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Abstract. Malicious programs are persistent threats to computer systems, and their
damages extend from financial losses to critical infrastructure attacks. Malware analysis
aims to provide useful information to be used for forensic procedures and countermeasures
development. To thwart that, attackers make use of anti-analysis techniques that prevent or
difficult their malware from being analyzed. These techniques rely on instruction side-effects
and that system’s structure checks are inspection-aware. Thus, detecting evasion attempts
is an important step of any successful investigative procedure. In this paper, we present
a broad overview of what anti-analysis techniques are being used in malware and how
they work, as well as their detection counterparts, i.e., the anti-anti-analysis techniques that
may be used by forensic investigators to defeat evasive malware. We also evaluated over
one hundred thousand samples in the search of the presence of anti-analysis technique and
summarized the obtained information to present an evasion-aware malware threat scenario.

1. Introduction
Malicious software, also known as malware, is a piece of software with malicious purposes. Malware
actions can vary from data exfiltration to persistent monitoring, causing damages to both private and
public institution, either on image or financial aspects. According to CERT statistics [Cert.br 2015],
malware samples may account by more than 50% of total reported incidents.

Given this scenario, analysts are required to analyze malicious samples in order to provide either
defensive procedures or mechanisms to prevent/mitigate the infection, as well as to perform forensic
procedures on already compromised systems. The set of techniques used for such kind of inspection
is known as malware analysis. Analysis procedures can be classified into static, where there is no need
to run the code, and dynamic, where code runs on controlled environment [Sikorski and Honig 2012].
The scope of this work is limited to static procedures, since they are the first line of detection against
evasive malware.

Considering malware analysis capabilites and peculiarities, criminals started to protect their artifacts
from being analyzed, equipping them with so-called anti-analysis (or anti-forensics) techniques. This
way, their infection could last longer since they could make their samples stealth. Recent studies, such
as [Branco et al. 2012], present scenarios in which 50% of samples contain at least one anti-analysis
technique, and this number has been growing constantly.

In order to keep systems protected from such new armored threats, we need to understand how these
anti-analysis techniques work so as to develop ways to effectively detect evasive samples before



they can act. This is called anti-anti-analysis. In this paper, we present the modus operandi behind
such kind of techniques, as well as possible detection methods in details. We evaluated the developed
solution against over a hundred thousand samples, benign and malicious, which allowed us to build
an evasive scenario panorama. We also compared evasive techniques used on different contexts
(distinct countries), which can help analysts to be ahead of the next coming threats.

This work is organized as follows: Section 2 introduces basic concepts related to anti-analysis
techniques and discusses related work and tools aimed at detecting anti-analysis techniques; Section 3
describes an study of how distinct evasion techniques work, and presents our detection framework;
Section 4 shows the results obtained from applying our solution to distinct datasets; finally, Section 5
presents concluding remarks and future work.

2. Background and Related Work

In this section, we present the concepts related to anti-analysis and their detection counterparts as
well as introduce the current state-of-the-art solutions.

2.1. Anti-analysis

The main idea of anti-analysis techniques is to raise the bar of counteraction methods. It can be
done in many ways, e.g., leveraging theorethical hard-to-compute constructions. In this Section, we
provide an overview of such anti-analysis techniques.

One common approach is to fingerprint the analysis environment. Known analysis solutions expose
regular patterns, such as fixed IP addresses, host names, and serial numbers. Evasive samples can
detect those patterns and suspend their execution [Yokoyama et al. 2016]. This type of approach
was succesfully used against Cuckoo [Ferrand 2015] and Ether [Pék et al. 2011] sandboxes.

Another approach is to evade analysis by detecting execution side effects of virtual machines and
emulators, which has been the most used enviroment for malware analysis. Those systems may
exhibit a differing behavior when compared to their bare-metal counterparts, such as instructions
not being atomic [Willems et al. 2012]. Currently, there are automated ways of detecting these side
effects [Paleari et al. 2009]. Virtual Machines can also be detected by the changes that hypervisors
perform on system internals (e.g., table relocations). Many tables, such as the Interrupt Descriptor
Table (IDT), have their addresses changed on VMs when compared to bare-metal systems. These
addresses can then be used as an indicator of a virtualized environment [Ferrie 2007].

There also approaches based not on evading the analysis itself, but on hardening the post-infection
reverse engineering procedure. One notable technique is the anti-disassembly, a way of coding
where junk data is inserted among legitimate code to fool the disassembler tool. Another variation
of anti-disassembly techniques is to use opaque constants [Kruegel et al. 2007], constructions that
cannot be solved without runtime information. Static attempts to guess resulting values of these
expressions tend to lead to the path explosion problem [Xiao et al. 2010].

Finally, there are samples that make use of time measurement for analysis detection, since any
monitoring technique imposes significant overheads [Lindorfer et al. 2011]. Although some solutions
try to mitigate this problem by faking time measures, either on system APIs [Singh 2014], or on
the hardware timestamp counter [Hexacorn 2014], the problem is unsolvable in practice, since an
advanced attacker can make use of an externel NTP server over encrypted connections.
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A notable example of anti-analysis tool is pafish [Pafish 2012], which consists of a series of mod-
ules that implement many of mentioned detection techniques, such as virtual machines detection and
environment fingerprints. The tool’s intention is to be used as verifier for any attempt of transparent
solution, as well as to allow for a better understanding of practical malware evasion techniques.

2.2. Anti-Anti-Analysis

As well as the anti-analysis techniques, the anti-anti-analysis ones may also be classified as static
or dynamic approaches. Static approaches can be applied in the form of pattern matching detectors of
known anti-analysis constructions, for instance, address verifications and locations. However, due to
its known limitations, some constructions can only be solved during runtime, which is accomplished
when they run inside dynamic environments.

Dynamic solutions, in a general way, are based on faking answers for known anti-analysis checks,
such as in COBRA [Vasudevan and Yerraballi 2006]. These approaches, however, turn into an
arms-race, since new anti-analysis techniques are often released and these systems need to be updated.
To minimze the impact of this issue, transparent analysis systems have been proposed, such as
Ether [Dinaburg et al. 2008] and MAVMM [Nguyen et al. 2009]. These systems, however, impose
high overheads and development costs.

In the following sections, we review the anti-anti-analysis techniques for the above presented
anti-analysis classes and present static detectors for these techniques. We left dynamic detectors for
future work, since they are not part of this work’s scope.

2.3. State-of-the-art of anti-anti-analysis

Our work is related to many detection solutions. Two noticeable ones arepyew [Pyew 2012] and
peframe [Peframe 2014], which aim to detect the evasive technique itself, and not whether a
tool/system/environment may be evaded or not. They work by statically looking for known shellcodes
and library imports related to analysis evasion. In this work, we have expanded theses detectors in
order to provider a broader coverage.

In addition to the aforementioned tools, our work relates to the one presented by [Branco et al. 2012],
which implemented several anti-anti-analysis detectors and analyzed evasive samples. In this work, we
have implemented both the anti-analysis techniques as well as the presented static detectors, applying
them against our distinct datasets, and enriching their analysis with the discussion of the working flow
of the mentioned techniques. We also proceed in the same way regarding the work by [Ferrie 2008].

At the time we were writing this article, we have noticed a related work implementing similar
techniques [Oleg 2016]. Such work, however, is limited to implementation issues whereas we present
a comprehensive discussion and results evaluation.

Other related approaches, although more complex, are those which rely on using intermediate
representations (IR) [Smith et al. 2014] or interleaving instructions [Saleh et al. 2014], cases not
covered by this work. This work also does not cover obfuscation techniques based on encryption.
This issue was addressed by other work, such as [Calvet et al. 2012].

3. Anti-Analysis Techniques and Detection
In this section, we summarize the anti-analysis techniques, their operation, and how they
can be detected. The techniques were originally described in the previously presented
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works [Branco et al. 2012, Ferrie 2008, Pyew 2012, Peframe 2014, Pafish 2012, Oleg 2016] and are
here classified according to their purpose: anti-disassembly, anti-debugging, and virtual machine de-
tection. The complete discussion of each trick is presented on the appendix1, due to space constraints.

3.1. Anti-disassembly

To understand how disassembly can turn into a hard task, we first introduce how current disassemblers
work. After that, we present known tricks to detect evasion.

In general, disassemblers can be classified into linear sweep and recursive traver-
sal approaches [Schwarz et al. 2002]. In the former, the disassembly process starts at the first byte
of a given section and proceeds sequentially. The major limitation of this approach is that any data
embedded in the code is interpreted as an instruction, leading to a wrong final disassembled code.

The latter approach takes into account the control flow of the program being disassembled, following
the possible paths from the entry point, which solves part of problems presented by the linear
approach, such as identifying jmp-preceeded data as code. The major assumption of this approach
is that it is possible to identify all sucessors of a given branch, which is not always true, since any
fail on identifying the instruction size can lead to incorrect paths and instructions.

3.1.1. Tricks

Table 1 shows a summary of anti-disassembly techniques and their detection methods2.

