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Abstract

Security evaluation is an essential task to iden-
tify the level of protection accomplished in run-
ning systems or to aid in choosing better solu-
tions for each specific scenario. Although an-
tiviruses (AVs) are one of the main defensive
solutions for most end-users and corporations,
AV’s evaluations are conducted by few orga-
nizations and often limited to compare detec-
tion rates. Moreover, other important factors
of AVs’ operating mode (e.g., response time
and detection regression) are usually underesti-
mated. Ignoring such factors create an “under-
standing gap” on the effectiveness of AVs in ac-
tual scenarios, which we aim to bridge by pre-
senting a broader characterization of current
AVs’ modes of operation. In our characteriza-
tion, we consider distinct file types, operating
systems, datasets, and time frames. To do so,
we daily collected samples from two distinct,
representative malware sources and submitted
them to the VirusTotal (VT) service for 30 con-
secutive days. In total, we considered 28,875
unique malware samples. For each day, we re-
trieved the submitted samples’ detection rates
and assigned labels, resulting in more than 1M
distinct VT submissions overall. Our experi-
mental results show that: (i) phishing contexts

are a challenge for all AVs, turning malicious
Web pages detectors less effective than mali-
cious files detectors; (ii) generic procedures are
insufficient to ensure broad detection coverage,
incurring in lower detection rates for particular
datasets (e.g., country-specific) than for those
with world-wide collected samples; (iii) detec-
tion rates are unstable since all AVs presented
detection regression effects after scans in diffe-
rent time frames using the same dataset and
(iv) AVs’ long response times in delivering new
signatures/heuristics create a significant attack
opportunity window within the first 30 days af-
ter we first identified a malicious binary. To ad-
dress the effects of our findings, we propose six
new metrics to evaluate the multiple aspects
that impact the effectiveness of AVs. With
them, we hope to assess corporate (and domes-
tic) users to better evaluate the solutions that
fit their needs more adequately.
Keywords: AntiVirus Malware Detection Re-
mediation & Attack Opportunity.

1 Introduction

Malicious programs and Web pages are preva-
lent threats to interconnected systems. Suc-
cessful attacks involving malware or compro-
mised pages may result in financial losses or
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damage to the image of Internet users. Thus,
combating them requires that individuals and
corporations adopt defensive solutions to pro-
tect their systems. One of the most deployed
defensive solution overall is the antivirus (AV),
that have become popular to the point of being
a mandatory requirement for corporations ob-
taining the PCI-DSS security certification [32].
Therefore, evaluating AV’s effectiveness and ef-
ficiency is essential to allow both system ad-
ministrators and users to select the best solu-
tion for their needs. However, AV’s evaluation
might not be straightforward.

Current market-oriented AV evaluations
adopt an “one-size-fits-all” approach. None of
the most popular tests [3, 1] provide results
broken down by threat categories. Instead,
they provide generic results without consider-
ing multiple infection scenarios, such as the
specifics of the target user country/relationship
with Internet-connected systems, and ignore
important features regarding AVs’ way of oper-
ation. On the one hand, AV’s threat detection
rate is a widespread metric adopted by most
AV evaluations. On the other hand, AV eval-
uations often neglect the time that an AV so-
lution takes to react to a new threat discov-
ery (AV’s response time) and/or AVs stopping
detecting a sample after some time (detection
regression). Moreover, most evaluations cover
uniform scenarios, such as considering single
platforms or worldwide datasets as generaliza-
tion of specific countries and contexts. With
a limited view of AV’s operation, users and
corporations might be biased to choose their
security solutions in a way they are not fully
security-covered due to the lack of informa-
tion about AVs particularities. Therefore, users
that choose their AVs based on their best re-
sults for the general scenario may be less pro-
tected in their real-life system’s use than if they
have chosen an AV more focused in handling
the particular threats of those users’ scenarios.
In addition, AV evaluation results are either

diluted along academic research (other goals
than users’) [51], or not updated even after a
decade [35], a period in which AVs have under-
gone through many changes in their detection
engines (see Section 2).

To bridge this understanding gap about how
AVs behave in actual scenarios, we conducted
a longitudinal evaluation of their behavior, i.e.,
how AV’s detection changes over time when
considering the same dataset. We collected
daily samples from two representative malware
sources: a popular collection of worldwide mal-
ware and a regionalized malware collection pro-
vided by a Brazilian CSIRT. This allows us to
isolate the effect of dataset in the overall AV’s
behaviors. We repeatedly submitted the col-
lected samples to VirusTotal (VT) AV scans for
a period of consecutive 30 days, which allowed
us to identify any detection result change, such
as in AV’s detection rates and labels. As far as
we know, we are the first to perform a longi-
tudinal analysis of AVs at a daily-basis granu-
larity. Our experiments considered distinct file
formats (binaries and Web pages), platforms
(Windows, Linux, and Android), regionalized
datasets (BR and World samples), and periods
(within an entire year), thus evaluating AVs in
their multiple aspects. In total, we considered
28,875 unique malware samples. During the
whole observation period, we performed more
than one million distinct VT submissions.

Our experimental results show that: (i) un-
derstanding phishing contexts is a challenge for
AVs, thus malicious Web pages detectors are
less effective than their binary counterparts;
(ii) detection procedures derived from the gen-
eralization of global data are not enough to
ensure broad detection coverage, thus partic-
ular datasets (e.g., Brazilian malware) are less
detected than world-wide malware; (iii) detec-
tion rates are not constant, and all AV products
presented detection regression effects when pe-
riodically scanning the same malware samples
dataset; and (iv) AV’s long response times to
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deliver new signatures and heuristics create a
significant attack opportunity window within
the first 30 days a binary sample was first dis-
covered by us, updating results from previous
research work [35].

We propose six new evaluation metrics re-
garding threat detection and elimination to
be considered during AV solutions selection to
better account the aforementioned AV’s opera-
tion drawbacks, which includes the measure-
ment of response time and regression occur-
rence. We present an exploratory analysis of
these metrics applied to end-user and corpo-
rate scenarios to highlight how the selected
AV solution changes according the defined sce-
nario needs. On the one hand, corporate users
weight more AV’s response time when selecting
an AV because corporate users are likely more
affected by zero-days than end-users. On the
other hand, end-users weight more AV’s detec-
tion regression when selecting an AV because
end-users are likely more affected by long-term
malware campaigns than corporate users.

In summary, our research work’s contribu-
tions are threefold:

• A longitudinal evaluation of AVs consider-
ing their operation in actual scenarios, and
highlighting their weaknesses and strong
aspects.

• Definition of six new evaluation metrics to
characterize AVs in their multiple dimen-
sions (of use and deployment);

• Validation of the proposed metrics, show-
ing how they can be leveraged to iden-
tify the best AV for distinct scenarios and
users’ requirements.

