
AntiViruses under the Microscope:
A Hands-On Perspective

Marcus Botacin1 Felipe Duarte Domingues2 Fabrício Ceschin1 Raphael Machnicki1
Marco Antonio Zanata Alves1 Paulo Lício de Geus2 André Grégio1

1Federal University of Paraná (UFPR-BR)
{mfbotacin,fjoceschin,mazalves,gregio}@inf.ufpr.br

rkmach17@gmail.com
2University of Campinas (UNICAMP-BR)

paulo@lasca.ic.unicamp.br
f171036@dac.unicamp.br

Abstract

AntiViruses (AVs) are the main defense line against attacks for most users and much research has been done about them,
especially proposing new detection procedures that work in academic prototypes. However, as most current and commercial
AVs are closed-source solutions, in practice, little is known about their real internals: information such as what is a typical AV
database size, the detection methods effectively used in each operation mode, and how often on average the AVs are updated
are still unknown. This prevents research work from meeting the industrial practices more thoroughly. To fill this gap, in this
work, we systematize the knowledge about AVs. To do so, we first surveyed the literature and identified existing knowledge
gaps in AV internals’ working. Further, we bridged these gaps by analyzing popular (Windows, Linux, and Android) AV
solutions to check their operations in practice. Our methodology encompassed multiple techniques, from tracing to fuzzing.
We detail current AV’s architecture, including their multiple components, such as browser extensions and injected libraries,
regarding their implementation, monitoring features, and self-protection capabilities. We discovered, for instance, a great
disparity in the set of API functions hooked by the distinct AV’s libraries, which might have a significant impact in the
viability of academically-proposed detection models (e.g., machine learning-based ones).

1 Introduction
AntiViruses (AVs) are one of the main solutions to defend users against malware, being present in the majority of computer
systems [112]. The popularity of AVs has led to a myriad of research proposals to enhance and bypass them, but little attention
was given to their internals and development decisions.

AVs are intricate pieces of software and their complexity evolves at the same pace that malware becomes more sophisticated.
Current AVs have their own developed parsers for multiple file formats, they load multiple kernel drivers to monitor the system,
and they have to protect themselves from attacks. Although all these factors are key to the operation of an actual AV, they are
often not discussed by the academic literature, which is more focused on presenting prototypes of the proposed concepts than
actual implementations.

When AV prototypes are proposed, they are often focused on single techniques (e.g., machine learning-based AVs, or a new
signature matcher), whereas current AVs operate based on multiple engines, which are activated according to the requested scan
type and context. While on-demand file checks might operate using signatures, real-time scans might be based on an API-based
machine learning model, and suspicious files might be later submitted to cloud scans. We believe that all these operation modes
should be considered on developed solution’s threat models aiming to reach real scenario’s usage.

We believe that a significant reason for the lack of information on AV internals is that most AVs are closed-source solutions.
In most cases, the only way to have access to real AV’s source code is when they are disclosed by attackers: past breaches
disclosed source-code for distinct AV companies [191, 88]. However, since these events happened a decade ago, even if one had
access to these codes, they would be too much outdated to reflect a current AV solution.

Though keeping their source-code private is an AV vendor’s right in a very competitive market, the lack of information does
not allow researchers to model solutions that fully resemble a real-world scenario. For instance, a researcher proposing a new AV
is not fully aware of: (i) in which scenarios signatures are deployed by the companies (e.g., zero-days detection, false-negative
mitigation, so on); (ii) how many signatures are added on average to a typical database (and old signatures are removed); (iii)
how much overhead is accepted for a typical scan; (iv) how often an AV is updated on average; and so on.

To bridge this understanding gap, we surveyed the existing academic literature to identify what is known and unknown about
AV internals. We further analyzed real, commercial AV solutions to fill the existing knowledge gaps with information about
actual implementation. Our goal is to present a broad and representative analysis of current AV solutions.

1

To ensure broadness, we selected for analysis AVs covering the most popular platforms (Windows, Linux, and Android), such
that we first present results regarding Windows, the most developed AV ecosystem, and later compare them with the results
regarding the two most recent platforms. To ensure representativeness, we selected the most popular desktop AVs according to
the AVTest’s criteria [23] and mobile AVs according to the Google Play Store market share.

Analyzing AVs internals is hard, as it encompasses a multitude of subsystems (filesystem, network, processes, drivers, libraries,
databases, and so on) that communicate among themselves. Thus, a single strategy and/or single inspection point would not
be enough to fully understand AVs operation. Therefore, we opted to inspect AVs during their whole operation using the most
suitable tools according to the task performed by the AVs at each moment. Our approach consisted of tracing AV operations
on a virtual machine (VM) from the installation procedure to the update process via the multiple scan modes. We also fuzzed
multiple AV interfaces to check their outputs against known threats, as well as for bug hunting purposes.

With this work, we expect to foster research in the AV internals field and help researchers to better model and parameterize
their solutions. It is important to highlight that this work does not propose new detection mechanisms nor techniques to bypass
AV’s detection, but an analysis of their internals and implementation decisions, although these might also lead to new develop-
ment and evasion opportunities as an associated outcome.

Contributions. In Summary, our main contributions are threefold:

• We survey the literature to summarize the existing knowledge about AV internals and existing knowledge gaps.

• We bridge the identified knowledge gaps by analyzing actual AVs and summarizing our findings.

• We discuss the current challenges of AV operation and pinpoint possible directions for future developments. More specifi-
cally, we discuss the following aspects of AVs operation:

– We describe the multiple AV components, such as engines, browser plugins, and libraries, regarding their operations
and implementation choices.

– We highlight the differences in AV’s implementations for multiple environments, from the reliance on event tracing
for Windows, to the use of preloading on Linux, and the abuse of accessibility services for Android app’s inspection.

– We discuss the self-protection mechanisms employed by the AVs, including their strong points (e.g., DLL unload
prevention) and weaknesses (e.g., integrity tampering in safe mode).

– We evaluate the multiple detection methods and operation modes leveraged by the AVs. We conclude that although
modern AVs indeed evolved to consider distinct information sources, such as cloud data and behavioral profiles, most
of their detection capabilities are still provided by static checks.

Organization. This work is organized as follows: In Section 2, we motivate the study of AV internals; In Section 3, we present
background information about AV operation; In Section 4, we present our experimental methodology; In Section 5, we analyze
the anatomy of actual AVs; In Section 6, we analyze detection challenges; In Section 7, we analyze AV’s self-protection mecha-
nisms; In Section 8, we analyze the performance impact imposed by real AVs; In Section 9, we analyze the differences of AV’s
implementations for distinct platforms; In Section 10, we discuss our findings; and finally, we draw our conclusions in Section 11.

Disclaimer: Intellectual Property. The sole purpose of this work is to academically understand AV’s operations, with no
commercial implications. We conducted all analyses by inspecting AV components as they are installed in the user’s machines,
acting the same way as any skilled customer could act to check whether the product works as advertised. We did not extract nor
decompile any code from AV’s components; We only present pseudo-code representing our understanding of AV’s operations.
We also only display original files if they were available in clear in user’s machines. Thus, we did not disclose any intellectual
property-protected information in this work.

2 Why Studying AV Internals?
The need for researching AVs is clear: we need to develop more secure solutions. Even though, the need for researching AV
internals is blurry for many minds. Why is it important? The answer is because the solutions proposed in a research context
should migrate from prototypes to production at some time to actually protect users [30], but this is only possible when the
research proposals fit the way that AVs actually operate. Therefore, it is important to study AVs internals to propose solutions
compatible with them.

There are many cases where a better understanding of AVs internals would help research developments, for instance:

• When hooking APIs. Many researchers propose hooking APIs to collect data for machine learning-based detectors [172].
Is the number of APIs hooked by the prototype compatible with the number of APIs hooked by actual AVs?

• When accelerating signature matching. Many researchers propose mechanisms to speed up signature matching [77].
Are signatures still used by AVs? Are they prevalent? What kind of signatures are used?

2

• Whenmeasuring performance. Many research works proposed to account for the performance impact of running AVs [7].
But, Is the performance AV independent of their internal engines? Can distinct engines be compared? Do all AVs operate
in the same modes?

This paper aims to answer both the aforementioned as well as related questions in the expectation of helping researchers in
bridging the gap between prototypes and actual AVs in their future AV developments.

3 Background & Related Work
In this section, we present the security properties that AVs are expected to fulfill and discuss existing research work gaps in
analyzing these properties.

3.1 AV Research Literature
There is no doubt that AVs are the main security solution deployed by most users. AVs have become so popular that even rogue
AV solutions can be found in the market [105, 55]. This popularity naturally fostered varied research on the subject. AV research
has been significantly evolving, both in quality as well as in quantity. In the past, the few existing research works used to look
to individual threats, such as the MyDoom case [185]. Currently, many research works focus on large-scale approaches. Despite
such evolution, AV research is still limited to the external AV factors, i.e., they do not cover AV’s internal aspects, such as its
implementation decisions. Table 1 summarizes the most studied aspects of AV’s operations according to our literature search.

Table 1: Related Work on AVs. Summary of the most studied aspects.
Task Aspect Work

Assessment
Socio-Cultural Factors [73, 62, 111]

Labeling Problem [114, 85, 163]
Detection Evaluation [29, 79]

Matching
ClamAV Engine [61]

Detection Mechanisms [144]
AV Bypasses [80, 142]

Platforms Mobile [68]
New Paradigms [195, 32, 196]

Performance Cloud AV [60, 91]
FPGA AV [33, 77]

AV Internals Overview This Work

The first external factor most evaluated by related work is to assess the effectiveness of the AVs to detect malware samples.
Whereas these works investigate relevant problems, such as the diversity of the labels assigned by distinct AVs, these works do
not delve into the details about why the distinct engines flag the samples differently (we aim to discover in this work). The
second class of evaluated factors covers the development of detection engines. Many works proposed distinct approaches to flag
malicious activities, such as the inspiration on immune systems [196]. The major drawback of these approaches is that they are
only proof of concepts and do not resemble a real engine. They do not operate, for instance, under the constrained conditions of
a real engine (as evaluated in this work). Most of these works are developed on top of ClamAV. Whereas this is the open-source
solution closest to a real AV, it still far away to be representative of a state-of-the-art engine (e.g., it does not support real-time
monitoring, for instance). Other research work classes focus on the underlying platforms that support AV operation. A typical
research work task is to port AVs to mobile environments [68] to operate in resource-constrained devices. The major drawback
of these work is that they do not represent any research breakthrough, but implement existing detection techniques. Finally,
some work focus on improving AV’s performance. The most commonly adopted solutions are moving the AV to a cloud-server
and/or providing an efficient hardware implementation to them (e.g., via dedicated FPGAs). Although all of these are important
aspects of AV’s operation, they all lack information about AV’s internals. In this work, we aim to bridge this gap.

3.2 AV Internals Literature
The literature on AV internals is not as large as the one related to the proposals of new solutions, as previously shown. Only a
few studies cover the particular aspects of AV’s operation. As pointed by Aycock in his malware book [24]: “the AV community
tends to be very industry-driven and insular, and isn’t in the habit of giving its secrets.” Therefore, most reports of AV internals
are found outside of the academic literature. Whereas fundamental to help to understand AV’s internal, these reports lack
scientific systematization. For instance, they focus on particular solutions (e.g., an analysis of hooks on the Kaspersky AV [165],
and/or Windows defender reverse engineering findings [39]), but do not draw a landscape of the whole AV market (as this work
does).

These landscapes started to be presented by the first academic work tackling the problem (e.g., a review of AVs using
signatures [4], or ML detectors [193]). The major drawback of the academic literature is that most works adopt black-box

3

analyses procedures [156], exploiting the fact that still few solutions employ anti-black-box technique [70]. Whereas this approach
provides interesting information, such as about the AV’s energy consumption [152], they do not reveal the AV company’s project
decisions.

The closest work to reveal AV internals is the “Antivirus Hackers Handbook” [106], which presents a reverse engineer method-
ology for inspecting AVs and the findings of its application to multiple AVs. Whereas this is the most complete reference so
far, it needs to be updated to cover the recent advances of this industry (e.g., cloud scans, machine learning, and so on) and
also expanded to cover other platforms. Whereas the first step towards this direction was given in a recently released book
chapter [138], this does not cover AV in deep details as the first book. Therefore, in this work, we aim to update the knowledge
about AV internals by still considering the originally proposed methodology [106] as the basis to ours and complement their
findings.

Table 2: Related Work Summary. Our work presents the most comprehensive and up-to-date analysis.
Work Landscape Avs Studied Aspect Modern AV
[165] 7 Kaspersky Function Hooks 3
[39] 7 Defender Emulation 3
[4] 3 Multiple Signatures 3
[193] 3 Multiple Machine Learning 3
[152] 3 Multiple Energy Consumption 3
[138] 3 Generic Detection N/A
[106] 3 Multiple Overall 7

This 3 Multiple Overall 3

In Table 2, we show a comparison of this work and the works available in the literature considering its coverage (landscape
vs. single solution analysis), completeness (evaluated aspects), and representativeness. Our work is the only updated landscape
article to cover all aspects of AVs operations.

3.3 AV Goals: Theory & Practice
The importance of studying AV’s detection rates is reasonably clear to most people, as they directly affect the system’s protection.
However, the importance of studying AV’s internals is sometimes overlooked, as they only indirectly affect security. Despite
that, good implementation choices are essential to guarantee detection capabilities: For instance, a previous study showed that
abusing AV internals leads AV’s solutions to crash [74].

There are two key concepts to understand AV’s internals: (i) the attack surface, and (ii) the Trusted Code Base (TCB) [34].
The first refers to the fact that the more exposure a system and/or application has, the greater the possibility of it being
targeted, exploited, or vulnerable to any other event. The more services and/or components an application presents, there are
more alternatives to a successful attack. The second refers to the fact that any component added to a software (e.g., library,
module, so on) needs to be trusted by the main application. These concepts are strongly related, as each component added to
the TCB increases the attack surface.

When AVs are added to systems, they increase the TCB of that system. Thus, the addition of the AV software themselves
initially increases the attack surface of that system, as the AV adds libraries, modules, interact with subsystems, so on. Under
the light of the presented concepts, an AV is only viable if the benefits of adding the AV as part of the TCB of a system is
greater than the attack surface added by it.

The general goal of an AV is to reduce the system’s attack surfaces by making them less exposed and exploitable. This can
be done, for instance, by leveraging AV capabilities to sandbox applications [178]. However, this is not what happens in practice
when the AV’s internals fail to accomplish their goals.

There are multiple reports of AV failures and many of them are related to an increased attack surface. A typical failure case
is related to format parsers. AVs implement parsers by themselves for multiple file protocols. Parsing is a very error-prone task
and the security implications are giant if the errors happen inside an AV engine [17]. Besides parsing, another frequent AV task
is to unpack protected code. In addition to error-prone, this task is also risky because in many cases the packed code needs to
be executed within the AV. Bad decisions about unpacking routines might lead to a significant increase on the attack surface.
When the unpacking is performed in kernel [154], a userland threat is elevated by the AV itself to a kernel threat. Privilege
escalation by AVs can only be prevented by a careful design of their internals. Unfortunately, attacks are still seen in practice,
such as in the case of a rootkit remover that in fact allowed unsafe drivers to be loaded in the kernel [58].

Recently AVs extended their inspection capabilities to cover other scenarios, such as web threats. As in previous cases,
whereas increasing defenses, they also increase the attack surface. This might lead to unintended consequences. For instance, an
attempt to inject a Javascript verification code in web pages to protect users ended up disclosing unique tokens that allowed
tracking users over websites [78].

AVs also often intercept network communications to protect users against malicious downloads and data exfiltration. AVs
usually set local proxies to the system to redirect traffic via the AV inspector. These proxies might even intercept encrypted
traffic, which leads to privacy concerns [65]. Even worse, the proxies themselves might be attacked if they are not properly

4

implemented. Recently, an AV proxy was revealed vulnerable to Freak attacks [81]. Face to the presented scenario, in this work,
we also evaluate AVs under the light of their attack surface.

3.4 Detection Mechanisms & Operation Modes
AVs have been reported for a long time as solutions that detect samples via signatures when on-demand checks are requested.
This is far from an accurate description of a current AV. They have evolved to cover multiple attack surfaces and operate on
distinct modes. The AV might be operating in multiple modes simultaneously, as defined by the AV policy. In many cases, these
modes are progressively activated during system operation. In other cases, however, some modes might only be available in
premium products, also according to AVs vendor’s policies. According to our observations, AVs operate in the following modes:

• On-demand Checks. These are the typical checks performed when users request specific files to be checked. This type
of scan is useful to detect malicious patterns that were not visible when the file was created and thus inspected by the
other components operating in other modes.

• Scheduled Checks. These are a variation of on-demand checks that is activated only in predefined times aiming to scan
the whole system. This type of check is often performed in the background and/or when the system is idle.

• Real-time Checks. These modules continuously inspect running processes’ interactions with other OS components to
find suspicious behaviors and immediately blocking threats. When this mode is enabled, performance overhead is imposed
to the system as the processes’ actions need to be tracked and intercepted by the AV.

• Trigger-based Checks. This mode executes inspection routines as soon as a specific action occurs in the system. For
instance, AVs inspect executable files as soon as they are written on disk (e.g., downloaded from the Internet), or when
they are about to be executed (e.g., after a double click).

• Delayed Checks. AVs might also perform additional checks in delayed periods of time when an inspected artifact (file
and/or process) is not reported as clean with high-level confidence. The AV might use this additional time to wait for the
process to exhibit more characteristics to be inspected or to request to an external party (e.g., cloud server) additional
information about the file. Some AVs rely on collective information, such as those obtained via telemetry systems, to make
their decisions.

One should not confuse these presented operating modes with the types of checks performed in each one of them. In the
malware field, analysis (and detection) procedures are often classified as static and dynamic [164]. Therefore, AVs might present
a combination of the following detection strategies:

• Statically Triggered Checks, When the scan was requested by the user (e.g., on-demand and/or scheduled scan modes).

– Static Detection. This type of detection occurs without running the suspicious artifact. It is characterized, for
instance, by the use of signatures and pattern matching techniques against static files. This is the most commonly
used scan technique when an on-demand check is requested.

– Dynamic Detection. This type of detection occurs when the suspicious artifact is executed to be scanned. Many
AVs do not limit their on-demand checks to signatures, but in fact they run the suspicious binary in a sandbox to
check its behavior before allowing it to execute in the main system. For instance, we found that the AVAST’s Sf2.dll
library implements a Dynamic Binary Instrumentation (DBI) solution for that purpose.

• Dynamically Triggered Checks. When the checks are triggered by the runtime monitors. These checks are dynamically
triggered as they rely on the fact that the suspicious artifact is running.

– Static Detection. Although these monitor rely on running artifacts, the detection method employed by a real-time
monitor might be static. A file system filter might, for instance, detect a file creation in real time but launch a pattern
matching procedure to detect it as malicious.

– Dynamic Detection. These are the checks performed in the context of the running processes. AVs often monitor
APIs arguments to detect suspicious actions as soon as they are started by the processes.

The presented operation modes and detection methods cover the following OS attack surfaces:

• File System Scans. The AV monitors the file system to inspect newly created and/or modified files. Files are the
typically AV-inspected artifacts due to malware sample’s persistence needs.

• Process Scans. The AV tracks processes interactions to establish relations between them. This allows tracking child
processes of malware loaders and identify injection attacks via remote thread creations.

5

• Memory Scan. Some AVs (e.g., ClamWin [53]) are able to apply detection rules against loaded processes images.
This allows detecting emerging threats, such as fileless malware. This type of inspection imposes significant performance
penalties due to the memory access latency. Therefore, it is more common to find memory inspection in the on-demand
operation mode than in the real-time mode.

• Network Inspection. AVs currently cover network-based threats since the Internet has become massively popular. To
do so, AVs set proxies in the system to inspect the application’s traffic. Whereas some applications such as browsers are
almost always inspected, the proxy for other applications is often just a pass-through filter.

• Browser Protection. AVs have been increasingly adding inspection capabilities directly into the browsers. They are able
to inspect network traffic and the loaded page’s contents. The typical implementation of an AV’s browser monitor is by
leveraging the browser’s plugins and extension facilities.

3.5 Understanding AV Structure
We previously presented the multiple operation modes and attack surfaces covered by the multiple AV components. We now
detail these components, how they interact with each other, and the impact of potential flaws in each one of them.

Figure 1 presents an overview of the most common AV’s components and their interactions. In an overall manner, AV’s
components interact in a client-server way [106]. However, depending on the perspective of the task at hand, the understanding
of what is a client and a server might change.

Figure 1: AV Architecture. Overview and main components.

When a user claims to have interacted with an AV, in fact, he/she interacted with a Graphic User Interface (GUI) application
(a client) that just set parameters for the AV core running in another process (a server) that effectively adds threat intelligence
to the system. Whereas the GUI is implemented as a typical user process, the server usually runs as a background service, with
elevated privileges and sandboxed interactions. Therefore, whereas the GUI can be terminated and restarted by the user (or any
application), the AV core should be resistant to termination to not be finished by a malware sample running in userland. The
communication between the GUI mechanisms and the AV core is often performed via JSON or XML data sent and received via
HTTP-like protocols. This allows clients built upon distinct frameworks (e.g., Windows binaries, Web-based applications) to
communicate with the AV core.

The AV core is not a monolithic piece of software, but usually a host process that loads within its libraries that effectively
implement the AV inspection capabilities (e.g., pattern matching, unpacking, so on). Tables 19 to 24 from Appendix A shows
the multiple libraries used by the distinct AVs. In this sense, the AV core process is a client of the detection results provided by
the libraries. This architecture opens space for attacks if one were able to load the AV core libraries within any process to inspect
it and find ways to defeat it. Therefore, AVs should implement methods to prevent the loading of these libraries in external
processes and/or to authenticate the communication with them. These protection mechanisms are described in Section 7.

Whereas some libraries are of AV’s exclusive use, some libraries are designed to be injected into running processes to monitor
them. These libraries provide information to the AV core processes (a client for this type of information, but a server of
detection results) that decides what to do with this application (e.g., process termination if malicious). Unlike the previous case,
the challenge here is to avoid the library being unloaded by a malicious process to evade detection.

Although the AV core processes run with administrator privileges, some information can only be obtained in the kernel space
(e.g., reading foreign memory, I/O ports, so on). Therefore, AVs implement one or multiple kernel drivers to interact with and
collect additional data to decide about the maliciousness of a given artifact. From the I/O point-of-view, the kernel serves the
AV core client with data. As in the library’s case, the kernel driver should be protected from attacks. The AV should ensure that
the driver is not unloaded by third parties to reduce AV’s inspection capabilities. The AV also should ensure that a third-party
will not use the driver to elevate its privileges. For instance, the AV should authenticate the communication with the driver
to avoid a third-party process to request the AV driver to read protected memory regions and thus disclose sensitive data via
unprivileged IOCTLs.

6

Similar reasoning can be applied to AV’s network clients and proxies. As their ports are openly available in the system to
be connected by any processes, they should ensure that they only establish a connection with trusted entities, such as the AV
entities. Otherwise, these clients might disclose sensitive information to any process that queries their state via these network
ports.

4 Definitions & Methodology
In this section, we define our study object and describe the methodology to inspect it.

4.1 Definitions
Before presenting the strategies adopted to inspect the AVs, we first present a definition of the AV objects studied in this work:
AV internals and AV engines.

AV Internals. We consider AV internals all components of an AV product that are not directly exposed to the user, including
the AV engine, modules, libraries, databases, and configuration files.

AV Engine. We consider as the AV engine the modules implementing the functions responsible for detecting and removing
malware. The AV engine is the core of an AV product and its working is, theoretically, independent of marketing issues—Non-
functional AV features, such as for personal and enterprise versions, should not affect the AV engine operation.

