and XML
files with usernames and passwords, among others [3].

For example, a bank maintains communication with their
users through web services. Each user must send his username,
password and user account to user authentication web service
(Fig. 2).

Fig. 2. Alice user authentication using by web services.

Suppose that communication between the bank and users
do not use encryption (XML-Enc) or digital signatures (XML-
Sig), e.g, Alice wants to transfer money to Bob through money
transfer web service (Fig. 3). For that, she needs to authenticate
(i.e. send her username, encrypted password) and transfer the
money to Bob (i.e. amount, his username and account).

Fig. 3. Alice authentication and money transfer to Bob through web service.

These conditions are favorable for a XML Injection
attack, i.e. an attacker discovers this vulnerability in
the money transfer web service. To carry out the attack
(Fig. 4), the attacker add another user to receive the money
(i.e add new tag between <user:username_receiver>Bob
and </user:username_receiver> and account (i.e. add
new tag between <user:account_receiver>2598-2 and
</user:account_receiver>). Now, the new SOAP message is
sent to server.

Fig. 4. XML Injection attack in the sendmoney web service.

In the best case, the attacker generates an error in the
server-side, which returns the HTTP status-code 400 Bad
Request. In the worst case, the web service can response with
the HTTP status-code 200 OK, i.e. the request has succeeded.



III. SECURITY EVALUATION OF WEB SERVICES

Under the concept of SOA (Service Oriented Architec-
ture), web services are in constant communication with other
services[2]. Their clients make requests for services through
a communication channel such as the Internet, sending and
receiving information simultaneously. Another benefit is the
possibility to develop web services in different languages and
platforms. This technology transmits their information using
two protocols, XML and HTML.

In this section we describe several methods to protect web
services against security attacks. Furthmore we review the
challenges and the state of the art of security testing in web
services.

A. Security in Web Services

Every day, new vulnerabilities and attacks are found. As
a result, the W3C2 has developed various specifications to
protect web services. The first specification proposed was WS-
Security (WSS). This specification incorporates integrity and
confidentiality to protect messages and allows the communica-
tion of various Security Tokens [9], such as UsernameToken,
SAML3, Kerberos and X.509. XML Signature [10] (XML-
Sig) defines rules to generate and validate digital signatures
expressed in XML to protect the integrity and authentication
of the SOAP Message. XML encryption [11] (XML-Enc)
describe the encryption process for any type of data and its
XML representation to protect its confidentiality.

These specifications can be partially or fully implemented
in the wer service, allowing multiple users to encrypt and
sign parts of the message, providing greater security in end-
to-end communication[12]. In Fig. 5, we show the stack of
WS-Security specifications. Because our interest is in the
WS-Security and Security Tokens, the reader can find in
[2] and [13] more information about WS-Security and its
specifications.

Fig. 5. The WS-Security Stack.

2World Wide Web Consortium (W3C)
3Security Assertion Markup Language

B. Security Tokens in Web Services

Security Token verify the authentication and authorization
in web services in order to identity the user and his services
provider, as well as allows access to the last. Represented
in the SOAP message by the tag <wsse:SecurityToken>,
this specification provides differets types of tokens, such as
UsernameToken, SAML, Kerberos and X.509[2], [9]. In this
research is using UsernameToken. Its basic syntax is detailed
in Fig. 6.

Fig. 6. Request of SOAP message with the UsernameToken.

In Fig. 6, one inserts the tag <wsse:Security> to use a
security specification in the header of the SOAP message.
The web service can use more than one specification in
the SOAP message, just only add one tag <wsse:Security>,
so as to insert more security specifications (Security Token,
XML Encryption, XML Signature, among others). Within
this tag one uses the tag <role> that specifies the privileges
for a specific user. The tag <role> cannot be repeated or
omitted because it would allow any user to modify the SOAP
message. The web service recipient is informed –in lines 5
and 6– of the user credentials through of the tags Username
and Password. If the user credentials are valid, the SOAP
message is processed on the server-side, otherwise the web
service returns a message, usually with the HTTP 500 code
describing an error. In Fig. 7 we describe the elements that
the UsernameToken uses to provide the user’s identity.

Fig. 7. Elements of the Tag <UsernameToken> [9].

C. Security Challenges and Related Works

Web services have evolved into a more inclusive technol-
ogy in order to integrate applications and data exchange in
SOA. However, this technology presents a lot of new security
risks [2]. This subsection focuses in reviewing the security
challenges and related works in web services Security.