This paper is organized as follows: in Sec-
tion 2, we present background information on
AV operation; in Section 3, we present our
methodological approach and the evaluated

malware samples; in Section 4, we present eval-
uation results that characterizes current AV so-
lutions operation; in Section 5, we present our
proposed metrics, their interpretation and dis-
cusses the best metrics for distinct scenarios; in
Section 6, we discuss the impact of our findings
and proposals; in Section 7, we present related
work to better position our work; finally, we
draw our conclusions in Section 8.

2 Background

We propose to evaluate AVs according to their
capacity of both detecting and labeling mali-
cious artifacts (e.g., binary files, scripts, URLs,
and/or web-pages). However, these capabilities
are strongly tied to the way the AV is designed
and implemented. Therefore, to better posi-
tion our results, we try to shed some light on
the AV engine’s internal working mechanisms.

Historically, AV engines started detecting
threats performing pattern matching using sig-
natures, which are sequences of bytes known to
belong to malicious samples [26]. In response
to AVs measures, attackers started deploying
malware variants, samples generated from the
same source but presenting distinct byte se-
quences. This competition caused an arms-
race between attackers and defenders since the
90’s [34] and still observed in current AV’s im-
plications.

Since AVs could no longer keep up with the
fast pace required for signature generation on
a per-file basis, AVs started to “guess” and la-
bel some files as probably malicious through
the use of heuristics [40]. A typical heuristic is
to flag binaries as malicious when any obfusca-
tion signs are found. For instance, benign files
packed with crypters–pieces of code which pro-
tect their payloads by encrypting themselves at
compilation time and decrypting at runtime–
are often detected as malicious given their fre-
quent use also in malware samples distribu-
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tion [44].
As time went by, binaries became so com-

plex that even heuristic approaches have not
been enough to flag malware without leading
to false positives [7] (FPs). An AV that detects
benign software as malicious becomes imprac-
tical since it prevents users from using the ap-
plications that the AV was supposed to protect.
Therefore, more powerful detection solutions
were required to detect complex threats with-
out causing FPs. As such, AV engines started
to rely on Machine Learning (ML) and/or on
Artificial Intelligence (AI) for their classifica-
tion and decision procedures [6]. ML/AI may
be used, for instance, to flag samples as ma-
licious based on the usage frequency of some
assembly instructions [25].

After that, AVs have been implementing a
combination of all aforementioned techniques
in their detection engines, thus their detection
rates and labels are biased by all these fac-
tors at the same time. In practice, the la-
bels assigned to the samples may vary accord-
ing to the internal engine that a solution lever-
ages for detecting them: (i) samples detected
by known signatures may present detailed la-
bel information (e.g., W32/Sample-Name); (ii)
samples detected through heuristic approaches
may present either the heuristic name (e.g.,
W32/Packed) or a “generic” label; and (iii)
samples detected via ML approaches might
only present detection rates (e.g., malicious
confidence: 90%), without additional infor-
mation.

On the one hand, such heterogeneity compli-
cates homogeneously evaluating AV detection.
Therefore, this work proposes metrics to high-
light specific AV’s operational characteristics
to allow more fine-grained evaluations. On the
other hand, as such heterogeneity appears in
practice, we cannot overlook it in evaluation
procedures. Hence, we present an AV land-
scape considering AV’s outputs regardless of
the internal operation of their engines.

In addition to multiple detection mecha-
nisms implementation, AVs also update them
frequently to keep up with malware evolution.
Thus, new signatures should be released for
matching newly created samples, new heuris-
tics for detecting malware variants and classi-
fier’s definition updates due to concept drift,
a natural phenomenon in dynamic and non-
stationary environments where characteristics
and distribution of data change as time goes
by [12]. Therefore, in this paper, we present a
continuous evaluation that encompasses AV’s
update procedures rather than a static view of
AV solutions operations.

3 Methodology & Dataset

Design of Experiments. Our experimen-
tal approach consisted in submitting all col-
lected malicious artifacts (executable binaries
and malicious web pages) to the VirusTotal
(VT) service [49] via Python bindings for VT’s
public API [48] and retrieving detection rates
and labels for all AV solutions. All retrieved
data was stored in a SQLite database which
was further queried for data discrepancies iden-
tification and metrics calculation.

The samples which were reported as first-
seen in the VirusTotal service were daily re-
submitted for consecutive 30 days. In each
re-submission, a new scan, with updated mal-
ware definitions, was forced, thus allowing us
to track how AV solutions detection evolved
(temporal analysis). We also performed non-
temporal analysis about time-independent as-
pects of AV detection, such as sample’s labels
meaningfulness.

We are aware that comparing AVs us-
ing VirusTotal has significant drawbacks [47],
mainly because their running AV’s version
might differ from the ones locally installed on
customer’s machines. However, using VT is the
only way to scale analysis to million submis-
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sions as presented in this work. Also, in a sig-
nificant part of the paper, we are not looking
at individual AV solutions, but trying to char-
acterize the behavior of a hypothetical “aver-
age” AV solution that ignores AV’s specific fea-
tures. Therefore, we considered this trade-off
as acceptable. To mitigate the uncertainty re-
garding the validity of our findings in the real-
world, we confirmed our results by locally run-
ning some of the AVs. The confirmation results
can be found on Appendix A.
Datasets. We considered four distinct mali-
cious artifacts sources for the experiments pro-
posed in this work: (i) a private repository
of country-widespread, specific malicious ob-
jects collected by a Brazilian CSIRT’s abuse e-
mail and sensors network; (ii) the Malshare [30]
repository of daily-collected, worldwide mali-
cious objects; (iii) the VirusShare [46] reposi-
tory as the source of Linux malware samples;
and (iv) the VirusTotal service as the source of
Android malware samples.

The first two sources provide us with mali-
cious Windows binaries and web pages daily.
The continuous malware collection allows us to
perform a time-evolution comparison (tempo-
ral analysis) of AV’s ability to detect the sam-
ples present in these datasets. The last two
sources provide Linux and Android malware
samples without precise timing information.
Therefore, we leveraged their samples to en-
rich our non-temporal AV evaluation dataset,
so that we can compare the results of AV oper-
ating on distinct platforms and environments.

We continuously captured samples from Au-
gust/2017 to December/2018. In total, we con-
sidered 5,614 worldwide-crawled PE binaries,
3,302 Brazilian-collected PE binaries, 5,929
worldwide-crawled web pages, 4,030 Brazilian-
collected pages, 5,000 ELF binaries, and 5,000
Android applications. During the whole ob-
servation period, we performed more than 1M
distinct VT submissions. Table 1 summarizes
the number of samples, malware families, and

artifact types in each dataset. Family labels
were normalized using AVClass [41].

Table 1: Dataset Summary. Malware fami-
lies labels were normalized using AVClass.