Table 1. Anti-disassembly techniques and their detection methods.
Technique Description Detection

PUSH POP
MATH

PUSH and POP a value
on/from the stack
instead of using a direct MOV

Detect a sequence of
PUSH and POP
on/from a register.

PUSH RET
PUSH a value on the stack and RET
to it instead of the ordinary return.

Detect a sequence of
PUSH and RET

LDR address
resolving

Get loaded library directly
from the PEB instead of
using a function call

Check memory access referring
the PEB offset.

Stealth API
import

Manually resolving library imports
instead of directly importing them.

Check for a sequence of
access/compares of PEBs offsets.

NOP sequence
Breaks pattern matching by
implanting NO-OPerations

Detect a sequence of NOPs
within a given window

Fake Conditional Create an always-taken branch Check for branch-succeded
instructions which set branch flags

Control Flow Changing control flow within
an instruction block

Check for the PUSH-RET
instruction sequence

Garbage Bytes Hide data as instruction code Check for branch-preceeded data

1 https://github.com/marcusbotacin/Anti.Analysis/tree/master/Whitepaper 2 De-
scribed by Branco et al. 2012
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3.2. Anti-Debug

In order to understand how anti-debug techniques work, we firstly introduce the basic idea of
most tricks: using direct memory checks instead of function calls. Secondly, we present the tricks
themselves.

3.2.1. Known API x Direct call

Most O.S. provide support for debugging checks. Windows, for instance, provides the IsDebug-
gerPresent API [Microsoft 2016]. Most anti-debug tricks, however, do not rely on these APIs,
but perform direct calls instead. The main reason behind such decision is that APIs can be easily
hooked by analysts, thus faking their responses. Internal structures, in turn, such as the process
environment block (PEB) [Microsoft 2017c], are much harder to fake — some changes can even
break system parts.

3.2.2. Tricks

Table 2 presents a summary of anti-debug techniques and their detection counterparts345.

Table 2. Anti-debug techniques and their detection methods.
Technique Description Detection
Known Debug API Call a debug-check API Check for API imports

Debugger Fingerprint
Check the presence of known
debugger strings

CHeck known strings
inside the binary

NtGlobalFlag Check for flags inside the
PEB structure

Check for access on
the PEB offset

IsDebuggerPresent Check the debugger flag
on the PEB structure

Check access to PEB on
the debugger flag offset

Hook Detection
Verify whether a function
entry point is a JMP instruction

Check for a CMP instruction
having JMP opcode as an argument

Heap Flags Check for heap flags on the PEB check for heap checks
involving PEB offsets

Hardware Breakpoint
Check whether hardware
breakpoint registers are not empty

Check for access
involving the debugger context

SS Register
Insert a check when
interruptions are disabled Check for SS register’s POPs

Software Breakpoint Check for the INT3 instruction Check for CMP with INT3
SizeOfImage Change code image field Check for PEB changes.

3.3. Anti-VM

A summary of anti-analysis tricks used by attackers to identify and evade virtualized environments
is shown in Table 367.
3 API check implemented by Pyew and Peframe 4 SizeOfImage implemented by Ferrie 2008 5 Other techniques
implemented by Branco et al. 2012 6 VM fingerprint implemented by Pafish 7 Other techniques by Branco et al. 2012
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Table 3. Anti-vm techniques and their detection methods.
Technique Description Detection

VM Fingerprint Check for known strings,
such as serial numbers

Check for known strings
inside the binary

CPUID Check Check CPU vendor
Check for known CPU
vendor strings

Invalid Opcodes Launch hypervisor-specific
instructions

Check for specific instrutions
on the binary

System Table Checks Compare IDT values Look for checks involving IDT
HyperCall Detection Platform specific feature Look for specific instructions

3.4. Detection Framework

Given the presented detection mechanisms, we have implemented them by using a series of Python
scripts8. They work by iterating over libopcodes-disassembled instructions, and performing
a pattern matching on these, according the trick we are looking for. Our pipeline is able to provide
the information whether a given technique was found on a binary or not, the number of occurrences
per binary, and the section the trick was found.

Unlike Branco et al. 2012 approach, which considered the RET instruction as a code block
delimiter, we have implemented a variable-size window delimiter to evaluate if the tricks may have
been implemented by making use of multi-block constructions.

4. Results
In this section, we present the results of applying our set of detectors to distinct datasets and discuss
how anti-analysis tricks have been applied in practice.

4.1. Binary sections

Here we show the binary section influence on the trick detection. In order to perform this evaluation,
we considered a dataset of 70 thousand worldwide crawled samples.

Figure 1 shows the detection distribution along the binary sections. It is worth to notice that the usual
instruction section (text) is only the 5th more prevalent section. The presence of other sections
can be due to samples moving their tricks to dinstinct sections in order to not be detected by anti-virus
(AV). This fact can only be exactly determined through dynamic analysis. The presence of some
section such as .aspack, for instance, is due to the presence of a packer to obfuscate the code.

Figure 2 shows that the tricks contained in the .text section correspond to half of the total tricks
detected. The most prevalent techniques, such as PushPop and PushRet, are the most simple.

4.2. Packer influence

In the last section, we could see that sections related to packer obfuscation were identifyed. In
this section, we discuss the packer influence on trick detection. The first noticeable situation is
that the tricks detected on packed samples are not equally distributed among sections, as shown
in Figure 3. We can observe that the C++ compiler and the PIMP packer exhibit tricks on the
.rsrc section, whereas the UPX packer presents tricks on distinct sections. A similar situation
8 https://github.com/marcusbotacin/Anti.Analysis
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Figure 1. Tricks by section.
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Figure 2. Tricks - total and .text
section.

happens when considering the detected tricks, as shown in Figure 4. The C++ compiler and the
PIMP packer presents similar rates of tricks while the UPX packer presents distinct tricks. Finally,
in order to evaluate the packer influence on trick detection, we unpacked all samples for which there
are known unpackers (6 thousand samples), thus obtaining the results shown in Figure 5. We could
confirm our expectations that the majority of the tricks are present on the packer, not on the original
code. This fact is mostly due to the usage of malware kit generators.
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Figure 4. Tricks detected on distinct
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4.3. Malware and Goodware
Some of the presented tricks are widely used, so they can be found either on benign programs (good-
ware) and malicious ones. To verify if the detection of those aforementioned tricks could be used as a
malicious program indicator, we compared the trick incident on both program classes, as shown in Fig-
ure 6. We performed our tests using as a benign dataset the binaries and DLLs from a clean Windows
installation (binaries from the System32 directory). We can observe that some general tricks (CPU
identification) can also be found on system DLLs, but these are not present on the binaries. This fact
is explained by the Windows architecture, which relies on DLLs for userland-kernel communication.
This indicates that we need to employ distinct appraches when developing heuristics for executables
and DLLs. We aim to extend this evaluation for general binaries, despite system ones. However, it
is hard to ensure internet-downloaded binaries are not trojanized in any way, thus biasing the results.
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Figure 5. Packer influence on trick detection.
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Figure 6. Tricks detection on malware and goodware.

4.4. Distinct Scenarios

The tricks prevalence differs across distinct datasets. In order to provide a view on how these
differences affect user in practice, we compared the worldwide crawled dataset9 to a dataset of
30 thousand brazillian collected samples10. Figure 7 shows the results of comparing the datasets
using the PEframe tool. We can observe that the brazillian dataset presented higher detection rates
for the VmCheck and the VirtualBox tricks and lower for the others. These rates are quite
surprisingly, given the previous research results regarding the brazillian scenario. When performing
the same checks using our developed tricks, as shown on Figure 8, we show that the brazillian
scenario presents lower trick rates than the worldwide one. This differences can be explained by
the fact that the knowledge behind the tricks detected by the PEframe are more spreaded, since they
are easier. More advanced tricks, such as some of those we have presented in this work, are only

9 From http://malshare.com/ 10 The same as in Botacin et al. 2015
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present on a broader scenario, i.e., the worldwide dataset.
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Figure 7. Comparing scenarios:
PEframe detection.
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The presented results are in agreement with previous research results regarding the brazilian
scenario [Botacin et al. 2015].

4.5. Improving tricks and their detection

In this section, we present ways the tricks can be enhanced and how to detect them.

4.5.1. Trick splitting

A way of evading the trick detection is to split it across distinct blocks. Although we cannot check
such usage in practice without dynamic analysis, we can look for signs of spllited-tricks by changing
the detection window, as show on Figure 9. The initial value is the RET window, on which we
traverse the block until the instruction is found. We considered the detection rate of this window
as a groundtruth, thus presenting the 100% detected value. The other values are fixed-size number
of instructions which will be traversed, thus increasing the detection rate. We observed a maximum
increase of 0.65%.

4.5.2. Instruction disalignment

Another possible way of evading tricks detection is by using unaligned instructions, so the
disassembler is not able to present the correct opcode. Although we could only check the effective
usage of such approach on a dynamic system, we can look for static signs of such usage. In order
to do so, we have implemented some detectors using YARA11 rules and running them on the binary
bytes. The tests results are shown in the Table 4. We have considered 300 random samples, being the
Aligned considered as groundtruth. We can observe the Unaligned results are significantly
higher, indicating it is a viable way of hidding code.