4.2 Methodology
This work’s goal is to shed light on AV’s internals from a practical point of view. We are concerned whether the concepts reported
in the literature are actually deployed by the off-the-shelf solutions. Therefore, to present a landscape of AV’s implementations,
we analyzed AVs regarding all their operation steps, from (i) installation; through (ii) scanning; until (iii) post-installation
updates.

Our study aims broadness, thus we evaluated AVs for Windows, Linux, and Android. However, we pay special attention
to the Windows OS because it is usually the most targeted OS by malware samples [14]. We analyzed the set of the 10 most
popular Windows AVs ranked according to the AVTest’s criteria [23] (checked in August/2019). All AVs but the built-in Windows
Defender were evaluated from the installers downloaded from the AV vendor’s websites. Freeware AVs were installed with their
full capabilities and commercial AVs were installed in their trial versions. The installers are described in Table 3.

Table 3: Analyzed AVs.
AV Version MD5
Avast 19.7.4674.0 172ee63bf3e0fa54abd656193d225013
AVG 19.8.4793.0 0d19e6fc1a4d239e02117f174d00d024
BitDefender 24.0.14.74 0e54eab75c8fd4059f3e97f771c737de
F-Secure 21.05.103.0 2393777281f3a9b11832558f5f3c0bce
Kaspersky 20.0.14.1085 7dc4fb6f026f9713dca49fc1941b22ce
MalwareBytes 3.0.0.199 9c69b2a22080c53521c6e88bd99686a1
Norton 22.17.1.50 2f1f762658dc7e41ecc66abd0270df97
TrendMicro 12.0 f8b8a3701ec53c7e716cf5008fad9aa1
Vipre 11.0.4.2 77a9dbd31ed5ebe490011ffa139afe03
WinDefender 4.18.1902.5 Built-in W10

Since AVs encompass multiple subsystems (e.g., filesystem, network, processes, drivers, libraries, databases, so on), we have
to conduct distinct analysis at the distinct steps of AVs operation to understand their whole operation. Each time a module was
in action, we conducted a distinct investigation procedure to consider the the most interesting targets for that module. Table 4
summarizes and exemplifies the targets for each AV execution step.

Our analyses encompassed both static and dynamic procedures performed using distinct tools. The tools considered for the
overall AV characterization are summarized in Table 5 (we present other, specific-purpose tools over the text when required).
We performed static procedures to identify the files deployed by the AV in customer’s machines. It included enumerating all
executable binaries, kernel drivers, and libraries, along with their imports and exports. The drawback of this type of procedure
is that although we can identify some key AV engine components, we cannot identify how they interact with other components
nor when their capabilities are triggered. Thus, we performed dynamic analysis procedures to bridge this gap. The dynamic
inspection consisted of actually interacting with the AV software and triggering multiple tasks, from scans to update procedures.
We traced all AV’s components, both from userland as well as from the kernel, during our interactive analysis sessions.

In addition to characterizing AV’s typical operations, we also simulated some adversarial conditions for AV operations to
assess their self-protection capabilities. For instance, we (i) impersonated AV’s clients by loading their DLLs inside our controlled

7

Table 4: Analysis Methodology. Distinct aspects are checked according to the AV operation step.
Operation Step Analysis Target Operation Step Analysis Target

Installation

File Identification

On-demand scans

Analysis Threads
Installer Tracing Scan Parameters
Downloaded Files Cache Databases

Anti-Tampering Checks Scan Routines

AV Loading

Created Processes

Runtime Checking

Process Creation
Created Services DLL Injection
Loaded Drivers Kernel Callbacks

Configuration Files DLL Unload Prevention
Checksums and Self-Checks Process Termination Prevention

Updates Network Traffic Cloud Scans Hash Generation
File Replacement Network Traffic

Table 5: Analysis Tools. Summary.
Task Tool
File Characterization peid [8] + pefile [66]
Strings Identification Strings (built-in)
Instruction Checking objdump (binutils)
DLL Enumeration DLL Export Viewer [145]
Driver Enumeration DriverView [146]
Process Enumeration ProcessHacker [153]
Hook Identification HookShark [83]
Registry Inspection Regshot [159]
Filesystem Checks FileGrab [69]
Userland Tracing SysInternals [129]
Kernel Tracing Branch Monitor [31]
IOCTL fuzzing Custom Solution
Network Inspection Tcpdump [176] + mitmproxy [135]

processes to verify if they accept third-part commands; (ii) developed our own IOCTL fuzzer to verify whether their drivers answer
to third-party requests; and (iii) deployed Man-In-The-Middle attacks to check whether AV’s communication can be tampered
or not.

We searched for Linux AVs similarly as we searched Windows ones. However, testing Linux AVs has been revealed as a
harder task than testing other platform’s AVs, mainly because fewer commercial solutions are targeting Linux. Many solutions
are tied to single platforms and/or available only for enterprise customers (which is not the case for this study). Most of the AV
versions we had access were not functional. Their installation processes can be considered as still undeveloped face to the current
scenario of installers for other platforms, such as for Windows. For instance, we found installers that still do not automatically
solve missing dependencies problems. Considering the above, we were able to inspect a fully-functional version of the ESET AV
for Linux Desktops. In this scenario, our analyses were more focused on showing the differences from a real Linux AV to real
Windows ones, since similar components were discussed in details for the Windows ones.

Whereas the Linux environment is characterized by a limited number of AV solutions, the Android ecosystem presents the
opposite characteristic: it has a myriad of AVs and other security-related apps, such that they would deserve a specific research
work to be fully analyzed. However, since our goal is not to provide an exhaustive analysis of Android AVs, which is left for
future work, but to draw a landscape of their distinctions to the desktop AVs, we limited our evaluation to the top-5 most
popular apps in the Google Play Store in July/2020 (apps versions are shown in Table 6). Most of the analysis procedure in the
Android environment consisted of statically inspecting the distributed applications. In this case, the dynamic analysis procedure
should be understood as the act of running the application in the device such that databases are populated. These databases
were further retrieved and inspected offline.

Table 6: Mobile AVs. Tested Versions.
AV Avast AVG Psafe Kaspersky ESET AVIRA
Version 6.29.1 6.29.2 6.5.1 11.50.4.3277 5.4.13 6.7.2

AVs cannot be evaluated by themselves; they need to be exposed to malware samples to exhibit their defensive capabilities,
Moreover, AVs react distinctly to distinct samples. Thus, we collected multiple malware samples and submitted them to AV
scans during the monitoring to be able to observe AVs in action. For this study, we collected samples from Virustotal [186],
Malshare [115], VxUnderground [189], and from a partner security company that opted to remain anonymous. In total, we
considered 9M PE samples (among which 5K are kernel rootkits), 5K ELF samples, and 5K Android samples. We did not

8

balance these datasets in any way, since our goal is not to characterize the samples but the AVs. The datasets were not
submitted as a whole for the AVs, but samples were individually tested until the AV exhibits the behavior we were interested in.
We confirmed all collected samples as being malicious by submitting them to the Virustotal service. This service is mentioned
all over this work whenever we need a great confidence level for an analysis procedure, which is provided by the Virustotal’s AV
committee.

In the next sections, we present our AV evaluation broken down by the distinct tasks performed by the AVs. We opted to
present the results according to the performed tasks because it allows us to better describe specific AV’s aspects that would
remain hidden if mixed among the myriad of tasks performed by modern AVs. It also allowed us to perform the analyses with
a greater focus, without being distracted by side operations. Even though, the analysis process has been revealed challenging
because multiple of these tasks happened during the process. For instance, it was hard to distinguish the tasks performed by
the multiple AV processes when update procedures were triggered along with file scans. We did our best to isolate such cases
and expect to present the most accurate description possible of each AV component’s dues.

Our research work is guided by two main analysis goals: broadness and correctness. Therefore, whenever possible, we present
results covering all the AVs to present a broad panorama of AV operations. In a few cases, we focus our description on specific
AV products. This ensures that we only report results for which we have a high confidence level on the outcomes of the analysis
processes. This prevents us from reporting to the reader wrong results due to obfuscated code constructions that could not be
fully interpreted1.

5 Antiviruses Anatomy
In this section, we discuss the multiple components of actual AV products and the project decisions behind their implementations.

5.1 AV Ecosystem
Analyzing AVs is a double-edged sword. On the one hand, they are very particular solutions. Each company deploys distinct
policies and the analysts that produced sample information are different. Therefore, analyses can hardly be generalized. On the
other hand, AV engines are not so different in structure as they have to fit the same OS constraints. Therefore, we here aim to
present a landscape of these common aspects.

In practice, the market of AV engines is not as broad as the AV’s solution market itself. This happens because many solutions
share the same engines (e.g., licensed versions of a major AV company engine). There are even companies specialized in selling
detection engines instead of selling their own AV solution. Also, most of the main AV companies provide Software Development
Kits (SDK) to their products [168]. These are often adopted by newcomers since creating an engine from the beginning is
tough [143].

Face to this engine sharing scenario, one can still identify research work falling to significant pitfalls, such as referring to the
number of AV solutions that detected a given sample as a confidence level on its maliciousness without considering that many of
those detections occurred due to the usage of the same engine. These repeated detection reports do not add extra information
about a given sample’s maliciousness because all of them are repetitions of the same procedures leveraged by the shared engine.

We can have a long-term view of how the AV engines sharing evolved by looking to common labels present in the VirusTotal
service [186]. The labels assigned by two AVs usually agree when they are originated from the same engine. We relied on this
fact to cluster similar labels and identify AVs sharing their engines. We considered the set of 9M samples described in Section 4
for this experiment and that two engines are the same when their labels agree on at least 70% of all cases.

Figure 2 shows the clusters and their agreement rates for the AVs identified as sharing engines. This approach was able
to identify real cases of engine sharing, such as ZoneAlarm outsourcing detection to the Kaspersky cloud [198] and the AVG’s
acquisition by Avast [18]. In the latter, the approach is even able to show the cooperation evolution: In 2016, when the agreement
was announced, the two AVs were not clustered together. In the following year, the AVs started being clustered together, with
a lower rate than in the last years, when the AVs are likely fully integrated. This label correlation was then observed in other
research work [197].

When analyzing the AV’s binaries, we discovered two cases that reflect the aforementioned integrations. More specifically,
we discovered that: (i) Avast and AVG finished their integration, with the same core files (same hashes) distributed for the
two Avs; and (ii) the VIPRE AV uses the Active Threat Control driver and the scan.dll library from Bitdefender and the
WebExaminer driver from ThreatTrack, which is the root of many label’s similarity.

5.2 Security Resources Integration
Face to the above-presented scenario, AV solutions tend to differ more due to the modules that are integrated into them. Each AV
architecture defines how the modules are integrated. In some cases, information from the multiple modules might be correlated.
However, the presence of a module in a given application should not be seem like a definitive indicator of the AV’s operation
mode. In a noticeable example, Google embedded the ESET NOD32 AV in its Chrome browser but instead of verifying web
pages, the AV in fact checks the filesystem for artifacts potentially harmful to the browsing environment [151].

1We aimed to report results of marketed AVs whenever possible. Otherwise, the open-source AV ClamAV [52] is used as example

9

Figure 2: Engine Sharing. Identified clusters according to VirusTotal’s labels sharing.

Table 7: AV Resources. A multitude of security resources is available in current AV solutions.
AV Avast F-Secure Kaspersky TrendMicro VIPRE

Firewall 3 3 3
Network Inspector 3 3 3 3 3

Antispam 3 3
Secure Browser 3

Browser Protection 3 3 3
Real-Time Monitor 3 3 3 3 3

Emulator 3
Safe Deletion 3 3
Safe Banking 3
Safe Search 3

Email Protection 3 3 3
Social Protection 3 3
Password Manager 3 3

10

The OS attack surfaces covered by the AVs should also not be confused with the threats that the AV aims to protect against.
Current AVs are not only composed of detectors to suspicious executable files, but they also cover other security aspects. Table 7
summarizes the multiple components found in the AVs. We notice that current AVs are complete security solutions. They offer
facilities such as filtering spam, acting as a firewall, sweeping files definitely, and even protecting emerging surfaces such as social
networks. In the TrendMicro AV, we even found a protection tool (TmopphYmsg.dll) aimed to protect the deprecated Yahoo
Messenger. Therefore, the AV agents deployed through the OS stack serve multiple security purposes.

5.3 AV’s Implementation.
The fact that AV engines might be shared among distinct AV solutions highlights the importance of understanding and taking
care of the development of these engines. On the one hand, the process of developing an AV engine does not differ significantly
from developing any other software. The same project decisions adopted by popular solutions can also be found in the AVs. For
instance, AV configurations are stored in SQLite databases, as in many popular projects. We found SQLite adapters for Avast
(aswSqLt.dll), F-Secure (sqlite3_32.dll), and Kaspersky (dblite.dll) AVs.

However, as AVs are complex and critical pieces of software, they must follow the best development practices. For instance,
their code is modular, with multiple helper functions and polymorphic implementations to support 32 and 64-bit systems
and legacy standards. Interestingly, in the Kaspersky AV, we can even find a library referencing the Façade Design Pattern
(cf_mgmt_facade.dll). Whereas there is no evidence that its code is implemented following this design pattern, this component
does interface with other system components [101]. Interfaces are popular AV’s components, as the AVs need to interact with
multiple distinct subsystems.

A factor that complicates AV’s development is that AVs cannot rely on the security of third party libraries and thus need to
implement their own routines even for the most popular algorithms. For instance, in the Kaspersky AV, we found implementations
of the MD5 (hashmd5.dll) and SHA1 (hashsha1.dll) hash algorithms. This project decision is essential to ensure that the AV
is not considering a file as benign because the hash algorithm was also infected and subverted.

5.4 AV Installation & Removal
The first step to understand AVs is to observe their installation, as it reveals which are the components that they install and
to which system components they interact with. A previous study shows that developing a secure application installer might
be challeging [28], and we understand that this also applies to AVs as they need to ensure that they were correctly installed to
properly protect users against attacks.

To understand how AV’s installers work, we traced their installation in virtual machines. All AVs were successfully installed
and did not require rebooting the system to finish. Even though, some components, such as extensions to third party applications,
required the host application to be restarted. The AV files were not packed (although some of them are distributed in proprietary
formats), which allowed us to inspect them. Table 8 summarizes the most installed components by AVs. Whereas EXEs and
DLLs files were expected to be found, due to the software installation nature, we highlight the installation of XPI files (browser
extensions) performed by most AVs. We also identified distinct signature files used to ensure file authenticity and integrity
distributed via multiple file formats (e.g., XML, TXT, SIG, so on).

Table 8: AVs Installers. Mostly Installed File Types and Components.
AV EXE DLL SYS XPI Certificates databases
Avast 3 3 3 3 3
AVG 3 3 3 3

BitDefender 3 3 3 3 3 3
F-Secure 3 3 3 3 3 3
Kaspersky 3 3 3 3

MalwareBytes
TrendMicro 3 3 3 3 3 3
VIPRE 3 3 3 3

A key task for any installer is to ensure that the correct files are installed. Table 9 summarizes how the files are retrieved
and verified. Most AVs opt to distribute online installers, that download the AV files from the Internet. Few AVs distribute
standalone installers containing all installation files. An advantage of online installers is that they allow AVs to always install
the most updated AV versions in the target machine.

To check the installer’s robustness, we attempted to tamper the AV installers by adding bytes to these files to change their
checksum and check whether they implement verification routines. We discovered that only the Norton AV checks the installer
integrity. Most AVs opt to perform post-installation checks. In the case of online installers, they do not have to worry about file
tampering at the installer level as the files are downloaded from the Internet and thus cannot be tampered locally. In turn, the
files could be tampered during the download process if it is performed via non-encrypted (HTTP-only) connections. Whereas
some AVs such as Kaspersky opt to download data via HTTPS connection from hardcoded IP addresses (not even DNS requests
are performed to avoid hijacking), other AVs, such as Avast, opt to traffic data in clear. In fact, this is an interesting project

11

decision taken by many AVs. This was reported in previous studies [28] and was hypothesized to be due to legacy compatibility.
Due to this decision, post-installation checks must be performed. Back to the Avast case, we confirmed that the AV performs
post-download checks to confirm the file integrity and legitimacy.

Table 9: Installers Summary. Installers Types and Protection Mechanisms.
AV Installer type Installer Integrity Check Encrypted Traffic
Avast Online 7 7
AVG Online 7 7

BitDefender Online 7 3
F-Secure Standalone 7 3
Kaspersky Online 7 3

MalwareBytes Standalone 7 N/A
Norton Online 3 3

TrendMicro Standalone 7 N/A
VIPRE Hybrid 7 7

After AV modules are ready for use, AVs should register them in the Windows Security Center (WSC), an OS component
that ensures there is an AV running in the system. The most recent Windows versions are shipped with a built-in AV, Windows
Defender, such that the new AV should be registered in WSC so as Windows can safely deactivate the Defender AV and allows
the new one to take control of the system. All evaluated AVs properly registrated themselves along WSC.

The Default Settings Problem. Another important aspect of an installer is that it defines default configurations for the
AV operation. These configurations are not customized for user’s specific needs and might not provide the best protection if
they are not reviewed by the users. Default settings should be also be observed when performing comparisons and evaluations
of AVs, as comparing two AVs operating with distinct features is unfair. In the Kaspersky AV, for instance, whereas cloud-
based scans are implemented, it is not available by default. Acknowledging this issue is important because evaluations with
and without cloud support will certainly lead to distinct results. Similarly, whereas the MalwareBytes AV provides a large
set of configurations, including performance restrictions, its rootkit protection is not enabled by default. Acknowledging these
configuration possibilities is important because performance measurements with and without detection restrictions will certainly
lead to distinct results. For Avast, whereas real-time protection is enabled by default, firewall and sandboxes are disabled. Even
components enabled by default need to be configured. For instance, although the ransomware protection is enabled by default,
its default coverage is limited to a few user folders instead of operating system-wide.

It is important to highlight that the default configuration settings affect even the AV’s detection rates. As already pointed
by the literature [109]: “Default configurations can sometimes leave systems less secure than recommended when adding them
to a production network.”. In practice, the detection rates achieved by the AVs are bounded by the configured AV’s sensibility.
AVs present distinct sensibility levels, as well as most security solutions [166]. More specifically, the evaluated AVs present
3 distinct sensibility levels: low, medium, and high. Some detection capabilities are only available in the highest sensibility
level. All evaluated AVs were shipped configured in the medium sensibility level by default, which reduces the FP rate and the
performance overhead, but also limits the detection capabilities. Taking the Avast AV as an example, in this mode, the AV: (i)
do not scan entire files, but only some parts (e.g., headers and chunks); (ii) do not follow links; (iii) do not scan removable media;
(iv) skip scan for some known file extensions; and (iv) do not scan non-popular compressed files. These detection capabilities
become available to the user if he/she configures a custom scan.

We consider that the issues related to default configurations are often overlooked in practice, although some aspects were de-
scribed in the literature [139]. Thus, our goal is to present a real-world evaluation of AVs and their impact. To do so, all overview
experiments and results presented in this work were performed using the default AV configuration. We expect to overcome pop-
ular claims about AV’s detection capabilities that cannot be supported by empirical observations. More specifically, we believe
that, as a general rule, if a security mechanism is not practical to be deployed by default, it is not an effective and efficient solution.

AV Removal. If AV installation procedures are poorly understood, AV removal procedures are completely obscure in most
cases, which motivates our report. Although these procedures might worth an entire investigation, we here shed light on two key
aspects of AV removal: detection and performance. When the AV license expires, the AV is not removed, it remains installed
but their component’s capabilities are limited (e.g., users cannot trigger on-demand scans anymore). Such limitations, however,
does not imply that the AV is completely inactive. In fact, the components responsible for protecting the AV from tampering
attempts (which includes attempts to tamper with the AV license, in this case) are still functional, thus the AV is still imposing
performance overhead even in an expired state. We noticed that for the AVs in which the same kernel drivers are responsible for
anti-tampering and runtime threat detection routines, the AVs might still detect some threats in real-time, even though their
warnings are hidden from the user. Despite not completely unprotected, AV capabilities are significantly reduced when expired.
In the past, when it happened, the system was left vulnerable. In recent Windows versions, as the AV license expiration is
communicated by the AV to the WSC, Windows automatically re-enable the default Defender AV to protect the users.

12

5.5 Update System
Updating an AV is an essential security task to keep users protected against emerging threats (although a significant number
of users neglect this aspect [112]). Whereas many (academic and industry) works claim that updating an AV is important,
practical aspects such as how the update is delivered and how often it is performed are often overlooked. They are critical factors
because if an update is delivered in an insecure manner it can be abused by attackers to defeat the AV solution. Therefore, in
this section, we shed some light on the practical aspects of AV’s update systems.

The first thing we should observe about AV updates is that current AVs perform two types of updates: application updates
and malware detection updates. The first is performed to add new software functionalities to the AV and/or to migrate it to
a new version. The second is performed to add new detection strategies and/or to fine-tune detection parameters using the
already-deployed detection mechanisms. The difference between them should be highlighted because these two operations have
significant differences, both in their frequency as well in their file sizes.

When we look at the updates from a file size perspective, software updates are large, with multiple MB, reaching up to 100MB
in one of our observations. In turn, malware definitions are usually individually small, rarely exceeding an MB. However, as
these definitions need to configure multiple, individual components, multiple of these definition files are downloaded each time,
with their combined size reaching a couple of MB per update. The update size significantly varies over time, with the updates
performed in some days presenting larger files than others, according to the distinct AV solutions. We were not able to compute
a file size average for the AVs with statistical confidence.

When we look at the updates from a frequency perspective, software updates are “rare”, occurring when new AV versions are
available or when bugs are found. We observed these to occur from once a week to once a month. In turn, malware definition
updates are more frequent, though dependent on the AV company’s ability to generate new detection rules. In our experiments,
we observed AV checks for malware definition updates ranging from every 3 minutes (Avast) to 30 minutes (VIPRE).

Although the update checking time is a good indicator of how fast updates are expected, we can only fully understand AVs
vendor’s capabilities in delivering new malware detection settings when we look to the actual updates performed by the AV.
There is currently a paucity of studies in this field. To the best of our knowledge, the only work that presented statistics about
updates was a 6-month observation performed by an AV comparative company dating back 2004 [1]. This study presented key
results to characterize AV’s operations, such as the heterogeneity of the updating process among the AVs, but this work needs
to be updated to confirm or disprove these results when considering a modern AV.

Unfortunately, we do not have the same structure as an AV comparative company to perform a 6-month observation for all
AVs. However, we were able to deploy a single AV for 30 days on a real user machine connected to the Internet 24h a day to
observe all their updates occurring as soon as they are made available by the AV company. We expect that the obtained results
could be extrapolated somehow to other AVs solutions and/or at least partially update our knowledge and statistics about the
process of updating a modern AV.

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

U
p

d
a

te
s
 (

#
)

Day

Avast’s Updates Over Time

Figure 3: Avast’s updates over time. The number of updates per day significantly varies over time.

Figure 3 shows the daily updating frequency for the Avast AV (chose at random for this test). We notice that at least 1
update occur every day. This shows that updates cannot be neglect in AV evaluations and/or even in academic developments,
as one would be not paying attention to a process that happens every day. More than that, we observe that a distinct number
of updates is performed each day, which extends the heterogeneity of AV updates reported in previous work from inter-AV to
intra-AV observations. Finally, we observe that AVs might perform up to 10 updates in a given day. This reveals that the update
policy of this AV is to deploy malware detection routines as soon as possible instead of consolidating all-new detection routines
in a single update. This decision is a good strategy to keep users protected as soon as possible.

Despite occurring multiple times a day, AV’s update processes are complex and require multiple steps. We following detail
the update process of some of the investigated solutions.

13

Avast. In this AV, the update process starts with the AV querying its own servers for updates (e.g., http://r0965026.vps18.u.avcdn.net/vps18/jrog2-6b6-6b5.vpx).
This communication is performed via an unencrypted channel, as already identified in previous work [28]. Upon the download
of the update files, AVs should check their legitimacy to avoid content tampering, which is eased in Avast’s case due to the use
of an unencrypted channel. For this task, Avast relies on the DSA algorithm to check the signature of each downloaded file.