Dataset Samples Families Formats
Brazil PE 5614 23 21
World PE 3302 16 7
Linux 5000 47 6

Android 5000 52 N/A
Brazil Web 4030 N/A N/A
World Web 5929 N/A N/A

Most of the experiments focus on the Brazil-
ian and World datasets of PE malware. They
trigger the most mature AV’s detection engine
to be evaluated since AVs have been analyzing
this type of file for a while. We selected the
Brazilian dataset for this study since it repre-
sents the real threat’s distribution that a sig-
nificant part of the Brazilian population faces
daily. Therefore, we can better understand
the real impact of AV’s drawbacks on user’s
lives. This dataset has been already described
in other studies [12] and demonstrated to chal-
lenge other malware detection techniques [5].
All samples in this dataset are considered as
malicious as they were collected and labeled by
the CSIRT team. Most of the samples in this
dataset were first submitted to VirusTotal by
us, thus indicating a significant level of novelty.
The World dataset, in turn, was selected for
this study because it does not present the bias
of the Brazilian dataset. Therefore, we can at-
tribute any effect observed in both datasets to
the AV’s drawbacks and not to dataset’s char-
acteristics. We have not observed samples in-
tersection between these two datasets.

4 AV Evaluation

We have identified the most common pitfalls
in AV evaluations, which are shown in the
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next subsections. We also present AV detec-
tion results to support our discussion on these
pitfalls. Although some of them might have
been individually pinpointed in previous work,
we are not aware of articles/documents dis-
cussing all of them together along with up-
dated data about AV detection. We consider
this discussion essential since there is a non-
negligible research corpus that relies on AVs
evaluation/detection rates.

4.1 AVs evaluation results cannot be
uniform

AV evaluations often consider the detection
rate as the only criteria for assessing effective-
ness, thus neglecting other important AVs’ op-
eration aspects. In addition, these evaluations
often report very high detection rates as their
main result, which seems incompatible with
user’s risk perception in practice [37, 21].

The observed discrepancy is caused by the
difference between the characteristics of the
datasets used in the evaluations and the sce-
narios faced by real users in their daily rou-
tine. Most evaluations consider completely bal-
anced datasets in regard to malware family dis-
tribution (e.g., same number of Trojans, virus,
worms, and so on), and only well-known file for-
mats (e.g., they keep standard binaries and dis-
card executable scripts). In practice, however,
users are targeted by threats in an unbalanced
way, according to the operational context they
are part of. For instance, the selection of the
best AV in an evaluation that considers a bal-
anced dataset might bias the detection results,
since poor detection rates for a given malware
family may be masked within the overall de-
tection rate. Therefore, we advocate that AV
evaluation reports should break down results
according to the multiple AV’s aspects (e.g.,
by families of samples and/or file format de-
tection). Hence, users will be able to evaluate
the best AV according to the characteristics of

the scenario in which the AV is aimed to oper-
ate.

To show the impact of performing this break-
down, we compared the difference of present-
ing detection results for the samples in our
datasets in both ways (consolidated and sep-
arated by categories). In Figure 1, we show
the consolidated AVs’ results for the average
detection of standard (non-scripted) Windows,
Linux, and Android malware binaries. We dis-
carded scripts and other file formats from these
experiments as they present their own draw-
backs, as further discussed. Therefore, this ex-
perimental variable isolation allows us to spot
AV operation in their most favorable condi-
tions.

All datasets presented high detection rates,
as in most current AV evaluations. More in-
teresting, this result holds true for all plat-
forms/environments. This happens because we
balanced the datasets (using AVClass [41]) in a
way that they present the same number of sam-
ples of all malware families, and we considered
only standard binaries.

To understand the impact of breaking down
AV evaluations, let’s consider the average AV
detection rate for most popular Windows mal-
ware families common to the two datasets,
shown in Figure 2. The detection rates are not
uniform: Trojans have been significantly more
detected than bankers, for example. Consider-
ing these results, we highlight that while the
consolidated evaluation would be able to sug-
gest the best AV for users of a scenario mostly
targeted by Trojans, this approach would com-
pletely bias AV selection for users in scenarios
mostly targeted by banking malware.

In addition to malware family distribution,
file formats also affect AV detection rates. This
happens due to the fact that not all AV solu-
tions parse the same file formats and, at the
same time, their focus is on standard binary
formats, such as Windows PE. To demonstrate
the impact of including multiple file formats
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Figure 1: Consolidated AV results. Dataset
balancing bias the overall detection rate.
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Figure 2: Detection breakdown by mal-
ware family. Some families are more detected
than others in average.

on AV evaluations, let’s consider the break-
down presented in Figure 3. It includes all MS-
Windows platform-supported file formats, even
the ones that were not considered in the pre-
vious experiments. AVs are more prone to de-
tect the most popular executable formats (e.g.,
COM and EXE) than scripted and interpreted
formats (e.g., VBE and JARs). Therefore, if
an evaluation clearly presents its results sep-
arated by file formats, it would allow users to
identify AVs unable to detect threats in specific
formats, as well as to choose the best solution
for targeted scenarios.
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Figure 3: Detection breakdown by file for-
mat. Although standard binaries are reason-
ably detected, scripted and interpreted threats
pose detection challenges for current AVs.

The aforementioned results highlight the
need of considering the operational scenario
in AVs evaluation. In Figure 4, we illustrate
this finding in practice by comparing average
detection rates for two distinct datasets: (i)
world samples collected from malshare, which
contains 65% of Trojans, mostly distributed as
standard PE files; and (ii) Brazilian samples
collected from a CSIRT that attends the entire
country, composed by 75% of banking malware,
distributed in diverse file formats. The overall
detection rate for the Brazilian scenario is bi-
ased by the low AV performance on detecting
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Figure 4: Detection rates per represen-
tative datasets. The Brazilian dataset is
less detected than the World dataset due to
the high number of banking malware. Web
pages are less detected than Windows exe-
cutable files.

banking malware and diversified file formats,
thus reinforcing the need for considering par-
ticular scenarios when conducting AV evalua-
tions.

4.2 AVs respond differently to diffe-
rent types of threats

AVs present different detection rates for dis-
tinct threat types in addition to presenting
different detection rates for different malware
families and file format (as shown in the previ-
ous subsection). Figure 4 shows that AVs are
less effective in detecting malicious pages than
detecting binaries, which holds true for both
World and Brazilian dataset.

The detection rate difference in both threat
types is explained by the distinct risks that
they pose to the system. On the one hand,
binaries are focused on directly causing harm
to the victim’s systems. On the other hand,
malicious web pages are mostly focused on in-
directly deceiving users into clicking into a ma-
licious link, either for advertisement or for then

download a malicious payload.
These distinct operation modes require that

AVs deploy distinct strategies for the detection
of these threat types. Most system binaries
are insensitive to the infection context and de-
tectable through static/dynamic analysis pro-
cedures (banking malware are a noticeable ex-
ception to this rule [18]). Unlike them, mali-
cious Web pages are mostly not: they are usu-
ally sensitive to the infection context, mainly
due to phishing Web pages [43], and require
that AVs understand their context to recog-
nize their maliciousness. Considering the re-
sults presented in Figure 4, AVs are still not
able to fully handle this type of threat due to
this huge context understanding challenge.

