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ABSTRACT

Malware analysis is a key process for knowledge gain on infections

and cybersecurity overall improvement. Analysis tools have been

evolving from complete static analyzers to partial code decompilers.

Malware decompilation allows for code inspection at higher ab-

straction levels, facilitating incident response procedures. However,

the decompilation procedure has many challenges, such as opaque

constructions, irreversible mappings, semantic gap bridging, among

others. In this paper, we propose a new approach that leverages

the human analyst expertise to overcome decompilation challenges.

We name this approach “DoD—debug-oriented decompilation”, in

which the analyst is able to reverse engineer the malware sample

on his own and to instruct the decompiler to translate selected code

portions (e.g., decision branches, fingerprinting functions, payloads

etc.) into high level code. With DoD, the analyst might group all

decompiled pieces into new code to be analyzed by other tool, or

to develop a novel malware sample from previous pieces of code

and thus exercise a Proof-of-Concept (PoC). To validate our ap-

proach, we propose RevEngE, the Reverse Engineering Engine for

malware decompilation and reassembly, a set of GDB extensions

that intercept and introspect into executed functions to build an

Intermediate Representation (IR) in real-time, enabling any-time de-

compilation. We evaluate RevEngE with x86 ELF binaries collected

from VirusShare, and show that a new malware sample created

from the decompilation of independent functions of five known

malware samples is considered “clean” by all VirusTotal’s AVs.
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1 INTRODUCTION

Malware analysis is a key task for gathering information on in-

fections, since it enables security countermeasures such as the

development of vaccines [37], incident response procedures [51],

etc. Malware analysis solutions have been evolving from dynamic

tracers [3, 27, 60] to complete code decompilers [24, 42, 49], which

may allow the discovery of execution behaviors or potentially more

detailed capabilities in the source-code, respectively.
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Binary decompilation is already challenging for “ordinary” code.

Malware decompilation can be even more challenging, since (i) in-

struction disassembly is difficult to accomplish if data and code are

mixed [47], or the developer used opaque constants for code obfus-

cation [34]; (ii) instructions might be context-dependent [29] (e.g.,

CPU-dependent) and malware often rely on these instructions for

fingerprinting procedures [6]; (iii) handling actual COTS binaries

is hard because the x86 ISA is very large and presents broad corner

conditions that limit decompilation inferences [17]; (iv) malware

can use multiple calling conventions in the same binary, which

complicates the identification of function prototypes [33]; (v) eval-

uating the decompilation results may become extremely expensive

due to the amount of dead code that can be embedded in malware

samples [59]. To overcome the aforementioned challenges on de-

compiling malware, we introduce a debug-centric approach, which

leverages the analysts knowledge to support decompilation deci-

sions. In the debug-centric modus operandi, the analyst starts by

debugging a malware sample and asking for the decompilation of

a given code region (e.g., code function). Each code region can be

decompiled more than once, according to the analyst’s provided

parameters and the execution paths she choose to follow. Therefore,

the decompilation does not reflect the binary content, but the in-

vestigation steps conducted by the malware samples’ analyst. Thus,

decompiled code pieces can be used to generate new malware PoCs

for more detailed security analysis, or even offensive purposes, such

as malware re-engineering.

We also introduce RevEngE
1
—the Reverse Engineering Engine

for malware decompilation and reassembly—as a tool to evaluate

our debug-centric approach. RevEngE consists of GDB extensions

that intercept and introspect-into executed functions to build an

Intermediate Representation (IR) of the analyzed sample in real-

time, which allows that decompilation occurs at any time of the

execution. Overall, RevEngE addresses the listed decompilation

challenges by relying on: (i) dynamic inspection, for sorting out

data from instructions; (ii) GDB, to avoid the reimplementation of

x86 instruction handling support; (iii) the analyst knowledge, for

the definition of decompiled code slices; and (iv) the evaluation of

decompilation outcome in terms of malware reassembly capabilities

instead of recovered code. We implemented RevEngE in Python

and exploited Object-Oriented-Programming (OOP) capabilities to

handle x86 instruction heterogeneity via polymorphic construc-

tions and operators overloading. We also implemented a network

1
No relation to the https://rev.ng disassembler

https://rev.ng
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module that allows RevEngE to introspect into linked-libraries and

discover function prototypes based on similar constructions found

on the Internet. We evaluated RevEngEwith x86 ELF malware sam-

ples collected from VirusShare [56] and a newly crafted malware

sample based on independent functions taken from five known

malware. Our developed malware was not detected by any AV on

VirusTotal [57] at the time of this writing, yet the malware samples

it was based on were detected by multiple AVs. The obtained results

show that our proposal of debug-oriented decompilation is feasible,

as well as useful as a dual tool either for malware analysts and

malware developers.

Our contributions in this paper are:

• we discuss the challenges and limits of malware decompila-

tion procedures. Whereas previous work have already indi-

vidually pinpointed these challenged, they are here grouped

and presented according their occurrence during the steps

of development of an actual malware decompiler;

• we introduce the debug-oriented approach to assist malware

decompilation;

• we propose RevEngE, a PoC to perform debug-oriented

decompilation, and detail its design and implementation;

RevEngE code will be open-sourced after publication

acceptance.

• We showcase examples of RevEngE usage to decompile

actual malware samples for defensive and offensive purposes.

The remainder of the paper is organized as follows: in Section 2,

we revisit malware analysis solutions to better position our contri-

butions; in Section 3, we discuss malware decompilation challenges;

in Section 4, we present RevEngE’s design and implementation; in

Section 5, we evaluate RevEngE by decompiling actual malware; in

Section 6, we discuss RevEngE’s advantages and limitations; finally,

we draw our conclusions in Section 7.

2 RELATEDWORK: MALWARE ANALYZERS

We here shown an overview on how malware analysis tools have

been evolving from sandboxes to decompilers to better position Re-

vEngE among previous work, and how it relates to recent advances

in decompiling.

First Generation Analyzers are sandboxed solutions (e.g., Anu-

bis [3, 27], CWSandbox [60]) to spot malware behavior by running

the sample and extracting indicators of compromise (IoCs) that

might help further incident response procedures. These analyzers

neither build high level representations of malware samples, nor

address multiple execution paths.