11 https://virustotal.github.io/yara/
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Figure 9. Evaluating block window effect on trick detection.

Table 4. Evaluating the occurrence of misaligned tricks.
Trick Aligned Unaligned
CPU 182 287
FakeJMP 63 203

4.5.3. Compiler-based tricks

Another way of hidding the trick is to compile the code using instructions unsupported by AVs
and other tools or indirect constructions. The ROP itself malware [Poulios et al. 2015], for instance,
suggested turning a malware sample into a ROP12 payload, approach which was implemented by
the Ropinjector tool [Poulios 2015]. The SSexy tool [Bremer 2012] compiles the code using SSE13

instructions. The Movfuscator [domas 2015] does the same using XOR ones. Finally, the
work [Barngert 2013] compiles a code to run using only MMU instructions14. In order to verify that
in practice, we submited some known shellcodes from ExploitDB compiled using the ROPInjector
solution, being the results reported in the Table 5. We can notice that the AV were not able to detect
the payloads when compiled using the tool.

Table 5. Compilation-based evasion.
ShellCode 115 216 317 418 519

Unarmored 4/57 15/58 9/57 7/68 9/53
ROPInjector 0/57 0/57 0/54 0/54 0/53

4.6. General AV detection

The results from the previous section suggests that AV are not able to handle some tricks. Problems
on AV emulators were also described on other work [Nasi 2014]. We submitted to virustotal some

12 Return Oriented Programming 13 Streaming SIMD Extensions 14 Memory Management Unit
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shellcodes armored with our tricks, being the results shown in the Table 6. We can notice that the
AVs do not presented the same efficiency to handle armored and unarmored tricks.

Table 6. Evaulating AV Evasion: unarmored and trick-armored samples.
Shellcode SC1 SC2 SC3
Technique W/o Trick W/ Trick W/o Trick W/ Trick W/o Trick W/ Trick
Fakejmp

10/58
6/57

20/58
17/58

15/58
10/57

PushRet 7/57 17/58 10/58
NOP 6/57 17/57 10/58

4.7. Discussion

We have presented anti-analysis tricks and ways of detecting them. We also presented some insights on
how they can be enhanced as well their detector. The major limitation relies on the fact that the efective-
ness of such approach can only be measured using dynamic analysis, which is a straightforward future
work. Additionaly, we aim to implement some kind of rule-based remmediation [Lee et al. 2013].
More details about this solution’s limitations are presented in the appendix.

5. Conclusion

In this work, we have studied anti-analysis techniques, their effect on malware analysis, and
theorethical limitations. We also developed static detectors able to identify known evasive
constructions on binaries. We have tested these detectors against multiple datasets and observed that
there are significant differences between the Brazilian scenario compared to the global one.

The list of tricks presented in this paper is not exhaustive, since attackers keep testing, and
consequently developing new ways of evading analysis and detecting environments. Hence, our future
work consists on implementing new detectors, as they have been discovered, as well as evaluating
distinct datasets, in order to identify other trends about malware.
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Appendix to the “Analysis, Anti-Analysis,
Anti-Anti-Analysis: An Overview of the Evasive Malware Scenario” paper, published in the proceedings of XVII SBSEG

Marcus Botacin, Vitor Falcão da Rocha, Paulo Lício de Geus, André Grégio

We added to this appendix additional information to support our findings on anti-analysis-armored malware.

A. Real Malware Evasion
Some samples stealthly quit their operations when an anti-analysis trick is successful on identifying an analysis
environment. However, some of them opt to display some information. We present below (Figure 10, 11, and 12) some
examples we found when running real samples we have collected on the wild.

Figure 10. Real malware claiming a registry problem when an anti-analysis trick succeded.

Figure 11. Commercial solution armored with anti-debug technique.

Figure 12. Real malware impersonating a secure solution which cannon run under an
hypervisor.

B. Techniques
This section details how the techniques and their detectors are implemented.

B.1. Anti-disassembly
How disassembly, anti-disassembly, and anti-disassembly detectors are implemented.
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B.1.1. Disassembly techniques used by distinct solutions

As presented on Section B.1.1, disassembly can be performed on two ways: Linear Sweep or Recursive
Traversal. The disassembler operation mode affects the obtained results. In order to make the scenario clearer, we
summarized, in the Table 7, the disassembly approach used by distinct tools.

Table 7. Disassembly technique used by distinct solutions (Based on [Eliam 2005]).
Tool Technique
OllyDbg Recursive traversal
NuMega SoftICE Linear sweep
Microsoft WinDbg Linear sweep
IDA Pro Recursive traversal
PEBrowse Recursive traversal
Objdump Linear Sweep

B.1.2. Tricks

This section show how the anti-disassembly tricks and their detectors are implemented.

B.1.3. PUSH POP MATH

In order to obfuscate a value, samples can make use of indirect values manipulation, such as using PUSH and POP
instruction. On this technique, a known immediate is pushed into the stack and then pop-ed to a register. This register
is then used on further computations, as shown on Listing 1.

Listing 1. PUSH POP MATH trick.

1 push 0 x1234
2 pop rax
3 xor rax , 0xFFFF

In order to detect this technique, we can look for the sequence of a PUSH, POP to a register, and a computation over
such register, as shown on Listing 2.

Listing 2. PUSH POP MATH trick detection.

1 i f ’ push ’ i n i n s t r u c t i o n and no t op1 i n [ ’ ax ’ , ’ bx ’ , ’ cx ’ , ’ dx ’ ] :
2 s e l f . found_push = True
3 e l i f ’ pop ’ i n i n s t r u c t i o n and s e l f . found_pop == F a l s e :
4 s e l f . found_pop = True
5 s e l f . found_op =op1
6 e l i f s e l f

. found_pop == True and i n s t r u c t i o n i n [ ’ and ’ , ’ or ’ , ’ xor ’ ] :
7 i f s e l f . found_op i n op1 or s e l f . found_op i n op2 :
8 s e l f . found_comp= True
9

10 i f s e l f . found_comp== True :
11 s e l f . c l e a r ( )
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12 p r i n t " \ " PushPopMath \ " D e t e c t e d
! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

B.1.4. PUSH-RET Instruction Replacement

Instruction replacement is a common evasive technique since it makes harder to follow the execution control flow. One
of many variations of this technique is to replace the ordinary CALL instruction by a sequence of PUSH and RET,
on which an address is inserted into the stack and thus the function returns to it. This sequence is shown on Listing 3.

Listing 3. PUSH RET trick.

1 push 0 x12345678
2 r e t

The presence of a sequence of PUSH and RET can be used to detect this trick usage, as shown on Listing 4.

Listing 4. PUSH RET trick detection.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2
3 i f ’ push ’ i n i n s t r u c t i o n :
4 s e l f . found_push = True
5 e l i f s e l f . found_push == True and ’ r e t ’ i n i n s t r u c t i o n :
6 s e l f . f o u n d _ r e t = True
7 e l s e :
8 s e l f . found_push = F a l s e
9

10 i f s e l f . f o u n d _ r e t :
11 s e l f . c l e a r ( )
12 p r i n t " \ " PushRet \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

B.2. LDR Address resolving

The LDR is a PEB internal structure which contains information about loaded modules [Microsoft 2017d], as shown
on Listing 5.

Listing 5. LDR struct definition.

1 t y p e d e f s t r u c t _PEB_LDR_DATA {
2 BYTE Reserved1 [ 8 ] ;
3 PVOID Reserved2 [ 3 ] ;
4 LIST_ENTRY InMemoryOrderModuleLis t ;
5 } PEB_LDR_DATA , ∗PPEB_LDR_DATA ;
6
7 t y p e d e f s t r u c t _LDR_DATA_TABLE_ENTRY {
8 PVOID Reserved1 [ 2 ] ;
9 LIST_ENTRY InMemoryOrderLinks ;

10 PVOID Reserved2 [ 2 ] ;
11 PVOID Dl lBase ;
12 PVOID E n t r y P o i n t ;
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13 PVOID Reserved3 ;
14 UNICODE_STRING Ful lDl lName ;
15 BYTE Reserved4 [ 8 ] ;
16 PVOID Reserved5 [ 3 ] ;
17 un ion {
18 ULONG CheckSum ;
19 PVOID Reserved6 ;
20 } ;
21 ULONG TimeDateStamp ;
22 } LDR_DATA_TABLE_ENTRY , ∗PLDR_DATA_TABLE_ENTRY ;

When looking to the PEB structure, the LDR information can be found at the 0x0c offset, as shown on Listing 6.

Listing 6. PEB’s LDR entries.

1 t y p e d e f s t r u c t _PEB {
2 BYTE Reserved1 [ 2 ] ;
3 BYTE BeingDebugged ;
4 BYTE Reserved2 [ 1 ] ;
5 PVOID Reserved3 [ 2 ] ;
6 PPEB_LDR_DATA Ldr ;

This way, some samples could try to access this information directly, by loading the respective addresses, as shown
on Listing 7.