The update files are delivered to the AV as VPX files, an Avast proprietary format. These files might deliver a new software
component or new detection routines. According to our understanding, the VPX file is structured as shown in Code 1. The
header stores the path and filename of the file to be updated with the content of this file. It also stores the version of this file,
thus avoiding AV downgrades. When a software update is delivered, the data section directly stores a PE binary. The whole file
is signed and the signing information is stored at the end of the file.

1 typedef VPX {
2 typedef header {
3 char filename [];
4 int offset;
5 int version;
6 }
7 typedef blob data[bytes];
8 typedef signature {
9 typedef hashes;

10 typedef signatures;
11 typedef certificates;
12 }
13 }

Code 1: Avast’s VPX file structure.

The delivery of new malware detection capabilities is performed via VPS files, whose structure, according to our understand-
ing, is shown in Code 2. As for previous cases, the whole content is signed and verified before the actual update.

1 typedef VPS {
2 typedef MAGIC_BOF = {"ASU!VPSz"};
3 typedef blob data[bytes];
4 typedef signature { ...
5 typedef MAGIC_EOF = {"ASU!VPSz"};
6 }

Code 2: Avast’s VPS file structure.

A key task for AVs is to ensure that their continuous operation, which challenges software updates. For instance, AVs
should not be disrupted by unsuccessful updates (which was already demonstrated possible in the past [133]). To prevent
such occurrences, Avast backups the files to be updated before their replacement. This allows the AV to recover the old
configurations to remain operating if the new files lead to a crash. Due to this characteristic, the AV does not directly modify
an existing file, but first creates a temporary file with the updated content and further moves it to the new destination. For
instance, in our experiments, the file created at C:\Windows\system32\drivers\asw7836f650432f0780.tmp was further moved
to C:\Windows\system32\drivers\aswbidsdriver.sys. Due to the AV’s need to continuously operate, file modifications are
not performed using ordinary API calls, but as filesystem transactions [126]. By making use of transaction APIs, the AV can
rely on OS capabilities to ensure file integrity, concurrency control, and, in the last instance, that the transaction fails gracefully
and the file is reverted to the previous, correct state.

The update of malware definitions is easier to be performed than the software update one. In this case, the AV creates a new
folder to store all extracted files. Upon all files are stored there, the AV creates a malware definition database file (C:\Program
Files\Avast Software\Avast\setup\vps.def that points to the recently created folder (the most recent definitions).

To keep track of this whole, complex process, all update steps are logged to a file (C:\ProgramData\Avast Software\Persistent
Data\Avast\Logs\Update.log. Since this log file can grow significantly, the AV adopts a log rotation policy to store only the
most recent update’s data. In our tests, we identified that the AV log file is typically about 4MB of data, which corresponds to
the last 30 days of updates.
MalwareBytes. The operation of this AV follows the same steps as the aforementioned one, with a few distinct implementation
decisions. The first distinct implementation decision is observed right at the beginning of the update process when the AV servers
are contacted by the host. MalwareBytes relies on third-party cloud servers (ec2-52-54-175-12.compute-1.amazonaws.com
and server-13-32-81-124.mia3.r.cloudfront.net) to deliver their updates (via encrypted connections) instead of using
their own servers. The second difference is observed in the delivered payload: Instead of a custom file format, such as VPX,
this AV distributes updates via 7z files. This is a very interesting project decision to allow component reuse since the same
engine used to extract 7z files for inspection can be used to extract the update files. Before replacing any file, the original files
are backuped. For instance, the C:\ProgramData\Malwarebytes\MBAMService\config\AeConfig.json is backuped into the
C:\ProgramData\Malwarebytes\MBAMService\config\AeConfig.json.bak.

14

VIPRE. This AV’s operation is very similar to the previous ones. The updates are retrieved from a CDN (map2.hwcdn.net) via
an encrypted connection in a gzip format (e.g., C:\Program Files (x86)\VIPRE\Definitions\aap4_sig\1602525813_PENDING\versions.dat.gz.F16A952F291415817492CDF8FC1AC76F.upd")
to be further extracted. Before replacing files, the original files are backuped in multiple formats. For instance, the C:\Program
Files (x86)\VIPRE\Definitions\aap4_sig\1602525813_PENDING\licences.cfg file is backuped into C:\Program Files (x86)\VIPRE\Definitions\aap4_sig\1602525813_PENDING\licences.cfg.bak,
C:\Program Files (x86)\VIPRE\Definitions\aap4_sig\1602525813_PENDING\licences.cfg.bak2, and C:\Program Files
(x86)\VIPRE\Definitions\aap4_sig\1602525813_PENDING\licences.cfg.gzip. The new files are extracted in the malware
definition folder (e.g., C:\Program Files (x86)\VIPRE\Definitions\aap4_sig\1599672068\heur.cfg.upd). The whole up-
date process is logged in the \ProgramData\VIPRE\Logs\SBAMSvcLog.csv log file.

5.6 On-demand Checks
Whereas some people still think that all scans are equal, the AV’s reality is that scans vary a lot. When a user requests an
AV scan for a given file and/or directory, the AV does not simply perform a pattern matching against the file. Instead, the AV
follows a complex series of detection steps, as here described.

A generic on-demand pipeline starts by the AV reading the scan configuration files, which defines which detection routines
will be performed. The AV loads the correct inspection modules in runtime upon parsing these configuration files. Then, the
AV checks if the file really needs to be scanned, according to the multiple AV policies. A typical scan routine is launched if the
file really needs to be scanned. If nothing is found in this case, the file can be analyzed in an emulated environment.

Emulated environments execute the suspicious file in an AV-provided sandbox for a limited amount of time to check for any
Indicator of Compromise (IoC). There are multiple trade-offs and drawbacks to be discussed when implementing this kind of
solution. However, as most of them were discussed in previous papers [26, 39], we limit ourselves here to present complementary
information. In particular, we describe the emulator found in the Avast AV, which was not covered in these previous work.
Avast. The on-demand operation of the Avast AV starts with the reading of the avast5.ini file (detailed in Code 3 of the
Appendix D). This file defines how scans are performed by setting which will be scanned and/or skipped, and which type of
heuristic checks will be performed. The AV can, for instance, enable and/or disable packer detection, and/or code emulation.
Research-wise, it is interesting to see how the AV has a fine-grained configuration level but do not expose this to the user, which
ends up preventing AV comparatives to be performed in a more fair way [29].

After the AV is configured, it checks if the given payload needs to be scanned, which is performed by querying a set of sqlite3
databases. If the payload is a file, the C:\ProgramData\Avast Software\Avast\FileInfo2.db (Figure 14 of the Appendix D)
is queried. If the payload is an URL, the C:\ProgramData\Avast Software\Avast\URL.db (Figure 15 of the Appendix D) is
queried. These databases store important information from previous scans. For instance, for each file (identified via their sha256
sums), the database stores when the last scan was performed. It allows the AV to compare this information with the file’s last
modification date and skip the scan if the file was already scanned after being modified. This database is not populated for every
file in the device, but acts as a cache. The last cleanup field indicates when the data in the database was rotated, as in a typical
log policy.

The AV does not instantly launch a local scanning procedure after it decides that the file really needs to be scanned. First,
it queries the file reputation in the AV server (filerep-prod-011.mia1.ff.avast.com). If the file is known to be malicious at
this point, the file is reported and the verification is finished.

The AV launches a local scanning procedure in the cases where no reputation information is available for the file. In
this case, the AV starts by loading its malware detection capabilities (e.g., signatures, heuristics, so on) by reading the
Software\Avast\defs\aswdefs.ini file. After that, the matching procedures are performed (see Section 5.9).

Finally, if the file was not detected using the previous approaches, the AV might run the payload in an “emulator” to inspect it
dynamically. We noticed that this type of detection method is not triggered all the times, but we were not able to identify which
is the triggering criteria. The AVAST “emulator” is, in fact, a Dynamic Binary Instrumentation (DBI) tool implemented by the
Sf2.dll. The DBI solution is implemented by AVAST and seems to not rely on third-party components. It exports functions
such as StartInstrumentation and SelfInjectionPoint that can be used to instrument the application in which this library is
injected into. Most of the library’s capabilities are only revealed in runtime. Its entry-point function performs recursive calls until
setting methods such as OnAPITraceChunkAPITracer, OnBeforeEmulationEndMachine, and OnLoadingModuleModuleManager
that can be used to trace applications at distinct levels.
TrendMicro. The operation of the TrendMicro AV is very similar to the presented for Avast. The AV starts reading its config-
uration from a file (C:\Program Files\Trend Micro\AMSP\system_config.cfg). Based on the configured routines, the proper
modules are loaded. Objects are not immediately scanned, which only happens after a check to the C:\ProgramData\Trend
Micro\AMSP\data\10009\MBG.db (shown in Figure 17). This is a sqlite3 database that acts as a scan cache.
VIPRE. The operation of the VIPRE AV is very similar, with the database of cached scans being placed in the smartdbv2.dat
and smartmd5cache.dat files.
Other AVs. Although presenting similar characteristics with the aforementioned AVs, we were not able to fully characterize
the operation of the remaining AVs, such that we opted to not discuss them in details in this section.

5.7 Signatures
Signatures were the first detection method employed by AVs to detect known samples. Over time, signatures were considered
less attractive due to their significant drawbacks to detect malware variants and 0-days. These tasks are better performed by

15

Machine Learning (ML)-based detectors, for instance. This resulted in a pitfall often repeated by many people that current AVs
do not use signatures anymore. However, signatures cannot be simply discarded by AVs since signatures are still the fastest way
to respond to incidents caused by recently-uncovered threats (1-day attacks). Therefore, in practice, we can still find evidence
of the application of signatures to counter malware. In many cases, users can even identify when an AV mistakenly identifies a
text file as malicious due to the byte patterns present on it 2.

To shed some light on the use of signatures, we started our investigation on the use of signatures by the AVs by searching
for strings related to the EICAR test file [63], as the AVs are required to detect this file for compliance with AV testing
procedures. We found clear references to the EICAR file in the core files of the Avast, AVG, BitDefender, FSecure, Kaspersky,
and TrendMicro. In the Avast’s algo64.dll library, the full EICAR pattern was present, which suggests that an explicit byte-
comparison is performed to detect this file. For the remaining AVs, the EICAR file seems to be treated as any other detection
rule, which suggests that the AV engines have implemented byte-based pattern matching mechanisms to be able to detect this
type of signature file. BitDefender, Kaspersky, and VIPRE AVs were able to detect the EICAR pattern at distinct file offsets,
such as when appended and/or prepended to other files.

Once we confirmed that AVs indeed implement signature matching mechanisms, it is interesting to take a look at how these
are implemented. Signatures can be implemented in multiple ways [4], but nobody is completely sure about which of these
approaches are deployed in commercial AVs. To bridge this gap, we searched for the presence of known pattern matching
mechanisms. For some AVs, we found references to the YARA [187] pattern matcher. For the Avast, where no direct reference is
available in any file, memory dumps of running Avast processes present references to symbols (RuleIsSilent@CYaraHelper and
Scan@CYaraHelper) that suggests that a wrapper for the framework is loaded in memory in runtime. Similarly, the Norton AV
presents references to resources named yarac, which seems to be related to compiled YARA rules. Finally, the Trend Micro AV
explicitly imports YARA rules. In addition to multiple references over the binaries, we were able to found even a debug print
stating that the AV would: “Begin to use yara to make a decision!.”

Another common AV pitfall is to consider that signatures are only byte-based, which is not true. Modern signature schemes
are more like detection recipes, i.e., a series of steps that must be performed to trigger a detection warning. These steps might
rely on distinct AV capabilities, as shown in Section 5.9, and also include byte patterns. For instance, it is common for a
signature to require the scanned payload to be first unpacked, then a given section to be deobfuscated, for then applying a byte
pattern matching against it. This allows AVs to be more precise and filter out false positives. This type of filtering can be seen
even on most Yara rules released by security companies [160]. A frequently observed filtering criterion is to check if the scanned
file starts with the MZ flag, thus indicating that the file is a Windows PE file. If it is not, the pattern matching procedure is
skipped. AVs also implement this same filtering criterion. We observed that in practice in all AVs by patching the MZ bytes of
previously-detected files and realized that the detection rules were not triggered anymore.

Once we gathered evidence that AVs indeed rely on signature matching for their detection procedures, we designed an
experiment to quantitatively evaluate the importance of signatures for AV detection. We repeatedly submitted the PE samples
described in Section 4 to AV scanning procedures while individually patching their distinct code sections. We assume that if a
sample stopped being detected if-and-only-if when a specific section is patched, this is due to the use of signatures by a given AV
to detect that specific sample. If the sample remains being detected even if their sections are individually patched, we considered
that the detection occurs due to other mechanisms (e.g., header checking, ML detections, heuristics, so on). This experiment
was repeated to all AVs present in the Virustotal service.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

AVG NOD32 Yandex GData DrWeb Emsisoft eScan AdAwe MAX BitDef Arcabit ZAlarm Kaspersky AhnLab Bkav Ikarus Microsoft Zillya ALYac NANOCybereason Avira Rising

S
a
m

p
le

s
 (

%
)

AVs

AVs Detecting Specific Binary Sections

Figure 4: Signature Prevalence. Around a third of the AV’s detections are based on specific section’s contents.

Figure 4 shows this experiment’s results for the AVs that detected all tested unmodified samples, thus mitigating detection
biases. We discovered that around a third of all samples are detected via signatures. The rate is consistent among all AVs,
varying from 25% to 40%. This shows that signatures cannot be discarded as a significant detection method for real AVs.

A side-effect of the presented experiment is that it ends up showing the sections in which signatures were applied by the AVs,
as shown in Figure 5. Our first observation is that signatures are applied against all sections, which is compatible both with
the expectation of position-unaware, byte-base pattern matching methods, as well as with detection recipes that check multiple
sections. The prevalence of detected sections depends on how frequently given sections appear in the considered samples. As

2We present an example of this case in the video available at https://www.youtube.com/watch?v=aKXiupiplbk

16

 0

 5

 10

 15

 20

 25

.text .rsrc CODE UPX1 .idata Others .vmp1 .rdata .data UPX0 .itext

S
a

m
p

le
s
 (

%
)

AVs

Sections detected by the AVs

Figure 5: Sections detected by the AVs. Sections in which the specific payloads detected by the AVs are located.

expected, the .text section is the most detected since the malicious constructions are placed there in the form of instructions.
The resource section is the second most detected one since it might embed malicious payloads. Interestingly, the vmp and upx
are also flagged, which shows that many AVs might still use the presence of a packer as a proxy for malware detection instead
of checking the actual file content.

A critical factor to develop a signature is its size: Short signatures will likely result in False Positives; Larger signatures
are slower to match and require significant storage when millions of them are combined in a single database. Despite their
importance, there is not a guideline for signature size definition, which makes researchers propose signature schemes in an ad-hoc
manner. There is also little public information about the signature sizes really employed by the AV solutions.

Currently, we know that ClamAV signatures are on average 28 byte-long [64], which results in a database file of 112 MB [52]
to store all its million signatures. However, this does not seem to be a standard, as the ESET AV has been reported to consider
signatures up to 60KB [67]. To draw a landscape of the real signature size considered in marketed AV solutions, we deployed a
methodology to extract the byte patterns used as signatures by the AVs on a large-scale dataset.

ALGORITHM 1: Candidate Signature Extraction Algorithm,
Data: Binary, Section, Start, End
Result: Candidate Signature
/* Patch first half */

1 upper = patch(binary,Section,Start,(Start+End)/2)
/* Patch second half */

2 lower = patch(binary,Section,(Start+End)/2, End)
/* If only upper is detected, the signature is in the other part */

3 if only_detected(upper) then
4 return sig_extraction(Binary,Section,(Start+End)/2,End)
/* If only lower is detected, the signature is in the other part */

5 if only_detected(lower) then
6 return sig_extraction(Binary,Section,Start, (Start+End)/2)
/* If both or none is detected, no signatures */

7 return NOT_FOUND

A common strategy to extract signatures from files is to split the file into multiple, smaller snippets and identify which one
remains detected by the AV. This strategy was employed in previous literature work in many variations [192]. For our experiment,
we opted to implement an alternative version of the AVwhy [59] tool. More specifically, we implemented a divide-and-conquer
approach that at each iteration patches half of the considered binary snippet, as in a binary search algorithm, and uploads the
patched binary to Virustotal for scanning (see Algorithm 1). We consider as the signature the unique, smallest sequence of
non-patched bytes that makes the binary still be recognized as malicious by a given AV ((see Algorithm 2)).

Figure 6 exemplifies the operation of our algorithm when inputted with an originally-detected malware binary having two
sections (1 and 2). The algorithm starts by independently patching Section 1 (step 1) and Section 2 (step 2). The algorithm
concludes that the AV signature is not present in the first section because the binary remained detected despite the patch. In
turn, a signature must be present in the second section because the AV stopped detecting the patched file as malicious. The
algorithm then proceeds to refine the signature size identification by repeating the patching procedure now only with the two
components of the second section (steps 3 and 4). Similarly, the algorithm concludes that a signature is present on the second

17

ALGORITHM 2: Signature Identification Algorithm,
Data: Binary
Result: Detection Signature
/* Candidate Signatures */

1 Sigs = []
/* Consider all sections */

2 for sections in binary.sections do
3 Sigs.add(extract_sig(binary,section,START,END)
/* A signature is confirmed if a single candidate is found */

4 if len(Sigs)==1 then
5 return Sigs[0]
6 return NOT_FOUND

2.1

Patched 2.2

Patched 2.1

2.2
Header

Section 1

Section 2

Detected

Header

Patched 1

Section 2

Detected

Header

Section 1

Patched 2

Undetected

Header

Section 1

Detected

Undetected

Header

Section 1

2.1.1

2.1.1

2.2

Header

Section 1

Undetected

Undetected

Header

Section 1

2.1.2

2.1.2

(7) Signature

2.2.1
Patched 2.2.2

Patched 2.2.1
2.2.2

(1)

(2)
(4)

(3)
(5)

(6)

Figure 6: Binary Search-Like Signature Identification. Distinct patches are applied until the smallest required snippet is
identified.

18

part of the patch and advances towards refining the patch size. However, in the last steps (5 and 6), the algorithm fails to
refine the patch size because both patched files were not detected anymore. The algorithm then considers the last valid patch
(obtained in step 4) as the most likely signature (step 7).

Previously, a similar approach to ours was used to identify the signatures used in practice by the Windows Defender AV [117].
We are aware that our approach is only limited to identify byte-based signatures and will not capture heuristic behaviors, but
we still consider this approach interesting to reveal how byte-based signatures are used in practice.

1 B

10 B

100 B

1kB

10kB

100kB

1MB

10MB

100MB

 0 10 20 30 40 50 60

S
ig

n
a
tu

re
 S

iz
e

AV ID (#)

AV’s Signature Size

Figure 7: Signature Size. Whereas the average signature size is between 100KB and 1MB, minimum and maximum sizes may
vary significantly.

Figure 7 shows the minimum, maximum, and average signature sizes for the multiple AVs present in the Virustotal service
(represented by an ID). We first notice that a plausible explanation for the lack of guidelines for AV signature size definition is that
there is no pattern that fits the reality. In practice, the identified signature sizes for all AVs presented a great variation. Almost
all signatures fit in the interval between 10KB and 1MB, with a prevalence in the 100KB-1MB interval. Most AVs presented
small signatures (e.g., 10B-long), which we credit to the search of specific patterns within specific sections (e.g., the search of the
PE header in the resource section to identify embedded payloads). Some AVs also presented very large signatures (MB-long),
which we credit not to a long byte signature itself, but to the expansion of regular expressions in the form of prefix*suffix,
thus covering a large set of bytes.

5.8 Monitor’s Implementation
A key part of an AV engine is the monitoring component, as it collects that data that will be analyzed by the intelligence
component that judges whether an artifact is malicious or not. A failure in capturing data might result in detection evasion in
the case where the intelligence component does not have enough data to make a decision. Given its importance, in this section,
we delve into details about how monitors are implemented. Real-time AVs have two design choices for the implementation of an
event data collector: (i) hooking APIs at userland, or (ii) monitoring events from the kernel. Each one has its pros and cons, as
following discussed.

5.8.1 Userland Hooks

Hooking at userland is advantageous for real-time AVs in comparison to kernel-based monitors as userland hooks enable data
collection without the overhead of diving into the kernel, with API granularity, and affecting only the monitored process. The
major drawback of this choice is that the hooking API can be unloaded by the monitored process, and/or the hook can be
detected and defeated, which requires extra AV protection. Face to this trade-off, most AVs opt to implement userland hooks.

Understanding how hooks are implemented is important to provide supporting information for the development of newer AV
engines. Many research works propose API-call based detection mechanism based on the hypothesis that DLLs can be injected
into any process and that any API function can be hooked. In practice, however, DLL injection even in benign processes might
lead to crashes [11] and due to that some apps protect themselves from being monitored [38]. Moreover, only a subset of all
existing API functions are hooked by the AVs due to multiple reasons (e.g., complexity increase and/or performance degradation).
A correct evaluation of whether current models fit into reality can only be conducted having knowing the APIs functions hooked.
We following present the identified hooked functions by each AV according to our analysis procedures.
Avast hooks system API functions by injecting the C:\\Program Files\\AVAST Software\\Avast\\x86\\aswhook.dll into
the running processes. This DLL hooks the set of functions shown in Table 25 of the Appendix B. Avast hooks a limited set
of functions (17 distinct functions from 2 distinct system libraries) that cover only explicit actions (e.g., LoadDLL) instead of
indirect actions, such as DLL injection (e.g., CreateRemoteThread). This shows that complex detection models proposed in the
literature to hook hundreds of functions would not completely fit in the actual operation model of this AV.
AVG shares the detection engine with AVG, thus it works by injecting the same library (now placed at C:\\Program Files\\AVG\\Avast\\x86\\aswhook.dll)
into running processes. The same previously presented API functions are hooked.

19

Bitdefender hooks system functions by loading the C:\\Program Files\\Bitdefender\\Bitdefender Security\\atcuf\\264375149705032704\\atcuf64.dll
DLL into running processes. The DLL is delivered using a custom packer and extracts itself in memory. This DLL hooks the set
of functions shown in Table 26 of the Appendix B. Bitdefender is the AV that hooked the largest set of API calls (132 distinct
functions from 11 distinct system libraries), supporting direct and indirect events. Thus, it is compatible with more complex
real-time detection models. The AV hooks even into cryptography functions, likely to proactively defend the system against
ransomware attacks.
Vipremonitors the running processes by injecting the C:\\Program Files (x86)\\VIPRE\\Definitions\\aap_core\\1.19.176.0\\atcuf32.dll
library into them. This library is signed by BitDefender and unpacks from the same addresses as the previously presented Bit-
Defender library. In fact, the installed hooks, shown in Table 27 of the Appendix B, are a subset of the hooks installed by the
original BitDefender AV (45 distinct functions from 3 distinct libraries), thus suggesting that the VIPRE AV uses an alternative
version of the BitDefender engine.
F-Securemonitors processes by injecting them with the C:\\Program Files (x86)\\F-Secure\\SAFE\\Ultralight\\ulcore\\1576069576\\fsamsi32.dll
library. Table 28 of the Appendix B shows that this library hooks a small subset of all API functions (17 distinct functions
from 4 distinct libraries), similar to Avast does. As a noticeable difference, this AV worries about detecting privilege escalation
attempts via the loading of kernel drivers, as can be inferred by the monitoring of the services subsystem.
Kaspersky monitors running processes by injecting them the library C:\\System32\\klhkum.dll. This library has a jump
table-like construction that points to an obfuscated function that derives hooks for the original system functions. We were not
able to identify a general rule for the hook installation.
Malware Bytes. Whereas most AVs opted to implement their own code hooking solutions, the most noticeable characteristic of
MalwareBytes is that it relies on a third-party solution for this task. The presence of debug symbols (\Users\Patxi\Documents\Malwarebytes\Projects\MadCodeHook-MBDriver\MBMCHDrv\x64\Win7_Release\mbae64.pdb)
reveals the use of the madcodehook framework [158].
WindowsDefender We skipped the analysis of this AV as the Windows Defender AV has been previously analyzed [39]
Other AVs. We found no userland hooks for the remaining AVs. It does not imply that they do not hook API functions,
but only that they were not detected by the considered hook detection tools (distinct research work reported distinct libraries
and functions hooked in distinct AVs [57, 141]). Alternatively, these AVs might be leveraging kernel drivers for monitoring
purposes [155], as following discussed.