SecondGenerationAnalyzers represent the information extracted

from malware sample’s execution using an Intermediary Represen-

tation (IR) [1, 55] (e.g., the VINE component of Bitblaze [50], BAP

framework [7]). Thus, they enable additional tracing capabilities

through the observation of multiple execution paths or construc-

tions.

Third Generation Analyzers leverage IR to extend their analysis

capabilities from only tracing to additional inspection resources,

such as Angr.io [48], which builds a program tree to exploit bugs;

HexRays [24] and Snowman [49], which implement full decompil-

ers; ERESI [16], which proposes an IR-based debugger; RADARE [42],

which mixes debugging, tracing and decompilation capabilities. Our

solution is a third generation analyzer.

Recent Decompilation Advances. Third-generation analyzers

are powered by recent developments in the decompilation field.

More specifically, dynamic inspection approaches allow solutions

to follow multiple execution paths, thus overcoming decompila-

tion challenges such as reconstruction of data structures [12], data

types [54], and loop information [45]. In this work, we adopt a

dynamic decompilation approach via debugger instrumentation.

Previous work suggested that interactive debugging procedures

could be used to assist decompilation by increasing code cover-

age [19], or that trace-oriented programming could help in under-

standing binary behavior [62]. We extended these works for the

specific case of malware decompilation. Though decompilation

have already been applied for algorithms identification within un-

known binaries [36] and for malware analysis [61], we go one step

further and propose to reassemble malware decompiled functions

and algorithms into new pieces of code.

3 BACKGROUND: COMPILERS &

DECOMPILERS

In this section, we show how compilers and decompilers operate,

and discuss challenges of malware decompilation (some of them

tackled by RevEngE).

3.1 Similarities & Differences

A compiler is a tool that transforms high-level code into low-level

representation of it. In this work’s context, it takes a code written on

a high-abstraction programming language (e.g., in C) as input and

generates a machine understandable code. A typical compilation

procedure is divided into the following steps: parsing, in which an

input file has its content loaded into memory in a convenient rep-

resentation; pre-processing, which expands macros and constants,

and propagate them along the code (e.g., constants like #define N
10 are consolidated on expressions, such as for(i=0;i<N;i++));
code generation, which performs high-level code traversal so the

compiler may emit lower-representations code (assembly) accord-

ing to the identified control-flow structures; assembling, in which

the produced code is translated to actual machine code; linking,
which resolves external function calls/symbols on binary relocated

sections.

A decompiler is a solution that turns low-level code into a repre-

sentation in high-level. In this work’s context, it transformsmachine

code into a human-readable representation, thus being sometimes

referred as inverse compiler [11]. As compilation, the decompilation

procedure can be divided into small steps: Hollander [25] names de-

compilation steps as init, scan, parse, construct, generate,
whereas the HexRays decompiler [24] adopts disassembly, lift,
data type recovery, code generation. Other steps are defined
by Serrano [47]. Despite different naming schemes, decompilation

steps are very similar: it starts with the disassembling of a given

binary or the parsing of disassembly data taken as input; the lift
phase consists of raising assembly code to an intermediate rep-

resentation; data type recovery adds meaning to data values;

if lift and data type recovery are combined, the result is the

construct step. Finally, there is a code generation routine that
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produces high-level code, instead of machine code produced by

compilers.

Backend vs Frontend. The internals of compilers and decom-

pilers are frequently divided into frontend and backend. A com-

piler frontend is machine-independent and responsible for handling

high-level constructs, while its backend is machine-dependent and

responsible for code-generation. As inverted compilers, decompil-

ers’ frontend and backend are reversed, i.e., its frontend handles

machine data whereas the backend is machine-independent and

handles high level constructs.

3.2 Decompilation Challenges

Disassembly. It is a key step for the decompilation procedure,

since code instructions define the behavior of a program. Most

decompilers adopt static disassembly approaches, which may be

problematic when handling malware samples [47]—they often em-

ploy anti-disassembly tricks to bypass static analysis procedures,

such as opaque constants [34]. Drawbacks of static disassembly

procedures include sorting out instructions from data [12, 26], sep-

arating pointer addresses from constant and offsets [55], or the

presence of context-dependent instructions (e.g.,cpuid) in the as-

sembly code handling [29]. All issues are often tied to malware

samples, either in the code construction or for fingerprinting [6].

The challenges are made even bigger when overlapping instruc-

tions are observed during the disassembly phase [5], which can

be implemented, for instance, for self modifying code malware

samples.

A possible solution to these issues is to rely on dynamic execu-

tion traces as data sources, which solves data dependencies and data

types in runtime [54]. On the one hand, dynamic approaches natu-

rally explicit pointers and function returns [55], thus solving most

static analysis issues. On the other hand, dynamic malware inspec-

tion approaches suffer from the same limitations of typical malware

sandboxes (e.g., evasion due to the lack of transparency [14]), which

requires specialized debuggers to be effective [63]. For RevEngE,

we adopted dynamic disassembly and implemented debug exten-

sions to armor it against evasive malware. Another issue related

to dynamic approaches is ensuring code coverage, since malware

samples may require user interaction to take the proper paths,

i.e., those that result in the malicious actions. While previous dy-

namic approaches addressed code coverage by taint tracking user

inputs [19, 36], RevEngE relies on analyst interaction with the ana-

lyzed code. Dynamic tracing solutions record executed instructions

instead of the code structure, making that the K instructions within

a given K-long loop be presented N times. These K-instruction blocks
should be identified and then re-rolled to reconstruct the loop struc-

ture, which may be a problem [62]. Existing re-rolling algorithms

are used either for loop recovering [52] as for other constructions,

such as break and continue [15]. However, RevEngE adopts a

distinct solution that represents code within a loop through Single

Statement Assignments (SSA) [55], allowing for the representation

of the analyst’s interaction with each loop iteration individually.

The major issue about loop unrolling and nested function calls

serialization is that the trace size might become large until its

computation become unfeasible. It is even more concerning if we

consider that malware samples often add useless instructions to

accomplish stalling behavior [30]. State-of-the-art reverse engineer-

ing techniques [9] rely on program slicing to overcome the trace

size increasing, since each slice is a semantically meaningful por-

tion of the program that captures a subset of its computation [58].