Listing 7. Direct LDR handling.

1 mov eax , [ f s : 0 x30 ]
2 mov eax , [ eax +0 x0c ]

In order to detect this trick, we can check for the usage of the PEB and LDR offsets, respectively, as shown on Listing 8.

Listing 8. Detecting LDR direct access.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2
3 i f i n s t r u c t i o n i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] :
4 i f ’ f s : 0 x30 ’ i n op2 :
5 s e l f . found_op1 = op1
6 s e l f . found_keyword = True
7 r e t u r n F a l s e
8
9 i f s e l f . found_keyword :

10 i f i n s t r u c t i o n
i n [ ’ cmp ’ , ’ cmpxchg ’ , ’mov ’ , ’ movsx ’ , ’ movzx ’ ] :

11 i f ’ [ ’ + s e l f . found_op1 + ’+0 xc ] ’
i n op1 or ’ [ ’ + s e l f . found_op1 + ’+0 xc ] ’ i n op2 :

12 s e l f . c l e a r ( )
13 p r i n t " \ " LDR \ " D e t e c t e d ! S e c t i o n

: <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )
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B.2.1. Stealth Windows API Import

The Windows API is the basic toolchain for development tasks on this system, being provided by system libraries (DLLs)
to be imported by the programs. However, such imports can reveal many information about a program behavior. Thus,
directly using system API increases samples’ stealthness.

One way to implement such stealth function imports is to rely on ntdll and kernel32 libraries which are
automatically mapped into processes, wven without any explicit import. Those libraries are accessible through a walk
over the process memory [Lyashko 2011].

This trick starts by retrieving handlers through the SEH chain offset (0x0), as shown on Listing 9. Secondly, by iterating
over it, until the end, to retrieve the handler at the 0x4 offset, as also shown on Listing 9.

Listing 9. SEH base address and library handler retrievals.

1 mov eax , [ f s : 0 ]
2 . s e a r c h _ d e f a u l t _ h a n d l e r :
3 cmp dword [ eax ] , 0 xFFFFFFFF
4 j z . f o u n d _ d e f a u l t _ h a n d l e r
5 ; go t o t h e p r e v i o u s h a n d l e r
6 mov eax , [ eax ]
7 jmp . s e a r c h _ d e f a u l t _ h a n d l e r
8 mov eax , [ eax +4]
9 and eax , 0 xFFFF0000

Given such memory location, it is required to look for the MZ signature over the pages, as shown on Listing 10.

Listing 10. Looking for the PE on memory pages.

1 . look_for_mz :
2 cmp word [ eax ] , ’MZ’
3 j z . got_mz
4 sub eax , 0 x10000
5 jmp . look_for_mz

At this point, a handle for an unknown library was retrieved. In order to identify it, the trick starts with a check of the
0x3c offset, which contains an offset for a PE string signature followed by COFF data, as shown on Listing 11.

Listing 11. Finding PE signature and COFF data.

1 mov bx , [ eax +0x3C ]
2 movzx ebx , bx
3 add eax , ebx
4 mov bx , ’ PE ’
5 movzx ebx , bx
6 cmp [ eax ] , ebx
7 j z . found_pe

Once the register holds the COFF header, the trick can find the exports of the IMAGE_DATA_DIRECTORY at offset
0x78 and thus read the RVA and add it to the base address, allowing the use, as shown on Listing 12.

Listing 12. Getting image data and handling its RVA.

1 add eax , 0 x78
2 mov eax , [ eax ]
3 add eax , [ i m a g e _ b a s e _ a d d r e s s ]
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By accessing the 0xC offset, it gets the NAME RVA, a string containing the library address, and so discovers whether
it is kernel32 or ntdll, as shown on Listing 13.

Listing 13. Accesing name rva.

1 mov eax , [ eax +0x0C ]
2 add eax , [ i m a g e _ b a s e _ a d d r e s s ]

A detector can be implemented by checking whether all these steps appear in sequence on a given code. Our detector
looks like the one presented on Listing 14.

Listing 14. Stealth import trick detector.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2
3 i f s e l f . found_seh

== F a l s e and i n s t r u c t i o n i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] :
4 i f ’ f s : 0 x0 ’ i n op2 :
5 s e l f . found_op1 = op1
6 s e l f . found_seh = True
7
8 e l i f s e l f . found_seh == True and s e l f . f o u n d _ h a n d l e r

== F a l s e and i n s t r u c t i o n i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] :
9

10 i f ’ f s : 0 x30 ’ i n op2 :
11 s e l f . found_seh = F a l s e
12 e l i f s e l f . found_op1 + ’+0 x4 ’ i n op2 :
13 s e l f . f o u n d _ h a n d l e r = True
14 s e l f . found_op2 = op1
15
16 e l i f s e l f .

f o u n d _ h a n d l e r == True and i n s t r u c t i o n i n [ ’ cmp ’ , ’ cmpxchg ’ ] :
17 i f s e l f . found_op2 i n op1 :
18 s e l f . found_cmp= True
19
20 e l i f s e l f . found_cmp

== True and i n s t r u c t i o n i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] :
21 i f s e l f . found_op2 + ’+0 x3c ’ i n op2 :
22 s e l f . found_pe = True
23
24 e l i f s e l f . found_pe == True

and i n s t r u c t i o n i n [ ’ and ’ , ’ or ’ , ’ xor ’ , ’ add ’ , ’ sub ’ , ’ cmp ’ ] :
25 i f ’0 x78 ’ i n op1 or ’0 x78 ’ i n op2 :
26 s e l f . found_img = True
27
28 i f s e l f . found_img :
29 s e l f . c l e a r ( )
30 p r i n t " \ " S t e a l t h I m p o r t \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )
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B.2.2. NOP

Another anti-disassembly technique is to add dead-code to the binary. Dead code are construction which are unreacheable
or effectless, intended only to make the analysis procedures harder and to evade pattern matching detectors. A commmon
dead code construction is a NOP sequence, as shown on Listing 15.

Listing 15. NOP sequence trick.

1 mov eax , 0
2 nop
3 nop
4 nop
5 nop
6 nop
7 pop rbp

A detector for this technique consists on finding a N-sized window ROP sequence, as shown on Listing 16.

Listing 16. NOP sequence trick detection.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2 i f i n s t r u c t i o n == ’ nop ’ :
3 s e l f . c o u n t e r += 1
4 i f s e l f . c o u n t e r i s 5 :
5 s e l f . c o u n t e r = 0
6 p r i n t " \ " NOPSequence \ " D e t e c t e d !

S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

B.2.3. Fake Conditional

Many solutions try to follow control flow in order to apply their detectors. Making conditional control flow harder is
a powerful anti-analysis technique, since not all paths can be followed due to the path explosion problem.

One possible implementation for this evasive techique is to rely on flags computed by a previous known instruction.
The example of Listing 17 shows a known-result instruction, since XOR-ing the registers will always result on zero,
thus triggering the zero-conditioned jump.

Listing 17. Fake Conditional trick.

1 xor eax , eax
2 j n z main

Detectors for this technique rely on detecting XOR instructions followed by these kind of construction, such as JMP,
STC or CLC, as shown on Listing 18.

Listing 18. Fake Conditional trick detector.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2
3 s e l f . c y c l e _ c o u n t += 1
4
5 i f i n s t r u c t i o n == ’ xor ’ and op1 == op2 :
6 s e l f . found_xor = True
7 s e l f . x o r _ c y c l e = s e l f . c y c l e _ c o u n t
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8 r e t u r n
9 e l i f i n s t r u c t i o n == ’ s t c ’ :

10 s e l f . f o u n d _ s t c = True
11 s e l f . s t c _ c y c l e = s e l f . c y c l e _ c o u n t
12 r e t u r n
13 e l i f i n s t r u c t i o n == ’ c lc ’ :
14 s e l f . f o u n d _ c l c = True
15 s e l f . c l c _ c y c l e = s e l f . c y c l e _ c o u n t
16 r e t u r n
17
18 i f ( i n s t r u c t i o n == ’ jnz ’ or i n s t r u c t i o n == ’

jne ’ ) and s e l f . found_xor and s e l f . c y c l e _ c o u n t == s e l f . x o r _ c y c l e +1:
19 s e l f . c l e a r ( )
20 p r i n t " \ " F a k e C o n d i t i o n a l J u m p s \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , % a d d r e s s )
21 e l i f ( i n s t r u c t i o n == ’ jnc ’ or i n s t r u c t i o n == ’ jae

’ ) and s e l f . f o u n d _ s t c and s e l f . c y c l e _ c o u n t == s e l f . s t c _ c y c l e +1:
22 s e l f . c l e a r ( )
23 p r i n t " \ " F a k e C o n d i t i o n a l J u m p s \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , % a d d r e s s )
24 e l i f ( i n s t r u c t i o n == ’ jc ’ or i n s t r u c t i o n == ’

jb ’ ) and s e l f . f o u n d _ c l c and s e l f . c y c l e _ c o u n t == s e l f . c l c _ c y c l e +1:
25 s e l f . c l e a r ( )
26 p r i n t " \ " F a k e C o n d i t i o n a l J u m p s \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , % a d d r e s s )

B.2.4. Control Flow

An anti-analysis variation of the JMP construction is to replace the unconditional JMP by other constructions, which
can fool a linear disassembler tool. A common replacement is to pushing a value in to stack and then launching a RET
instruction. This construction can be seen on Listing 19.