In [2], the author defines the main challenges related to
standards and interoperability in web services. This research
emphasizes the relative immaturity of this technology in regard
to security threats, Quality of Service (QoS) and scalability.
In [14], the authors classify the security challenges in web
services, involving threats, attacks and security problems.
These are classified in:

• Service-level threats: attacks against WSDL and
UDDI, malicious code injection, phishing, Denial of
Service (DoS), XML spoofing schema and session
hijacking.

• Message-level threats: fault injection attack, message
forwarding, message validation attacks, interception
and message confidentiality loss.

Since our approach to analyze message-level threats, such
as Injection Attack, we review several works in the literature
suggesting the use of the fault injection technique. In [5], this
technique was applied to test a security protocol used in the
communication between mobile devices in the Internet. Also,
in [15] the authors use perturbations in the SOAP messages to
emulate attacks, similarly to our proposal but without using a
methodology.

In this way, in Table I presents a summary of the main
features of the researches related to fault tolerance techniques
and vulnerability detection. Also we conducted a comparison
with our approach using the following aspects:

1) What is the fault tolerance techniques uses in this re-
search?

2) Did the researchers use a security testing methodology?
3) Did the researchers analyze the response messages?
4) Did the research test web services?
5) Did the research test WS-Security or other specification?

TABLE I. STATE OF THE ART IN WEB SERVICES SECURITY.

Tools-Reference 1. 2. 3. 4. 5.
WebScarab [16] fault injection X X
WS-TAXI [17] penetration testing X
CDLChecker [18] fault injection X X only WS-CDL4

VS.WS [19] penetration testing X X X
IBM Rational [19] penetration testing X X X
WSInject fault injection X X X X

In Table I, the state of the art of web service security testing
are oriented towards the use of fault injection and penetration
testing techniques. Most researches used a security testing
methodology and analyzed the response messages. Only this
research tested the robustness of WS-Security (UsernameTo-
ken) against fault injection attacks.

IV. SECURITY TESTING METHODOLOGY FOR WEB
SERVICES

The main challenge in finding vulnerabilites is to determine
which attack scenarios are appropriate for testing during the
implementation phase of web service. These scenarios can
be obtained from various sources, such as the Internet, text
books and research papers (c.f. sec. II-A). However, it is
hard to find and set up a database with relevant attacks and
automating them according to the testing environment. Our

purpose in this section is to use a variation of the security
testing methodology[5] in order to test web services from a
set of XML Injection attacks.

Fig. 8. Security testing methodology and their phases[20].

Since the scripts of executable attack are obtained from
implementing the attack scenario, some phases were partially
implemented (see Fig. 8). The phases and results of this
methodology are described in the following subsections. The
reader who wishes to know more about this methodology
should look at [20].

A. Identify the Attacker’s Goals

The web services attacker aims to find vulnerabilities using
different kinds of methods (e.g. Denial-of-Services, spoofing,
injection attack, man-in-the-middle, among others). In this
research, the goal of the attacker is focused on finding vul-
nerabilities in servers that work with web services.

The attacker intercepts SOAP messages between the client
and the server. His goal is perform unauthorized operations
(violation of integrity) or escalate privileges (violation of
control access). For that, he tries to inject various XML tags
in order to modify the XML message structure and generate
faults in the server.

B. Define the Attacker’s Ability

Based on the Dolev-Yao model [21], the attacker has the
following capabilities:

• Partial control of the network and knowledge of the
endpoints (client and server).

• Ability to intercept SOAP messages and modify ex-
pressions, delay and duplicate.

• Knowledge of the status of all participants, i.e. the
attacker is able to intercept messages and phishing
client/server or perform man-in-the-middle attacks.

• Ability to recognize the access points, operations and
parameters of WSDL5.

5The Web Services Description Language (WSDL) is a XML-based inter-
face definition language that is used for describing the functionality offered
by a web service[2].



C. Build the Attack Model with Attack Trees

The attacks modeling are used to represent the steps of an
attack. These models can use methods based on Petri nets to
attack tree [20].

The attack tree emphasizes the point of view of an attacker.
This model analyzes all possible attacks to a system in an
organized way, taking the worst scenarios in order to: i) prevent
vulnerabilities during the development; ii) find vulnerabilities
in the implementation phase; and iii) evaluate the system with
known vulnerabilities and attacks [20].