5.8.2 Kernel Monitors

AVs do not monitor the system only from the userland but also from the kernel. Operating from kernel brings the advantage
of protecting AVs from subversion by userland malware. In turn, drivers are more complex pieces of code to be developed, they
can’t rely on a wide range of libraries, and should be signed to be loaded by the OS.

From an AV perspective, kernel drivers are used for three tasks: (i) to deploy callbacks to collect data in a privileged manner,
which allows, for instance, monitoring the file system in a wide manner and thus potentially detect ransomware due to intense
filesystem activity; (ii) to attach to process to receive the same signals and interrupts that the process receives, which allows
implementing, for instance, keylogging protection mechanisms by receiving the keys pressed in the context of a protected process;
and (iii) to load an inspection mechanism at boot time (Early Launch Anti-Malware–ELAM), which aims to inspect the system
before the loading of the malware.

We analyzed all AVs and found drivers implementing all these three functionalities. Each AV deploys multiple drivers but, in
an overall manner, all AVs rely on almost the same OS callbacks, focusing on monitor processes creation and filesystem activity.
Few drivers implemented callbacks for the Windows registry. Although the OS provides mechanisms for sharing data between
drivers, AVs opted for each one of their drivers to reimplement all callbacks for each driver, likely due to performance reasons.
The multiple AV modules need the same information, mostly processes and threads IDs, because these are used to reference
detection tables and to whitelist processes operations.

The callback implementation for most AVs is very similar. Most of the data collected in the callback functions is queued
on Deferred Procedure Calls (DPCs) to be analyzed out-of-band, without blocking the process execution. An exception to this
rule is when the AV has active components that online check and block specific actions by making the callback to return an
error code. To speed up the performance, the AVs implement caches for the collected information. In the specific case of file
system monitoring, as I/O routines are dispatched in batches, it is very likely that the same objects are referenced in consecutive
callbacks (e.g., file create, file open, and file write, for instance). Therefore, to avoid retrieving OS information about each
artifact (e.g., owner ID, paths, tokens, permissions, so on) every time the callback is invoked, the data retrieved in the first
callback is cached for further accesses. This design decision is essential to mitigate the performance overhead of interrupting the
process execution for a long time inside a callback routine.
Avast. This AV implements 14 drivers that cover distinct attack surfaces, as shown in Table 29 of Appendix C. It monitors a
wide range of system resources, including rootkits and keyloggers. Its drivers include not only monitoring mechanisms, but also
a self-protection mechanism against termination.
AVG. This AV deploys the same drivers as the Avast AV. It also ships additional Microsoft drivers for compatibility, such as a
cdfs driver to read CDROMs.
BitDefender. This AV deploys 5 distinct drivers, as shown in Table 30 of Appendix C. This AV seems to make a design
decision to move a significant part of its detection capabilities to the userland, given the significant difference on the hooked
functions at userland to the number of drivers and callbacks implemented at kernel.

20

F-Secure. This AV deploys 4 drivers, as shown in Table 31, being the one which implemented fewer callbacks. The AV is clearly
modularized, with each one of the drivers responsible to monitor a subsystem independently.
Kaspersky. This AV deploys 22 distinct drivers, as shown in Table 32, It also ships Microsoft drivers for compatibility and an
OpenVPN driver. It covers multiple attack surfaces, protecting from rootkits and key- and mouse-loggers. It also implements
anti-tampering mechanisms.
MalwareBytes. This AV deploys 7 drivers, as shown in Table 33. it includes an ELAM driver. Most of the detection capabilities
are centralized in the swiss-army driver.
Norton. This AV implements 10 drivers, as shown in Table 34. It includes an ELAM filter, which is basically a reimplementation
of the other modules but targeting the operation in this specific context.
Trend Micro. This AV deploys 10 distinct drivers, as shown in Table 35. It covers multiple attack surfaces, with special
attention to boot and OS startup.
VIPRE. This AV implements 5 distinct drivers, as shown in Table 36 of Appendix C. It includes two third-party drivers: the
ATC driver from BitDefender, already presented, and the Activity Monitor from ThreatAttack.
WinDefender. We skipped the analysis of this AV as the drivers of this AV are mixed with OS drivers, which makes them
hard to be distinguished. In total, this AV references more than 400 distinct Windows drivers.

5.9 Detection Routines
Whereas many think about AV detection as a single process, in fact, it has many steps, each one with their own challenges
and drawbacks. AVs rely on multiple helper functions to perform each one of them, such that understanding them helps us to
understand the AV detection process. Thus, we here shed some light on the key features of AV engines.
Deobfuscation. An AV detection routine can be described in a very high level as the process of matching an unknown payload
against a known malicious pattern. However, this task is not as straightforward as it might sound when we dig into details. In
most binaries, the patterns to be matched will not be clearly displayed, but obfuscated somehow, such that AVs must implement
deobfuscation routines to be able to inspect the real payloads.

The strategies used by attackers to obfuscate malware vary significantly, such that AV’s vendors perform a cost-benefit
analysis to identify which techniques are the most prevalent and worth being addressed by the AVs. Popular techniques used
by attackers that are handled by AVs are string manipulation, decoding of base64 payloads, XOR-encoded payloads, and the
append of data in files.

However, the support for those routines does not mean that they will be applied all the time and for all files. AV’s vendors
also have to make decisions about other trade-offs, such as performance, and false positives. According to our observations, these
helper functions are mostly used along with detection rules (e.g., signatures) and not in a standalone manner (e.g., to match
entire binaries).

Table 10: Deobfuscation Functions. Not all techniques are applied to entire payloads.
Technique XOR BASE64 RC4 Embedding/Carving
Mode Sig. RT OD Sig. RT OD Sig. RT OD Sign. RT OD
Avast 7 7 3 7 3 7 7 7 7

MalwareBytes 7 7 3 7 7 7 7 7 7
VIPRE 7 7 3 7 7 7 7 7 7

Kaspersky 7 7 3 3 3 7 7 7 7
TrendMicro 7 7 3 7 7 7 7 7 7

Table 10 summarizes the AV operation in the distinct steps and modes—as part of signatures (Sig.), during real-time (RT),
or on-demand (OD)—when considering entirely obfuscated payloads using distinct techniques. We notice, on the one hand, that
XOR-ed binaries are not decoded by any AV solution. Similarly, AVs also do not reverse RC4-encoded binaries and binaries
embedded into other files (pictures, in our experiments). On the other hand, we discovered that some AVs are really able to
decode base64-encoded binaries in addition to using base64 in their signatures. The distinction occurs in the step in which the
decoding is performed. Whereas in the Kaspersky AV the decode occurs already in the real-time mode, the Avast AV only
decodes a base64-encoded binary upon an on-demand scan request.

Avoiding applying all deobfuscation tools to all files reduces AV’s performance impact and likely the False Positive (FP) rate,
but also opens space for attacks. For instance, whereas a malicious DLL can be detected by an AV in its plain version, it might
not be detected when XOR-ed. This might allow an attacker to read the XOR-ed file content to the memory of the DLL loader
and XOR it back to a PE file in memory, thus proceeding with the injection procedure. 3.
Unpacking. A special type of obfuscation tool is the so-called packers, executable binaries which embed other binaries within
them while applying distinct transformation techniques [162] to protect the original payload from inspection. As for the afore-
mentioned encoding techniques, AVs also have to choose which packers they will support (e.g., either for unpacking or direct
inspection), in another trade-off decision. Table 11 summarizes the packers that we identified (via analysis) that are supported
by distinct AVs. The absence of a packer for an AV entry does not mean that the AV does not support that packer, only that

3We implemented this attack as a proof of concept. A video of the attack is available at https://www.youtube.com/watch?v=IXVMeRNC_F4

21

we were not able to identify the component responsible for handling them, since many AVs implement custom mechanisms for
handling packers (e.g., BitDefender’s handling of UPX [110]).

Table 11: AV’s Supported Packers. Not all AVs support the detection of the same packers.
Packer UPX Themida Telock PeLock Armadillo Morphine VMProtect
Avast 3 3 3 3 3 3 3

Bitdefender 3 3 3 3 3
Fsecure 3 3 3 3 3

TrendMicro 3

AVs are also varied in the way that they handle the packed samples. For instance, consider the case of the UPX packer [177],
likely the most popular packing solution these days. We initially hypothesized that some AVs might be embedding the original
UPX binary in their code or, at least, embedding part of the original algorithms, since UPX is an open-source solution. However,
we did not find evidence of those practices in our observations. Instead, we discovered that each AV implements its own mechanism
to detect and handle UPX-packed binaries. Inspecting the TrendMicro atse64.dll’s library, for instance, we discovered that
the AV looks for the UPX! magic bytes within a file to classify it as UPX-packed. Inspecting the FSecure aeheur.dll library, we
discovered that this AV checks not only the UPX! magic, but also the UPX2, UPX1, and UPX0 in the section names, increasing the
identification confidence. These same names are also checked for Avast. As a significant difference for the previous AV, Avast
distributes its detection over multiple components, such as the algo64.dll, aswBoot64.dll, and aswEngin.dll libraries.

Table 12: Detection of custom UPX packers. Not all AVs handle UPX-packed binaries without the UPX magic bytes.
Packer UPX Custom UPX
Payload Goodware Malware Goodware Malware
Avast 3 3

MalwareBytes 3 3

TrendMicro 3 3

Although the decision of supporting the standard UPX packer is interesting to fight the most usual malware samples, it
does not mean that all UPX-packed files will be detected. Since UPX is open-source, anyone can obtain its code and modify
its structure to not display magic numbers and bytes, thus evading the most usual detection solutions [199]. To understand
the impact of this strategy, we repeated the scans presented in previous experiments now packing the malicious files with the
standard and a custom [90] UPX solution. Table 12 shows that the files packed with the standard UPX packer were all correctly
classified, both as goodware and malware. Goodware files were also correctly classified when using the custom UPX packer. This
is good news since many previous study reported that AVs have been classifying files as malicious based on their packer and not
on their content [182, 3]. However, the good FP rate seems to come at the cost of FNs, since many malware files packed with
the custom UPX were not detected as such. According to our analyses, this happens because in the cases when the AV is not
able to unpack the malware and reconstruct its IAT imports, it detects the AV only by the visible characteristics in the packed
sections (e.g., strings), which significantly reduces AV’s detection capabilities.

 0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

D
e
te

c
ti
o
n
 R

a
te

 (
%

)

AV (ID)

AV’s Detection Rates of UPX−packed Malware

Unpacked UPX UPX(mod)

Figure 8: Detection of UPX-packed Malware. Distinct AV’s implement distinct mechanisms, which leads to distinct
detection rates.

To have a broader understanding of the impact of the distinct strategies implemented by the AVs to handle packed binaries,
we submitted all the tested samples to the Virustotal service and retrieved detection labels for all the AVs available there. The
obtained landscape is presented in Figure 8. We notice that AVs can be classified into three categories: (i) the ones that are
not able to handle UPX samples at all, not even the standard version; (ii) the AVs that can handle the standard UPX but are

22

defeated by the custom modifications; and (iii) the AVs that completely handle UPX binaries, despite any custom modification.
Luckily for the users, most AV solutions are placed in the last two categories. More specifically, most AVs are in the second
class, such that their security capabilities suffice for catching the most usual threats, even though they might fail to detect more
targeted threats developed by more skilled, motivated attackers. It is also interesting to notice that the AVs in the last category
presented a greater detection rate for the modified UPX-packed version than for the standard UPX. This suggests that these
AVs were able not only to (i) identify that the payload was packed with a modified UPX version, and (ii) unpack it, but (iii) the
AVs also used this information as a bias to increase the detection score (a heuristic), which might have influenced in the final
detection rates.

The AV that best performed in our Virustotal tests was the WindowsDefender. Although we have not considered this AV
in many of the other experiments presented in this paper (see Section 4), we decided to take a specific look at its unpacking
capabilities to understand why it was so effective in detecting the modified UPX packer. We discovered that this AV implements
a generic and complete unpacker of UPX samples in the mpengine.dll library. This AV detects the LZMA compressor used by
UPX and decompress it via the AVUpx30LZMAUnpacker function. If the content is XOR-ed, it is decoded via the AVXorDecryptor
function. In many cases, the modification of UPX headers leads to corrupted images (e.g., zero-length section headers). To
handle these cases, the AV can fix the binary entry point, via the UpxEP function, and even the binary disassembly, via the
AVUpxFixDissasm function.

The aforementioned result highlights the fact that the malware detection problem is not only a technical issue but also
a cost-benefit tradeoff. For instance, to achieve a greater detection rate, this AV also had to spend greater resources (e.g.,
developer’s time, codebase size, testing coverage, architectural complexity) to implement mechanisms to handle constructions
whose prevalence might or not justify its deployment.

5.10 AV’s Threat Models
A threat model is a key security concept and should be considered in any security evaluation. It defines which, why, and how
resources will be protected. More than that, it ends up revealing how one understands a problem. Antiviruses have their
own threat models, but these are not often stated clearly. There are multiple implicit assumptions in their operation and
understanding them helps to shed light on which aspects of their operation are critical and/or need to be improved.

An often implicit assumption is about their operation in pristine systems, i.e., many AVs assume that they will be installed
on a clean system (e.g., right after OS installation). Therefore, the AV will operate by identifying differences from future system
states to the original system state in which the AV was installed. We searched all AV’s manuals but did not find a clear statement
indicating that they suppose a pristine system to operate. Such reference was only found in a web tutorial of Kaspersky AV [97].

On the one hand, assuming pristine systems is reasonable face to the fact that an AV might not properly operate if an
infection is taking place, since a malware sample might try to tamper with AV operation. On the other hand, it is not rare to
identify users reporting that they installed an AV because they are unsure about the system state [15]. Should AVs protect them
anyway?

To identify how AVs behave face this scenario, we compared the detection results of multiples AVs when a dataset of malware
is added to the system before and after the AV installation. We discovered that all AVs suggest performing a system-wide scan
right after their installation. This scan was able to detect all malicious files that were stored in the filesystem before the AV
installation. However, we discovered that the AVs are not able to handle well-running threats started before the AV installation.
To investigate this point, we developed an application to simulate an AV killer threat. It monitors the system and automatically
owns any directory created with an AV name with exclusive access. It also creates mutexes with the same names used by AV
resources. No AV was able to be successfully installed in this scenario, thus showing that the AVs do suppose their installation
on clear(er) systems.

Another implicit threat model decision is that AVs will only protect users from threats targeting the same platform that the
AV operates (e.g., same OS, same architecture). On the one hand, this is a reasonable assumption, since a malware sample
compiled to a distinct platform will not cause harm to the AV running system. On the other hand, in the current world, it
is very common to users to transfer files from one platform to another (e.g., download a file on a computer and copy it to a
smartphone via USB). Should AVs detect a malware right after the download on the host device or is it entire responsibility of
the mobile AV?

Detected File Types. Distinct AVs employs distinct policies for cross-platform threat detection.
FileType Win Linux APK

Detection Mode Real Time On-demand Real Time On-demand Real Time On-demand
Avast 3 3 7 3 7 3

BitDefender 3 3 3 3 7 7
Kaspersky 3 3 3 3 3 3

MalwareBytes 3 3 7 7 7 7
TrendMicro 3 3 7 3 7 3
VIPRE 3 3 3 3 7 7

ESET-Linux 3 3 3 3 7 7

To understand how current AVs operate in this scenario, we performed cross-platform scans (i.e., Linux AVs to scan Windows

23

files and vice-versa). The results are summarized in Table 5.10. We discovered that whereas all AVs are able to detect Windows
threats both on-demand as well as in real-time, the same is not true for other threat types. For instance, the MalwareBytes AV
does not detect samples for any other platform. Other AVs opt to detect only some types of threats. For instance, BitDefender
detects ELF threats, but not APKs. Similarly, ESET for Linux AV opted to detect Windows threats but not APKs. Even when
the AVs detect all threat types, they do it in different ways: Avast detects only Windows threats in real-time and the other
threat types are only detected upon on-demand checks; Kaspersky AV, in turn, detects all threat types in real-time.

5.11 Rootkit detection
A particularly difficult decision when designing AV’s threat models is the protection scope. Most solutions detect threats in
the userland, thus they can benefit from kernel support to collect privileged information about the running processes. Few Avs
also claim to detect kernel threats, such as rootkits. This is a challenging task because the rootkit can interfere with the AV
interaction with OS components [6] as it runs in the same privilege level as the AV [161]. Therefore, it is plausible to hypothesize
that AV’s rootkit detection capabilities are not as effective as their capability of detecting userland threats.

To understand the actual rootkit detection capabilities of the evaluated AVs, we tried to understand in which operation step
the detection occurs. We aimed to identify if the detection occurs via patterns when the rootkit files are placed in the filesystem,
or via behavioral characterization when they are running. For such, we leveraged the kernel driver rootkits described in Section 4.
Table 13 summarizes our findings.

Table 13: Rootkit Detection. Most detection is performed by file inspection modules and not by real-time monitors.
AV Real Time On-Demand RunTime

Avast 3 3 7
BitDefender 3 3 7
Kaspersky 3 3 7

MalwareBytes 7 3 7
TrendMicro 3 3 7
VIPRE 7 3 7

We discovered that all AVs detected the malicious kernel drivers via patterns: some of them as soon as they were placed in
the filesystem, and some of them upon a requested scan. This shows that AVs have a reasonable rootkit detection capability
even without leveraging complex kernel detectors. However, after we modified a set of samples to bypass static detection and
successfully loaded the drivers into the kernel, no AV raised a warning about their operation. This shows that the AV operation
model is to prevent the rootkit from being loaded, but they cannot do much after they are in place.

While analyzing the AVs we found that Avast was the only AV that presents a module explicitly dedicated to detecting
rootkits. It is composed by the aswArDisk.sys and the aswArPot.sys drivers. The first is a file system filter that exports a
ArDiskRegisterCallback callback to be used by the second. The latter implements verifications leveraging its high privileged
capabilities. For instance, its symbols suggest that it searches for SSDT hooking attempts by looking to the SystemTable and
ShadowSystemTable. We did not fully understand these verification routines. We hypothesize that this protection might be
targeting 32-bit Windows, since SSDT patching is already prevented in 64-bit systems. If this is true, verifications should also
include other system tables, such as IDT, which can also be hooked.

This module also has functions that perform manual parsing of internal Windows structures (e.g., parsing the Process
Environment Block–PEB, and/or the Thread Environment Block–TEB). We found manual parsing associated with the invocation
of the CreateProcess, CreateThread, GetProcessId, GetThreadId, and ZwSystemInformation functions. Since treatment
routines for these same functions are present in the userland, this suggests that the AV implements a mechanism similar to a
lie detector, checking if the information collected in the kernel is the same presented to the userland. This approach is very
interesting because a kernel rootkit might hide artifacts from the userland by hooking functions and performing a DKOM
attack [82] but cannot hide these artifacts from the OS.

Despite collecting information at the kernel level, the rootkit protection also relies on userland modules to operate. All
information collected by the presented modules is delivered to the aswAR.dll library that implements multiple verification
routines. For instance, it exports methods for deleting files, registry keys, and service termination, all of them relying on the
high-privileged capability of the kernel module. On the one hand, implementing the threat intelligence at userland eases the
development process, as the AV can rely on other libraries, reuse code, and so on. On the other hand, this adds exposure to
the AV. Since a code is able to escalate to the kernel, it is plausible to hypothesize that this same code is able (and has the
permissions) to tamper with the userland module.

To effectively handle kernel rootkits, AV would have to be equipped with modules running in more privileged rings than the
kernel (e.g., hypervisors, SMM mode extensions, so on). Whereas these solutions have been widely described in the literature [34],
the only real-world solution fully leveraging these capabilities is a specific version of the Kaspersky security solution [103].
Moreover, we are not aware of previous descriptions of these solutions being deployed in the most popular AV versions. We then
searched AV for any sign of these components to bridge this understanding gap. We discovered the presence of hypervisors in
the Avast and in the Kaspersky AV. Whereas the Avast’s aswVmm.sys file is clearly described as a hypervisor, the Kaspersky’s
klhk.sys omitted this fact, although it can be identified, for instance, by the presence of Intel VT-X’s vmlaunch instructions

24

in its disassembly. When these components are enabled, the whole system is moved to a virtual state under the control of AV’s
hypervisor. However, this mode is never enabled by default. First, it is only available to premium customers. Second, it might
conflict with other software, as reported many times [19, 104]. The major advantage for AVs when operating in these modes
is that they have full OS control, even about kernel structs. For instance, AVs are then allowed to hook system tables without
kernel noticing. A drawback of this approach is that third party can abuse that to also hook these tables, as already exemplified
for both Avast [175] and Kaspersky [89].

5.12 Whitelist
For an AV, properly flagging benign artifacts as unsuspicious is as important as presenting high detection rates, since a solution
that impedes users from using their legitimate software (a False Positive–FP) would be fast discarded. A possible solution for
mitigating FPs would be for AVs to relax their detection policies, as it is preferable to not detect a sample that is less harmful
than blocking a legitimate application that would block thousands or millions of users. This however would leave a fraction of
users vulnerable to a threat that is known by the company. Whereas this trade-off is already implicitly performed while training
ML models used by the AVs, we are not aware of AV companies explicitly making this choice.

AV’s solution for the FP’s cases is to add the legitimate software causing detection troubles to a list of known benign software
(a.k.a. whitelist/allowlist). Therefore, if a scan for that software is requested, the whitelist will be first queried and immediately
return that the file is safe without triggering a scan. This allows AVs to implement more aggressive heuristic and ML models since
these will be triggered only for artifacts that passed by the whitelist checks. This strategy is very effective in practice because
the AV can, for instance, whitelist the files related to the OS operation (e.g., Windows’ System32 folder) and aggressively detect
new files added to the system.

There are few literature reports about how whitelists are employed in practice by AVs and even their vendors do not fully
disclose much information about their usage. We found few cases in which the companies clearly stated that a whitelisting
mechanism is present in their products [99, 54, 20], even though we can hypothesize that similar mechanisms are used by all
solutions due to FPs occurring due to the nature of the malware detection problem, despite all efforts of the vendors.

AVs usually refer to whitelists as a complementary resource to be used in special cases, such as when the AV is detecting
software that users compiled themselves. However, there are evidences that AV companies start whitelisting software already
in their detection routines generation step. We consider that understanding the impact of whitelisting in these procedures is
essential, as they can significantly affect the detection results. They also significantly affect the detection rules generation itself,
which become more complex than often proposed in multiple research work. A significant challenge of whitelisting software at
this step is to keep up with the amount of data that legitimate software represents (e.g., a TB of database size for Symantec [76]).
Another significant challenge is to scale analysis and fast respond to incidents face to the need of filtering our candidate detection
rules that collide with benign software (e.g., it takes more than 30 minutes to be done for Ikarus solution [16]).