4.3 AVs have a response time

AV detection rates can also vary due to other
factors than family balancing, file formats, and
threat types. The most significant factor af-
fecting AV detection is the time that has passed
since the release of a new sample, its identifica-
tion, followed by its detection by the AVs after
malicious definitions updates.

To evaluate the impact of time on AV de-
tection results, we selected the samples first
reported by us to the VirusTotal (VT) ser-
vice (i.e., samples reported for the first time in
VT’s database after our submission, according
to VT’s API queries) and repeatedly submitted
them to scans by a period of consecutive 30
days. Figure 5 shows the AV detection rates
for multiple datasets in two distinct periods:
(i) the first day in which the samples were sub-
mitted; and (ii) in the last day when the same
samples were submitted to the same AVs, when
these were already updated with new malware
definitions. We notice that detection rates can
vary up to 10% from the initial submission to
the final detection in the last day. Such de-
tection rate variation has been observed in all
datasets. Therefore, we advocate that the re-
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sponse time metric should be considered by AV
evaluations.
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Figure 5: Time effect over AV detection
rates. Detection rates can vary up to 10% ac-
cording to the observation period.
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tunity window.

Apart from being a pitfall on evaluation, the
time that an AV takes to react to a new threat
also directly affects AV’s detection effective-
ness. AVs taking a long time to react create
an attack opportunity window in the mean-
time, i.e. a period in which users are vulnera-
ble to the new malware sample as the AV has
not yet updated malware definitions to detect
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Figure 7: AV coverage evolution. Not all
AVs are able to keep up with the same detection
rates as the times goes by.

it. To evaluate how long AVs take to react to
new threats, we selected the subset of samples
detected in the 30th day and evaluated how
their detection by AV solutions evolved over
this time period.

In Figure 6, we show the fraction of sam-
ples detected by at least one AV solution at a
given day (Detection curves) and the fraction
of AV solutions which agree on detecting all
the detected samples at a given day (Coverage
curves). Less than 50% of samples are detected
at day 0–when they were collected and first
submitted–on both scenarios, which indicates
users are vulnerable to newly created threats
even when using an AV solution. Ideally, the
attack opportunity window should be as short
as possible to reduce user’s exposition. In this
sense, the hypothesized full protection (100%
detection) was achieved only after 29 days on
both World and Brazilian scenarios, which is
a significant opportunity window for attackers.
In fact, whereas AVs quickly detect a fraction
of the samples, they slowly increase their detec-
tion coverage. This either indicates (i) the ex-
istence of a class of samples which is harder to
detect, or (ii) the insufficient scalability of ex-
isting detection mechanisms to cover the whole
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context of the threat. We can observe the oc-
currence of such effect in the World PE detec-
tion curve: 55% of the samples were detected
within the first 4 days, but solutions took 19
days (until the 23rd day) to detect an addi-
tional ≈10% of the threats (up to 65%).

The comparison of scenarios indicates that
the World scenario responds faster than the BR
one. This may be explained by the particu-
larities exhibited by the regionalized scenario.
Conversely, the time taken to detect all samples
is similar in both scenarios, suggesting that this
detection evolution is more related to the need
of analyst’s intervention to detect new threats
than to dataset’s specific characteristics.

The attack opportunity window is eliminated
in the 29th day when considering all AV so-
lutions. However, some users have been still
unprotected in the end of the period because
not all solutions detected all threats. Figure 7
shows the AV’s Coverage for the evaluated
samples, i.e., the fraction of AVs that detected
the number of samples previously shown in Fig-
ure 6. In the first days, the majority of AVs
agree on detecting the same few samples: 70%
and 90% for World and Brazilian datasets, re-
spectively. As time goes by, each AV solution
detects a distinct set of samples. Only 10% of
all solutions agreed on detecting all samples in
both scenarios in spite of their contextual dif-
ferences.

The break-even point between detection and
coverage, i.e. when both curves intercept
each other, is around 55% for both World
and Brazilian scenarios. However, whereas the
break-even point is achieved in only 4 days for
the World scenario, it takes 21 days to occur in
the Brazilian scenario. This difference shows
the average protection offered by AV solutions
in a general manner while as-yet not fully up-
dated to cover the newly launched threats. In
practice, the low correlation between different
AV detection rates has already been pointed as
an actual problem in many scenarios, such as

in the Android platform [31].

4.4 AVs are not good at labeling
samples

AVs ideally should also enable users to take
the proper countermeasures to mitigate the ef-
fects of malware infection in addition to de-
tecting malware samples. Thus, the proper la-
beling of samples is a very important step to
allow users to respond to distinct threat infec-
tions (according to malware specific aspects).
For instance, the infection by downloader mal-
ware samples require users to check computer’s
filesystem for stored malicious artifacts. In
turn, banking malware infections require users
to get in contact with financial entities to notify
the incident. Besides that, some machine learn-
ing models are based on ensembles, in which
each classifier is trained using different malware
families [24]. Therefore, for these solutions to
work right, it is important to label a sample in
the right family to keep each model updated
according to the family sample’s changes.

In the context of this work, we consider AV
labeling capabilities as an essential feature for
AV solutions as it can be used as a proxy for
measuring AV’s understanding of the detected
samples. In other words, we consider that the
more qualified the assigned the labels are, the
better the AV is able to recognize the malicious
context regarding that given threat. In prac-
tice, however, some AV vendors might claim
that a good labeling capability is considered
only a desired but not mandatory AV feature
since AV’s primary goal is to detect the mal-
ware samples.

AV labels should be standardized by CARO,
which defines that “the full name of a virus con-
sists of up to four parts, delimited by points
(‘.’). Any part may be missing, but at least
one must be present” [10]. The expected parts
are respectively the following: (i) malware fam-
ily name; (ii) malware group name; (iii) ma-
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jor variant name; (iv) minor variant name.
Additionally, the label might present optional
modifiers (extensions) representing any vendor-
specific information (e.g., “packed with UPX”).
The presence of label extensions usually means
that the AV has deep knowledge about the
identified threat.

To check AVs’ ability on labeling samples, we
considered the labels assigned to the samples
belonging to the following datasets: (i) sam-
ples detected in the last day of the observation
period, such that we have at least one assigned
label per sample to evaluate; and (ii) samples
belonging to the long-term Linux and Android
datasets, such that we have payload diversity
to evaluate labels in a broader manner. For this
experiment, we considered only self-contained
executable files because the AV solutions avail-
able in the VT service often do not label web
pages and scripts1. In Figure 8, we show our
evaluation results regarding AV’s label assign-
ment compliance to the CARO guidelines.
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Figure 8: CARO compliance. Most samples
comply with the minimal standard, but their
labels are not informative enough.