The attack tree can be represented by a data structure to
facilitate the security analysis. This analysis represents the
steps of an attack and their interdependencies. It can be used to
represent and calculate probabilities, risks, costs, among other
variables in order to verify if an attack is feasible.

To represent the web services attack tree in a data structure,
first selected a set of known attacks. Next, classified them by
the target of the attack, e.g. integrity and availability. To finish,
analyzed the requirements that an attack must satisfy to be
successful:

i. Analyzed the attacker capability (knowledge of the at-
tack);

ii. Evaluated the possibility of emulating the attack with
some testing tool, e.g. WSInject fault injector;

iii. The most of attack need that the web services must contain
at least one parameter described in the WSDL to insert the
selected attack;

iv. Assessed whether UsernameToken is able to protect
against this attack, e.g. XML Injection attack.

These four requirements were used to classify some attacks
with boolean values, namely <Possible (P), Impossible (I)>.
The result is a set of selected attacks that fulfill the 4
requirements described in Fig. 9, i.e. XML Injection, Cross-
site Scripting (XSS) and XPath Injection. In the other side,
WS-Security does not protect web services against to Denial-
of-Service attack, such as Oversize Payload, Oversize Parsing
and Oversize Cryptography.

Fig. 9. Web services attack tree.

Each of the four "P’s" represent one requirement, e.g. for
XML Injection we have the knowledge [3] to reproduce this
attack using WSInject fault injector, the web services contain at
least one parameter described in the WSDL and WS-Security
need others specifications such XML-Enc or XML-Sig to
protect web services against this attack, but there are concerns
about UsernameToken that will be analyzed in the following
sections.

D. Generate Attack Scenarios

At this stage, the attack scenarios are produced automati-
cally according to the criteria defined in previous phases. The
scenarios can be used to create an useful and reusable library
of attacks to test protocols and software [20]. For example, a
XML Injection attack scenario is described in Fig. 10 using
the attack pattern information obtained in [3].

Fig. 10. XML Injection attack pattern.

E. Implement Attack Scenarios

The attack scenarios –generated in the previous phase–
are described in a text notation, i.e. at the same level of the
attack tree abstraction. This type of description is useful for
verification by analysts and security experts due to their easy
configuration, but not to be processed by an injection tool. In
this stage, the analysts must perform a set of refinement steps
in order to transform the text notation into a proper executable
script for the WSInject fault injector, as shown in Fig. 11.

Fig. 11. Executable attack script to emulate XML Injection with WSInject.

V. PROPOSED APPROACH

The UDDI Business Registry (UBR) is a single registry
for web services through its WSDL. The WSDL file allows
us to know how the service can be called, what parameters it
expects, and what data structures it returns [2].

Through the UBR Seekda, we select 10 web services from
a set of 22,272 services. 5 of which use UsernameToken and
the others do not. Each web services has at least one parameter
to submit requests. In this section applies the security testing
methodology described in Sec. IV for to 10 web services.

A. Fault injection with WSInject

The WSInject fault injector allows to emulate injection
attacks like XML Injection, Cross-site Scripting (XSS), XPath
Injection, among others. This tool works as a proxy between
the client and the web services tested. The interception and



modification of SOAP message exchange are transparent be-
tween the client and servers. This way, WSInject does not
need the source code of web service or to interfere with the
execution platform, allowing it to be used by developers and
users. Is enough configure the client to the WSDL of the web
service through the proxy. In this research, the fault injector
intercepts request messages sent by the client (soapUI [16])
before being passed to the server, as illustrated in Fig. 12.

Fig. 12. Architecture used with WSInject and soapUI to test web services.

WSInject uses scripts in plain text format. The user should
recognize the operations described in WSDL and use the tool
to intercept SOAP message in order to corrupt their parameter
values. Examples of generated scripts are shown in Table II.

TABLE II. SCRIPTS TO EMULATE XML INJECTION ATTACK WITH THE
WSINJECT FAULT INJECTOR

These scripts use the condition isRequest() to differentiate
requests from responses. In the first request, WSInject uses
the stringCorrupt action to replace the “</ser:Username>” by
“<ser:Username><ser:Username2>hacker<ser:Username2>”
to incorporate parameters in the requests, also adding tags in
the SOAP message to perform operations not allowed and
cause undesirable effects in the web service.

B. Analysis of Vulnerabilities in Web Services

An important aspect of this phase is to identify when a
vulnerability was effectively detected, excluding or at least
reducing the potential false positives and negatives. It is also
necessary to differentiate when a result is invalid due to an
internal server failure (unintentional) or is a consequence of a
successful attack.