The challenge here is to determine the length of each slice so as to

better capture the program behavior [4] even in face of the presence

of non-standard, rarely seen constructions. While previous work

suggested using dynamic tracing solutions to automate the slicing

size definition [65], RevEngE relies on the analyst’s expertise for

such task.

Instruction Lifting. Working with x86-like instruction set may

be hard due to its CISC architecture, because it also allows memory

as operands, in addition to registers. To make instruction handling

easier, most decompilers perform some kind of lifting. For instance,

Zynamics chose to move instructions to a RISC-based representa-

tion, whereas HexRays opted for Intermediate Language (IR) [47].

Although recent solutions insist in directly translate assembly to C

code [43], the asm2c tool claims that it is unfeasible [7]. Therefore,

the design of an appropriated IR is essential for correctly handling

binary data, such as the currently widely adopted SSA representa-

tion (also used in RevEngE). The large size of the x86 instruction

set [2] makes instruction lifting challenging, since it would require

a great amount of development effort to parse and support all in-

struction possibilities. Thus, most decompilers chose to handle only

a small subset of instructions and behaviors: REIL [17] supports

only 17 of more than 600 available instructions in the x86 archi-

tecture; BAP [7] does not handle floating point instructions. These

choices may not be reasonable when we need to address malicious

binaries, which can use such type of instructions for fingerprinting.

RevEngE relies on GDB support to handle the entire x86 instruc-

tion set, even when an specific instruction is not implemented in

our IR. Heterogeneity is also an issue if we consider the multiple

calling conventions that might be used within the same binary or

bytecode [33]. While the state-of-the-art for calling convention

static determination is based on neural networks [10], RevEngE

accomplishes dynamic execution through the underlying GDB sup-

port.

DataTypeReconstruction.During decompilation, the instruction-

level data need to be translated to a high semantic level, thus al-

lowing the reconstruction of variable types, arrays, and pointers.

Data type identification may require solving complex satisfiability

expressions [44]. Similar issues can be found in function parame-

ters [12] and returns [64] identification. Addressing them in practice

involve the use of heuristics. In RevEngE, we overcome such issues

by relying on the underlying GDB platform. Besides internal func-

tion calls, decompilers must reconstruct data type from external

function calls (e.g., dynamically linked libraries) to handle complex

code constructions. The lack of symbols and additional information

makes this task hard to accomplish. To do so, current approaches

make use of automated solutions that parse known libraries in the

search of required information [35]. RevEngE bridges the seman-

tic gap by querying the Internet for function prototypes when it

identifies a call for a linked library function.

Code Generation. The last step of the decompilation procedure,

code generation is responsible for representing data in a human-

readable way. However, its correctness is largely tied to the results

from previous steps. In comparison to other steps, there are few
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works on improving decompiled code generation [15]. In RevEngE,

we exploit Python’s polymorphism capabilities to implement a new

code-generation strategy that allows the decompilation to occur at

any time during program’s debugging.

Decompiler Evaluation. Reconstruction time and quality of the

recovered code are some of the metrics used to evaluate a decom-

piler [46]. However, the amount of converted code is not a good

metric, since “the core problem of decompilation resides on the

remaining parts” [59] and malware may insert dead code to pollute

the produced code In this work, instead of considering the retrieved

code after decompilation, we evaluate the ability of the decompiler

in malware reassembling.

4 REVENGE: DESIGN & IMPLEMENTATION

We here introduce the development of RevEngE, a PoC realizing

the debug-oriented decompilation approach. RevEngE’s goal is not

to implement all decompiler capabilities but the minimal require-

ments to streamline the debug-oriented decompilation procedure.

RevEngE’s ultimate goal is to produce a reassembled malware piece

that might be used in practice for multiple purposes, such as foren-

sic procedures, testing antivirus engines against malware variants,

or even to find bugs in malware samples [8].

4.1 System Model

RevEngE is a PoC tool developed to validate our proposed approach

of debug-oriented decompilation. It consists of two components:

(i) the native GDB as the decompiler frontend to process userland

assembly code; and (ii) a Python-based GDB plugin as the decom-

piler backend to produce C code. Whereas ELF malware might be

implemented in multiple languages, we focus on C-like binaries as

they are currently the most prevalent ELF malware types [13],

In RevEngE operation model, the analyst starts to debug a mal-

ware sample in GDB in the search of interesting functions and

code constructions. The analyst then asks RevEngE to decompile

function excerpts, which are added to a list of decompiled func-

tions. Each function can be decompiled more than once (according

to the provided parameters and followed execution paths), thus

generating distinct decompiler outcomes. As in any debugging pro-

cedure, the analyst can define the execution paths to be followed

by calling and stepping functions. Hence, RevEngE decompilation

does not reflect the binary content, but the analyst investigation

flow. Analysts may even decompile a code before the function ends,

generating a piece of code completely distinct of the original one.

After all functions are decompiled, they can be grouped into a final

high-level source-code file, and reorganized to build a different

program. Rebuilt programs may be used to both defensive and of-

fensive purposes, such as to aid in detection heuristics development

through the analysis of unknown malware or to create a malware

variant capable of evading security solutions.

The goal of RevEngE is not to be the definitive malware decom-

piler, but to pinpoint ways to overcome the following decompilation

challenges: (1) static disassembly limits via debug-oriented, dy-

namic instruction handling; (2) lack of stimulation through analyst-

malware interaction; (3) loop unrolling problem, by using SSA

definitions; (4) code slice size definition outsourced to analysts; (5)

parsing of all x86 instructions with GDB even when RevEngE does

Figure 1: RevEngE Architecture. GDB provides the basic de-

bugging capabilities and was armored to handle malware

anti-analysis techniques.RevEngE decompiler is developed

on top of the armored GDB.

not have an IR class for such instruction, (does not break malware

execution); (6) real-time IR generation, i.e., decompilation may oc-

cur at any debug time; (7) multiple calling convention support via

outsourced GDB identification (allows inspection using multiple

calling conventions in the same binary); (8) dynamic code retrieval

to recover only code actually executed, mitigating issues related

to dead-code insertion in malware; (9) introspection in linked li-

braries function calls through automated semantic gap bridging

that retrieves function prototype definitions from the Internet; and

(10) exploiting Python OOP paradigm with polymorphic methods

to overwrite code generation and emit high-level C code according

to each x86 instruction behavior.