Listing 19. Control Flow trick.

1 mov eax , 0
2 push 0x2
3 r e t
4 pop rbp

A detector for this technique is to match a sequence of PUSH and RET, as shown on Listing 20.

Listing 20. Control Flow trick detection.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2
3 s e l f . c y c l e _ c o u n t e r += 1
4
5 i f i n s t r u c t i o n == ’ push ’ :
6 s e l f . found = True
7 s e l f . f o u n d _ c y c l e = s e l f . c y c l e _ c o u n t e r
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8 r e t u r n
9

10 i f s e l f . found and i n s t r u c t i o n
== ’ r e t ’ and s e l f . c y c l e _ c o u n t e r == s e l f . f o u n d _ c y c l e + 1 :

11 s e l f . c l e a r ( )
12 p r i n t " \ " ProgramContro lFlowChange \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

B.2.5. Garbage Bytes

A way to hide data inside binaries is to add the data right after an unconditional JMP, since it will be unreachable as
code, as shown on Figure 13.

Figure 13. Binary data as a Dead Code.

The dead code insertion is intended to fool disassemblers which try to interpret such unreacheable bytes as code. Its
usage is often associated with other control-flow-deviation-based anti-analysis techniques, such as indirect jump.
An implementation of this technique can be seen on Listing 21.

Listing 21. Garbage Bytes trick.

1 mov eax , 0
2 push 0x3
3 r e t
4 . d a t a

The detector for this technique is based od the previously presented Control Flow and Fake Jump detectors,
followed by additional bytes, as shown on Listing 22.

Listing 22. Garbage Bytes tricks detection.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2
3 s e l f . c y c l e _ c o u n t e r += 1
4
5 i f i n s t r u c t i o n == ’ push ’ :
6 s e l f . found_push = True
7 s e l f . f o u n d _ p u s h _ c y c l e = s e l f . c y c l e _ c o u n t e r
8 e l i f i n s t r u c t i o n == ’ xor ’ and op1 == op2 :
9 s e l f . found_xor = True

10 s e l f . f o u n d _ x o r _ c y c l e = s e l f . c y c l e _ c o u n t e r
11 e l i f i n s t r u c t i o n == ’ s t c ’ :
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12 s e l f . f o u n d _ s t c = True
13 s e l f . f o u n d _ s t c _ c y c l e = s e l f . c y c l e _ c o u n t e r
14 e l i f i n s t r u c t i o n == ’ c lc ’ :
15 s e l f . f o u n d _ c l c = True
16 s e l f . f o u n d _ c l c _ c y c l e = s e l f . c y c l e _ c o u n t e r
17
18 i f s e l f . found_push and i n s t r u c t i o n == ’

r e t ’ and s e l f . c y c l e _ c o u n t e r == s e l f . f o u n d _ p u s h _ c y c l e + 1 :
19 s e l f . c l e a r ( )
20 p r i n t " \ " GarbageBytes \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )
21 e l i f s e l f . found_xor and i n s t r u c t i o n ==

’ jnz ’ and s e l f . c y c l e _ c o u n t e r == s e l f . f o u n d _ x o r _ c y c l e + 1 :
22 s e l f . c l e a r ( )
23 p r i n t " \ " GarbageBytes \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )
24 e l i f s e l f . f o u n d _ s t c and ( i n s t r u c t i o n == ’

jnc ’ or i n s t r u c t i o n == ’ jae ’ ) and s e l f . c y c l e _ c o u n t e r == \
25 s e l f . f o u n d _ s t c _ c y c l e + 1 :
26 s e l f . c l e a r ( )
27 p r i n t " \ " GarbageBytes \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )
28 e l i f s e l f . f o u n d _ c l c and ( i n s t r u c t i o n ==

’ jc ’ or i n s t r u c t i o n == ’ jb ’ ) and s e l f . c y c l e _ c o u n t e r == \
29 s e l f . f o u n d _ c l c _ c y c l e + 1 :
30 s e l f . c l e a r ( )
31 p r i n t " \ " GarbageBytes \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

B.3. Anti-debug

In this section, we present techniques aimed to detect if a sample is being debugged.

B.3.1. Known Debug APIs Usage

The most direct way to detect a debuggers presence is to rely on debug-related function provided by the O.S. API. On Win-
dows O.S., for instance, many debug related APIs, such as IsDebuggerPresent, are available on its default libraries.

A straightforward countermeasure is to check the presence of such functions on binary imports section. This approach
is implemented in tools like PEframe. Listing 23 shows an excerpt of PEFrame’s code file used for pattern matching.

Listing 23. PEframe’s anti-debug detection.

1 " a n t i d b g " : [
2 " CheckRemoteDebugger " ,
3 " D eb u g Ac t iv e P r o ce s s " ,
4 " FindWindow " ,
5 " G e t L a s t E r r o r " ,
6 " GetWindowThreadProcess Id " ,
7 " IsDebugged " ,
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8 " I s D e b u g g e r P r e s e n t " ,
9 " I s P r o c e s s o r F e a t u r e P r e s e n t " ,

10 " NtCrea teThreadEx " ,
11 " N t G l o b a l F l a g s " ,
12 " N t S e t I n f o r m a t i o n T h r e a d " ,
13 " O u t p u t D e b u g S t r i n g " ,
14 " p b I s P r e s e n t " ,
15 " P r o c e s s 3 2 F i r s t " ,
16 " P r o c e s s 3 2 N e x t " ,
17 " R a i s e E x c e p t i o n " ,
18 " T e r m i n a t e P r o c e s s " ,
19 " ThreadHideFromDebugger " ,
20 " U n h a n d l e d E x c e p t i o n F i l t e r " ,
21 " ZwQueryInformat ion "
22 ] ,
23
24 f o r l i b i n pe . DIRECTORY_ENTRY_IMPORT :
25 f o r imp i n l i b . i m p o r t s :
26 f o r a n t i d b g i n a n t i d b g s :
27 i f a n t i d b g :

B.3.2. Debugger Fingerprint

As well as API function imports, one can also checks sample’s strings in order to find known debugger symbols, which
indicates the sample may use such values to check system properties. Tools such as JAMA [Liu 2012] implements such
kind of pattern matching checking, as shown on Listing 24.

Listing 24. JAMA’s anti-debug fingerprint.

1 DEBUGGING_TRICKS = {
2 " SICE " : " S o f t I c e d e t e c t i o n " ,
3 "REGSYS " : " Regmon d e t e c t i o n " ,
4 "FILEVXG " : " Fi lemon d e t e c t i o n " ,
5 "TWX" : "TRW d e t e c t i o n " ,
6 "NTFIRE . S " : " ’DemoVDD By e l i c z ’ t e c h n i q u e " ,
7 "OLLYDBG" : " OllyDbg d e t e c t i o n " ,

B.3.3. NtGlobalFlag

The Process Environment Block (PEB) [Microsoft 2017c] is a system internal structure related to process management.
Among its internal data, there is the NtGlobalFlag, which holds data related to the process heap. When a process
is being debugged, specific flags of this field are enabled, thus allowing the debugger’s presence check.

Specifically, the flags shown in the Table 8 are set. When a process is not being debugged, the typical value of the field
is 0 whereas the value changes when a debugger is attached.

NtGlobalFlags can be accessed directly by using the undocumented function RtlGetNtGlobalFlags from
ntdll.dll, as shown on Listing 25.
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Table 8. NtGlobalFlag’s heap flags.
Flag Value

FLG_HEAP_ENABLE_TAIL_CHECK 0x10
FLG_HEAP_ENABLE_FREE_CHECK 0x20

FLG_HEAP_VALIDATE_PARAMETERS 0x40
Total 0x70

Listing 25. Undocumented NtGlobalFlag API Usage.

1 _ R t l G e t N t G l o b a l F l a g s G e t N t G l o b a l F l a g s =
2 ( _ R t l G e t N t G l o b a l F l a g s

) ( Ge tP rocAddres s ( GetModuleHandle ( _T ( " n t d l l . d l l " ) ) ,
3 " R t l G e t N t G l o b a l F l a g s " ) ) ;

This function makes a straightforward PEB reading implementation, as shown on Listing 2620.

Listing 26. Wine’s implementation of NtGlobalFlag API.

1 ULONG WINAPI R t l G e t N t G l o b a l F l a g s ( vo id )
2 {
3 r e t u r n NtCur ren tTeb ( )−>Peb−>N t G l o b a l F l a g ;
4 }

Using an API function, however, can ease the sample’s detection, since API imports are shown on PE structure and
can also be monitored in runtime. Some authors, instead, prefer to access the PE structure directly in memory. The
PEB base address is located at the fs:0x30 offset, and NtGlobalFlags at 0x68, being directly accessible.
Listing 27 shows a possible implementation of this evasion technique.