There are several ways to check for vulnerabilities in SOA,
e.g. by comparing server responses in the presence/absence of
attacks (i.e. gray-box testing), looking for sensitive information
exposure, XML schema modification requests, among others.
Our approach uses the HTTP status-code in the response
message in order to analyzes the behavior of web services
under stressful environment, i.e. XML Injection attack.

For example, when the request message is processed by
server without detecting the attack, i.e. the web services does

not generated an error or identify a possible vulnerability
(HTTP status-code 200 OK), then it is a successful attack.
Or if the web services returned the HTTP status-code 400
Bad Request, then is considered a robust response because the
request could not be understood by the web services due to
malformed syntax.

In case of code 500 Internal Server Error, the web services
response using a <soap:Fault> tag inside the SOAP message’s
body, which provides errors and status information of the
message containing the following sub-elements:

• <faultcode> Fault code identification

• <faultstring> Descriptive explanation of the fault

• <faultactor> Information about what or who caused
the fault to happen

• <details> Information that describes the server error

Based on this analysis, we developed 8 rules to determine
the existence of vulnerabilities in web services for Injection
Attacks, described below.

Rule 1. If the header contains the code “200 OK” AND the
server ran the SOAP message with any attack, THEN there is
a Vulnerability Found (VF) in the web service. OTHERWISE,
if the SOAP message describes the existence of a syntax error
or warning about the presence of any attack, THEN there is
No Vulnerability Found (NVF) in the web service.

Rule 2. If the header contains the code “400 Bad request
message”, e.g. request format is invalid: missing required soap:
Body element, THEN there is No Vulnerability Found (NVF)
in the web service.

Rule 3. If the header contains the code “500 Internal
Server Error” AND there was information disclosure in the
SOAP message (e.g. it shows path directory, function library
and object information, access to database and XML files
with usernames and passwords, among others), THEN there
is a Vulnerability Found (VF), OTHERWISE there is No
Vulnerability Found (NVF) in the web service.

Rule 4. i) If in the absence of any attack, the header
contains the code “500 Internal Server Error” AND there was
information disclosure in the SOAP message; AND ii) if in the
presence of any attack, the header contains the code “HTTP
200 OK”, THEN there is a Vulnerability Found (VF) in the
web service.

Rule 5. i) If in the absence of any attack, the header
contains the code “500 Internal Server Error” AND there was
information disclosure in the SOAP message; AND ii) if in
the presence of any attack, the header contains the code “400
Bad request message”, THEN there is a Vulnerability Found
(VF) in the web service.

Rule 6. i) If in the absence of any attack, the header
contains the code “500 Internal Server Error” AND there
was information disclosure in the SOAP message; AND ii)
if in the presence of any attack, the header contains the code
“500 Internal Server Error” too, THEN there is a Vulnerability
Found (VF) in the web service.



Rule 7. If the server does not respond, it is considered
as crash, THEN the result is considered Inconclusive, because
one cannot guarantee that the error was caused by the attack.

Rule 8. If none of the rules above may be applied, THEN
the result is considered Inconclusive, because there is no way
to confirm if there really were vulnerabilities in the web
service.

Rules 4, 5 and 6 analyze the response of web services,
which in the absence of the XML Injection attack presents
the code “500 Internal Server Error” in the header. In Rule
7, the XML Injection attack analyzes the the web services
unavailability (crash), similar to a Denial-of-Service attack
(DoS). In this case, the response is classified as inconclusive,
because it is not possible to conclude whether the error was
caused by the unavailability of the service or by the attack.
Rule 8 is an exception, because in case no other rule is
matched, the result is inconclusive.

C. Faultload Campaign with WSInject

An important aspect in web services testing is the gen-
eration of network traffic (the workload). To generate this
workload, we use the Load Testing add-on soapUI. This tool
represents the client, as shown in Fig. 12. The generated traffic
consists of requests made to web services in order to emulate
a real client making requests. It represents the requests that
activate the target web service.

The faultload campaign had the following procedure. For
each web service were developed 5 XML Injection scripts,
each one specifying a corruption of the value of a particular
parameter, as shown in Table II. The workload consisted of
sending 100 requests per script. In total, 5,000 XML Injection
attacks were carried out. Fig. 13 illustrates this campaign.

Fig. 13. Faultload campaign.