To simplify RevEngE implementation, we limited the malware

operation context by assuming that the code under decompilation:

(i) performs computations using only integer values (no floating-

point operations supported); (ii) can reference integer vectors, but

each vector bucket will be decompiled to a distinct variable; (iii)

does not perform signed/unsigned conversions and all numbers are

represented as 2’s complement; (iv) can reference static or dynamic

chars, but the decompiler only generates static char declarations,

without dynamic allocation support; (v) can use loop constructions,

but these will be unrolled during decompilation; (vi) does not rely

on predicated instructions, since handling speculative execution is

hard. Unlike other approaches, we do not prevent the malware from

performing such actions, but limit the generation of decompiled

code encompassing such constructions.

4.2 System Architecture

RevEngE architecture has four layers (Figure 1). The first layer

is GDB itself. By relying on an existing debugging solution, Re-

vEngE does not need to re-implement inspection features, such as

breakpoints, disassembly and other basic tasks required for binary

analysis.

The second layer is composed by a series of malware analysis

and inspection extensions, which are require to armor GDB against

“tricky” malware constructions as the GDB was originally designed

to handle only goodware samples. RevEngE implements three anal-

ysis extensions: (i) Automatic entry point identification, to inspect

stripped binaries; (ii) Control flowmodification support, to skip anti-

analysis checks; and (iii) Skipping ptrace calls, to avoid anti-debug

techniques. Whereas this is not an exhaustive list of anti-analysis
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tricks, these analysis features are enough to handle most samples

present in our dataset, thus enabling RevEngE evaluation.

The third layer is composed by the IR implementation, as low

level assembly instructions must be lifted to a high-level representa-

tion. As our approach is runtime-based, this step is also responsible

for keeping debugging state, as the high-level representation may

change as the debugging procedure steps.

Finally, the upper layer is responsible for C code emission. Unlike

other layers, which are affected by each instruction step, RevEngE

only decompiles code on-demand.

4.3 Implementation

We here describe how RevEngE implements its functions on each

one of the previously presented layers.

GDB Instrumentation. GDB did not provide native support for

extensions. To overcome this limitation, GDB developers integrated

a Python interpreter within it, thus allowing scripts to be run in

GDB’s context. RevEngE leverages this feature to implement its

analysis resources.

This strategy was already deployed by other GDB-based solu-

tions, such as PEDA [38], Pwndbg [40] and GEF [21]. In common,

they are all intended to be used as exploitation frameworks. As far

as we know, we are the first to present a GDB-based decompiler.

RevEngE collects data by parsing GDB outputs, wrapping GDB

commands in RevEngE commands.

Malware Analysis Support. RevEngE implements some debug-

ging extensions to assist malware analysis procedures. The exten-

sions are not directly related to the decompilation procedure but

they help analysts while selecting the code regions which will be

decompiled. Developing such support is required as GDB is not

designed to natively handle malware, thus not offering all resources

required by malware analysts.

Automatic Entry Point Identification. RevEngE’s key idea is to

allow an analyst to mark the code regions that he/she is debugging

for decompilation. However, if one runs a binary without setting

breakpoints, the execution will finish without stopping and no code

region would be marked and decompiled. To handle this case, Re-

vEngE automatically sets a breakpoint to the main function, the

entry point of standard binaries. Nevertheless, malware binaries are

often stripped, thus not exporting a main symbol. To still allow set-

ting an entry point breakpoint even in stripped binaries, RevEngE

implements an automatic entry point identification procedure, as

follows: (i) RevEngE first retrieves the libc address from the ELF

header; (ii) sets a breakpoint on the identified libc address; (iii) re-

trieves the first libc function call argument, which is the program

entry point address, as shown in Code 1; and (iv) sets a breakpoint

on the identified entry point address.

1 __libc_start_main (main=<value optimized out >, argc=<
value optimized out >, ubp_av=<value optimized out
>,

2 init=<value optimized out >, fini=<value optimized
out >, rtld_fini=<value optimized out >,

3 stack_end =0 x7fffffffdc38) at libc -start.c:258

Code Snippet 1: Libc Entry Point. First argument points to

application entry point.

RevEngE relies in this procedure to automatically stop at the

entry point when it identifies that the analyzed binary is stripped.

This approach is supported by the fact that we our model assumes

that only standard C binaries will be handled, thus the libc library
will always be present.

Invert BranchDirection.Malware samples often rely on complex

code constructions to mask their decision paths. Therefore, a typical

analyst task is to follow paths distinct than the ones pointed by

samples’ native branches. This can be accomplished by inverting

directions when a conditional branch is identified.

Branches are taken according the flags set in the processor.When

a cmp instruction is executed, flags such as overflow and/or zero
are set. Therefore, a way of inverting branch direction is to invert

the flags right after the cmp instruction, as implemented by Re-

vEngE. Therefore, each time an invert command is raised, the flags

register is changed by RevEngE, as shown in Code 2.

1 output = gdb.execute("set␣$eflags |=0x%x" % self.
flag_map[flag],to_string=True)

Code Snippet 2: Invert Branch Direction. Flags register

is changed according a map of possible flags for such

command.

Skipping Ptrace Checks. GDB’s inspection capabilities are sup-

ported by the ptrace framework, thus a way of evading GDB inspec-

tion is to detect ptrace attachment to the monitored process. It can

be done by trying to attach ptrace to itself, as shown in Code 3. If

the attachment fails, the sample will realize that some other entity

(the debugger, in this case) previously attached to it and may evade

analysis.

1 if (ptrace(PTRACE\_TRACEME , 0, NULL , 0) == -1)

Code Snippet 3: Ptrace self-check. RevEngE skips ptrace

self-checks to avoid being detected.

To avoid being deceived by this anti-analysis technique, Re-

vEngE allows analyst to skip ptrace checking. RevEngE imple-

ments such skipping capability by relying on the previous branch

inversion technique to automatically shepherding the application

execution flow towards a path free of ptrace calls.