Listing 27. NtGlobalFlag trick.

1 c a l l p u t s
2 mov eax , [ f s : 0 x30 ]
3 mov eax , [ eax +0 x68 ]
4 mov eax , 0
5 pop rbp

A possible detector for this technique is to check for the PEB base address’s load followed by a comparison on the
NtglobalFlags’s offset. Listing 28 shows the implemented detector.

Listing 28. NtGlobalFlag trick detector.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2
3 i f i n s t r u c t i o n i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] :
4 i f ’ f s : 0 x30 ’ i n op2 :
5 s e l f . found_op1 = op1
6 s e l f . found_keyword = True
7 r e t u r n F a l s e
8
9 i f s e l f . found_keyword :

10 i f i n s t r u c t i o n
i n [ ’ cmp ’ , ’ cmpxchg ’ , ’mov ’ , ’ movsx ’ , ’ movzx ’ ] :

20 Wine implementation
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11 i f ’ [ ’ + s e l f . found_op1 + ’+0 x68 ] ’
i n op1 or ’ [ ’ + s e l f . found_op1 + ’+0 x68 ] ’ i n op2 :

12 s e l f . c l e a r ( )
13 p r i n t " \ " PEB N t G l o b a l F l a g \ " D e t e c t e d ! S e c t i o n

: <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

B.3.4. IsDebuggerPresent

Besides the global flags, the PEB struct has also an specific flag which indicates whether a process is being debbuged,
as can be seen on Listing 29.

Listing 29. PEB structure.

1 t y p e d e f s t r u c t _PEB {
2 BYTE Reserved1 [ 2 ] ;
3 BYTE BeingDebugged ;

The BeingDebugged flag is set when a debugger is attached to the process or when an debug-related API call is
made on the process. This way, malware samples can check the presence of a debugger, and thus evade the analysis.
This verification can be performed by using native API calls, such as IsDebuggerPresent [Microsoft 2016], as
shown on Listing 30.

Listing 30. API-based debug detection.

1 i f ( I s D e b u g g e r P r e s e n t ( ) )
2 p r i n t f ( " debugged \ n " ) ;
3 e l s e
4 p r i n t f ( "NO DBG\ n " ) ;

This API implementation is a direct read from the PEB data, as can be seen on Listing 31.

Listing 31. Wine’s IsDebuggerPresent implementation.

1 BOOL WINAPI I s D e b u g g e r P r e s e n t ( vo id )
2 {
3 req −>h a n d l e = G e t C u r r e n t P r o c e s s ( ) ;
4 r e t = req −>debugged ;
5 r e t u r n r e t ;
6 }

Likewise Ntglobalflag’s case, authors often avoid using API calls, since they can be traced, and opt to implement their own
PEB checkers. One way of performing such checks is to load the PEB base address at the fs:0x30 offset and thus read-
ing the BeingDebugged flag at the 0x2 offset. This verification was implemented and can be seen on Listing 32.

Listing 32. IsDebuggerPresent trick.

1 mov eax , [ f s : 0 x30 ]
2 mov eax , [ eax +0x2 ]
3 mov eax , 0
4 pop rbp

The detector for this technique should check whether these two access are performed, as shown on Listing 33.
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Listing 33. IsDebuggerPresent trick detector.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2
3 i f i n s t r u c t i o n

i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] and ’ f s : 0 x30 ’ i n op2 :
4 s e l f . found_op1 = op1
5 s e l f . found_keyword = True
6 r e t u r n
7
8 i f s e l f . found_keyword :
9 i f i n s t r u c t i o n i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] :

10
11 s u b s t r i n g = ’ [ ’ + s e l f . found_op1 + ’+0 x2 ] ’
12
13 i f s u b s t r i n g i n op1 or s u b s t r i n g i n op2 :
14 s e l f . c l e a r ( )
15 p r i n t " \ " I s D e b b u g e r P r e s e n t \ " D e t e c t e d ! S e c t i o n

: <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

B.3.5. Hook Detection

Hooking is a technique on which the execution control flow is deviated to a trampoline function having arbitrary code.
This deviation can be used to action logging or system subversion, for example. This modification can be done by using
system facilities, such as API calls, in the case of SetWindowsHook [Microsoft 2017e], or by performing binary
changes, in the case of detours [Microsoft 2017a].

A variation of this technique, called inline hooking, consists of patching a binary with a JMP instruction. An
evasive sample can check whether its own binary was in-memory patched by checking whether a given snippet of code
starts with a JMP instruction. Due to this check, a comparison to theE9 opcode (JMP) can be seen on the generated
code, as shown on Listing 34.

Listing 34. Hook detection trick.

1 cmp [ eax +0 xe9 ] , eax
2 pop rbp

The CMP instruction having this operand (E9) can be used to build an anti-analysis detector, as shown on Listing 35.

Listing 35. Hook detection trick detector.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2
3 i f i n s t r u c t i o n == ’cmp

’ and ( ’0 xe9 ’ i n op1 . lower ( ) or ’0 xe9 ’ i n op2 . lower ( ) ) :
4 p r i n t " \ " HookDetec t ion \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )
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B.3.6. Heap Flags

Likewise global flags, PEB’s heaps have also their own flags, as shown on table 9, which can be used as a analysis
indicators by evasive malware.

Table 9. PEB’s heap flags
Flag Value

HEAP_GROWABLE 2
HEAP_TAIL_CHECKING_ENABLED 0x20
HEAP_FREE_CHECKING_ENABLED 0x40
HEAP_SKIP_VALIDATION_CHECKS 0x10000000

HEAP_VALIDATE_PARAMETERS_ENABLED 0x40000000

Samples can perform Heap checks by using the API call to GetProcessHeap [Microsoft 2017b] or by implementing
their own checks, retrieving the PEB base address at fs:0x30 offset and them referencing the default heap at 0x18
offset, as shown on Listing 36.

Listing 36. Heap Flags trick.

1 mov eax , [ f s : 0 x30 ]
2 mov eax , [ eax +0 x18 ]
3 mov eax , 0
4 pop rbp

As a detector, one can save the resulting address associated to the PEB query and then search for this value plus the
heap offset on the proceeding instructions, as shown on Listing 37.

Listing 37. Heap Flags trick detection.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2
3 i f op1 i s no t None and ’ f s : 0 x30 ’ i n op1 :
4 s e l f . found_op = op1
5 s e l f . f o u n d _ f i r s t = True
6 r e t u r n
7 e l i f op2 i s no t None and ’ f s : 0 x30 ’ i n op2 :
8 s e l f . found_op = op2
9 s e l f . f o u n d _ f i r s t = True

10 r e t u r n
11
12 i f s e l f . found_op i s no t None and ( ( op1 i s no t None

and ’ [ ’ + s e l f . found_op + ’+0 x18 ] ’ i n op1 ) or ( op2 i s no t
13 None

and
’ [ ’

+

s e l f
.
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found_op

+

’+0
x18
] ’

i n

op2
)
)
:

14 s e l f . c l e a r ( )
15 p r i n t " \ " HeapFlags \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

B.3.7. Hardware Breakpoint Detection

Modern processors provide hardware-assisted debugging facilities, such as hardware breakpoints, which allow instruction
addresses to be stored on special registers, and thus stop the execution when one of such address is fetched by the processor.

Listing 38 shows an excerpt of code used to manipulate debugging data when a hardware debugger is attached. The 0xc
offset represents the debugger context struct whereas the 0x4 offset means an access to the debug register number 0.

Listing 38. Hardware debugger detection trick.

1 mov [ f s : 0 x0 ] , r s p
2 mov rax , [ r s p +0 xc ]
3 cmp rbx , [ r ax +0x4 ]

A detector can be implemented by checking whether such kind of manipulation is performed on a given function. On
the implementation provided on Listing 39, the detector checks for the following offsets: 0x4,0x8,0xc,0x10,
representing debug registers 0 to 3.

Listing 39. Hardware debugger trick detector.

1 i f i n s t r u c t i o n
i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] and ’ f s : 0 x0 ’ i n op1 and ’ rsp ’ i n op2 :

2 s e l f . seh = True
3
4 e l i f s e l f . seh == True and i n s t r u c t i o n

i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] and ’ r s p +0xc ’ i n op2 :
5 s e l f . f o u n d _ f i r s t = True
6 s e l f . found_op =op1
7
8 e l i f s e l f . f o u n d _ f i r s t

== True and i n s t r u c t i o n i n [ ’ mov ’ , ’ movsx ’ , ’ movzx
’ , ’ cmp ’ , ’ cmpxchg ’ ] and s e l f . found_op i n op2 and ( ’0 x4 ’
i n op2 or ’0 x8 ’ i n op2 or ’0 xc ’ i n op2 or ’0 x10 ’ i n op2 ) :
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9 s e l f . found_second = True
10
11 i f s e l f . found_second == True :
12 s e l f . c l e a r ( )
13 p r i n t " \ " H a rd w a re B r ea k p o i n t \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

B.3.8. SS register

When running on a debugger, it replaces the first byte of given instructions by a trap flag. In order to be more transparent,
many debugger solutions try to hide this trap flag. However, when the SS register is loaded through a POP instruction, the
interruption is disabled until the end of the next instruction, avoiding invalid stack issues. This way, an evasive sample could
insert a check right after popping the SS. The code presented on Listing 40 illustrates an implementation for this technique.