We discovered that most samples comply
with the CARO standard (sum of all bars la-
bels from Figure 8). However, for 20% of the

1 See an example at https://tinyurl.com/yxexo7za

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

T
ro

ja
n

G
e

n
e

ri
c

D
o

w
n

lo
a

d
e

r

B
a

n
k
e

r

S
p

y
w

a
re

H
e

u
ri
s
ti
c

S
u

s
p

ic
io

u
s

D
ro

p
p

e
r

P
a

c
k
e

d

U
P

X

S
a

m
p

le
s
 (

%
)

Labels

Most frequent labels

BR
World
Linux

Android

Figure 9: Label quality. Heuristic labels,
such as generic, do not allow users to take the
proper countermeasures in case of infection.

cases, this is achieved in a minimal way (Lim-
ited bar label), presenting only the minimally
required amount of information (a single part
label). Full information (Full bar label) is not
available for the majority of cases, thus impor-
tant sample’s characteristics such as variants
and groups are often unknown. The intermedi-
ate level of information provided by most labels
is compatible with the use of heuristics, which,
in the end, are unable to provide full informa-
tion (see Section 2).

AVs providing additional information (Ex-
tension bar labels) are even rarer (less than
10% of all cases). Thus, sample’s character-
istics such as packing and context information
are hardly ever provided. This parsimonious
number of extended CARO labels is explained
by the significant effort required from AV’s an-
alysts to study the samples in detail. This man-
ual task is only performed on a small number
of samples according to AV vendor’s demands.
These results indicate that AV companies need
to enhance their labeling procedures in an over-
all way, thus providing stronger support for in-
cident response procedures. Face to the costs
of allocating more human resources to perform
manual analyses, the development of more in-
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formative automated procedures should be pri-
oritized.

AVs should be able to provide some mean-
ingful label information to enable incident re-
sponse even when not providing full label in-
formation. To evaluate whether AVs are able
to provide such information in practice or not,
we checked all labels assigned to the samples
in our datasets. In Figure 9, we show the top
assigned labels.

On the one hand, we notice that the ma-
jority of samples are labeled as Trojan in all
datasets. This is compatible with the popu-
lar infection mechanism used by malware au-
thors of deceiving users into installing modi-
fied, malicious versions of legitimate applica-
tions through phishing and/or fake advertise-
ments. On the other hand, these most assigned
labels, such as generic and/or suspicious
types, do not allow users to take proper coun-
termeasures. This phenomenon derive from the
use of heuristic (heur) approaches, such as de-
tecting the packer instead of the sample’s pay-
load itself. It explains the samples labeled as
Packed and UPX, a packer name that does not
provide enough information about the sample
content.

4.5 AVs often stop detecting samples

The distinct strategies adopted by the AVs and
their response time cause a significant varia-
tion in the number of detected samples over
time, in addition to the detection opportu-
nity window and label issues. Signature ad-
dition/removal and/or heuristic changes over
time cause extra samples to start being de-
tected, but unfortunately, some other samples
stop being detected simultaneously. We evalu-
ated detection regression–when a sample stops
being detected–by observing the detection rate
for the subset of samples which were reported
to be detected in the last day of the observation
period, as shown in Figure 10. Notice that in

this experiment we discarded the samples that
were not detected since by definition there is
no regression effect for them.

We observe that the detection rate decreases
several times during the study period. This
effect causes, for instance, World users to sud-
denly become vulnerable to 4% of threats in a
day (from day 11 to 12). We highlight that this
behavior is not related to samples locality, be-
cause Brazilian and World curves presented
similar characteristics, decreasing and growing
mostly at the same time, which indicates that
the same cause might be at play, such as AV
relying on heuristic detectors.
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Figure 10: Overall regression effect for
World and Brazilian PEs. Some samples
belonging to the dataset stopped being de-
tected during the evaluation period such that
the overall detection rate decreased in some
days before AVs achieving the final detection
rate in the end of the observation period.

The behavior shown in Figure 10 represents
the overall effect, which means that the detec-
tion rate grows for some samples and decreases
for others. We also evaluated the regression
effect for individual samples, as shown in Fig-
ure 11. The Regression bar label refers to
the percentage of samples that had their de-
tection rates decreased at least once by at least
one AV solution. The Restoration bar label
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World and Brazilian samples. Most sam-
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least one day during the observation period.
Most of the samples that presented detection
regression recovered from this effect, present-
ing a higher detection rate in the last day than
the detection rate presented in all previous ob-
servation days.

refers to the percentage of samples that suf-
fered Regression, but recovered their detec-
tion rates – i.e. their detection rate on the 30th

day is equal or higher than the detection rate
in any other previous day.

For both scenarios, regression occurs at least
once in more than 50% of the samples, which
may be associated with the use of aggressive
heuristic approaches by some AVs. The final
detection rate had been recovered in more than
90% of the cases, i.e., it returned to the original
or higher detection rate value.

Regression also affects the assigned labels in
addition to the detection rate. The assigned la-
bels change according to the method leveraged
for sample detection in each period of time. To
evaluate the impact of label regression, we con-
sidered the labels assigned to the samples dur-
ing the 30 days period. We identified that 53%
of all considered samples changed their label
at least once. Moreover, all AV solutions pre-

sented label regression for at least one sample.
On average, regression affected each sample in
four distinct AVs.

In Table 2, we present representative exam-
ples of label changes. Some label changes (e.g.,
line 4 and 5 of the table) may be considered
positive (3) consequence of AV’s updates, since
they provide users with more informative de-
scriptions of the detected threats. Other label
changes (e.g., lines 3 and 6 of the table) rep-
resented information loss, since the original la-
bels were replaced by less descriptive versions.
Similarly, labels derived from machine-learning
detectors (e.g., lines 1 and 2 of the table) might
present a regression effect according to the clas-
sifier’s accuracy in each time period. There-
fore, AV evaluations should be performed con-
sidering temporal variations and not consider-
ing data of a single day that might not reflect
the final decision of the evaluated engine.

5 Metrics & Scenarios

We used all the knowledge gathered on the
previously discussed AVs drawbacks to propose
new evaluation metrics for AVs. The main nov-
elty of these metrics is that they consider the
multiple aspects regarding AVs’ way of opera-
tion. We also show how these metrics can be
weighted according to the needs of distinct sce-
narios (e.g., domestic and corporate users) to
allow AV selection in a more fine-grained way.

5.1 Proposed Metrics

We introduce below our proposed evaluation
metrics, as well as the way to interpret them.
We propose these metrics because they evalu-
ate the impact of the AV drawbacks presented
in the previous sections. We consider that
these are significant drawbacks of AVs and that
these drawbacks are often overlooked in most
AV evaluations. The proposed metrics are the
following:
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Table 2: Label Regression. Whereas in some cases labels become more informative over time,
in some cases labels regress to generic.

AV Day Label Day Label Enhancement
A 1 ’malicious_confidence_100% 2 malicious_confidence_80% 7

A 12 malicious_confidence_60% 13 malicious_confidence_90% 3

B 3 Trojan-Banker.Win32.BestaFera.amju 4 HEUR:Trojan.Win32.Generic 7

B 19 UDS:DangerousObject.Multi.Generic 20 Trojan-Downloader.Win32.Banload.aasyh 3

C 4 Win32:Malware-gen 5 Win32:Dropper 3

C 16 FileRepMalware 17 Win32:Malware-gen 7

• Attack Opportunity Window
(AOW): With this metric, we eval-
uate how much time AV solutions take to
generate signatures for new threats. This
metric enables us to quantify how exposed
a user is even when using an AV software
(during the initial detection hiatus).