D. Evaluation of Fault Injection Results

Given a black-box proposed approach, we collected
the requests and responses obtained during the XML In-
jection attacks in the 10 web services. These informa-
tion are stored in the WSInject fault injector. For ex-
ample, the Fig. 14 describe the SOAP message (re-
quest) modified by the XML Injection scripts and its re-
sponse. The script modify the “</ser:Username>” para-
mater in lines 7 and 8 of the request message to
“<ser:Username><ser:Username2>hacker<ser:Username2>”.

In the first line of the response message (Fig. 14), the web
services did not detect the attack and ran the malicious script.
In this case, the server returned the HTTP status-code 200
OK. Also the response message showed information about the

class used in the software. Thus, we can use Rule 1 of the
vulnerability analysis (c.f. Sec. V-B) and conclude that the web
service and its server are not robust against XML Injection
attack.

Fig. 14. Log generated by WSInject.

Based on this information, we applied these rules each
request and response stored. This procedure also allows to
detected vulnerabilities in web services with UsernameTokens.
The results of the injection attacks are described in Table III.

The application of the security testing methodology using
WSInject fault injector detected that 82% of requests present
some vulnerability to XML Injection attack. Our analysis
detected many types of vulnerabilities such as servers showed
information about its path directory, access to database, func-
tion library, among others.

TABLE III. RESULTS OF XML INJECTION ATTACKS USING WSINJECT

Web services Total attacks Vulnerabilities Found No Vulnerability Found
without WSS 2,500 2,300 200
% injected 100% 92% 8%
with WSS 2,500 1.800 700
% injected 100% 72% 28%
Total 5,000 4,100 900
% injected 100% 82% 18%

The use of UsernameTokens reduces the percentage of web
services vulnerabilities from 92% to 72%, but not enough
(Fig. 15). This happens because these services use password to
authenticate the user. However, these techniques do not protect
the integrity of SOAP message and its confidentiality. XML-
Enc or XML-Sig may be used to provide confidentiality and
integrity of both the UsernameToken and the entire message
body.

Furthermore, the use of this specification forces the pro-
grammers to create more robust web services. i.e. use message
timestamps, nonces, and caching, the password should be



Fig. 15. Faultload campaign.

digested for protect against eavesdropping attacks, as well as
other application-specific tracking mechanisms[9].

VI. CONCLUSIONS AND FUTURE WORKS

One advantage of the security testing methodology is that
it relies on the use of the WSInject fault injector as a general
purpose tool, which can be used to emulate several types
of attacks (i.e. XML Injection, XPath Injection, Cross-site
Scripting (XSS), Fuzzing Scan, Malformed XML, Oversize
Payload, Coercive Parsing and Oversize Cryptography) and
may generate variants of the same.

The variation of the security testing methodology oriented
to communication protocols allow us to applicated it to tested
web services. From a set of phases, we obtained executables
scripts for the WSInject fault injector.

The attack tree model allowed –in an structured way– to
determine which are the 4 requirements (c.f. Sec. IV-C) to
apply XML Injection attack.

Also was created a set of rules for vulnerabilities analysis
in web services for Injection Attacks. The purpose of these
rules are automated the search for vulnerabilities, improve the
detection of vulnerabilities and understand the behavior of web
services in a non-robust environment.

The result show that WS-Security reduces the number of
vulnerabilities (92% to 72%). However, this can be improved
with the use of other specifications such as XML-Encryption
or XML-Signature.

This procedure can be used to evaluate new technologies
and analyze their robustness against various attacks.

As future work, we plan to use variants of attacks to
improve detection of new vulnerabilities, always considering
the service as a black-box.

REFERENCES

[1] Cachin, C., and J. Camenisch, Malicious and Accidental-Fault Tolerance
in Internet Applications: Reference Model and Use Cases, LAAS,
MAFTIA, 2000.

[2] Holgersson, J., and E. Soderstrom, Web Service Security-Vulnerabilities
and Threats within the Context of WS-Security. SIIT 2005, ITU.

[3] Williams J., and D. Wichers, OWASP Top 10, OWASP Foundation, 2010,
URL: https://www.owasp.org/.

[4] Meiko J., G. Nils, H. Ralph, A Survey of Attacks on Web Services,
Computer Science - Research and Development, 01 Nov 2009. Springer
Berlin, Heidelberg; ISSN: 1865-2034, volume 24, Edição 4. 2009.