Listing 40. SS register trick

1 pop s s
2 pu sh f

The implemented detection technique is to check the usage of the SS register immediately after it was pop-ed. The
implementation of this detector is shown on Listing 41.

Listing 41. SS register trick detection.

1 i f i n s t r u c t i o n i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] :
2 i f ’ ss ’ i n op1 :
3 s e l f . f o u n d _ s s = True
4 e l i f i n s t r u c t i o n == ’ pop ’ :
5 i f ’ ss ’ i n op1 :
6 s e l f . f o u n d _ s s = True
7 e l i f ’ pushf ’ i n i n s t r u c t i o n :
8 s e l f . f o u n d _ f l a g = True

B.3.9. Software breakpoint

Unlike hardware breakpoints, which are register-based, and thus limited in number, software breakpoints are unlimited
in practice. In order to identify the distinct points where the execution will be stopped, the debugger changes the first
byte of the instruction to the 0xCC byte, which represents the INT3 instruction.

An evasive sample can scan its own memory and check for the 0xCC byte, detecting the debugger, as shown on
Listing 42.

Listing 42. Software debugger detection trick.

1 cmp rax , 0xCC

As a detector for this technique, we can check the code for comparisons to the 0xCC byte, as shown on Listing 43.

Listing 43. Software debugger detection trick detector.

1 i f ’cmp ’ i n i n s t r u c t i o n :
2 i f ’0 xcc ’ i n op1 or ’0 xcc ’ i n op2 :
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3 s e l f . found_cmp = True
4 i f s e l f . found_cmp== True :
5 s e l f . c l e a r ( )
6 p r i n t " \ " S o f t w a r e B r e a k p o i n t \ "

D e t e c t e d ! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

B.3.10. SizeOfImage

Another trick able to defeat some debuggers consists on changing the image size field, so a debugger becomes unable
to parse its content. This technique can be seen on Listing 44.

Listing 44. SizeOfImage trick.

1 mov eax , [ f s : 0 x30 ]
2 mov eax , [ eax +0 xc ]
3 mov eax , [ eax +0 xc ]
4 addw [ eax +20] ,0 x1000

As a detector for this technique, one can look for signals of value changes om this field, as shown on Listing 45.

Listing 45. SizeOfImage trick detection.

1 i f i n s t r u c t i o n i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] :
2 i f ’ f s : 0 x30 ’ i n op2 :
3 s e l f . found_op1 = op1
4 s e l f . found_keyword = True
5 r e t u r n F a l s e
6
7 i f s e l f . found_keyword :
8 i f i n s t r u c t i o n i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] :
9 i f ’ [ ’ + s e l f . found_op1 + ’+0 xc ] ’ i n op2 :

10 s e l f . found_op2 = op1
11 s e l f . found_keyword2 = True
12
13 i f s e l f . found_keyword2 :
14 i f i n s t r u c t i o n i n [ ’ mov ’ , ’ movsx ’ , ’ movzx ’ ] :
15 i f ’ [ ’ + s e l f . found_op2 + ’+0 xc ] ’ i n op2 :
16 s e l f . found_op3 = op1
17 s e l f . found_keyword3 = True
18
19 i f s e l f . found_keyword3 :
20 i f i n s t r u c t i o n i n [ ’ addw ’ , ’ add ’ , ’ sub ’ ] :
21 i f ’ [ ’+ s e l f . found_op3 + ’ 2 0 ] ’ :
22 p r i n t " \ " SizeOfImage \ " D e t e c t e d ! S e c t i o n

: <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )
23 s e l f . c l e a r ( )

A way to defeat such trick is to recompute the image size. This calculation can be performed using the
VirtualQuery [Microsoft 2017f] API.
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B.4. Anti-VM

In this section, we present details from the techniques related to virtual machine detection.

B.4.1. VM Fingerprint

Some solutions leave presence indicators in the system, such as known strings. Thus, a straightforward way to detect
an hypervisor is to check the presence of such strings on system properties. VMware, for example, presents a code,
shown on Listing 46 which detects the VMware solution by the presence of its strings on the BIOS code.

Listing 46. VMware fingerprint.

1 i n t dmi_check ( vo id )
2 c h a r s t r i n g [ 1 0 ] ;
3 GET_BIOS_SERIAL ( s t r i n g ) ;
4
5 i f ( ! memcmp

( s t r i n g , "VMware−" , 7 ) | | !memcmp( s t r i n g , "VMW" , 3) )
6 r e t u r n 1 ;

/ / DMI c o n t a i n s VMware s p e c i f i c s t r i n g .
7 e l s e
8 r e t u r n 0 ;

The same way, a straightforward evasion detection technique is to verify the presence of such verification strings on the
suspicious binary. PEframe, for instance, implements such kind of verification. Listing 47 shows an excerpt of PEframe’s
implementation which performs such checks.

Listing 47. PEFrame’s VM fingerprint detection.

1 VM_Str = {
2 " V i r t u a l Box " : " VBox " ,
3 "VMware " : " WMvare"
4 }
5
6 f o r s t r i n g i n VM_Str :
7 match = r e . f i n d a l l

( VM_Str [ s t r i n g ] , buf , r e . IGNORECASE | r e . MULTILINE )
8 i f match :

B.4.2. CPUID check

Another fingerprint approach is to make use of the CPUID instruction, which fills CPU registers with the vendor string.
On VM cases, the hypervisor name is supplied. This way, a traditional evasive approach is to compare CPUID results
to known VM-vendor strings, such as Xen or QEMU. The same way, a strightforward check for evasive samples is
to locate such strings on the binaries, such as implemented by PEframe, as shown on Listing 48.

Listing 48. PEFrame’s CPUID trick detection.

1 VM_Sign = {
2 " Xen " : "XenVMM" ,
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Another detection possibility is to check the 31th returned bit from CPUID instruction, which should return whether the
processor has hypervisor capabilities or not [hexacorn 2014]. As presented by Vmware [VMWare 2010], this verification
could be implemented as shown on Listing 49.

Listing 49. Vmware’s hypervisor capabilities check.

1 i n t c p u i d _ c h e c k ( )
2 {
3 u n s i g n e d i n t eax , ebx , ecx , edx ;
4 c h a r h y p e r _ v e n d o r _ i d [ 1 3 ] ;
5
6 cp u i d (0 x1 , &eax , &ebx , &ecx , &edx ) ;
7 i f ( b i t 31 of ecx i s s e t ) {
8 cp u i d (0 x40000000 , &eax , &ebx , &ecx , &edx ) ;
9 memcpy ( h y p e r _ v e n d o r _ i d + 0 , &ebx , 4) ;

10 memcpy ( h y p e r _ v e n d o r _ i d + 4 , &ecx , 4) ;
11 memcpy ( h y p e r _ v e n d o r _ i d + 8 , &edx , 4) ;
12 h y p e r _ v e n d o r _ i d [ 1 2 ] = ’ \ 0 ’ ;
13 i f ( ! s t r cmp ( hype r_vendo r_ id , "VMwareVMware " ) )
14 r e t u r n 1 ;

/ / S u c c e s s − r u n n i n g under VMware
15 }
16 r e t u r n 0 ;
17 }

B.4.3. Invalid Opcodes

Hypervisors often support special opcodes and parameter values not accepted on physical machines. An evasive sample
can try to execute such special instructions in order to verify whether the environments answer properly or not. The
code from [Bachaalany 2005], reproduced on Listing 50, shows how this technique can be used to detect the VirtualPC
hypervisor.

Listing 50. Virtual PC detection.

1 _ _ t r y
2 {
3 _asm __emi t 0Fh
4 _asm __emi t 3Fh
5 _asm __emi t 07h
6 _asm __emi t 0Bh
7 } c a t c h {
8 / / r e a l machine

Those bytes can be used as pattern for anti-anti-analysis techniques, as in PEframe, shown on Listing 51.

Listing 51. PEframe’s VirtualPC detection.

1 VM_Sign = {
2 " V i r t u a l P c t r i c k " : " \ x0f \ x3f \ x07 \ x0b " ,
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B.4.4. System Table Checks

As previously mentioned, virtual machines change tables addresses, such as IDT and GDT. Thus, table relocations
can be interpreted as virtual machine identifiers by malware samples. We can detect these kind of checks by verifying
the presence of instructions related to table addresses on binaries. The instructions of interest are those which store the
table addresses on given memory locations. The store meaning is due to the fact that a system address is stored
on memory. On the other side, when a new table address is defined, this address is load-ed into the system. Listing 52
shows the detector for this technique.

Listing 52. Detecting instructions related to table addresses checking.