Despite all this impact, nobody is completely aware of how whitelisting mechanisms are implemented in the actual AVs.
There are multiple possible implementations: (i) simply adding file hashes to a list of allowed files; (ii) consider files signed
by trusted entities as clean; (iii) identifying some strings as indicators of the file’s nature, and so on. During our analysis, we
discovered that most solutions rely on some type of whitelist, although these significantly vary according to the AV. Avast, for
instance, has a specific whitelist for its gaming mode to avoid detecting some protections as cheats. The BitDefender AV, in
turn, whitelists web certificates to prevent warnings related to known certificates. In this AV, we can even find the strings
used to log when an artifact was whitelisted (e.g., WHITELIST_BY_POLICY). In the Kaspersky AV, a WhitelistManager allows
controlling individual processes. In practice, it is hard to identify the scope in which the whitelisting mechanisms are employed
(e.g., during static matching or during runtime). For the VIPRE AV, we found that the whitelists are static, as suggested by
the StaticScanWhitelistForObject function name. For Norton AV, there are both static checks implemented in the userland
DLLs (to allow cross-site references in some web pages), as well as dynamic checks in the IDSvia64.sys kernel driver, which has
a process whitelist option to be configured upon loading, identified by the Application Whitelisting Enabled parser message.

Although all these implementations are interesting and deserve attention, we limited ourselves in this paper to present
the key AV operation points. Therefore, we opted to describe in more detail the case of the FSecure AV, as it illustrates some
performance-wise project decisions. The fsecr64.dll core AV library exports the FSE_checkFileInWhiteList function symbol,
which immediately suggested the use of whitelists by this AV. Delving into details, we identified that internal routines of this
function are invoked right at the beginning of two other exported functions (FPI_ScanFile and FPI_ScanMemory), which confirms
that not all system artifacts are verified, even in the case of scans requested by the users. When the artifacts are whitelisted, the
scanning procedures immediately return. The checkFileInWhiteList function does not directly takes an artifact as argument.
Instead, it receives a number that corresponds to an IDentifier for the artifact. Therefore, the AV does not effectively query a
knowledge database to whitelist the artifact every time it is invoked. Instead, it keeps a lookup table of open resources during
its operation. The knowledge database for that artifact is only effectively checked when the artifact is first open, created, or
later modified. The information retrieved from the knowledge database is loaded in the whitelist lookup table, which is queried
in the further invocations of the whitelist function.

6 Detection Challenges
In this section, we analyze the decisions taking by the distinct AVs when choosing scanning strategies and detection mechanisms.

25

6.1 What to scan?
A good AV is not only the one that has a good detection mechanism, but also the one that knows what to inspect and when to
inspect. This implies a significant trade-off: On the one hand, inspecting all resources all the time imposes significant performance
overhead. On the other hand, reducing the scanning capabilities opens attack opportunities. To evade detection, attackers often
encapsulate their malicious payloads into other files and using varied formats. Ideally, these should also be inspected by the
AVs, but this might have significant performance costs. A popular technique to hide payloads is to compress the malicious files,
which would require AVs to extract them for inspection.

To verify if AVs are able to detect this type of construction and at which detection step, we selected a set of multiple malware
samples originally detected by the AVs and compared their detection results before and after compression. The results are shown
in Table 14. We discovered that AVs are able to extract multiple file formats (zip, rar, 7zip) to inspect their contents when a file
scan is requested by the user. These extractors are implemented by the AVs themselves, as no standalone extraction tool was
available on the tested systems. In fact, we found evidence of the presence of file extractor in some AVs: In the F-Secure engine,
we found the 7z.dll library; and in the Kaspersky AV, we identified the minizip.dll and rar.dll libraries.

Despite their extraction capabilities, AVs limit the analysis of compressed files to the on-demand scan modes. No AV was
able to detect the compressed file in real-time, as soon as they were dropped in the file system, even though the AVs were able
to detect the non-compressed version of the same files in real-time. This shows that AVs adapt their detection capabilities to
the performance constraints of each detection mode and operational scenario.

This result has two implications for future research projects: (i) security analysis should not only consider whether an AV is
able to scan a given artifact or not, but also in which time opportunity this check could be performed. For instance, it is not
fair for a security evaluation to compare on-demand detection rates to online detection rates if their performance requirements
are distinct; and (ii) there is space for future developments regarding improving the performance of AVs. For instance, AV
accelerators would allow AVs to implement real-time inspection of compressed payloads.

Table 14: Detection of Compressed Files. Detection is performed only in on-demand mode.
File Type PE ZIP RAR 7z
Mode Online Offline Online Offline Online Offline Online Offline
Avast 90% 98% 0% 94% 0% 98% 0% 90%

MalwareBytes 0% 100% 0% 100% 0% 100% 0% 100%
Kaspersky 96% 96% 0% 16% 0% 0% 0% 0%
TrendMicro 26% 40% 0% 42% 0% 40% 0% 40%
VIPRE 100% 100% 0% 100% 0% 98% 0% 100%

There are detection challenges even when AVs are operating in the on-demand mode. Compressed files are not always simple
to extract and, in many cases, the files are password-protected. We initially hypothesized that AVs would be able to brute-force
passwords to crack these files. However, in our experiments, with the same samples considered for the previous experiment, we
discovered that no AV cracks ZIP passwords (of any length). This result shows that there is also space for new AV architectures,
such as the emerging cloud-based ones. In this hypothetical scenario, an AV would be able to upload files to a cloud to be
cracked by a powerful computer without impact the performance and energy consumption of the endpoint machine.

Another challenge faced by AVs is to select what media to inspect. Currently, all AVs have filesystem filters to trigger scans
of new files. They also have kernel drivers to interpose USB requests to block autorun malware [180]. However, there are other
media types whose inspection is not enabled by current AVs. For instance, no evaluated AV inspects CDROMs when they are
mounted, even though they scan files when copied from there to the filesystem and the processes created from the mounted
device. An even more complicated case refers to the scan of network-mounted devices. In our tests, only the Kaspersky AV scans
this type of media. The choice of inspecting network-mounted devices is a complex trade-off. On the one hand, not scanning
them let other users vulnerable, especially if some user of such network is not protected by an AV. On the other hand, actively
removing files from the network storage, as performed by Kaspersky, might remove third party files. In the worst case, a False
Positive in an endpoint AV might cause the removal of files of any other user, even of those not running any AV solution in their
endpoints.

In addition to the challenges currently faced by the AVs, new challenges are emerging and might pose significant threats in
the future. For instance, the distribution of malicious code in multiple pieces might allow detection evasion [32].

6.2 GPUs & Machine Learning
GPUs emerged with a great potential for the development of security applications. Their Single Instruction Multiple Data
(SIMD) characteristic naturally spans a myriad of applications based on pattern matching, which now could be performed in
a massively parallel manner. The application of GPUs for signatures matching, for instance, is even suggested by NVIDIA
itself [148]. Therefore, since the emergence of the first GPUs, many researchers proposed AVs based on GPUs [34]. In practice,
however, the promise of a pure-GPU AV never concretized, and it is hard even to understand which parts of the promises become
reality.

26

A scenario in which GPUs could help and that become real is the application of Machine Learning (ML) to security problems.
Machine Learning is a trending topic in computer security and AVs are not unaware of this trend. One can be sure that modern
AVs rely on some kind of ML technique, which can be discovered either by the AV’s reports [193] or by indirect observations,
such as the fact that attacking ML models in a standalone manner might have impact on the detection results of commercial
AVs [40].

Although we can ensure that some kind of ML is used at some part of an AV operation, it is not clear which tasks are performed
and in which manner. Whereas some often claim that “AVs always use ML”, “ML are essential to AVs”, “AV’s detection is based
on ML”, “AVs rely on GPU for detection”, and so on, we consider all of them as bold claims without further explanation and
analysis. Therefore, to face this scenario, it is important to understand how ML is actually used by the AVs.

The first thing to understand GPU’s usage by the AVs is to clarify where they are used in the security process. More than a
decade ago, Kaspersky announced that the company was using GPUs to speed up malware similarity detection [94]. One should
not confuse this usage with GPU application at client-side. The whole process is conducted at the server-side, under their full
control, and clients only have access to the processing results.

Applying GPUs at client-side is much harder, since GPU programming is not standardized, with distinct vendors enabling
distinct processing capabilities. Also, GPUs have access to a limited amount of memory, which might not suffice for loading
the entire malware definition database. Moreover, the cost of offloading data from the CPU to the GPU is significant, which
might limit the throughput of some real-time tasks. We believe that these drawbacks might have limited the development of
GPU-based AVs so-far. Finally, even if these limitations did not exist, not all current systems are GPU-powered, which would
not allow AVs to eliminate traditional processing routines.

It is also important to understand that not all applications of GPU are machine learning tasks. As far as we know, the
only commercial solution that adopted GPUs for a security task is the Windows Defender, which partnered with Intel to run
monitoring code in their GPUs [37]. The GPUs are used to perform memory scans using traditional methods, which is far from
the application of any ML method.

In our experiments, we did not find an active use of GPUs by the AVs at the client-side for scanning purposes. We only
found GUI-related components that internally make use of GPU for renderings, such as the libGLESv2.dll library (an OpenGL
implementation) for Avast, and the libcef.dll (the Chromium Embedded Framework) for Norton and Bitdefender. Our
investigation also did not reveal any use of traditional machine learning (ML) by the evaluated AVs. We looked for many
traditional libraries used for ML processing (e.g., scikit-learn, tensorflow, mlpack, caffe, so on) and for log messages related to
ML and no evidence of their use was found. This suggests that although ML is leveraged in AV’s backend server to identify
malware and generate detection rules [107], samples detection at the client-side is still performed using traditional signatures
and heuristics.
The case of Next-Gen AVs. To fill the gap on the usage of ML by AVs, security companies have been promoting the
called “next-generation AVs” [56, 188], which are basically AVs equipped with ML-based malware classifiers. These solutions are
usually deployed in business settings, which are more controlled environments and with small software diversity than domestic
environments, such that we are not sure that their transition to “home products” is easy. We tried to test these products to
get a better understand of their actual detection capabilities. We subscribed for trial versions on many vendor’s websites but,
unfortunately, we did not get access to any solution.

Despite the lack of actual evaluation, we can highlight the fact that the application of ML on AVs is blurry even when they are
indeed used by the solutions. The first thing to be clarified is how ML is applied: statically or dynamically. The static application
of ML happens when a file is scanned without its execution, mostly via on-demand checks. The dynamic application happens
when a process is monitored in runtime. Static applications are easier to be implemented and tend to be more widespread, even
among the “next-gen” solutions, but suffer from multiple obfuscation drawbacks [140], which only can be solved via dynamic
inspection. Dynamic ML approaches, however, are not so popular, although promised by some “next-gen” solutions, as they
introduce greater performance overhead.

Regardless of the operation mode, the ML adoption indeed benefited AV products, as ML models generalize well, which helps
to detect malware variants, and might be less susceptible than heuristics to trivial evasion attempts [71]. These characteristics
led some to say that AV was dead face to the use of ML [157]. There are two reasons why we consider this statement wrong. The
first is that despite all ML capabilities, it is not a silver bullet. There are tasks in which pure-ML approaches do not outperform
traditional approaches, such as in the detection of fileless malware [75]. Therefore, a good detection solution cannot rely on a
single detection method, but should be a layer of distinct approaches [92]. Second, an AV cannot be defined only by its detection
engine. We have been demonstrating the multiple AV components and their roles over this paper. Thus, even if ML were a
perfect detection mechanism, it could not operate solely, it would still require components to capture data to feed its algorithm
and would rely on some other module to provide anti-tampering protection to it. Therefore, the ML detection would be just
a component of a greater security solution, which is still an AV, in the anti-malware solution sense, whatever the commercial
name it is actually called.

6.3 Detection on the Cloud
Cloud services have become widespread and currently it is easy to find AVs advertising the possibility of scans on the Web (e.g.,
Avast [21], Kaspersky [96]). It is also common in the academic field to find new proposals of cloud-based AVs and researchers
on the AV field probably faced the claims that detection rates would be greater if cloud protection was enabled. Therefore, it is

27

important to take a look at the real aspects of this operational mode.
The first thing to have in mind is that cloud detection is not enabled by default in all products. In the Kaspersky AV, for

instance, the customer is required to join the Kaspersky Secure Network (KSN) to enable such services. Otherwise, the AV fails
with the “TryGetActual disabled. User is not a member of KSN” message. In the Avast AV, the customer must have the rights
to perform cloud scans. The Avast Asynchronous Virus Monitor (AAVM), implemented in the Aavm4h.dll library, calls the
AavmFmwDownloadUACloudEntitlement and AavmFmwGetUACloudAuthToken functions to validate if cloud scans are allowed. If
so, the Antivirus engine loader, implemented in the aswEngLdr.dll library, instantiates a cloud-enabled AV object via the
avscanEnableCloudServices function. Therefore, whereas available in some AVs, cloud services should not be seen yet as the
default scan mode.

In addition to Avast and Kaspersky, in our evaluations we also found cloud components in the BitDefender and the VIPRE AVs.
BitDefender implements a cloud component (bdcloud.dll library) and VIPRE leverages the BitDefender’s AntiSpamThin.dll
library for AntiSpam Detection. As can be noticed, cloud services are not used only for the detection of malicious binaries. Some
AVs also rely on cloud services for file backup and system telemetry. In this work, we will focus on the components responsible
for threat detection.

All AVs structure their cloud detectors as objects to be instantiated by the AV engines. Therefore, the AVs present a pattern
of object creation, usage, and deletion. In the VIPRE AV, the AntiSpam object is created using the BDAntispamSDK_Initialize
function, configured using the BDAntispamSDK_SetSettings, and destroyed using the BDAntispamSDK_Uninitialize function.
Similarly, BitDefender’s is created and destroyed using, respectively, Init@Cloud@Gambit and Uninit@Cloud@Gambit.

All AVs operate in a similar manner. They upload a resource to be scanned in the cloud and wait for a detection response. In
most cases, hashes are uploaded. In fewer cases, the objects to be scanned are directly uploaded. Most of the AVs operate over rep-
utation scores provided by the cloud servers. In the VIPRE AV, it first submits an artifact, via BDAntispamSDK_SubmitBuffer or
BDAntispamSDK_SubmitPath, and further retrieve detection results via BDAntispamSDK_ScanBuffer, BDAntispamSDK_ScanPath,
or BDAntispamSDK_GetIPReputation. Similarly, BitDefender first uploads the artifact via UploadFile@Cloud@Gambit and later
get results via Query@Cloud, IsCloudRequestSuccesifull@Response, or GetResponsesCount@Response.

Despite presenting these capabilities, we were not able to identify the use of cloud scan during typical AV usage for most AVa.
An exception to that was Avast, which performs a query to filerep-prod-011.mia1.ff.avast.com to check the file reputation
when an on-demand scan is triggered. For the other AVs, we were only able to trigger cloud scan on-demand and only when
using custom configs. In the Kaspersky AV, for instance, a user can trigger a cloud scan via the Windows context menu. In this
case, the AV queries on the cloud the reputation of the file and reports, for instance, how many other Kaspersky customers that
joined the KSN have this file in their machines. The context menu triggers the avpui process, which is a GUI for the scan. It
outsources the requests to the cloud to the avp process, which reads the entire file content, hashes it in a SHA-like manner, and
sends it to the cloud to retrieve the reputation.

On the one hand, it is interesting to see how reputation-based methods become popular. They significantly contribute to
increasing AV’s detection capabilities, since updating a centralized database of reputation information is faster than updating
individual endpoints, with the additional advantage of not requiring any storage space in customer’s machines. It might enable,
for instance, AVs to store an almost infinite number of signatures in their cloud servers. However, despite the cloud advantages,
AVs do not (and in fact cannot) eliminate the traditional detection mechanisms, as they still have to protect the systems when the
devices are not connected to the Internet. This might happen due to the device’s operation on a constrained scenario/network,
or even due to an attack, since it is plausible to hypothesize that in a scenario where only Internet-based scans are available,
attackers would try to block Internet access to render devices vulnerable.

On the other hand, these reputation-based mechanisms cannot be classified as truly cloud-based “scans”, since it would require
them to upload the entire payload to a server and block its execution on the endpoint until some custom analysis is performed in
the cloud server. We did not find evidence of this type of operation for any AV. Therefore, there is still a field of opportunities
for researchers aiming to make these analysis procedures practical.

6.4 Real-Time
Behavioral detection is also strongly related to AVs. In the literature, we can find two frequent claims about AVs. Either that:
(i) AVs only use signatures and not real-time monitors; or that (ii) AVs can implement complex behavioral detection routines.
None of them are highly accurate, as the current state of AV’s real-time detectors is heterogeneous. For instance, whereas some
AVs have real-time monitors, this capability is not enabled by default to mitigate performance degradation [167]. Therefore, we
here present a set of experiments and analyses of their results to draw a landscape of the actual usage of real-time monitors by
AVs.

The first thing to have in mind is that current AVs do not use real-time monitors as a sandbox solution, tracing all API calls
for generalized attack detection. Instead, only a subset of all API functions is hooked (see Section 5.8). These API functions are
used for three distinct tasks: (i) enforce specific security policies (e.g., file access policies), (ii) ensure AV’s self-protection, and
(iii) detect some known, popular attack classes in runtime. It is also important to highlight that these tasks are not performed
using a single method (userland blocking vs. kernel blocking), but a combination of them, according to the granularity level of
the monitoring/blocking needs. We following describe some of these tasks in greater detail.
File Accesses. One of the main tasks that AVs perform in runtime is to enforce a security policy that establishes which files
and directories can be accessed or not. This ensures the correct operation of multiple system components, from the browser to

28

the AV itself, which should not be tampered. To understand whether, how, and to which extent the distinct AVs monitor the
filesystem, we developed a code that enumerates and tries to open all files in all directories. We then compared the results when
using and not using an AV.

Table 15: Filesystem accesses prevented by the AVs. AVs block access to certain directories to avoid system infection and
to ensure self-protection.

AV Function Paths

Avast
Self-Protection C:\ProgramData\Avast Software\

C:\Users\Win\AppData\Roaming\Avast Software\

System Protection C:\ProgramData\Microsoft\Crypto\RSA\MachineKeys\
C:\ProgramData\Microsoft\RAC\StateData\RacMetaData.dat

Kaspersky

Self-Protection C:\ProgramData\Kaspersky Lab\

System Protection

C:$Recycle.Bin\
c:\ProgramData\Menu Iniciar

c:\Users\Default\AppData\Roaming\Microsoft\Windows\Start Menu\
c:\ProgramData\Microsoft\Crypto\RSA\
c:\Windows\System32\LogFiles\Fax\I

c:\Windows\System32\LogFiles\Firewall
c:\Windows\System32\LogFiles\WMI

Internet Protection
c:\Users\Default\AppData\Local\Historico

c:\Users\Default\AppData\Local\Temporary Internet Files
c:\Users\Default\Cookies

MalwareBytes Self-Protection C:\Program Files\Malwarebytes\

TrendMicro

Self-Protection c:\Users\Win\AppData\Local\Trend Micro\
C:\ProgramData\Trend Micro\

System Protection

c:\swapfile.sys
c:\ProgramData\Microsoft\Crypto\RSA\

c:\ProgramData\Microsoft\Windows\LocationProvider
c:\ProgramData\Microsoft\Windows\Power Efficiency Diagnostics

c:\ProgramData\Microsoft\Windows\Start Menu\
c:\System Volume Information

c:\Windows\System32\LogFiles\Fax\
c:\Windows\System32\LogFiles\Firewall
c:\Windows\System32\LogFiles\WMI
c:\Windows\System32\networklist

c:\Windows\SysWOW64\networklist
c:\Windows\Temp

Internet Protection

c:\Users\Default\AppData\Local\History
c:\Users\Default\AppData\Local\Historico

c:\Users\Default\AppData\Local\Temporary Internet Files
c:\Users\Default\Cookies

VIPRE System Protection

c:$Recycle.Bin
c:\ProgramData\Menu Iniciar

c:\ProgramData\Microsoft\Crypto\RSA
c:\Windows\Logs\SystemRestore
c:\Windows\MEMORY.DMP

c:\Windows\System32\LogFiles\Fax\
c:\Windows\System32\LogFiles\Firewall

Internet Protection \Users\Default\AppData\Local\History
c:\Users\Default\AppData\Local\Historico

Table 15 shows that most of the prevented file accesses have three distinct goals: (i) AV’s self-protection, with each AV
protecting its own installation and configuration folders; (ii) System protection, with each AV protecting a distinct set of
directories. In common, Windows configurations and logs are protected by all solutions; and (iii) Internet protection, with some
AVs giving special attention to the browser history and cache. We highlight the fact that despite each AV deploying a distinct
set of access rules, all of them implemented the same access control mechanism. This suggests that the OS might be lacking this
type of protection mechanism as a native feature. In a scenario where the OS natively supports distinct policies, AVs would be
required to distribute only their policy rules and not the mechanism itself to deploy them.
Process Accesses. Given the policies implemented for file access control, as presented above, one might hypothesize that AVs
also implement access policies for handling processes, such as preventing a malicious process from opening a handle to a benign
process. To evaluate this hypothesis, we implemented an application that enumerates all running processes and tries to open a

29

handle to them. We executed this application with and without a running AV and compared the outputs. We also varied the
flags for file opening (e.g., read accesses, write accesses, so on) to identify whether AVs drop privileges or not. We discovered that
the AVs do not interfere with process opening routines. All processes originally opened by our application without a running AV
were also successfully opened under an AV with the same flags/attributes. Handlers to system processes were also successfully
obtained. The only processes accesses that were effectively prevented by the AVs were the AV processes themselves. This shows
that the contrast between the strong statements that people make about AVs is justified by the actual AV’s behaviors, as some
of the claimed properties are true (e.g., file accesses policies), but there is still room for improvement (e.g., process accesses
policies).
DLL Injection Prevention. To understand AV’s capabilities of detecting threats in real-time we need first to understand
which classes of attacks require this type of detection. Whereas any attack detected statically could also be detected in real-time,
AVs will likely implement dynamic detection mechanisms only for the ones that cannot be detected other way. The attacks that
can be detected statically will likely be still detected this way since it is a more lightweight approach than running a monitoring
infrastructure. Therefore, we consider that DLL injection a good case study to investigate dynamic detection mechanisms.

DLLs are not self-contained pieces of code–i.e., they do not run by themselves, but need to be injected into a host process
to execute in their context. The injection can occur via multiple mechanisms (e.g., via the OS itself, or a custom loader). DLLs
can be injected for benign purposes (e.g., providing legacy software compatibility, or extensions) or malicious purposes (e.g.,
tamper software execution, hijack control flow, so on). Due to this characteristic, it is hard to distinguish benign and malicious
DLLs statically, as their behavior depend on the injected process. Thus, AVs tend to leverage dynamic monitoring mechanisms
for this task.

To confirm that AVs use dynamic monitors and understand how they are used, we tried to load DLLs into diverse processes
and check whether these were detected or not by the AVs and in which step. There are distinct ways one can load a DLL
into a process [87]; some count on more OS support than others, and some are more documented than others. Our goal here
is not to survey all existing injection techniques, but to exercise AVs face to distinct strategies. Thus, we considered distinct
approaches, such as the most standard technique (CreateRemoteThread), Reflective Injection [169], Process Hollowing [113], and
AtomBombing [174].

Table 16: Code Injection Techniques Detection. Distinct techniques are detected by the AVs using distinct methods. Some
techniques are not detected at all.

Technique CreateRemoteThread Reflective Process Hollowing AtomBombing
Detection Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Avast 7 7 7 3 3 7 7 7
Kaspersky 7 7 3 3 3 7 3 7

MalwareBytes 7 7 7 7 7 7 7 7
TrendMicro 7 7 7 7 3 7 7 7
VIPRE 7 7 3 7 3 7 7 7

Table 16 shows how the AVs behaved in our tests when exposed to the aforementioned DLL injectors. We first notice that
the traditional DLL injection method is usually not flagged as malicious by the AVs, except for VIPRE. We hypothesized that
AVs assume these cases as likely benign due to the use of this method by many legitimate applications.