Instruction Handling and IR. RevEngE relies on an Intermedi-

ate Representation (IR) to lift instructions from a lower to a higher

abstraction level, which is done by representing each instruction

as a class object. As in RevEngE’s operational model decompila-

tion can occur at any time, each executed instruction’s object is

responsible to update the current decompilation context, thus im-

mediately updating variable values, both in memory as well as in

registers. To avoid re-implementing the same context controlling

routines in each instruction, we explored the Python OOP charac-

teristic to implement polymorphic classes definitions, thus handling

all arguments in the same way and only rewriting the code emis-

sion method to reflect instruction operation. Figure 2 exemplifies

this project decision for the arithmetic functions: ADD and SUB are
handled the same way, via their parent class’ methods, but their

code emission methods is redefined to emit the proper high-level

operators (+ and -, respectively).
RevEngE also benefits from Python OOP capabilities to handle

the arguments heterogeneity enabled by the x86 CISC instruction

set. RevEngE overloads classes constructors to provide support for



ROOTS 19, 2019, Vienna Blinded Authors.

Figure 2: Instruction Representation. RevEngE benefits

from Python’s polymorphism to model instruction’s behav-

iors and overloads method declarators to support each x86

instruction’s possible multiple argument types.

multiple argument types combinations, such as registers (reg) and
memory (mem) operands, as also exemplified in Figure 2.

RevEngE implements a factory design pattern [20] to allow

the proper object class selection, as shown in Code 4. Therefore,

instead of directly creating a new object,RevEngE asks a instruction

factory to return the proper object based in the provided arguments

(register, memory, or constants).

1 class IFactory (...):
2 def get(self , args):
3 newclass = globals ()[name](args)
4 return newclass

Code Snippet 4: Instruction Factory. The Factory design

pattern allows instantiating objects from the proper class by

exploring Python OOP capabilities.

A challenge for instruction lifting is that a given high level behav-

ior can be implemented by multiple distinct assembly instruction.

RevEngE overcomes this challenge by exploiting model’s assump-

tions. For instance, Code 5 shows that all distinct division instruc-

tions are handled by the same (IDiv) high-level class, since only
signed integers are assumed in RevEngE’s model.

1 self.classes['div'] = "IDiv"
2 self.classes['divl'] = "IDiv"
3 self.classes['idiv'] = "IDiv"
4 self.classes['idivl '] = "IDiv"

Code Snippet 5: Instruction Lifting. RevEngE assumes only

signed integer operations to handle all instructions via the

same high-level class.

Some code constructions, however, cannot be directly mapped

from single instructions to a single class. Conditionals, like ifs,

for instance, are the most noticeable example of this type of con-

struction. Code 6 shows that an if is composed by a compare (cmp)

instruction that sets the comparison flags and a branch instruction

(jle) that jumps to a given target if the comparison flag is set.

1 0x4004eb cmp -0x8(%rbp),%eax
2 0x4004ee jle 4004fb <main+0x25 >

Code Snippet 6: Low level representation of a conditional

decision. IF instructions are composed bymultiple assembly

instructions.

To handle such complex cases, RevEngE implements a type pro-

motion schema. In such, individual instructions are aggregated into

a higher level construction class. Code 7 exemplifies the aggrega-

tion of the comparison instruction and the resulting flag into a high

level comparison class that represents conditional constructions.

1 class HighLevelCompare ():
2 def __init__ (self ,cmp ,set):
3 self.op1 = cmp.op1
4 self.op2 = cmp.op2
5 self.op3 = set.op3

Code Snippet 7: High level

conditional decision representation. Assembly instructions

are promoted to a single class that represents a high level

conditional structure (e.g., IFs).

RevEngE supports operations over distinct argument types by

outsourcing their manipulation to a variable management class,

as shown in Code 8. The manager is responsible for storing all

variable information, such as name, assigned register and/or mem-

ory position, and for keeping context consistent after instruction’s

execution, by evicting variables from register to the memory and

avoiding duplicated entries.

1 self.vars = VariableManager ()
2 self.vars.remove_registers(reg=arg1.get_operand ())
3 self.vars.check_is_pointer(var.get_value ())

Code Snippet 8: Variable Management. RevEngE does not

handle variables directly but via a centralized manager to

keep context consistent.

Code 9 shows that the variable manager encapsulates the com-

plexity of handling the multiple storage possibilities by allowing

RevEngE to create or retrieve a variable by using both limited and

full variable information, since the manager internally updates all

tables to keep context coherent, such as: (i) evicting a variable to

memory when its associated register is requested by another op-

eration; (ii) loading a variable from memory to register when it

is requested by an operation; (iii) promoting constant values to

initialized variables; and (iv) creating new variables when a register

or memory value is overwritten;

1 self.var = self.vars.new_var(reg="%eax")
2 self.var = self.vars.new_var(reg=arg1.get_operand (),

value=val)
3 self.var = self.vars.new_var(value=arg1.get_value (),

mem=arg2.get_operand ())

Code Snippet 9: Variable Manager. Context complexity is

encapsulated by the manager, thus releasing RevEngE to

focus on decompilation logic.

A key challenge overcome by the variable manager is to disam-

biguate memory references. As instructions reference variables in

a register+offset way, distinct instructions might reference the
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same address using distinct registers and offsets. These cases must

be identified and properly handled to not break the code semantic

by creating a new variable according the pointed register. Whereas

this is a challenge for static disassembly solutions, RevEngE ad-

dress this problem by dynamically inspecting the value pointed by

the registers and offset, thus handling variables by their memory

addresses and not by the pointed register, thus naturally avoiding

conflicts. Code 10 illustrates how RevEngE mapped two distinct

references to the same variable.

1 (\ revenge) ...da main movl $0xF -0x4(%rbp)
2 NAME: [var0] VAL: [0xF] REG: [NONE] MEM: [7

fffffffdc7c]
3 (\ revenge) ...0e main mov -0x8(%rbp) %eax
4 NAME: [var0] VAL: [0xF] REG: [NONE] MEM: [7

fffffffdc7c]

Code Snippet 10: Memory References Disambiguation.

Variables are referenced by their memory addresses instead

of pointed registers.

Handling Special cases. Atypical code constructions may appear

naturally during program compilation, due to bugs, or being inten-

tionally created by malware authors. In RevEngE’s model of any-

time decompilation, atypical code constructions may also be origi-

nated by premature function exits. RevEngE handles the following

atypical cases: (i) identifying direct references to argc, argv argu-

ments; (ii) return zero when function debugging does not achieve

an actual assembly return instruction; and (iii) detect and promote

local to global variables when it is referenced in more than one

function context.