• Detection Regression (DRE): With
this metric, we are able to identify when
previously detected threats stop being de-
tected by an AV product. It allows us to
evaluate whether users become or not ex-
posed to the same threat after it had been
first reported by the AV vendor.

• Final Detection Rate (FDR): With
this metric, we calculate the overall detec-
tion rate of newly captured samples at the
end of the 30-day period. This metric al-
lows us to evaluate user’s protection in the
long term.

• Initial Detection Rate (IDR): With
this metric, we calculate AV’s detection
rates at day zero, i.e., in the first sub-
mission after the sample’s collection. This
metric allows us to evaluate how users are
protected by AV solutions regarding newly
reported samples.

• Label Meaningfulness (LME): With
this metric, we evaluate how useful la-
bels are regarding taken countermeasures.
This metric is important because generic
detection labels do not expedite cleanup.

• Label Regression (LRE): With this
metric, we evaluate how labels change over
time. Such information is relevant, since
label changes may require modified coun-
termeasures.

5.2 Evaluating Scenarios

Based on how the proposed metrics may im-
pact in an AV choice, we present an exploratory
analysis of how the proposed metrics may im-
pact AV selection procedures when leveraged
for evaluating scenarios presenting distinct se-
curity needs. To do so, we considered the met-
rics that distinct user groups would value most.
Notice that this does not mean that these are
the only important metrics or that all users
of that group would consider for their protec-
tion. Instead, we encourage the reader to rea-
son about which are the best metrics for their
scenario. In our exploratory analysis, we con-
sidered three distinct users groups and hypoth-
esized their needs as follows:

1. Domestic Users, which are more likely
targeted by the same well-known samples
over time, thus being affected by AV’s fi-
nal detection rates (FDR) and regression
effects (DRE). These are important met-
rics for domestic users since they do not
want their AVs to stop detecting a known
sample.

2. Corporate Users, which are usually tar-
geted by 0-days, thus being affected by

14



AV’s initial detection rates (IDR) and in-
terested in a small attack opportunity win-
dow (AOW).

3. Incident Response Teams, which are
more interested in (i) performing infection
cleanups, thus requiring good AV labeling
capability (LME), and (ii) avoiding label
regression (LRE) to allow a targeted inci-
dent response. We highlight that CSIRT
reliance on AV labels has been reported
in many real cases [36, 17], although these
teams might also adopt additional code in-
spection approaches [20] (e.g., sandbox ex-
ecution).

To show that distinct metrics should be used
for each scenario instead of a universal criteria,
we selected the best AVs to fulfill the require-
ments of the three aforementioned usage pro-
files. For the sake of simplicity, we present data
regarding only the three AV solutions with the
highest detection rates for the samples in our
dataset. We also limited our evaluation to the
subset of all samples which were effectively de-
tected by all the top 3 AV solutions at least
once during the observation period, thus dis-
carding overall detection rate as a significant
metric. For metric computation, we assigned
values to each AV criteria ranging from 0 to
10, where 10 means 100% detection and no op-
portunity window and 0 means 0% detection
and a 30-day opportunity window.

Figure 12 shows the overall comparison
among the three considered AVs, thus allowing
us to identify which AV outperformed the other
in which criteria. We observe in Figure 12a
that the AV1 is the best for assigning labels to
samples, which turns it into a well-suited solu-
tion for CSIRTs. We observe in Figure 12b that
the AV2 may not be as good as AV1 for sam-
ple labeling, but it detected malicious samples
first (a desirable feature for corporate environ-
ments). We observe in Figure 12c that the AV3

also does not perform well on samples labeling,
but it is the one that presents fewer detection
regression occurrences, which turns it into the
most suited for domestic users. In summary,
apart from the fact that all AVs were able to
detect all samples in some period of time, we
discovered that each one is the best for each
specific scenario. Thus, we highlight the im-
portance of evaluating AVs using more user-
targeted metrics.

6 Discussion

In this section, we revisit our findings to dis-
cuss their implications, contributions, and lim-
itations.
Recommendations for AV evaluations.
We expect that our findings could be seen as
feedback information to enhance AV evalua-
tion procedures. More specifically, we advocate
that:

• AV evaluation results should be bro-
ken down. AVs present different detec-
tion results according to the considered
malware family and the considered file
format. Therefore, AV detection results
should not be presented as an average of
all results, since it would mask the AV lim-
itation on detecting a particular type of
threat. Instead, AV results should be pre-
sented broken down according to each fam-
ily and/or file format. It would allow one
to identify AV’s weak and strong points
and correlate it to the requirements for the
targeted operational scenario.

• AV evaluations should consider mul-
tiple datasets. Given the differences on
the detection of each threat type, AV se-
lection should not be carried by looking to
a generalized result. Instead, they should
consider datasets which resemble the sce-
nario in which the AV is supposed to op-
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Figure 12: AV’s operational aspects, considering the six metrics proposed.

erate. We showed the need for consider-
ing distinct scenarios to evaluate AV solu-
tions via the comparison of Brazilian with
Worldwide samples. In our tests, Brazilian
samples were less detectable than world-
wide counterparts. Therefore, Brazilian
users choosing an AV solution that best
performed in the global scenario might
have been overlooking the best solution for
their particular scenario.

• AV evaluations cannot be a snap-
shot. AVs are dynamic mechanisms. As
time goes by, signature addition/removal,
ML models updates, and/or heuristic
changes cause extra samples to start being
detected, but, unfortunately, some other
samples stop being detected at the same
time. Given more time, samples might re-
cover their detection rates. Therefore, AV
evaluations should be conducted in a time-
longitudinal way instead of being limited
to a single observation day. Time-limited
observations might bias results with re-
gards to the detection rate obtained in the
single day and not identify the AV final
decision.

AV development gaps & challenges We
also expect that our findings can be seen as a
set of suggestions aiming at enhancing current
AVs. More specifically, we advocate that:

• AVs need to enhance their malicious
web pages detection capabilities. Our
evaluation results indicate that AV per-
forming significantly worse on detecting
malicious Web pages than malicious bina-
ries. It suggests that AVs need to improve
their malicious Web pages detection ca-
pabilities. We discovered that malicious
Web page detection became harder due
to contextual issues: phishing pages, for
instance, besides presenting malicious ob-
jects, are language-dependent so as to de-
ceive users into clicking in the malicious
links. In this sense, the use of natural lan-
guage processing for such tasks is an open
research question that could improve AV
detection capabilities.