Unlike traditional DLL injection, it is hard to claim reflective injection as a legitimate use, since its manual mapping step
aims to avoid using monitored system APIs. Thus, some AVs statically inferred the loaders implementing this mechanism as
likely malicious (even though the libraries themselves were not flagged). We then modified the loaders to hide their imports
and strings, such that they were not statically detected anymore. When trying to running these loaders, they were dynamically
detected by Avast and Kaspersky AVs. We discovered that, in this case, the detection occurs because the AV identifies a lib that
was loaded into the process space after the process startup but which did not use any of the functions hooked for monitoring by
the AV (e.g., LoadLibrary, CreateRemoteThread), in a process similar to a lie detector.

Even when AVs implement dynamic detection mechanisms, there are still drawbacks that affect detection. For instance, in
the Avast AV, the dynamic detection is performed by the called SmartScreen mechanism, which freezes the execution for a few
seconds for scan, thus imposing some performance penalty. To speed up the performance, the mechanism caches scanning results.
Thus, after a first clean scan, this result is cached and scans are not performed in subsequent launches of the same file/process.
However, in the case of an injector, the scan result is very dependent on the injected payload. When launched with a valid DLL
as an argument, the injector will call API functions with specific arguments that will trigger the dynamic detection. However, if
the injector is run without a DLL as an argument, the injector will perform some calls without arguments and these will result
in errors, such that the dynamic monitor will cache the information that this file/process is clean. In a subsequent execution of
the injector with the actual malicious payload, the process will not be scanned, and the DLL will be successfully injected.

Similarly, process hollowing and atom bombing injectors are statically detected by some AVs. However, once we can hide
their static fingerprints, the AVs are not able anymore to detect their execution as a malicious behavior. This result leads us to
conclude that the AVs indeed have some capabilities of detecting threats in runtime, but these can still be significantly improved.
As promising future approaches, we envision that the profiling of memory allocation activities, such as proposed by some “next-
generation” AVs [120], are interesting strategies, as they would allow the detection of the constant code-page allocation instead

30

of the injection mechanism. We believe that for this approach become successful, an increased level of OS-AV cooperation is
required.

6.5 Delayed Detection
In the delayed detection mode, the AV first captures a bunch of data and later reasons about it to raise (or not) a detection
warning (e.g., collect thread creation information to detect injection attempts [137]). A noticeable source of information for
delayed decisions is the Event Tracing for Windows (ETW) interface added by Microsoft in recent Windows versions. It allows
the collection of thousands of events [123] about Windows applications, services, and drivers. The set of captured events includes
a system-wide view of libraries loaded into the system’s processes and the files created in the filesystem. Whereas these events
are captured very fast by the ETW framework, we do not consider its operation as real-time because the AVs do not interpose
functions to monitor them. Thus, AVs cannot block malicious actions directly. They are limited to act as passive listeners of the
event loggers.

ETW was not available in the past, so it is not often described as part of a security solution. However, AVs recently started
to use ETW as part of their detection routines and it is plausible to hypothesize that this mechanism will become each time
more popular. For instance, McAffee provides a tool [119] to collect ETW events and security reasoning about it, even though
in a standalone manner. Among the AVs we inspected, native integration with ETW was available for F-Secure and Vipre. In
the F-Secure AV, we found the fsetw_plugin64.dll library as a host for the ETW plugin. However, it is not clear how it is
used by the AV (although spoofed PID detection is supposed [86]).

In the VIPRE AV, ETW is used as a boot time monitor [122]. The driver registers its event monitors by writing to the
SYSTEM\CurrentControlSet\Control\WMI\GlobalLogger registry key, as specified by Microsoft [121]. In the ETW format,
events are generated by providers, managed by the controllers, and consumed by the clients. In the Vipre case, the SbFwe.dll
library is the ETW controller. It exports multiple functions (SbFweETW_BootLogging, SbFweETW_IsBootLoggingEnabled,
SbFweETW_IsRunning,SbFweETW_Start, SbFweETW_Stop, SbFweETW_StopCurrentBootLoggingSession, SbFweETW_UpdateLogLevel
that allow the AV to manage the ETW collection.

6.6 Post-Detection
A frequent misconception is that the AV’s job finishes when a threat is detected. In fact, there are still actions to be taken
after it occurs. Ideally, an AV should allow users to report False Positives and Negatives, provide usage statistics to the vendor,
and even restore the system to a clean state. To present an overview of the post-detection actions performed by the AVs, we
investigated their behaviors and summarized them in Table 17.

Table 17: Post-Detection Actions Summary. We only considered the actions displayed in the GUI, although some of these
actions are displayed via other channels (e.g., websites).

AV Quarentine FP Report FN Report Send to Analysis Remediation
Avast 3 3 3 3 Limited

F-Secure 3 7 7 3 Limited
Kaspersky 3 7 7 3 Limited

MalwareBytes 3 7 7 3 Limited
TrendMicro 3 7 7 3 Limited

Vipre 3 3 7 3 Limited

Upon detecting malware files, all AVs move them to a quarantine. Although the name of the quarantine module has been
changing over time (e.g., it is now called Virus Vault in the Avast AV), its operation principle remains unchanged since the
creation of the first AVs. When a file is quarantined, it is hidden from the users by the AV, but it is not actually deleted: In
most AVs, the file is only hidden from the user by using file system filters. For some AVs, such as TrendMicro, the original
file is replaced by a modified version. The C:\ProgramData\Trend Micro\AMSP\quarantine directory of TrendMicro stores
such modified versions, which consist of the original files encoded in a dynamic, XOR-like manner to avoid triggering further
detection alerts. Upon moving files to there, the quarantine manager displays to the users a list of these detected files and allows
users to restore (unhide) or actually delete them (in the TrendMicro’s case, anyone with a decrypter or known the dynamic key
generation algorithm can unencode the quarantine file [179]). If no action is performed, files are automatically deleted by all
AVs after some time in the quarantine.

The quarantine should allow users to report that a detected sample was a False Positive (FP). Whereas some AVs really allow
that, some of them opt to only whitelist that file locally. Reporting FPs globally is important because the same file misdetected
here might prevent a legitimate software operation for other users in the future. Although AV companies do their best to generate
unique detection patterns, it is hard to not conflict with any of the million possible software installed by a heterogeneous user
base. Some AVs even keep a list of known FPs to alert users [72]. Ideally, AVs should allow users to report FPs as soon the
threats are detected in a given file, but this capability was observed in only two AVs. The other AVs let this task for the users
who check the quarantine. In the worst case, some AV vendors make this possibility only available via specific forms on their
websites [116, 181]. This lack of integration with the main AV suite will likely make many users not report the cases.

31

Moreover, AVs should also allow users to report False Negatives (FNs). If a user somehow knows that a file is suspicious (e.g.,
because that file in the email already infected the user before, or infected a friend, so on) but this file is not detected by the AV,
the user should be able to report it to the AV vendor. We found that only one AV provides this option upon a system scan with
a clean result. The other AVs assume that it is very unlikely that users will have the knowledge to identify FNs. Despite that,
all AVs provide some mechanism to upload a suspicious file to the AV servers to be inspected by analysts. This option is often
placed in the context of getting a second opinion about the file, but it can also be used to report FPs and FNs. In addition to
enhancing the AV’s detection capabilities directly, this submission mechanism is also important because the files end up being
part of malware feeds which will be analyzed by the AV companies in search of new attack trends [183].

Finally, AVs should also be able to clean the system after they detected that a malware sample executed there. All consider
AVs report that they have disinfection and/or remediation capabilities. We tested these mechanisms by developing dropper
malware [40] that was unknown to the AVs but that drops a known malware. Our goal was to check whether AVs were able
not only to detect the dropped malware, but also the initially-undetected dropper malware which launched the known malware
sample. We discovered that, in practice, the AV’s remediation capabilities are limited. The AVs actually removed the malware
dropper upon detecting the launch of the known dropped malware sample, but the registry keys written by the dropper malware
remained untouched after the “disinfection”. Even worse, when we split the malware dropping and the malware launching into
two independent pieces of code, the AVs only removed the file responsible for launching the known malware sample, but not
the one responsible for adding it to the filesystem. The difficulty of correlating events on AVs and other security solutions is
a problem explored by the academic literature [32] and now even the AVs themselves acknowledge that their capabilities are
limited [100]. Therefore, malware remediation is still an open problem and thus constitutes a field to be explored by future
research work.

6.7 Network Inspection
Inspecting network traffic is a key component of AV detection engines. Whereas many studies point to new detection rules to
be applied to network traffic, a few is known about how the traffic is inspected by the AVs. In this section, we shed some light
on it by analyzing AVs to understand their network scanning routines.

AVs (can) leverage a mix of approaches to intercepting connections: (i) they (can) load browser extensions to read the content
of the loading Web pages; (ii) they (can) proxy the traffic through an AV process to inspect it; and/or (iii) they (can) check
connections after they were requested and/or established via kernel drivers.

In the first case, the browser extensions have access to the Web page’s DOM and these can be inspected directly. These
extensions can also retrieve the URL of the accessed Web pages and request the AV to scan for the URL reputation. We present
an overview of browser extensions in Section 9.4.

In the second case, the AV redirects the traffic through a new process to allow scanning it, i.e., a legitimate Man-In-The-Middle
(MITM) interception. We identified that this strategy is employed by the Kaspersky AV. In this AV, connections are forwarded
to the avp.exe process, which is the AV proxy [95]. Traffic inspection is performed system-wide and includes encrypted traffic,
which is enabled by the installation of an AV certificate (Kaspersky-signed, valid from 2010 to 2030) in the system. Therefore,
connections to all websites appear to originate from the avp.exe process and to be signed by the Kaspersky certificate. Whereas
this strategy allows traffic inspection, it reduces the network throughput, as as the establishment of a connection now requires
the double of handshakes and encryption steps. Other drawbacks of this inspection solution are that: (i) the MITM performed
by the AV might conflict with firewall solutions [95]; and (ii) application with custom certificate management, such as some
popular Python scripts, might fail to connect to some websites with INVALID_CERTIFICATE messages.

When new network inspection processes are added to the system, either to receive browser plugin requests or to proxy the
connections, these can be identified by the new ports open in the system. Using the TCPView tool from the SysInternals utility,
we discover that the AVs open localhosts ports that can be connected by any application, not only the AV client.

Most AVs opt to inspect network connection after the requests were performed and/or after the connection was established.
As shown in Section 5.8. most AVs load NDIS drivers, targeting the Microsoft networking filtering platform [128]. These
drivers are not used to inspect the contents (as moving data from kernel to userland would be performance prohibitive), but to
enforce security policies on the connections (e.g., blacklists addresses, protocols, so on). The firewalls embedded in the AVs are
implemented via these drivers.

On the one hand, all AVs are very similar in terms of the implementation of HTTP inspection. All AVs make use of the
WinHTTP Windows library to parse the collected domains. A typical inspection flow is to retrieve the URL from the NDIS drivers
via GetMessage, tokenize the URL via WinHttpCrackUrl, then inspect the domains (e.g., trying to resolve the DNS for that
domain/IP, as performed by Avast, for instance). On the other hand, AVs are very heterogeneous in the way they implement
detection rules. All AVs but VIPRE implement custom inspection mechanisms. VIPRE relies on SNORT rules (enabled only in
the premium version).
VIPRE’s Snort Rules. The VIPRE AV stores its network signatures in the \ProgramData\VIPRE\Rules\idsrules.dat file.
By the date we inspected it, this file was composed of 466 rules. The rules are typical snort rules with the addition of a custom
threat level categorization, as shown in the Code 4 of Appendix D. From a research perspective, it is interesting to discover that
an AV does not rely on custom detection mechanisms but in an open solution, since it allows any research developed on top of
this same solution to be immediately transitioned to the market.

The 466 rules provided by the VIPRE AV cover both inbound as well as outbound connection. The inbound rules are intended

32

to prevent attacks. The outbound rules (named attack-response by the vendor) are intended to prevent attacks to proceed after
an infection has already occurred. The rules are distributed over distinct protocols (58% TCP, 25% ICMP, 14% UDP, 3% IP)
and cover their multiple use cases. For instance, whereas ICMP rules are used to handle ping to traceroute requests, TCP rules
are used to detect known attacks and port scans.

Table 18: VIPRE’s AV snort rules. Distribution of the rule’s labels given by the vendor.
Prevalence Label Prevalence Label

32,01% misc-activity 4,19% misc-attack
17,22% attempted-admin 1,77% attempted-user
9,71% attempted-recon 0,88% unsuccessful-user
9,71% attempted-dos 0,88% non-standard-protocol
6,62% trojan-activity 0,66% network-scan
5,08% successful-user 0,66% successful-admin
4,86% web-application-attack 0,44% protocol-command-decode
4,86% bad-unknown 0,44% denial-of-service

Table 18 shows the distribution of the attacks blocked by the VIPRE’s rules according to the vendor’s classification. Whereas
some of them might be not immediately meaningful for the reader (and we don’t want to disclose vendor’s secrets here explaining
their details), we can still have a broad picture about which tasks are performed by this module. In particular, we highlight the
significant amount of rules aiming to block trojan-related activities, such that identifying the module that blocks the threats
ends up revealing interesting characteristics of the blocked threat themselves (in this case, the large dependency on network
services).

Among all rules, 28% are specific designed to handle known CVEs for multiple applications, ranging from Adobe to Microsoft
products. Content is blocked by 11% of all rules via URL blocklisting. The remaining rules implement regular expressions and
content matching.

7 AV Self-Defense & Monitoring
In this section, we analyze the attack surface exposed by the AVs, the risks of them being exploited, and the protection mechanisms
leveraged to mitigate attack possibilities.

7.1 Attack Surfaces & Vulnerabilities
Many people refer to AV as secure solutions because they are security solutions. However, the two concepts should not be mixed.
From a programming perspective, AVs are developed as any software, thus they might present bugs. The presence of bugs in
actual AV solutions is revealed by the number of reports in the Common Vulnerabilities and Exposures (CVE) [136] list. Figure 9
shows the distribution of CVEs related to the antivirus keyword in the period between 1999 and 2020/September.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

C
V

E
s
 (

#
)

Year

AV’s CVEs per Year

Figure 9: AV Vulnerabilities. CVEs per year.

Although the number oscillates significantly over time, we notice that vulnerabilities in AV products are reported and con-
firmed every year. These reports cover tens of distinct products and platforms (Windows, Mobile, and Mac). The vulnerabilities
types are also varied, ranging from detection bypass (27%) to parsing, privilege escalation, and overflows (15% each one).

33

Considering the above, and the severe AV consequences presented in previous sections, we decided to investigate whether AVs
might be potentially vulnerable to bug exploitation. Much research works have been done in the past about AV vulnerabilities [13,
190, 9], thus, we did not focus on finding specific bugs (as these might change as software are updated), but on identifying how
exposed AV’s API are and how accessible to testing AVs are.

We first checked whether we could load DLLs within our own process to manipulate them. We successfully loaded DLLs of all
AVs into our host process and none of them was automatically unloaded, thus we believe that they do not check the host process
that they are loaded into. Whereas implementing this type of check is desirable for a security solution, we cannot claim it as a
problem by itself, since all AVs implement authentication mechanisms in the form of context objects that the host process must
initialize before interacting with the libraries. However, this lack of loading checks allows us to invoke any exported function in
an arbitrary manner, which includes passing invalid arguments to check for bugs/crashes. Therefore, we developed our own API
fuzzer on top of our DLL host process to test AV’s components. In our tests, we invoked the exported functions with multiple
distinct and random parameters. We prioritized the test of the simplest APIs (i.e., the ones receiving no arguments or only
integers, so on) since we believe that they are less dependent on the initialization of context objects and other components. We
discovered many cases of crashes for all tested AVs. Even though many of the crashes might be due to the request of invalid
options and/or non-implemented routines, this result shows that these functions are blindly trusting on previous validation
steps, with functions not testing their own arguments for expected values. This opens significant opportunities for exploitation
attempts. As a mitigation procedure, AVs could adopt defensive programming strategies [172]. We believe that the investigation
of this possibility is an interesting open research question.

7.2 Anti-Tampering
As discussed in previous sections, AVs have to protect themselves from tampering to reduce the attack surface increased by their
own installation. Self-protection is often overlooked in many research work and evaluations (we found only one research work
tackling this problem [132]), but it is key to keep the protection mechanisms operating to secure a system. To better understand
how AVs protect themselves, we analyzed their distributed packages and attempted to attack them, as following presented.
Installation Tampering. We started by investigating whether AVs are somehow vulnerable at installation time. As presented
in Section 5.4. we discovered that most checks are not performed at installation time but rather post-installation. To evaluate
post-installation checks, we performed the same checksum change experiment presented in Section 5.4, but now targeting the
already-installed files. We first discovered that the files cannot be modified when the AV is running, as the AV installation
directory is protected by the AV drivers. Booting in the safe-mode allows us to modify the files as the AV drivers are not
loaded. We then discovered that the AVs present some integrity checks mechanisms to detect these modifications, which is
a good practice. However, a drawback of this approach is that this mechanism renders the AVs vulnerable to DoS attacks if
multiple files are corrupted (including the ones that ensure the integrity of other files in the AV’s chain of trust). When we
modified the checksum of all files, all AVs refused to start upon a reboot. This leads the system vulnerable. Malicious files that
were previously detected in real-time by the AV as soon as they were added to the system could now be copied without problems.
We observed that although the AV drivers raised a notification to userland, this notification could not be delivered as the AV
components were not operating properly. This highlights the need of paying attention to physical security issues, as no AV can
protect the system against an attacker that can manage the system. Certainly one can argue that if an attacker has access to
the system safe-mode it could simply remove the AV. Whereas it is correct, an AV removal would be easier noticed than an
AV problem. In the discussed attack, for some AVs, even their daemons remained displayed on the system tray, although not
working. As a recommendation, AVs should emit clearer warnings when they are not working properly to allow users to identify
the problem occurrence.
AV Loading & Reverse Engineering. Attackers are often investigating AVs to find ways to bypass them. Most attackers
will adopt black-box methods to select a version of their malicious payloads that is able to bypass AV’s detection. However,
more sophisticated attackers might adopt gray-box methods, thus reversing engineering parts of the AV to understand why
their payloads have been detected. To mitigate this type of attack, AVs might find ways to protect their code against improper
usage. Koret and Bachaalany suggest in their book [106] that loading AV’s libraries into an attacker and/or reverse engineer-
controlled process was an effective way to interact with AV internals. They demonstrate that by reverse engineering some
popular AV solutions of that time. To update their study and show the current status of today AV’s protections we repeated
their experiments. We discovered that the AVs do not prevent their libraries from being loaded into third party process in
any way. We were still able to load their libraries into our processes (see code in our provided repository). However, they are
all protected somehow. In most cases, the communication must be authenticated before an actual scanning routine could be
executed. In some AVs, there are even libraries specialized into authenticate AV’s usage (e.g., the fs_ccf_client_auth_64.dll
library in the F-Secure AV).

In an overall manner, we would be able to replicate the book’s experiments, but now with a greater complexity, as AVs
evolved significantly. The AV detection routines are now not concentrated in a single library, as when the book was written but
spread among multiple components. For instance, if we were going to replicate the Avast command-line tool (ashcmd.exe), we
would have first to invoke the aswProperty.dll to create an object that defines the characteristics of the scans. Then, invoke
the shTask.dll library to setup a scan (by passing the property object to the tskInitActionContext function) and start the
scan (via the tskExecData function). If the scan takes a while to proceed and the user wants to query the scan progress, it
should skip the first abstraction layer and directly query the engine loader (via the avscanGetScanProgress function in the

34

aswEngLdr.dll library).
As shown above, communicating with a modern AV is a hard task, but this should not be understood as a barrier for a

motivated player, either an attacker or a researcher. Recently, a researcher demonstrated not only how to communicate with the
Windows Defender engine but also ported it to work on Linux [150].
Processes Termination. Another possibility to tamper with an AV operation is to try to directly terminate it. Shields against
terminators have been proposed academically [84], but it still unclear what real-world AVs actually implemented. Therefore,
we implemented multiple strategies to terminate AV processes to evaluate their real characteristics. We discovered that, in an
overall manner, all AVs employ some anti-termination mechanism. However, their implementation changed over time. More
specifically, the protection mechanisms can be classified as before and after the Windows 8.1 release.

Before the launch of Windows 8.1, the OS provided no support for the anti-termination task, therefore AVs implemented
their own solutions. The most usual one is to run the AV processes with elevated privileges (a.k.a. admin), thus only another
elevated process could terminate it. Although offering some protection against the simplest threats, it was not enough to counter
a malware able to escalate the first privilege barrier.

After the launch of Windows 8.1, Microsoft added support to anti-process termination, with the protection of anti-malware
solutions being one of its main goals [124]. Microsoft introduced possibilities such as the protected processes concept, which
cannot be terminated even by privileged processes. These processes are set by the early-launch boot drivers described in
Section 5.8 and were used by all AV solutions considered in our evaluations. In all AV’s strategy, not all processes are protected
(e.g., UI processes are not protected), but only the key ones (e.g., AV engines, core services).

The rationale behind the adoption of the protected processes is not to eliminate the risk of AV termination but move the
attack surface that would allow it for a more privileged ring. Now, in addition to escalating its privileges to administrator, a
malware sample would also have to scale to the OS kernel to be able to defeat the AV. Once in the kernel, a malware driver/rootkit
can disable the process protection [118] and further terminate the process.
Driver Unloading. A strategy that attackers might employ to render AV protections ineffective is to disable kernel protection,
which would prevent AVs from collecting data and from securing critical resources. Therefore, AVs must prevent kernel drivers
from being unloaded by third party processes.

We first hypothesized that AV could be applying rootkit-like technique techniques to hide drivers from the applications.
For instance, AVs could employ Direct Kernel Object Manipulation (DKOM) to hide the kernel drivers from the OS list [82].
However, we discovered that, in practice, all kernel drivers are visible to the system. The AV focus is on their protection and
not on their hiding.

We discovered that there are two strategies used by AVs to protect their drivers. Many AVs implement their drivers as non-
PnP (Plug aNd Play) driver and/or do not implement the DriverUnload routines for their drivers. Therefore, attempts to unload
them result in the 1052 error: unsupported operation. To ensure that these drivers will always be loaded, AVs rely on the
creation of their respective services with the NOT_STOPPABLE and/or NOT_PAUSABLE flags, which prevents even administrators
from changing their characteristics. Attempts to exclude the services are blocked by the kernel-based filters denying access to
the OS services’ configuration files and registry keys.

In summary, the operation of driver protection mechanisms can be seen as a cycle, where a service prevents a driver from
being unloaded and the driver prevents the service configuration to change.
DLL Unloading. Another strategy an attacker might employ to defeat an AV operation is to unload the AV inspection
library from the memory of the malicious process. To avoid being defeated, the AVs should prevent their unloading. As for
the driver’s case, we first hypothesized that the AVs could be hiding the libraries from the OS linked lists to be invisible to the
processes enumeration routines. This strategy could be implemented by a manual mapping DLL injection procedure4. However,
in practice, we found no AVs employing DLL hiding, thus all injected libraries are visible to the malicious processes, that
can use their presence as a fingerprinting mechanism for evasion purposes. Fortunately, despite visible, the DLLs cannot be
unloaded by any standard mechanism, neither by directly calling the FreeLibrary function [130] nor via external tools [147].
We discovered that the AVs prevents the unloading of their libraries by pinning them via the GET_MODULE_HANDLE_EX_FLAG_PIN
flag during the load. Therefore, those injected libraries behave as if they were linked at boot time and can only be unloaded at
process termination. We can confirm that by looking at the reference counters of the injected libraries, which always exhibit the
maximum allowed value (65535) and never decreases even after a Freelibrary invocation.

7.3 Telemetry & Logs
Security is a continuous process and thus, like any process, it requires feedback. In the AV’s case, feedback information about
the health of the protected systems is given by telemetry information. The good use of telemetry information might help AVs
on identifying implementation bugs, open security breaches, new attack trends [41], and account actual exploitation cases [25].
If not well protected, telemetry data/logs can also be abused by criminals [42].