1 i f i n s t r u c t i o n . lower ( ) i n [ ’ s i d t ’ , ’ s l d t ’ , ’ sgd t ’ , ’ s t r ’ ] :
2 p r i n t " \ " C P U I n s t r u c t i o n s R e s u l t s C o m p a r i s o n

\ " D e t e c t e d ! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

According to [Radare 2008], the hypervisors’ tables presents the values shown in the Table 10.

Table 10. Hypervisor’s tables values.
Hypervisor GDT IDT
VMware 3.2 0xFFC05000 0xFFC6A370
VMware 4.0 0xFFC07000 0xFFC17800
VMware 4.5 Windows 0xFFC07C00 0xFFC18000
VMware 5.0/5.5 Windows 0xFFC07C80 0xFFC18000
VMware 5.0.0 (13124) Linux 0xFFC075A0 0xFFC18000
VMware GSX 3.1 Linux 0xFFC07000 0xFFC18000
VMware GSX 3.1 Linux 0xFFC07E00 0xFFC18000
VMware Player 1.0.1 Linux 0xFFC07880 0xFFC18000
Xen-2.0.7 (dom0 or domU) 0xFF400000 0xFC571C20
Kqemu 0.7.2 0xF903F800 0xF903F000
MS Virtual PC 2004 0xE80B6C08 0xE80B6408

This kind of IDT check can be found in practice on many samples. It first appear is credited to Joanna Rutkowska, on
the non-academical literature. Listing 53 shows how this kind of check is usually implemented [Securiteam 2004].

Listing 53. IDT check implementation.

1 i n t s w a l l o w _ r e d p i l l ( ) {
2 u n s i g n e d c h a r m[ 2 + 4 ] , r p i l l [ ] =
3 " \ x0f \ x01 \ x0d \ x00 \ x00 \ x00 \ x00 \ xc3 " ;
4 ∗ ( ( u n s i g n e d ∗ )& r p i l l [ 3 ] ) = ( u n s i g n e d )m;
5 ( ( vo id ( ∗ ) ( ) )& r p i l l ) ( ) ;
6 r e t u r n (m[5] >0 xd0 ) ? 1 : 0 ;
7 }

The hex-encoded data launches the IDT check instruction. Many detectors use these bytes as signatures, such as on
PEframe’s implementation, shown on Listing 54.

Listing 54. PEframe’s IDT check detection.

1 VM_Sign = {
2 " Red P i l l " : " \ x0f \ x01 \ x0d \ x00 \ x00 \ x00 \ x00 \ xc3 " ,
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B.4.5. VMware Hypercall Detection

Similarly to the O.S syscalls, hypervisors have their own ways to be invoked by the running systems. These ways are
usually named hypercalls. On Vmware-based systems, an hypercall is made by generating an I/O operation on a specific
port (VX), present only on their virtualized systems. An evasive sample can try to write on this port and, if sucessful,
identify it is a VMware-powered system. A detector for this technique consists on detecting the IN instruction on
the VX port. Listing 55 presents the detector implementation.

Listing 55. Vmware trick detector.

1 de f check ( s e l f , s e c t i o n , a d d r e s s , i n s t r u c t i o n , op1 , op2 ) :
2
3 i f i n s t r u c t i o n

== ’ in ’ and ( ’ vx ’ i n op1 . lower ( ) or ’ vx ’ i n op2 . lower ( ) ) :
4 p r i n t " \ " VMWareINIns t ruc t ion \ " D e t e c t e d

! S e c t i o n : <%s > Address : 0x%s " % ( s e c t i o n , a d d r e s s )

In practice [Laboratory 2012], the code to check the VX port looks like the one presented on Listing 56

Listing 56. VMware detection trick.

1 __asm
2 {
3 mov eax , 0 x564D5868 ; a s c i i : VMXh
4 mov edx , 0 x5658 ; a s c i i : VX ( p o r t )
5 i n eax , dx ; i n p u t from P o r t
6 cmp ebx , 0 x564D5868 ; a s c i i : VMXh
7 s e t z ecx ; i f s u c c e s s f u l −> f l a g = 0
8 mov vm_flag , ecx
9 }

Detectors like PEFrame often consider the VMx string as a signatures of an anti-vm techniques, as shown on Listing 57.

Listing 57. PEframe’s VMX detection.

1 VM_Sign = {
2 "VMware t r i c k " : "VMXh" ,

B.4.6. A bit more about signatures

A similar approach is taken on torpig detection [MNIN.org 2006]. Its IDT check is used as a signature on PEframe
(Listing 58) and on Snort (Listing 59).

Listing 58. PEframe’s torpig detection.

1 VM_Sign = {
2 " Torp ig VMM T r i c k " : " \ xE8 \ xED \ xFF \ xFF \ xFF \ x25 \ x00 \ x00 \ x00 \

xFF \ x33 \ xC9 \ x3D \ x00 \ x00 \ x00 \ x80 \ x0F \ x95 \ xC1 \ x8B \ xC1 \ xC3 " ,
3 " Torp ig (UPX) VMM T r i c k " : " \ x51 \ x51 \ x0F \ x01

\ x27 \ x00 \ xC1 \ xFB \ xB5 \ xD5 \ x35 \ x02 \ xE2 \ xC3 \ xD1 \ x66 \ x25 \ x32
\ xBD \ x83 \ x7F \ xB7 \ x4E \ x3D \ x06 \ x80 \ x0F \ x95 \ xC1 \ x8B \ xC1 \ xC3 "

4 }
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Listing 59. Snort’s torpig detection.

1 a l e r t t c p $EXTERNAL_NET any −> $HOME_NET any ( msg : " BLEEDING−EDGE VMM
2 D e t e c t i n g

Torp ig / A n s e r i n / S inowal T r o j a n " ; f low : t o _ c l i e n t , e s t a b l i s h e d ;
3 c o n t e n t

: " | 5 1 51 0F 01 4C 24 00 8B 44 24 02 59 59 C3 E8 ED FF FF FF 25
4 00 00

00 FF 33 C9 3D 00 00 00 80 0F 95 C1 8B C1 C3 | " ; c l a s s t y p e : t r o j a n −
5 a c t i v i t y ; s i d : 2 0 0 6 0 8 1 0 ; r ev : 1 ; )

B.5. FakeRet
We have previously discussed what happens when the detection window changes. We explain here how a inter-block
trick could be implemented. In order to give a clear idea of what happens on such case, Listing 60 and Listing 61 show
the fakeret code and the splited disassembly,respectively.

Listing 60. Fakeret implementation.

1 xor eax , eax
2 jmp f a k e r e t
3 c a l l p u t s
4 r e t
5 f a k e r e t :
6 j n z main

Listing 61. Fakeret disassembly.

1 27 : 31 c0 xor %eax ,% eax
2 28 : eb 26 jmp 31 < f a k e r e t >
3 29 : e8 00 00 00 00 c a l l q 2 e <main +0x2e >
4 30 : c3 r e t q
5
6 0000000000000031 < f a k e r e t > :
7 31 : 0 f 85 00 00 00 00 j n e 37 < f a k e r e t +0x6 >
8 37 : b8 00 00 00 00 mov $0x0 ,% eax

As can be noticed, the trick is placed right after the RET. In order to detect this trick, the detector would have to follow
the JMP flow, not stopping at the end of the block. We can notice that the trick flows from the byte 28 to the 31
and then 37. A linear check would proceed to the byte 29 instead.

B.6. Unaligned Evasion Techniques
We have previously mentioned YARA rules to detect unaligned tricks. These rules are presented in this section. Listing 62
shows the rule which checks for the str and sidt instructions, present on the CPU Instruction trick.

Listing 62. CPU Instruction detector implemented on YARA.

1 r u l e CPU_Detector : CPU
2 {
3 meta :
4 d e s c r i p t i o n = "CPU I n s t r u c t i o n D e t e c t o r "
5
6 s t r i n g s :
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7 $ s t r ={0F 00}
8 $ s i d t ={0F 01}
9

10 c o n d i t i o n :
11 $ s t r o r $ s i d t
12 }

Listing 63 shows the rule corresponding to the FakeJump trick. The wildcards (?) are responsible for ignoring
instruction immediates.

Listing 63. FakeJump detector implemented on YARA.

1 r u l e FakeJump_Detec to r : FakeJump
2 {
3 meta :
4 d e s c r i p t i o n = " FakeJump D e t e c t o r "
5
6 s t r i n g s :
7 $seq ={31 ?? 0F}
8
9 c o n d i t i o n :

10 $seq
11 }

B.7. 32-bit Limitation
We have implemented the tricks for the x86 (32 bits) architecture. In order to detect the tricks on the x86-64 (64 bits)
architecture, the corresponding offsets should be updated. The Table 11 shows the correspondence between known offsets.

Table 11. Mapping: x32 to x64
Value x32 x64
PEB fs:0x30 fs:0x60
NtGlobalFlag 0x68 0xbc
_HEAP 0x40 0x70

In addition, some techniques, such as the Stealth Import are only functional on 32-bits systems.
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