• AVs need to respond faster to new
threats. Our evaluation results also
showed that there is a significant attack
opportunity window, i.e, a period in which
AV users become vulnerable because their
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solutions are still not able to detect newly
launched samples. It happens because
AVs do not yet have signatures (or ade-
quate heuristics) for malware samples in
the sample’s first appearance day since
they will be developed by human ana-
lysts after the malware discovery. The
time taken to unveil the sample, develop
a signature, and distribute it to AV clients
constitute the opportunity window. To
face this delay, automated learning mech-
anisms should be developed and/or im-
proved, thus reducing the need (and the
significant required time) for humans to
develop malware signatures. Notice that
we do not claim that AV companies are
not making their best to respond to the
incident. Instead, our claim is that there
is also a long path of technical challenges
to be overcome.

• AVs need to provide more significant
labels. Evaluating AVs’ labeling is as
important as evaluating the AV’s detec-
tion capabilities since a good label allows
for more oriented incident response proce-
dures. Our results, however, suggest that
AVs are not very good at labeling sam-
ples, presenting many generic and heuris-
tic labels that do not allow gathering any
sample information. We highlight that the
development of effective automated learn-
ing procedures should be pursued since we
understand that most generic labels de-
rive from heuristic procedures. Such devel-
opment would allow AVs to provide users
with information about the sample’s char-
acteristics in addition to just detecting it.

On the Adoption of the Proposed Met-
rics. We expect that our proposed metrics
might help anyone interested in the security
provided by the AVs (e.g., users, companies,
AV vendors) to better evaluate them. However,

due to the required knowledge to to model a
given user’s needs and faced threats, we sup-
pose that the metrics are more likely to be
adopted by corporate users. Companies with
mature security practices often have dedicated
security teams able to model security needs in
a very comprehensive manner.

We believe that these metrics might be made
accessible to end-users via the intermediation
of AV benchmarking companies, that might
incorporate these metrics in their evaluation
while leveraging their knowledge to highlight
the most important aspects to the users. We
are aware that the adoption of the proposed
metrics implies that more complex explana-
tions should be presented to the users. We can
hypothesize that avoiding to explain the com-
plexity of AV solutions is one of the reasons for
the current AV evaluations to be presented in
a generalized manner.

Finally, we do not expect our proposed met-
rics to be the only one considered by the evalu-
ations. These should still consider the already
popular metrics such as accuracy, precision, re-
call, and so on. In particular, the evaluations
should always consider the False Positive (FP)
rate, as AVs should not prevent users from run-
ning legitimate applications. FP rates have al-
ready been adopted by some AV evaluations [2]
and we expect them to consider our metrics in
the same manner.
Regional and cultural differences. Our
evaluation results show that AVs do not present
the same effectiveness on detecting all types
of samples. Hence, samples from particular
datasets, such as country-specific ones, are less
prone to be detected than generic samples. Un-
fortunately, most AV evaluations do not distin-
guish sample’s source and mix detection rates
for samples from all localities into a single, non-
weighted detection average rate. In this case, a
user may choose an AV solution that best per-
forms in the global scenario but that is not the
best suited for his particular one. It highlights
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the need for considering distinct scenarios when
evaluating AV solutions.

We hypothesize that Brazilian samples might
have been less detected than their worldwide
counterparts in part due to country partic-
ularities, as shown for Brazil in other con-
texts [18, 8]. We believe that this information
may be used to both enhance protection in lo-
calized scenarios also help general researchers
on identifying trends and attackers’ behavior.

Finally, in addition to the characteristics
that we found particular to the Brazilian sce-
nario, particular malware characteristics have
also been identified in other contexts, such as
in China [50, 28]. Therefore, we advocate for
more country-specific analysis both to under-
stand their impact as well as to develop more
targeted AV solutions.
If not Brazil? Our experiments considered
the effect of Brazilian malware samples on AV
detection. This raises the concern of how much
of the AV result is affected by it. Although
we have also considered a dataset of worldwide
samples to show that the AV’s behaviors are
similar in both, it is natural to hypothesize
that if another country malware dataset was
chosen the results would be different. Whereas
we are sure that the overall rates would change,
we believe that the overall AV behavior would
remain the same. This is because our evalua-
tion is not about the dataset, but mainly about
how AV evaluations (badly or not) operate over
them. We showed that the BR dataset is diffe-
rent from the global dataset mainly because the
BR one has a distinct distribution of filetypes
and malware classes. Whereas a distinct coun-
try would present another distribution, the key
point is that no country-representative dataset
would be equally-balanced as typical malware
evaluations are. Thus, our claim in this paper
is for more realistic evaluations. We are aware
that considering unbalanced dataset might also
introduce bias. For instance, a malicious stake-
holder might bias the dataset to favor its pre-

ferred company and/or product. In this con-
text, the consideration of Brazilian samples
played a key role, since we are able to claim
that a dataset balanced like that is found in
actual scenarios. Therefore, we claim that real-
world data (from any country) is a good crite-
rion for evaluating whether a good dataset is
adequate for an AV experiment or not.
The future of AV solutions. Our evalua-
tion results showed the existence of significant
AVs operational gaps, such as excessively long
response times. This way, an attack opportu-
nity window is opened within the first 30 days
after the release of a new sample. It does not
imply that AVs must be discarded as security
solutions, but that their weaknesses need to be
addressed. We believe that a paradigm shift
is required to reduce AV’s response time, such
as making them adopt more proactive detec-
tion approaches instead of current reactive op-
erational mode. In this sense, we believe that
research aiming to predict exposure [42] is a
possible path towards overcoming the response
time reduction challenge.
Limitations & future work. In this
work, we highlighted the differences between
a country-specific dataset (Brazil) and a het-
erogeneous dataset (World samples). Our goal
was to emphasize the need for more personal-
ized AV solutions. As complement to our re-
sults, further research work might characterize
other country-specific datasets and respective
AVs detection rates in these scenarios. Also,
our time-series analyses were limited to a pe-
riod of 30 consecutive days. We have estab-
lished this limit based on our own previous ex-
perience, which showed us that this period was
enough to highlight most of the characteristics
that we were interested in. However, additional
AV detection drawbacks might be observed by
enabling longer observation periods, which is
also left as a future work. Finally, our experi-
ments only considered the detection of isolated
web-pages. We acknowledge that procedures
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considering the entire website and/or domain
might result in distinct detection results.

7 Related Work

In this section, we present closely related work
about AV selection and evaluation to better po-
sition our work.
AV Product Selection. AV evaluation is of-
ten understood as a way of choosing a prod-
uct to buy, instead of the best solution for
some scenario. In this sense, many websites,
such as AV-Comparatives [1] and AVTest [3],
present AV benchmarks to evaluate detection
rates, memory footprint and CPU usage. How-
ever, despite evaluating these important char-
acteristics, these evaluations do not say much
about AV efficiency, ignoring aspects such as
the existing attack opportunity window, label
inconsistencies and/or variant resistance [19],
evaluation gaps that our work intends to fill.
In addition, such evaluations are focused on
individual AV products, whereas we also focus
on evaluating AV products in a general way,
thus identifying the current state of AV detec-
tion solutions. Another AV selection pitfall is
that users often do not have enough techni-
cal knowledge to make an informed decision,
thus their decisions towards picking an AV so-
lution tend to be centered on advertisements
and relation’s recommendations than proper
cost-benefit analyses. This problem becomes
even more significant when we consider the im-
pact of diversity [16], which is observed even in
organizations that present well structured deci-
sion criteria [45]. Therefore, this work proposes
metrics to better evaluate AV solutions in their
multiple aspects.
AV Evaluation. Evaluating AV solutions is a
hard task because most of their internal work-
ing mechanisms are closed source solutions and
with limited configuration possibilities. Given
this limitation, overall AV evaluations are re-

quired to develop specially-crafted samples to
trigger individual AV components [38]. There-
fore, most evaluation reports focus on specific
factors affecting AV working, such as detection
regression, when a sample stops being detected
after some time [15]. In this work, we adopt
an approach based on metrics to evaluate the
occurrence of detection evaluation pitfalls, in-
cluding detection regression.