The value of telemetry has been shown in practice by Microsoft [171], with collects data from millions of customers to predict
if one of them will be compromised. However, despite this study, not much information is available about how other companies
use telemetry data in their solutions, which motivates us to take a further look at stored data and collection mechanisms.

4Undocumented injection technique where the injector manually sets internal OS structures to include the DLL without calling OS APIs to reference
it

35

The telemetry system operates basically periodically sending to the AV servers information collected during the AV operation
in the endpoint. A major source of information is the AV logs. The whole AV operation produces logs, whose content might give
us an idea of what kind of information is collected and stored by the AVs. The logs can be used to improve AV’s operation both
locally as well as remotely. It is hard to identify which information is sent to the remote server, but we can still have insights.

The database of the Avast AV (Figure 16 of Appendix D), for instance, stores a history of the updates, scans, and most
detected threats. It allows the AV company to identify weaknesses in their protection and to design new mechanisms. For
instance, the information that the users are not updating their products within a reasonable time might indicate that new
automatic update procedures should be developed. Similarly, a low scan frequency might indicate that the scan scheduler should
be adjusted. For the other AVs, similar information is collected. TrendMicro is able to even separate events by the triggered
detection engine (see Figure 18)

We believe that measurement studies relying on real logs collected from AV user’s machines would present interesting insights
to the security community about how computer users protect themselves via the use of AVs. These insights might help to guide
the development of next-generation AV solutions. However, as far as we know, no study publicly presented such information
so-far.

Ideally, all the information collected by the AVs should be available to the user, but this is not what happens in practice in
most cases. Although the AVs have mechanisms to integrate their logging mechanism with the Windows native event viewer [98],
we observed that this integration is not enabled by default in most cases. Therefore, there are still opportunities for developing
better integration tools built upon the log of AV engines.

8 AV Performance
A frequent complaint about AVs over time is that they cause the system to slow down, which motivated (and still motivates)
research on improving AV scans performance. According to Aycock [24], there are 4 strategies for accelerating an AV scan: (i)
reducing the amount scanned; (ii) reducing the amount of scans; (iii) lowering resource requirements; and (iv) changing the
algorithm. Whereas the strategies have been previously enumerated, no study evaluated how these have been applied to actual
AV solutions and what is their impact on performance.

Although AVs have evolved to mitigate the performance penalty, the performance overhead imposed by AVs is still signif-
icant [184]. This is explained by the AV interaction with system components for interposition, which adds overhead to their
operation (e.g., impacting the filesystem [7]). Whereas some literature work characterized AVs regarding the quantitative per-
formance overhead [5], few qualitative analyses were performed to explain which parts of the AV operation most impact the
system performance. Therefore, in this section, we aim to bridge this gap and characterize the overhead imposed by the multiple
operation modes: real-time, on access, so on. We focus on the relative overhead imposed on the system and not on the absolute
value since it would become fast outdated as the CPU’s performance is ever increasing.

The first thing to have in mind about AVs is that their operation is not homogeneous, neither their imposed overhead. AV’s
operation can be characterized in distinct steps: idle, on-demand checks, and real-time monitoring.
Idle. For an AV, remaining idle means that no on-demand or scheduled scan is being performed and no new application to be
monitored in runtime is launched by the user. For the OS, however, the idle time does not mean that no operation is performed.
Instead, this time is used by background processes to perform their operations. For instance, update mechanisms are often
launched by the OS and the applications when the system is idle. These operations will also be monitored by the AV, thus the
idle time does not mean that the AV is inactive nor that it does not cause performance impact.

To understand this impact in practice, we used the Resouce Monitor (ResMon) application to measure the CPU usage of the
multiple AVs components (engine processes, GUIs, associated background services) when idle. We considered a fresh Windows
installation, with browsing and office applications. The CPU usage was repeatedly measured by consecutive 60 seconds.

Figure 10 shows that the CPU usage imposed by all AVs when idle is low, ranging from 5% to 10%), but not negligible.
Moreover, the error bar indicates that even the idle operation has processing peaks, reaching up to 20% of CPU usage, which is
caused by the creation of system process in the background and the writeback of cached files in the filesystem.

For some applications, even the overhead of background scans might make the AV operation prohibitive. For instance,
AV scans during the execution of a game might be enough to significantly reduce the frame rate to the point of bothering
the user/player. To avoid these cases, AVs developed the gaming modes [102, 22] to prevent background tasks to affect the
system performance. Most AVs automatically trigger the gaming mode when a full-screen application is launched. Whereas this
dynamic adaptation characteristic shows AV’s flexibility to meet user’s requirements, which might also indicate an opportunity
of developing new scanning solutions that do not overload the main CPU (e.g., AV co-processors).
On-demand checks. A key constraint for AV’s performance in the on-demand mode is the need of loading the knowledge (e.g.,
signature) database to scan the file. A strategy to mitigate this performance penalty is to preload the signature database to be
used when required. This is often implemented by the AV daemons.

A drawback of this approach is that a significant amount of memory is spent during the whole system operation with AV
signatures without immediate use. Unfortunately, as most AVs are closed-source solutions, we cannot recompile them with
and without daemons to measure their impact in practice. However, we can understand this impact by inspecting the open-
source ClamAV solution. ClamAV can natively operate with (clamdscan) and without (clamscan) a daemon that preloads the
knowledge database.

36

 0%

 5%

10%

15%

20%

25%

Avast BitDefender Kaspersky MalwareBytes Norton Trend VIPRE

C
P

U
 u

s
a

g
e

 (
%

)

AVs

CPU usage when AVs are idle

Figure 10: AVs performance when idle.

Figure 11 shows the memory and CPU usage during on-demand ClamAV scans with no database preloading. We notice that
the AV scan of the same dataset considered in the previous experiments took 25 seconds. During the whole time, the memory
consumptions kept increasing, as the database kept being uploaded in memory, until reaching the total of 1GB. The CPU
usage rate indicates that the matching started since the beginning of the loading of the first signatures. However, the matching
was limited by the availability of signatures to be matched, thus the CPU rate is limited by a memory upper-bound. When
considering the operation of the ClamAV daemon, the scan of the same files took an average of 0.03s, an 800 times speedup. As
a drawback, the same 1GB of data was preloaded by the daemon and kept resident in RAM during the whole system operation,
even when no scan was active.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25
 0

 10

 20

 30

 40

 50

 60

M
e

m
o

ry
 (

M
B

)

C
P

U
 (

%
)

Time (s)

ClamAV Scan Performance Characterization

Memory CPU

Figure 11: ClamAV Performance. Significant memory and CPU overheads are imposed to load the signature database.

After the loading of the signatures, the second AV task that most affects performance is the signature matching itself. The
matching procedure is directly affected by the input files: the larger the files, the more CPU cycles are required to fully inspect
them. Besides, the more complex the file format, the more complex the rules required to model a malicious pattern within them.
Despite that, some performance-focused optimizations can be performed to speed up signature matching.

37

A possible optimization is to pre-compile the matching rules. For instance, regular expressions can be compiled into automata
to be directly matched from memory. Once again, as AVs are closed-source solutions, we cannot recompile distinct signatures
schemas to evaluate their performance impact. However, we can understand them by looking at/ a popular matching mechanism,
the YARA framework. YARA rules can be compiled both on-demand or beforehand. Figure 12 shows the overhead of compiling
typical YARA rules for malware detection [194] in comparison to pre-compiling them. As hypothesized, YARA rules are very
distinct in complexity, thus the overhead of compiling them is also distinguished according to their performance requirements.
The simpler the rule, the greater the relative performance impact of compiling the rule. The more complex the rule, the more the
compilation time is mitigated in the matching time. In the worst case, a third of the total matching time is spent in compiling
the rules for matching. This shows that there are still opportunities for the development of more efficient matching procedures
and the investigation of distinct matching algorithms [134].

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 8 12 16 20 24

E
x
e

c
u

ti
o

n
 O

v
e

rh
e

a
d

 (
%

)

Rule ID (#)

Performance Overhead for Compiling YARA Rules

Figure 12: The Matchign Cost. Precompiling complex YARA rules might save significant CPU cycles.

Real-TimeWhen operating in the real-time mode, AVs inject libraries in the running processes to hook into API functions. Since
the AV code starts to be executed preloading the API functions whenever they are called, performance overhead is introduced.

Evaluating the imposed overhead is hard, since distinct AVs monitor a distinct set of APIs. To present a fair evaluation, we
selected a subsystem that is monitored by the distinct AVs: the process subsystem. We developed an application that enumerates
all running processes in the system, tries to open a handle to them, and queries basic process information, such as PID and
paths. This triggers at least one monitored API call for each AVs, thus we can compare the overhead imposed by them.

Figure 13 shows the performance overhead in the number of CPU ticks considering an average of 50 repetitions. We notice
that all AVs cause significant performance penalties in the application execution. For all cases, the AV monitoring process
more than doubled the number of spent CPU cycles for the software execution. Although this result cannot be generalized
to a whole-system operation, since it is a micro-benchmark, it shows that the performance impact imposed by AV’s real-time
monitoring solutions is a real issue, thus deserving attention for further research work.

More specifically, we observe that all AVs impose a similar performance penalty regardless of their distinct threat intelligence
routines. This shows that the monitoring cost–the cost of injecting a library and hooking APIs–is responsible for the largest part
of the processing time rather than the intelligence routines. Therefore, investigating alternatives for function interception–such
as parallel scanning mechanisms–seems to be a promising way for future work on the field.
Speed ups & Caches. Regardless of the operation mode, performance is a concern for the AVs, so they try to mitigate
the performance impact in multiple ways. A widespread strategy is to rely on caches. A cache of kernel data, as shown in
Section 3.4, allows the AV to avoid resolving repeated queries (e.g., get process name from PID) for consecutive, repeated
operations intercepted by it. A file cache, as shown in Section 5.6, allows the AV to repeatedly scan the same files that were
scanned previously and were not modified.

On the one hand, it is interesting to see how AVs found an effective way to mitigate the scanning overhead. Although AVs

38

 0

 100

 200

 300

 400

 500

 600

 700

 800

Base Avast BitDefender Kaspersky Norton Trend VIPRE

T
ic

k
s
 (

#
)

AVs

CPU ticks overhead for real−time monitoring

Figure 13: Real-Time monitoring overhead. The performance is dominated be the interception cost rather t han by the
analysis routines.

implement many optimizations in their detection routines, the use of file caches shows that, in the last instance, not scanning
is the best solution for mitigating the overhead. The saved cycles due to a skipped verification might be essential in the future
to perform more complex detection routines. On the other hand, there is still room for improvement regarding the times when
detection routines are actually executed, as following discussed.
Multi-Core Systems. Despite the distinct operation modes, a common characteristic of all AV’s performance is that AV’s loads
are not well-balanced among distinct processor cores. When we shifted our experiments to multi-core machines, the obtained
results were very similar to the aforementioned ones. In most cases, no multi-core processing was observed. In a few cases,
we observed the same behavioral profiling in distinct cores, which we discovered to be due to duplicated AV processes running
in distinct cores. The only AV operation step that effectively benefited from multiple cores was the matching step, which is
performed in a multi-threaded way in all AVs. This step can be naturally parallelized and this fact is massively exploited by
the AVs. In one specific case, we found an AV that launched 78 distinct threads to match the files in a directory. Therefore,
improving the AV performance is still a relevant research task, especially if it involves other AV operation steps rather than the
matching step.

9 AVs Platforms & Architectures
Although all AVs present in an overall manner the same architecture and the same operation modes, as presented over this work,
some particularities significantly affect their detection capabilities, as following presented.

9.1 x32 and x64 Windows AVs
AVs have to adapt themselves to the modifications that their underlying systems undergo over time. A significant set of
modifications were imposed in the transition from 32 to 64-bit Windows systems. The modification that most affected AVs
was the introduction of the Kernel Patching Protection (KPP) mechanism, which prevented AVs from directly hooking into the
system tables [36]. Currently, to overcome that, AVs started employing filters and callbacks made available by the OS to monitor
the system operation. However, in the past, some companies faced significant trouble to transition (e.g., Sophos AV did not
work in x64 systems [149]). Therefore, to understand the current state of kernel monitoring, we inspected the drivers deployed
by 32 and 64 bit AV versions. We discovered that past AV versions did not update their drivers for the 32 bit systems, deploying
hooks in 32 bit and callbacks in 64 bit systems. However, as newer AV versions were launched, AVs merged their 32 and 64-bit
versions. Currently, all AVs operate the same way in 32 and 64 bits, relying on the same callbacks for the same drivers.

9.2 Windows vs. Linux AVs
Whereas designed for the same task of protecting critical system resources, the AVs for the distinct platforms are different in the
same proportion as these platforms are different. For instance, the resources to be protected in Linux and Windows systems are
different: whereas in Windows configuration information is stored in the Registry, in Linux they are stored directly in files (e.g.
/proc), which implies in distinct protection mechanisms.

In common with its Windows counterparts, the Linux AV we evaluated (ESET AV for Linux Desktops) is also client-server-
structured. On the other hand, its protection and working are mostly based on the OS native features. The AV adds shell
scripts to the system to perform some checks in given key system operation points. Most of the script’s protection is performed

39

via obfuscation. The AV does not add a driver to the system, but adds multiple .so libraries. The libesets_pac.so library is
injected via LD_PRELOAD into running processes via the /lib/pkg/postinstall post-installation script that writes the library
path at /etc/ld.so.preload. This library wraps the most common libc functions, such as open, write, execv, and socket.
In addition to real-time checks, the AV also performs static binary checks. An interesting part of the Linux AV threat model
is that it also detects Windows threats. In our threats, windows binaries (PE files) and scripts (VBS files) were detected as
soon they were copied to the filesystem. Some filetypes, such as docx files are skipped from the checks by an explicit whitelist
configuration.

9.3 Mobile AVs
As for the Linux vs Windows case, the mobile environments also have particular characteristics to be protected. Capabilities
such as sending SMS, contact lists, so on are only present on mobile and not on desktop. Also, mobile environments present
other restrictions, such as preventing superuser access (rooting). Therefore, it is plausible to hypothesize that mobile AVs would
be significantly different or less effective than desktop AVs. We evaluated that in practice by analyzing the apps described in
Section 4.

We discovered that the Android AVs are not as modular as the desktop ones. Whereas desktop AVs distribute multiple files
to be plugged into each system component, the Android AV application is more self-contained and plugged into the system by
the Android environment itself. This shows the impact of a distinct OS architecture over the security solution. Despite this
fact, the Android AVs are also client-server-structured, since the most complex routines implemented by them (e.g., scanning
routines) are placed into native libraries that are invoked via the Java Native Interface (JNI) [12]. Interestingly, native libraries
are also often by malware samples that these same AVs aim to detect [2]. Unlike desktop AVs, Android AVs do not load any
kernel driver (which is sometimes even prevented by the stock Android environment), thus they eventually monitor the system
with the same privileges as the malware samples [161].

Since they cannot monitor the system from a more privileged ring, the AVs try to ensure good data tracking coverage by
requesting almost all available permissions in their manifest file. They also register almost all existing intents and broadcast
channels to be notified about system-wide events. An intriguing side-effect of this broad request policy is that although the AVs
claim they aim to guarantee user’s privacy, many of them declare third party components in their manifests whose tokens allow
these third parties to track the user’s interaction with the system (e.g., by adding the Facebook API).

The AVs register intents to receive messages when certain actions are performed in the system (e.g., when the device connects
to a new WIFI network), which allows them to perform some basic checks. However, to offer the same protection level as in
their desktop versions, the AVs need to inspect applications in a more fine-grained manner (e.g., check which URLs are accessed
by the user). As no native support is offered for these tasks, the AVs collect these data by exploring the accessibility services.
For instance, accessibility resources originally designed to read screen content for blind people are now used as a mechanism to
collect data from web forms and application fields. Interestingly, this same strategy is used by some malware samples that the
AVs aim to detect [108, 10, 93].

As the AVs do not have in-app access as in the desktop versions, most of their detection capabilities are presented in the
form of pattern and signature matches. In the first cases, the AVs present some templates of know attacks against popular
applications (e.g., Whatsapp scams). In the second case, traditional, byte-based signatures are employed. For some AVs, we
were even able to find references to the EICAR test file [63] embedded in the apps. The mobile AVs try to overcome the limited
real-time analysis capabilities in comparison to the desktop AVs with more full system scan checks. The solutions often schedule
multiple full system scans per day to detect files that they have missed during runtime monitoring. Also, a significant part of
these AV’s detection is powered by reputation systems (e.g., of popular applications) and/or blacklists (e.g., spam-sending lists).

The mobile AVs present clearer assumptions than the desktop AVs. They assume the system is not rooted and most of their
protection comes from this fact. In fact, many solutions actively seek for rooting applications. Similarly, they also trust the
standard App Store and notify the user when this is not working properly. Similar to desktop AVs, mobile AVs also have to
protect themselves against terminators. Most of them implement mechanisms to prevent their removal.

Some of the limitations when scanning files are not a major problem for most mobile AV’s threat model as detection seems to
be only a minor part of their protection goals. Most AVs provide complementary security resources to protect users, such as file
wipers to safely delete files, file vaults to safely store files, applications lockers for access controls, VPNs for safe web navigation,
and anti-theft mechanism to lock the device when it is lost and/or stolen.

From a security analysis perspective, most of the attack surface added by these AVs are due to validation, licensing, logging,
signing, and billing routines. The interactions with the OS are in fact the smallest part of the added attack surface. Therefore,
the development of these solutions should follow the same best practices adopted for any other application class that handles
these same inputs. From an architectural point of view, mobile AVs can be understood as an intelligent agent that is added to
the system to make decisions about security implications. Most of the monitoring part of their operation is implemented by
the Android environment itself, and the OS cooperation might be a trend for future developments and emerging platforms (see
Section 10). We following detail our findings of particular AV operations.
Kaspersky. This AV monitors the system in a broad manner. The phishing protection is applied even to the received SMS. The
SMS monitoring is performed via accessibility services. This AV was the only one to implement its own monitoring solutions
in addition to relying on the Android services. It monitors the filesystem via the inotify Linux framework, as revealed by the
call to the inotify_rm_watch function in the libapp_services.so library. This is one of the 5 native libraries embedded in

40

this application. This AV was also the only one to specify it has the ability to scan artifacts in the cloud. This is an interesting
alternative for the Android environment as the remote server can have deeper system introspection capabilities to a sandboxed
Android environment than the limited access that the AV has to the local OS. The AV is periodically updated via the Internet.
It requires a minimum available storage space of 2MB, which suggests that it is the maximum size of an individual database
update. However, the update occurs via HTTP, with the AV explicitly asking the Android to not enforce HTTPS over that
connection. Whereas this practice was already identified in desktop-based AVs [28], likely due to legacy compatibility, it is not
clear why it is replicated for mobile ones. The AV app is shielded with the libdexterprotector.so, a third-party solution.
Interestingly, the APK file drops at installation time the android_wear_micro_apk APK, which is a lightweight AV version
intended to run on wearable devices, such as smartwatches.
PSafe. Whereas presenting most of the previously described characteristics of mobile AVs, this AV was the only one that does
not implement its detection engine via native libraries. It also collects forms information using accessibility services and schedules
a daily full system check. We identified that the real protection claimed by the AV is implemented via template matching of
known attacks against popular applications (e.g., Whatsapp scams).
AVIRA. This AV collects data following the AV’s usual accessibility collection mechanism. It uses this data, for instance,
to be notified when new applications are installed and launched so it checks the application integrity and signature. The AV
mixes blacklists and whitelists approaches: Whereas it blacklists phone numbers, it whitelists multiple popular applications (e.g.,
Facebook, Instagram, Waze, so on). Its detection capabilities are also based on signatures, as the presence of the EICAR file
indicates. The signature database is hourly updated. The AV embeds 18 natives libraries, including the ones for OpenVPN and
JDNS, in addition to the AV core. The AV core presents AV self-checks (e.g., AVSIGN_IsAviraFile_CustompublicKeyA function)
and also reference signature generation (e.g., ST_CreatePeFileSignature function). In fact, there are multiple references to PE,
the Windows executable format, over the AV code, which suggests that the AV communicates with a shared backend between
mobile and desktop AVs. In practice, however, we did not find any PE detection case.
ESET. This AV is very explicit about its checks. It notifies the user that it will warn applications downloaded from unofficial
sources and that it collects browsing information even when surfing in the anonymous mode. Browser monitoring is performed via
accessibility services but is only available for some browsers (e.g., noticeably Chrome). Its detection is performed via signature,
with the EICAR test file being identified on it. A full system check is scheduled by default every 6 hours. It communicates
with a single native library that implements the AV core. It is a complex, threaded library that invokes multiple system calls
and writes to a sqlite3 database. An interesting finding is how this AV is concerned about not only the user device but also
the surrounding environment security. It checks the connected network for outdated router firmware versions, DNS poisoning
attacks, and even devices vulnerable to known attacks. Although the app clearly warns that these capabilities should not be
used against third parties, this cannot be prevented.
Avast. This mobile AV presents most of the aforementioned characteristics. Its manifest file requires access to multiple resources,
such as bookmarks, history, so on. Some of these resources are only used for data leakage prevention, such as periodically cleaning
the clipboard. The app has distinct database files (e.g., networksecurity.db, applocking.db, call_blocking.db) that are
used to load blacklists for IP addresses, phone numbers, and so on. The AV explicitly checks for rooting application using code
generated by the RootCheck tool.
AVG. The AVG application embeds the AVAST backend. As a significant difference, it also embeds OpenVPN native libraries
to provide VPN access support.

9.4 Browser Extensions
Many applications have been moving to the Web, and so the attackers. This requires AVs to also move to there to provide
effective detection. We showed in Section 5.4 that many AVs dropped browser extensions (XPI files) during their installation.
We here present an overview of these components.

In an overall manner, these extensions are a minified version of the main AV client. They are also organized in a client-
server manner, with the extension opening a socket to send requests to the AV engine main process (e.g., querying a given
URL reputation). Most of their action focus in detecting suspicious URLs, but they can also inspect scripts and even data
placed into forms (e.g., passwords). Their monitoring largely relies on callbacks provided by the browsers (though some can
also implement browser hooks). The most popular callback is related to browser’s tab activities, which is used by the AVs to
trigger new inspection procedures as soon as new tabs are created. Tab information could also be used to track malicious URLs
paths, as suggested by the academic literature [173], although we cannot confirm that the AVs perform such kind of tracking
in their backends. Some AV extensions can also inject scripts into the pages to be able to manipulate their DOM objects. In
some cases, the monitoring is disabled by whitelisting mechanisms that skip popular and/or buggy URLs from checking. Most
of their operation is autonomous, but in a few a cases user intervention is required (e.g., confirm he/she wants to visit a given
suspicious site). As a significant difference from binary-based AVs, most of the extension’s protection is provided by the browser
infrastructure itself, whose manifest files already contain hashes and self-signed files that ensure their integrity and legitimacy.
In most cases, no obfuscation was identified in the extension’s files. We following detail specific cases.
Kaspersky. This is the most complex browser extension among the evaluated ones. It is structured in a client-server architecture,
with websocket and XMLHTTP communication. A session with the main AV process is only open after the extension specifies an
ID and a key. It prevents other processes to communicate with the AV engine process in the same port. This same protection is
implemented in the binary-based version. The extension receives distinct detection codes for malware and for phishing detection.