A particular case to be handled by RevEngE are strings, whose

memory addresses references must be lifted to ASCII. Whereas

static decompilation approaches are able only to lift references to

strings declared in .static binary sections, RevEngE can lift any

string, including dynamically-generated ones, by runtime-dumping

memory content and interpreting it as strings any time that a string

declaration and/or reference is identified.

Introspection. RevEngE supports decompiling code which call

external functions from linked libraries via an introspection proce-

dure to identify function parameters and return values, as shown

in Code 11, which allows RevEngE declaring variables from the

correct type and returning the correct value via the eax register.

1 printf@stdio.h: int printf ( const char * format , ...
); (Return: int) (N_Args: 2)

Code Snippet 11: Introspection Procedure. External

function prototypes are identified by searching for function

and library names on the Internet and parsing them to a

format suitable for RevEngE decompilation.

RevEngE’s introspection procedure is inspired in previous ap-

proaches [39] to automate reverse engineering, thus automatically

searching for function prototypes on the Internet based in the

identified library which was being debugged when an introspec-

tion procedure was requested. The Internet search is completely

automated via the Python’s googlesearch [22] module, thus not

requiring any analyst intervention. Parsed prototypes are locally

stored in a pickle [41] blob to speed up further queries, since, for

most applications, the same function calls are likely to appear many

times along their execution. The reasoning for the adoption of the

internet-based parser is to support even newly-created libraries.

In the case where the libraries’ prototypes are not found on the

Internet, the analyst is prompted for manual intervention.

Analysis Passes. Before outputting high-level code, the IR can be

analyzed to optimize the code to be generated and/or to discover

bugs in the executed code. RevEngE implements an analysis step

over the IR to discover reads from uninitialized memory positions.

In such cases, RevEngE creates a new variable in the referred posi-

tion and initialize the memory region with zeros an generates an

uninitialized macro at the decompilation time, thus warning the an-

alyst about the identified bug in the malware execution. RevEngE

also implements an unused variable elimination by discarding vari-

ables associated to memory regions which were read only once and

not further referred, thus reducing the overall amount of code to

be inspected by the analyst.

Code Generation. RevEngE ensures the correct statement emis-

sion order by keeping a list a list of executed instruction addresses.

This list is used to refer to a list that stores the objects corresponding

to the instructions pointed by that address in the multiple context.

This indirection is required since the same address may originate

multiple, distinct objects according the context the instruction is

called (e.g., the decompilation of the same function using distinct

arguments). This indirection allows RevEngE to naturally perform

loop unrolling during code emission. As RevEngE traverse the in-

struction addresses list, it pops the top of stack, thus serializing

loops, as shown in Figure 3.

Figure 3: Code Generation. RevEngE keeps distinct objects

for the same instruction address, thus representing the mul-

tiple calling contexts. Loop unrolling is performed by re-

moving the top of stack each time a given instruction ad-

dress is referred.

ii After the code emission step, gcc compiles the emitted code

using gcc. RevEngE can also execute the compiled code and asserts

whether the returned code matches the code returned to GDB by

the original application.

5 EVALUATION

In this section, we evaluate our debug-oriented decompilation ap-

proach via the decompilation of real ELF malware samples using

RevEngE. We evaluate: (i) whether RevEngE decompilation is cor-

rect or not; (ii) whether RevEngE actually helps analysts on decom-

piling obfuscated, real malware code; and (iii) whether RevEngE is
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effective on reassembling decompiled functions in a new piece of

high-level malware code.

TestBed. All tests were performed in an fresh Ubuntu 16.04 LTS

installation, with RevEngE set on top of a standard GDB installa-

tion, in an network-isolated environment to prevent the debugged

malware samples from infecting other hosts.

Dataset. To evaluate RevEngE, we reverse engineered the x86 ELF

binaries available in the VirusShare repository [56]. Whereas ELF

malware are available for multiple platforms and both and GDB

can handle samples in a multi-platform manner, we limited our

evaluation to x86 since it is the currently most widespread platform

for malware dissemination [13].

Decompilation Correctness. RevEngE was developed using pro-

gramming 101 code samples to assert decompilation correctness in

comparison to the available source code. After we ensured the basic

correctness of RevEngE decompilation procedures, we extended

RevEngE evaluation to real, complex binary applications without

source code availability. We considered 256 self-contained ELF bina-

ries from the /bin and /usr/bin directories as goodware samples

and 2,000 ELF binaries from the VirusShare dataset as malware

samples.

To verify RevEngE capabilities on handling instructions present

on real binaries, we set breakpoints on binaries’ entry points (main)
and exit points and decompiled all instructions between them.

For all cases, we considered only the decompilation of instruction

present in the binary itself and not on external libraries, since these

are handled by the introspection procedures,
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Figure 4: Number of instructions per binary. Malware sam-

ples executed more instructions than goodware samples.

Figure 4 shows the number of instructions executed during good-

ware and malware tracing procedures. We notice that, in an overall

manner, malware samples executed more instructions than good-

ware samples, which can be explained by: (i) malware being more

autonomous than goodware; and (ii) malware being more obfus-

cated than goodware. In the first case, some goodware samples

finished their execution after only a hundred of instructions had

been executed due to the lack of input parameters and/or arguments

whereas most malware samples finished their execution normally

since they relied on default parameters. In the latter, whereas no

goodware sample was packed, many malware samples are packed

and compressed, thus these samples spent significant processing

time on unpacking routines, causing their traces to grow.
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Figure 5: Handled instructions per binary. Most binaries

were successfully handled. Malware samples impose greater

challenges than goodware samples.

Figure 5 shows the number of binaries and the percentage of

instructions that were successfully handled by RevEngE. We notice

that, in an overall manner, RevEngE succeeds on handling most

of binary instructions, even assuming a compact model of only

handling integer operations. This result shows that handling exter-

nal libraries via an introspection procedure is a successful strategy,

since complex instructions (e.g., floating point) are much more

present on libraries than on the binaries themselves and RevEngE

does not need to handle the complexity of all instructions embedded

by them. Despite the overall success, we notice that the smallest

rates of instruction handling are observed for malware samples

instead of goodware, since, as it is expected, some malware con-

structions frequently employed by malware are really challenging

to be addressed by disassemblers and decompilers.