[5] Martins E., A. Morais, and A. Cavalli, Generating Attack Scenarios
for the Validation of Security Protocol Implementations, In Proceedings
of the II Brazilian Workshop on Systematic and Automated Software
Testing, SBC, Campinas-SP, Brasil, 2008.

[6] Weber TS, Tolerancia a falhas: conceitos e exemplos, Intech Brasil, São
Paulo, Volume 52, 2003.

[7] Hsueh MC, TK Tsai, and RK Iyer, Fault Injection Techniques and Tools,
IEEE Computer Society Press, Computer; Volumen 30, Ed. 4, Apr 1997.

[8] Carreira JV, D. Costa, and JG Silva, Fault Injection Spot-Checks Com-
puter System Dependability, Spectrum, IEEE, Volume 36, Edição 8, Aug
1999.

[9] Lawrence, K., C, Kaler, A. Nadalin, R. Monzillo, and P. Hallam-Baker,
Web Services Security: UsernameToken profile 1.1, OASIS, 2006.

[10] Eastlake, D., et al, XML Signature Syntax and Processing, 2nd Edition,
2008.

[11] Eastlake, D., et al, XML Encryption Syntax and Processing, W3C
Recommendation, 2002.

[12] Della-Libera, G., et al, Security in a Web Services World A Proposed
Architecture and Roadmap, IBM Corp, Microsoft Corp, 7, Apr 2002,
URL: http://msdn.microsoft.com/en-us/library/ms977312.aspx.

[13] Lawrence, K., C. Kaler, A, Nadalin, R. Monzillo, and P. Hallam-Baker,
Web Services Security: SOAP Message Security 1.1 (WS-Security 2006),
OASIS, 2006.

[14] Ladan MI, Web services: Security Challenges, in Proceedings of the
World Congress on Internet Security, 2011, WorldCIS’11, IEEE Press,
Londres, Reino Unido, 21-23, Fev 2011.

[15] Valenti AW, and E. Martins, Testes de Robustez em Web Services
por Meio de Injeção de Falhas, Thesis (Master in Computer Science),
Institute of Computing, UNICAMP, State University of Campinas, Brazil,
29, Jun 2011.

[16] Rogan D., OWASP WebScarabLite [software], Version 20070504-1631,
Open Web Application Security Project 2011, URL: http://www.owasp.
org/software/webscarab.html.

[17] Bartolini C., A. Bertolino, E. Marchetti, and A. Polini, WS-TAXI:
A WSDL-based Testing Tool for Web Services, In Proceedings of the
International Conference on Software Testing Verification and Validation,
2009, ICST ’09, IEEE Computer Society, Denver, Colorado, 1-4 April,
2009.

[18] Zhou L, J. Ping, H. Xiao, Z. Wang, GeguangPu, and Z. Ding, Automati-
cally Testing Web Services Choreography with Assertions, In Proceedings
of the 12th international Conference on Formal Engineering Methods and
Software Engineering. ICFEM’10. Springer-Verlag, Berlin, Heidelberg,
2010.

[19] Vieira M., N. Antunes, and H. Madeira, Using Web Security Scanners to
Detect Vulnerabilities in Web Services, In Proceedings of the IEEE/IFIP
International Conference on Dependable Systems & Networks, DSN ’09,
IEEE Computer Society, Lisbon, Porgugal, 2009.

[20] Morais A, and E. Martins, Injeção de Ataques Baseados em Modelo
para Teste de Protocolos de Segurança, Thesis (Master in Computer
Science), Institute of Computing, UNICAMP, State University of Camp-
inas, Brazil, 15, May 2009.

[21] Dolev D., A. Yao, On the Security of Public Key Protocols, In IEEE
Transactions on Information Theory, IEEE Computer Society Press, Mar
1983.


	Introduction
	Fault Tolerance and Fault Injection Technique in Web Services
	Fault Injection Technique
	XML Injection Attack

	Security Evaluation of Web Services
	Security in Web Services
	Security Tokens in Web Services
	Security Challenges and Related Works

	Security Testing Methodology for Web Services
	Identify the Attacker's Goals
	Define the Attacker's Ability
	Build the Attack Model with Attack Trees
	Generate Attack Scenarios
	Implement Attack Scenarios

	Proposed Approach
	Fault injection with WSInject
	Analysis of Vulnerabilities in Web Services
	Faultload Campaign with WSInject
	Evaluation of Fault Injection Results

	Conclusions and Future Works
	References