Another challenge is to evaluate the labels
assigned to multiple samples by the AVs. This
evaluation requires applying criteria such as
consistency and completeness [33] to evalu-
ate the results. This allows one to identify
when and how often distinct AVs do not agree
on naming strains. This evaluation is impor-
tant because the use of inconsistent AV la-
bels may even decrease AV classification ac-
curacy [9]. Whereas theoretically AV labels
should be standardized by CARO, in practice,
non-standard extensions are often implemented
by vendors. Although some work focus on uni-
fying AV labeling [29, 22, 41], these approaches
are not practical for end-users. In this work, we
evaluate the real impact of inconsistent label-
ing.

Given the challenges of directly assessing
AV’s capabilities, many academic results in the
literature have their root in security work tar-
geting other goals. For instance, an epidemio-
logical study of malware that compromise en-
terprise systems [51] ended up identifying that
users are targeted by threats in an unbalanced
manner, and the AV they considered provided
different responses for each scenario. In this
work, we systematized the evaluation for mul-
tiple scenarios and presented results that ex-
tended from a single AV to multiple ones (Sec-
tion 4.1 and Section 4.2). Similarly, during the
evaluation of a cloud-based AV proposal [35],
the authors pointed to the existence of an at-
tack opportunity window related to the age of
the malware sample. While they presented re-
sults grouped on periods of three months from
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a period of time of almost a decade ago in their
work, we present results of today’s malware on
a daily-basis in ours (Section 4.3).
Recent Advances on AV Research. AVs
are continuously evolving to keep up with new
malware threats. This continuous evolution
also affects the scope of AV evaluations, as
more tests are required to exercise all AV’s ca-
pabilities and features. For instance, whereas
cloud-based AVs have been proposed [13], there
is no real-world, specific AV evaluation to
assess cloud-based AVs operation particular-
ities. Similarly, whereas most AVs are AI-
powered [23], there are few initiatives to assess
their drawbacks in real cases. We consider that
conducting this evaluation is extremely impor-
tant as AI has already been proved to have
significant weaknesses in academic scenarios
that might also occur in actual scenarios [11].
We consider that establishing clear assessment
metrics, such as the one here proposed, might
help on overcoming AV’s key challenges, such
as reducing false positives [39]. This is essential
for a solution to operate in real scenarios, with
complex datasets, such as mailboxes of large
companies [14]. The next-generation of AVs
will also have to face the challenge of generat-
ing more understandable indicators of compro-
mise [27]. We consider that the label quality
metric hereby proposed might be a first step
towards this direction. The next-generation of
AVs, however, must not be limited to operate
on typical binaries, such as the one presented
on this study, but might also cover other cases,
such as social media threats [4]. This evolu-
tion will also require specialized evaluation for
effectiveness assessment.

8 Conclusion

In this paper, we investigated the problem of
evaluating AVs in actual scenarios. To do so,
we presented a longitudinal study of AV detec-

tion rates on samples daily collected from mul-
tiple malware sources and then submitted to
VirusTotal by a period of consecutive 30 days.
We showed the panorama of current AVs op-
eration and identified that: (i) understanding
phishing contexts is a challenge for AVs, mak-
ing malicious web pages detectors less effective
than their binary counterparts; (ii) generic de-
tection procedures have not been enough to
ensure broad detection coverage, incurring in
lower detection rates for particular datasets
(e.g., Brazilian malware) than for worldwide
malware; (iii) detection rates are constantly
changing, and all AVs exhibited detection re-
gression effects even for periodic scans of the
same malware dataset; and (iv) AVs long re-
sponse times to deliver new signatures and
heuristics offer a significant attack opportunity
window within the first 30 days in which we
discovered a malware sample.

To overcome existing evaluation drawbacks
on these identified gaps, we proposed six new
metrics for AV evaluations. These metrics con-
sider AV’s multiple aspects and operational
contexts. We believe that this work may help
users as well as security professionals to make
proper choices regarding the best AV for each
scenario and/or needs. We also hope that this
work fosters smart discussion on how AV in-
ternals are really implemented, as well as in-
stigates authors in conducting further research
following our methodology either to evaluate
security solutions and to describe their datasets
in detail.
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A Experiments with local AVs

Current AV’s are complex software pieces and
present multiple operation modes. This in-
cludes real timing monitoring methods, cloud-
based scans, and other multiple features. The
AV’s versions running on VirusTotal are only
limited versions of local AV installations. More
specifically, VirusTotal often provides only
command-line versions of AVs that are trig-
gered only on-demand. This difference raises
concerns with regards to the validity of our
findings when considered the actual scenario of
a user using a local version of an AV solution.
To increase our confidence in the reported re-
sults, we cross-checked the results obtained us-
ing VirusTotal and using local AVs. Due to
scaling issues, we cannot repeat all experiments
previously presented and/or test all AVs avail-
able on VirusTotal. Therefore, we limited our
checking procedures to a subset of them. We
opted to repeat the experiment shown in Sec-
tion 4.2 (using the same dataset). We selected
the three most popular AVs in the online soft-
ware repositories rankings that we visited for
this experiment: ESET NOD32 12.0, Kasper-
sky 20.0, and Symantec Norton 360. They were
all installed using their default configurations.

The first significant difference between
VirusTotal AV’s versions and the local ones is
that some samples started being detected as
soon as we added them to the test machine
due to the real-time monitoring features. This
behavior was observed in all AVs. Apart from
this behavior, no significant difference was ob-
served. Figure 13 shows the detection rates
for the distinct malware classes upon a man-
ually triggered file scan. We notice that al-
though the detection rates in fact increase a lit-
tle bit from the VirusTotal’s version to the local
ones, the overall picture remains the same: dis-
tinct malware classes present distinct detection
rates. Thus, we are confident that the conclu-
sions presented along the entire paper hold true
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Figure 13: Comparing VirusTotal’s and lo-
cal’s AV versions. Although the detection
rate increased a bit, AVs kept presenting dis-
tinct rates for each malware class.

in actual scenarios. We acknowledge that this
experiment does not mean to be the definitive
conclusion of whether VirusTotal is reliable for
malware evaluations or not. Instead, we claim
that it helps to increase our confidence in the
average results reported in the paper.
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