We reinforce that RevEngE’s goal is not to decompile entire

binaries, but slices of code defined by the analysts. Therefore, the

obtained results (≈90% coverage) must be understood as a great

probability of an analyst finding a slice of code that is successfully

decompiled by RevEngE. In the cases where RevEngE is not able to

lift an instruction, the analyst is prompted for manual intervention.

Malware de-obfuscation. As revealed by the previous experi-

ments, a fraction of the considered malware samples is packed (e.g.,

4% of all samples are packed with UPX), thus resulting in larger

traces due to the execution of their unpacking routines. Whereas

RevEngE has shown to be able to handle UPX code without stop-

ping decompilation, packing makes understanding the final result a

hard task, since unpacking code is mixed among the actual malware

code that the malware is interested into, as shown in Code 12. A

significant advantage of RevEngE’s approach is that an analyst

can step the unpack routine and start decompiling only after the

unpacking routine has ended, thus avoiding mixing unpacking and

malware code.

1 var117 = var115 << var97;
2 //Code page address discovered by the analyst
3 var118 = var117 & var103;
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Code Snippet 12: Excerpt of UPX unpacking routine

decompilation. Unpacking code mixed among malware

decompilation code.

Malware Reassembly. To evaluate RevEngE’s decompilation and

reassembly capabilities, we reverse-engineered real malware sam-

ples, selected code regions implementing malicious behaviors de-

scribed in a malware taxonomy [23], decompiled these code ex-

cerpts into new functions, and reassembled them into a new mal-

ware sample.

Code 13 shows the assembly instructions present in the function

trace of a sample
2
from the Tsunami/Backdoor family [28] (67%

detection, according VirusTotal).

1 call 0x8048dfc <rand@plt >
2 mov %eax ,%ecx mov $0x66666667 ,%eax
3 imul %ecx sar %edx
4 mov %ecx ,%eax sar $0x1f ,%eax
5 sub %eax ,%edx mov %edx ,%eax
6 shl $0x2 ,%eax

Code Snippet 13: Tsunami/Backdoor. Assembly code for the

traced function.

Code 14 shows the decompilation result for makestring func-

tion. The function fills a string buffer by repeatedly attributing to

each char a values attributed by generating a random number and

performing a series of transformations over it. Random strings are

used in malware samples, for instance, as infection markers and/or

in fingerprinting procedures.

1 void makestring(char *var3) {
2 int var1=0, var2=MAX_STRING ,
3 var6=0x666667 , var9=0x1f , var12 =2;
4 for(var4=var1;var4 <var2;var4 ++){
5 var5=rand(); var7=var6/var5;
6 var8=var6%var5; var10=var7 >>var9;
7 var11=var8 -var10; var13=var11 <<var12;
8 var3[var4]=var13;

Code Snippet 14: Tsunami/Backdoor. Decompiled code

function.

Code 15 shows the assembly instructions present in the function

trace of a sample
3
having Exploit/Trojan behavior (45% detection,

according VirusTotal).

1 call 0x80484b4 <atoi@plt >
2 add $0x10 ,%esp mov %eax ,%eax
3 mov %eax ,%eax mov %eax ,-0x18(%ebp)
4 cmpl $0x2 ,0x8(%ebp)
5 jle 0x804862a <main+90>
6 push $0x1 call 0x80484a4 <exit@plt >

Code Snippet 15: Exploit/Trojan. Assembly code for the

traced function.

Code 16 shows the decompilation result for main function. The

function receives command line arguments, convert them to int and

check if theymatch pre-defined values. This strategy is employed by

malware samples to avoid analysis procedures, since the malicious

behavior is exhibited only if the right parameters are passed, which

happens in the infected machine, where the malicious binary is

2
ffc7be26912b5aca63e55dc7c830f28a

3
fb437621f3249c647c88350e068fd07

launched by a loader, but does not happen in analyst’s machines,

where the binary is launched in an standalone manner.

1 char var1[MAX_STRING ];
2 int var2=0, var3=3, var4=1,
3 var6=0xf, var7=2, var8=0xff;
4 if(argc==var3){ var5=atoi(argv[var4]);
5 if(var5==var6){ var5=atoi(argv[var7]);
6 if(var5==var8){

Code Snippet 16: Exploit/Trojan. Decompiled code function.

Code 17 shows the assembly instructions present in the function

trace of a sample
4
from the Micmp/Backdoor family (34% detection,

according VirusTotal).

1 call 0x8048734 <time@plt >
2 add $0x4 ,%esp push %eax
3 call 0x8048794 <srand@plt >
4 add $0x10 ,%esp sub $0x4 ,%esp
5 sub $0xc ,%esp call 0x8048814 <rand@plt >
6 add $0xc ,%esp mov %eax ,%edx
7 sar $0x1f ,%edx idiv %ecx

Code Snippet 17: Micmp/Backdoor. Assembly code for the

traced function.

Code 18 shows the decompilation result for return_randip func-
tion. The function returns a random IP address by generating a large

random number and dividing it into the four IPv4 octets. Random

IP generation is used, for instance, in network scanning malware.

1 void return_randip(char *var1){
2 int var3=0xB; srand(time(NULL));
3 var2 = rand(); var4 = var2 / var3;
4 var5 = rand(); var6 = var5 / var3;
5 var7 = rand(); var8 = var7 / var3;
6 var9 = rand(); var10 = var9 / var3;
7 sprintf(var1 ,"%d.%d.%d.%d",var ...);

Code Snippet 18: Micmp/Backdoor. Decompiled code

function.

Code 19 shows the assembly instructions present in the func-

tion trace of a sample
5
from the Small/Backdoor family [32] (62%

detection, according VirusTotal).

1 movl $0x8049798 ,(%esp)
2 call 0x80487a8 <system@plt >
3 movl $0x80497bb ,(%esp)
4 call 0x80487a8 <system@plt >

Code Snippet 19: Small/Backdoor. Assembly code for the

traced function.

Code 20 shows the decompilation result for open_firewall func-
tion. The function executes commands to clean previous firewall

rules and sets it to accept incoming connection, which is essential

for a backdoor malware. The decompiled code shows RevEngE’s

capability of dynamically identifying parameters values, since the

iptables rules are originally passed to the system via the esp
stack pointer and RevEngE recovers the values by asking GDB to

interpret the pointed address as a NULL-terminated string.

1 void open_firewall (){
2 char var1 []="iptables␣-F␣INPUT";
3 char var2 []="iptables␣-P␣INPUT␣ACCEPT";
4 system(var1); system(var2);

4
ffb00447d40b0ae015752dd484d09de8

5
0a7e7a26796bf09112e997e2bd07ef24
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Code Snippet 20: Small/Backdoor. Decompiled code

function.

Code 21 shows the assembly instructions present in the function

trace of a sample
6
from the RST/Virus family [53] (69% detection,

according VirusTotal).

1 call 0x804a104 <openlog@plt >
2 push %ebx push $0x806f5e7 push $0x7
3 call 0x8049fa4 <syslog@plt >
4 call 0x804a1b4 <closelog@plt >
5 <userfile_remove >:
6 call 8049 f54 <remove@plt >

Code Snippet 21: RST/Virus. Assembly code for the traced

function.

Code 22 shows the decompilation result for debug function. The

function checks if the system is monitored by syslog. This strategy
is by malware samples to implement evidence removal procedures,

by deleting the log files and thus remaining undetected. The de-

compiled code shows that RevEngE was able to recover not only

the command string but also the parameter string ("r") passed to

the open function.

1 int debug(){
2 FILE *var1; char var2 []="/var/log/syslog", var4 []="r"

;
3 int var3 =0; var1 = fopen(var2 ,var4);
4 if(var1){ var3 =1; }
5 return var3;

Code Snippet 22: RST/Virus. Decompiled code function.

We reassembled the previously presented decompiled functions

into a new malware sample. It performs the following actions: (i) It

starts by checking the proper command line arguments to exhibit

a malicious behavior only when the proper flags are inputted; (ii)

checks for previous infection signs and creates a random strings

to indicate the current infection; (iii) opens the firewall and sets a

backdoor; (iv) spread itself to random IP addresses; and (v) finishes

its execution by checking and removing log files.

The reassembledmalware samples compiled properly, thus show-

casing RevEngE’s decompilation capabilities. The malware sample

was submitted to VirusTotal and was not detected by any AV [57].

Therefore, we envision RevEngE’s malware reassembly capabilities

being used for fast PoCs prototyping for security evaluations, thus

avoiding analysts to re-implement large portions of code.

6 DISCUSSION

We here present the implications of our proposed debug-oriented

decompilation approach, including RevEngE advances and limita-

tions, and existing development gaps.

Advances. RevEngE contributes to advance the current state of

malware analysis development by proposing the adoption of a

debug-centric decompilation approach. This approach benefits of

analyst’s expertise to overcome malware decompilation challenges

and also benefits from the dynamic inspection capabilities of de-

bugging solutions to analyze constructions which could only be

resolved in runtime.

6
063e9fe33e46412f71f1d65a43fcfbfa

Why malware decompilation? Code decompilation is hard in

most scenarios. However, malware decompilation exacerbates the

existing challenges by frequently presenting “tricky” constructions

that are hardly ever seem on benign software. On the other hand,

malware samples have already been often handled via manual de-

bugging procedures, which makes their decompilation a suitable

case for RevEngE operation, thus our choice of malware decompi-

lation to present our debug-oriented decompilation approach.

Limitations. Whereas outsourcing part of decompilation tasks to

analysts is an effective measure, it might also be cost, since hu-

man analysts are an expensive and limited resources, which can

be understood as a drawback of the debug-oriented decompila-

tion approach regarding scenarios which require malware analysis

at massive scales. For the future, we plan to investigate how to

automate RevEngE operation in such scenarios.

Analysis Evasion. RevEngE is implemented on top of GDB, thus it

is subject to many anti-analysis techniques targeting this debugger.

We highlight, however, that RevEngE’s goal is not to be the defin-

itive malware decompiler solution, but a prototype to streamline

the debug-oriented decompilation approach. We expect that the

RevEngE concept could inspire other researchers when developing

their decompilation solutions, either by relying on analyst’s exper-

tise, or by leveraging the innovative, real-time OOP implementation

proposed by RevEngE.

Portability. RevEngE was implemented on top of GDB to benefit

from its inspection capabilities. Whereas easing PoC development,

the Linux platform present fewer malware samples than other ones,

such as Windows. Thus, for the future, we envision porting Re-

vEngE to other platforms, including as Windows, to broad our

understanding about malware decompilation. RevEngE can be im-

plemented in Windows, for instance, by leveraging Intel Pin [31],

which allows tracking individual instruction in the same way as

GDB does.

OpenDecompilation challenges.Decompilation solutions present

other open challenges in addition to the ones presented in Section 3,

mainly regarding the development of new programming paradigms,

such as Object-Oriented Programming (OOP) and parallel program-

ming. When decompiling OOP code, decompilers would have to

handle constructors and destructors as well as virtual methods.

Whereas translating OOP code to structured code might be an al-

ternative, since assembly code is not aware of high level constructs,

it may result in undesirable artifacts being generated, as already

observed in previous work [18]. Moreover, when decompiling par-

allel programs, the decompiler would have to be able to detect

data transition/propagation across threads. In the malware context,

threads might be used for attackers to distribute their payloads and

a malware decompiler should be able to serialize the payload to

provide a properly decompiled malware source code.

7 CONCLUSION

In this paper, we proposed a debug-oriented decompilation ap-

proach leveraging analyst’s expertise to to overcome the decompi-

lation challenges. We implemented RevEngE, the Reverse Engineer-

ing Engine for malware decompilation and reassembly, as a PoC

for evaluating the proposed approach. RevEngE implements GDB

extensions that intercept and introspect into executed functions to
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build an Intermediate Representation (IR) in real-time, thus allow-

ing decompilation to occur at any time. RevEngE was evaluated

leveraging x86 ELF malware samples decompiled to a new mal-

ware sample composed of independent functions from five known

malware samples. The resulting malware was not detected by any

VirusTotal’s AV although all original malware samples were de-

tected by multiple AVs, thus showcasing that the debug-oriented

decompilation proposal as a practical approach.

Reproducibility. The source code of the developed prototype

was released as open source and it is available on github: https:
//github.com/marcusbotacin/Reverse.Engineering.Engine. An in-

teractive version of RevEngE is available on the corvus platform:

https://corvus.inf.ufpr.br/.
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