41

The AV clearly specifying its attempt to detect phishing is important because AVs have already been reported to have very
distinct detection rates for these two classes [29]. As optional features, this extension also blocks miners, removes advertisement
banners, and offers password protection via password quality checks and virtual keyboards. The extension integrity is only
self-protected by the hashes in the manifest files. Few obfuscation signs are identified in the app, except the password quality
algorithm. We discovered it checks for the password length and for repeated keys in the password to give a password score. In
addition to integrity checks, the extension also implements its own handling of MD5 hashes, which eliminates the need to trust
external entities. The extension monitors the navigation by injecting a script into every page, which allows it to parse DOM
objects in the visited pages. It also hooks the websocket APi and registers multiple browser callbacks to be notified when new
URLs are requested. It parses not only the visited URLs but also the links contained in the pages. It also captures navigation
cookies and checks their validity. Some domains are excluded from verification, such as Google–it avoids looking to the search
parameter for this website. Domains are identified based on the URL prefix.
TrendMicro. In contrast, this extension is very simple. It is also structured in a client-server manner, but not authentication
is required. It is only protected via the manifest file checks. It is not clear if it detects phishing in addition to malware. Its
detection capabilities are fully powered by browser callbacks. They deliver the accessed URLs to the extension, which whitelists
some of them, such as google.
F-Secure. This extension is similar to the previous one. It is also a client-server structure with no authentication. It is
protected by a third-party signed manifest file. It is no clear if phishing is specially handled. The monitoring is performed
via browser callbacks that deliver the accessed URLs, which triggers some code injection in special cases. The callbacks also
allow the extension to check TLS connection parameters and certificates. The access is blocked if the certificate does not match
the accessed domain. As an optional feature, the extension provides a safe search mode, that also acts as parental control. It
operates based on some whitelists, which includes youtube URLs.
BitDefender. This AV deploys two distinct extensions: an anti-tracker and a password wallet. Both are client-server structured
authenticated via an ID. In the wallet case, the server is requested to generate strong passwords that are pasted into web forms.
The extensions are protected by a third-party signed certificate. They also rely on third-party components (URL package and
webpack framework) that are obfuscated. It is not clear if the extensions handle phishing in addition to tracking. Some tracking
URLs are whitelisted. They monitor the browser via callbacks. The wallet extension also injects scripts to manipulate the DOM
and paste the passwords in the forms.
Avast. This AV also distributes two extensions: a page reputation checker and an option safe price plugin. They are client-
server extensions authenticated via a user token. They are protected via a third-part signed manifest. The reputation system
detects not only malware but multiple classes of phishing and harmful content. Both extensions collect the accessed URLs from
tab callbacks. They implement complex logic to decode hidden URLs, including base64 decoding. The URLs are hashed and
their reputation is queried via the main AV process. Optionally, the user can vote on the reputation of a page. User’s votes
are uploaded to a remote server for crowdsourced detection purposes. The optional safe search plugin implements the same
capability and is structured in the same way (even same files) as the page reputation plugin, but does not have any security goal.
Its goal is only to search the web and advertise prices. It collects user information for this search. It is implemented based on
the protobuf protocol for communication and jquery framework for parsing, such that it is not clear if this wide attack surface
is really required.
AVG. As for the main binary, the extensions distributed for AVG are the same distributed for Avast. Their distinction in the
presentation for the user is performed via the locale file, which is used to display distinct messages for Avast and AVG.

9.5 Case Study: ClamAV
ClamAV is a very popular platform for AV development, with many research works built on top of it (see Section 3.1). Therefore,
when we talk about the need for a better understanding of AV engines, it is common for someone to refer to ClamAV as an
alternative since its source code is open [43]. However, we identified many limitations that make ClamAV not fully resemble a
commercial AV. We discuss them here to reinforce our claim on the need of considering real AV issues.

ClamAV highlights AV’s complexity to protect the whole system. A significant part of its code is dedicated to parsing the
distinct file formats (Currently, 12 distinct file formats are supported [45]). Despite this significant implementation effort, it
does not provide complete security guarantees against infections, since attackers exploiting other, unchecked file formats will still
succeed in getting into the system. In practice, the academic literature already demonstrated that attackers often migrate file
formats to evade AVs and infect systems [27].

ClamAV also puts significant development efforts on verifying the signatures of PE files [48], checking whether their certificates
were issued by a trusted authority or not, or whether they are expired or not. In some sense, this mechanism acts as a kind of
whitelist, as binaries signed by a trusted entity (e.g., Microsoft) will hardly be considered malicious. This verification is skipped
for non-signed binaries, which leads to the surprising conclusion that a malicious binary file signed with a fake certificate is more
likely to be detected than a non-signed malicious file.

ClamAV implements a wide set of static detection mechanisms, with the simplest one being the checksum verification.
ClamAV allows MD5 and SHA digests to be matched against entire files and/or specific PE sections. These hashes are also used
in the whitelist mechanism [50], which allows the AV to skip the scanning of some files. Whereas still supporting MD5 hashes is
important for legacy compatibility, any AV making use of them might be vulnerable to collision attacks. State-of-the-art solutions
for MD5 collisions are reasonably efficient [170] (in a cryptographic sense), thus it is plausible to hypothesize an attacker creating

42

a malware whose hash collides with a whitelisted one to evade detection in a targeted scenario.
In addition to the checksum, ClamAV also supports the called body signatures, which are byte sequences matched using

regular expressions. Although the AV documentation has a rich guide on how to write good signatures [44], bad signatures might
eventually be deployed. These signatures can be deactivated individually using the whitelist mechanism [46], thus mitigating
false positives. Moreover, the AV also supports the called bytecode signatures, which are C functions written to match more
complex patterns. These are compiled and integrated into the AV engine in runtime.

ClamAV also supports the called container signatures to allow the inspection of files compressed as RAR, TAR, 7z, and other
formats. The AV distributes a list of passwords as part of its update process that are used to try to open password-protected
containers. This allows the AV to detect malware into containers protected with known passwords (e.g., malware samples are
often distributed in zip files protected with the “infected” password).

Over time, ClamAV implemented new detection features, being the adoption of YARA signatures one of the most significant
ones [49]. ClamAV currently does not support the whole YARA framework, with some modules not being implemented. However,
for the future, we can hypothesize that the YARA framework might even replace the ClamAV core since most of their matching
strategies overlap significantly.

Whereas presenting matching capabilities very similar to commercial AVs, ClamAV starts differentiating from commercial
AVs for the auxiliary detection routines. For instance, a good AV engine should be able to unpack a myriad of file formats
to allow the scan of the clear binary. The analysis of ClamAV’s source code revealed unpacking algorithms for the UPX and
ASPACK, but not for other ones. Besides, no runtime-based, generic unpacking method was identified, which limits the AV
detection capabilities. Similarly, a good AV engine should provide deobfuscation engines to allow the scan of clear strings and
data. Whereas we found methods to deobfuscate base64-encoded and RC4-encoded files, no other methods (e.g., XOR-based
variations) were identified.

Many of the signatures distributed by AV companies aim to match instruction patterns, thus AVs often implement disassem-
blers. We identified a custom-implemented disassembly in ClamAV’s code, but it is limited to the x86 (32bit) architecture, which
limits the application of rules to this platform. For the future, ClamAV’s developers and researchers might rely on third-party
disassemblers to extend the AV’s capabilities. In addition to statically looking to instructions, good AV engines often have
the ability to emulate code portions to reveal the real malware behavior. Unfortunately, ClamAV does not implement a code
emulator. There are also third-party, open-source solutions for this task that could be eventually integrated into ClamAV’s code
by researchers and developers in the future.

Modern AVs also have been relying on ML-based techniques to detect a greater number of threats, as discussed in previous
sections. Unfortunately, there is also no support for ML detectors in the ClamAV core. We believe that integrating ML
capabilities into ClamAV is a great opportunity to test academic proposals in a practical scenario.

Despite the aforementioned limitations, ClamAV presents at least part of the static capabilities provided by commercial
AVs. Unfortunately, when we talk about dynamic capabilities, ClamAV provides almost no resource comparable to real AVs.
ClamAV does not have a real-time module or load kernel drivers to enforce security policies. Whereas some extensions aimed
to bridge this gap, they are still limited by either (i) working only on Linux due to the need for the inotify framework [47],
or (ii) when operating on Windows, limited to invoke ClamAV’s static procedures to newly created files [51], with no real-time
threat intelligence. The lack of real-time monitoring also limits the AV’s self-protection capabilities. No effective anti-tampering
countermeasure was identified in ClamAV’s code.

Finally, ClamAV is also limited in the monitoring surface, i.e., in the number of distinct agents collecting data for scanning.
ClamAV does not collect data from the network or from the browser, which limits its action to the file scans triggered and/or
scheduled by the users.

In summary, whereas investigating ClamAV’s structure is an interesting task to get the first insights about the internal
working of an AV, it does not eliminate the need of looking to a real AV engine ao as to be able to transpose concepts to
an actual scenario. Therefore, from a research perspective, ClamAV should be seen more as an underlying platform for the
development of future solutions on top of it rather than the definite AV solution itself.

10 Discussion
In this section, we revisit our findings to discuss their implications and also point limitations of our approaches.
The AV concept changed significantly over time, but these solutions are still the most popular type of security solutions
nowadays. This solution class has been renamed over time from Anti-Virus to Anti-Malware, to Anti-APT (Advanced Persistent
Threats), and currently stands by the name of EDRs (Endpoint Detection & Response). Whatever the name they are called, it
remains essential to understand how they work to increase the protection they offer to the users.
AV Development. The available material on how to develop an AV solution is still scarce. Microsoft published in 2019 the first
example on how to write a kernel driver to support AV operations [127]. As far as we know, this is the only material available
covering AV development aspects. Therefore, this work’s main goal is to shed light on some important aspects of AV development
procedures. We adopted an analytical approach that reveals some of the decisions that AV vendors make to implement their
solutions. We expect that this information might be useful for anyone interested in developing an AV engine. We also hope that
we might inspire future work on the development of AV solutions.
The impact of whitelist. Our findings revealed that the AV solutions rely on whitelists to enhance their detection procedures.
This is not often considered in the academic design of detection methods, although its impact is significant. In practice,

43

comparing a whitelist-free approach to a whitelist-based approach is unfair. Whitelist-free approaches often lower their detection
capabilities when tuning their parameters to not flag benign artifacts as malicious. Whitelist-based approaches, in turn, might
apply tighter thresholds for detecting more artifacts while whitelisting any false positive case. Unfortunately, current AVs do
not fully disclose when the detection of an artifact was whitelisted. Making this information available would help researchers to
conduct experiments and perform more fair comparisons (e.g., only among samples that were or were not whitelisted in both
the reference AV and in the new proposal).
Found strings and detection information. As for the whitelist, other factors influence experiments that measure AV
detection (e.g., if detection was static or dynamic, due to signatures or heuristics, so on). A fair experiment should consider
the same type of detection for both the reference AV and for the new proposal. Unfortunately, most of the current AVs do
not disclose the reasons why a sample was detected. Recently, Microsoft started providing this type of information for some of
their security solutions [125]. The strings found during our analysis procedures indicate the presence of symbols for the distinct
detection aspects for all AV engines, thus suggesting that this information could be easily made available to the users. Therefore,
we expect that all AV solutions could move towards this more open direction in a near future.
OS support for AVs. The procedure of detecting a malware sample can be classified into two steps: a monitoring step and a
threat intelligence application. The monitoring step consists of collecting data for inspection. The threat intelligence consists of
making a decision based on the collected data (e.g., blocking a process). Our results showed that whereas desktop AVs implement
agents for both steps, mobile AVs are more focused on implementing threat intelligence agents, as many monitoring mechanisms
are implemented by the OS itself. A drawback of an OS-provided monitoring mechanism is that it restricts AV coverage to
the surfaced specified by the OS. An advantage of this approach is that the OS developers are capable to deliver monitoring
mechanisms more safely (e.g., function hooking often leads to crashes due to race conditions with OS structures accesses). In
our view, this movement towards OS-based mechanisms is a trend, which starts to affect even desktops, as seem in the Microsoft
movement of preventing hooking into kernel tables via KPP in favor of the new callback interface. If this trend consolidates, we
expect OSes to provide deeper inspection capabilities. For instance, Microsoft recently added an interface for drivers changing
its memory pages permissions [131]. We expect that this kind of interface to become available to AVs to allow them to change
page permissions of their protected applications, which would allow them implementing more complex security policies [35].
The AV Future. Our results highlighted the operational aspects in which AVs perform well but also show that there is room
for improvement in many aspects. It is always hard to make predictions, but we believe that an emerging research topic that
might help to improve the next generation AVs is hardware support. Distinct proposals suggest adding external monitors [33]
or CPU extensions [35] might help to achieve greater security guarantees.
Limitations. In this work, we shed light on the importance of understanding the AVs internal aspects. Unfortunately, due to
market reasons, AVs are closed-source solutions, thus information about their internals is not easily available. To overcome this
limitation, we adopted a hands-on approach. Although we were able to present a broad landscape of their internals, some details
might have been missed due to the intrinsic nature of the black-box analysis process. Moreover, protection mechanisms, such as
obfuscation, make the analysis task harder. Face to these cases, we focused on providing an overview of the AV operation instead
of delving into particular aspects. Therefore, we do not claim this work as exhaustive. Further investigations might reveal more
fine-grained details about specific operational aspects and component’s implementations.
Future Work. AVs are complex pieces of software and no single work would be able to address all their component’s working.
Most of the resources presented in the Section 3.4 deserve an investigation by themselves. For instance, the security of the
password managers implemented by the AVs needs to be investigated. Therefore, we expect that this work might foster future
research on AV internals.

11 Conclusion
In this work, we investigated the project decisions behind the implementation of AV’s internals to characterize the operation of
this type of security solution. We identified that only a limited set of research works in the literature investigated AV internals
and bridged this gap by analyzing popular (Windows, Linux, and Android) solutions to present a landscape of their operation in
practice. We discovered, for instance, a great disparity in the set of API functions hooked by the distinct AV’s libraries, which
might have a significant impact on the viability of academically-proposed detection models (e.g., machine learning-based ones).
We also discovered that whereas AVs provide reasonable resilience against popular packers, they cannot handle well other data
encodings (e.g., XORed files), which is highlighted as a significant open research question. Finally, we discovered that whereas
all AVs claim rootkit detection capabilities, most of them are based on static detection checks, which significantly affect business
threat models. We expect our study might foster further research in the field and that our findings might work as support for
these.
Reproducibility. All scripts developed to analyse and test the AVs are available in the repository at: https://github.com/
marcusbotacin/reverse.AV
Acknowledgments. This project was partially financed by the Serrapilheira Institute (grant number Serra-1709-16621) and by
the Brazilian National Counsel of Technological and Scientific Development (CNPq, PhD Scholarship, process 164745/2017-3).

44

References
[1] R. Abrams and A. Marx. Scripting av signature file updates and testing. https://www.av-test.org/fileadmin/pdf/publications/avar_2004_

avtest_paper_scripting_av_signature_file_updates_and_testing.pdf, 2004.

[2] V. M. Afonso, P. L. de Geus, A. Bianchi, Y. Fratantonio, C. Krügel, G. Vigna, A. Doupé, and M. Polino. Going native: Using a large-scale
analysis of android apps to create a practical native-code sandboxing policy. In NDSS, 2016.

[3] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani, D. Balzarotti, G. Vigna, and C. Kruegel. When malware is packin’ heat; limits of
machine learning classifiers based on static analysis features. In Proceedings of NDSS, NDSS, 01 2020.

[4] M. Al-Asli and T. A. Ghaleb. Review of signature-based techniques in antivirus products. In 2019 International Conference on Computer and
Information Sciences (ICCIS), pages 1–6, April 2019.

[5] M. I. Al-Saleh, A. M. Espinoza, and J. R. Crandall. Antivirus performance characterisation: system-wide view. IET Information Security,
7(2):126–133, 2013.

[6] M. I. Al-Saleh and H. M. Hamdan. On studying the antivirus behavior on kernel activities. In Proceedings of the 2018 International Conference
on Internet and E-Business, ICIEB ’18, page 158–161, New York, NY, USA, 2018. Association for Computing Machinery.

[7] M. I. Al-Saleh and H. M. Hamdan". Precise performance characterization of antivirus on the file system operations. Journal of Universal
Computer Science, 25(9):1089–1108, 2019.

[8] alreid. Peid. https://www.aldeid.com/wiki/PEiD, 2016.

[9] S. Alvarez. Antivirus (in)security. https://fahrplan.events.ccc.de/camp/2007/Fahrplan/attachments/
1324-AntivirusInSecuritySergioshadownAlvarez.pdf, 2007.

[10] Y. Amit. Accessibility clickjacking – android malware evolution, 2016. https://www.symantec.com/connect/blogs/
accessibility-clickjacking-android-malware-evolution, accessed on 11. August 2018.

[11] L. An, M. Castelluccio, and F. Khomh. An empirical study of dll injection bugs in the firefox ecosystem. Empirical Software Engineering,
24(4):1799–1822, Aug 2019.

[12] Android. Native apis. https://developer.android.com/ndk/guides/stable_apis, 2019.

[13] A. Antivirus. Feng xue. https://www.blackhat.com/presentations/bh-europe-08/Feng-Xue/Whitepaper/bh-eu-08-xue-WP.pdf, 2008.

[14] I. Arghire. Windows 7 most hit by wannacry ransomware. http://www.securityweek.com/windows-7-most-hit-wannacry-ransomware, 2017.

[15] Ashwyn. Recommended method for installing avast on an infected computer. https://forum.avast.com/index.php?topic=147079.0, 2014.

[16] K. Ask. Automatic malware signature generation. http://www.gecode.org/~schulte/teaching/theses/ICT-ECS-2006-122.pdf, 2006.

[17] K. Askola, R. Puuperä, P. Pietikäinen, J. Eronen, M. Laakso, K. Halunen, and J. Röning. Vulnerability dependencies in antivirus software. In
2008 Second International Conference on Emerging Security Information, Systems and Technologies, pages 273–278, 2008.

[18] Avast. Avast and avg become one. https://blog.avast.com/avast-and-avg-become-one, 2016.

[19] Avast. Aswvmm.sys problem. https://forum.avast.com/index.php?topic=205585.0, 2017.

[20] Avast. Avast threat lab - file whitelisting. https://support.avast.com/en-ww/article/Threat-Lab-file-whitelist, 2018.

[21] Avast. Cloud antivirus. https://www.avast.com/business/resources/cloud-antivirus, 2019.

[22] Avira. Avira antivirus: Game mode explained. https://www.avira.com/en/blog/avira-antivirus-game-mode, 2020.

[23] AVTest. Antivirus & security software & anti-malware reviews. https://www.av-test.org, 2018.

[24] J. Aycock. Computer Viruses and Malware. Springer, 2006.

[25] L. Bilge and T. Dumitraş. Before we knew it: An empirical study of zero-day attacks in the real world. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12, page 833–844, New York, NY, USA, 2012. Association for Computing Machinery.

[26] J. Blackthorne, A. Bulazel, A. Fasano, P. Biernat, and B. Yener. Avleak: Fingerprinting antivirus emulators through black-box testing. In
Proceedings of the 10th USENIX Conference on Offensive Technologies, WOOT’16, page 91–105, USA, 2016. USENIX Association.

[27] M. Botacin, H. Aghakhani, S. Ortolani, C. Kruegel, G. Vigna, D. Oliveira, P. L. D. Geus, and A. Grégio. One size does not fit all: A longitudinal
analysis of brazilian financial malware. ACM Trans. Priv. Secur., 24(2), Jan. 2021.

[28] M. Botacin, G. Bertão, P. de Geus, A. Grégio, C. Kruegel, and G. Vigna. On the security of application installers and online software repositories.
In C. Maurice, L. Bilge, G. Stringhini, and N. Neves, editors, Detection of Intrusions and Malware, and Vulnerability Assessment, pages 192–214,
Cham, 2020. Springer International Publishing.

[29] M. Botacin, F. Ceschin, P. [de Geus], and A. Grégio. We need to talk about antiviruses: challenges & pitfalls of av evaluations. Computers &
Security, 95:101859, 2020.

[30] M. Botacin, F. Ceschin, R. Sun, D. Oliveira, and A. Grégio. Challenges and pitfalls in malware research. Computers & Security, page 102287,
2021.

[31] M. Botacin, P. L. de Geus, and A. Grégio. Leveraging branch traces to understand kernel internals from within. Journal of Computer Virology
and Hacking Techniques, 16(2):141–155, Jun 2020.

[32] M. Botacin, P. L. de Geus, and A. Grégio. “vanilla” malware: vanishing antiviruses by interleaving layers and layers of attacks. Journal of
Computer Virology and Hacking Techniques, 2019.

[33] M. Botacin, L. Galante, F. Ceschin, L. C. P. C. Santos, P. L. de Geus, A. Gregio, and M. Zanata. The av says: Your hardware definitions were
updated! In 14th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC 2019). IEEE, 2019.

[34] M. Botacin, P. L. D. Geus, and A. grégio. Who watches the watchmen: A security-focused review on current state-of-the-art techniques, tools,
and methods for systems and binary analysis on modern platforms. ACM Comput. Surv., 51(4), July 2018.

[35] M. Botacin, M. Zanata, and A. Grégio. The self modifying code (smc)-aware processor (sap): a security look on architectural impact and support.
Journal of Computer Virology and Hacking Techniques, 16(3):185–196, Sep 2020.

[36] M. F. Botacin, P. L. de Geus, and A. R. A. Grégio. The other guys: automated analysis of marginalized malware. Journal of Computer Virology
and Hacking Techniques, 14(1):87–98, Feb 2018.

45

[37] P. Bright. Intel, microsoft to use gpu to scan memory for malware. https://arstechnica.com/gadgets/2018/04/
intel-microsoft-to-use-gpu-to-scan-memory-for-malware/, 2018.

[38] M. Brinkmann. Firefox will block dll injections. https://www.ghacks.net/2019/01/21/firefox-will-block-dll-injections/, 2019.

[39] A. Bulazel. Windows offender: Reverse engineering windows defender’s antivirus emulator. https://i.blackhat.com/us-18/Thu-August-9/
us-18-Bulazel-Windows-Offender-Reverse-Engineering-Windows-Defenders-Antivirus-Emulator.pdf, 2018.

[40] F. Ceschin, M. Botacin, H. M. Gomes, L. S. Oliveira, and A. Grégio. Shallow security: On the creation of adversarial variants to evade machine
learning-based malware detectors. In Proceedings of the 3rd Reversing and Offensive-Oriented Trends Symposium, ROOTS’19, Vienna, Austria,
2019. Association for Computing Machinery.

[41] S.-T. Chen, Y. Han, D. H. Chau, C. Gates, M. Hart, and K. A. Roundy. Predicting cyber threats with virtual security products. In Proceedings of
the 33rd Annual Computer Security Applications Conference, ACSAC 2017, page 189–199, New York, NY, USA, 2017. Association for Computing
Machinery.

[42] C. Cimpanu. Turla hacker group steals antivirus logs to see if its malware was detected. https://www.zdnet.com/article/
turla-hacker-group-steals-antivirus-logs-to-see-if-its-malware-was-detected/, 2020.

[43] CiscoTalos. Clamav. https://github.com/Cisco-Talos/clamav-devel, 2003.

[44] ClamAV. Creating signatures for clamav. https://www.clamav.net/documents/creating-signatures-for-clamav, 2003.

[45] ClamAV. File types. https://www.clamav.net/documents/clamav-file-types, 2003.

[46] ClamAV. How do i ignore whitelist a clamav signature? https://www.clamav.net/documents/
how-do-i-ignore-whitelist-a-clamav-signature, 2003.

[47] ClamAV. On-access scanning. https://www.clamav.net/documents/on-access-scanning, 2003.

[48] ClamAV. Trusted and revoked certificates. https://www.clamav.net/documents/trusted-and-revoked-certificates, 2003.

[49] ClamAV. Using yara rules in clamav. https://www.clamav.net/documents/using-yara-rules-in-clamav, 2003.

[50] ClamAV. Whitelist databases. https://www.clamav.net/documents/whitelist-databases, 2003.

[51] ClamAV. Realtime protection with clamav on windows. https://blog.clamav.net/2011/02/realtime-protection-with-clamav-on.html, 2011.

[52] Clamav. Clamav. https://www.clamav.net/downloads\#collapseCVD, 2018.

[53] ClamWin. Free antivirus for windows. http://www.clamwin.com/, 2018.

[54] Comodo. Antivirus whitelist. https://securebox.comodo.com/antivirus-whitelist/, 2018.

[55] M. Cova, C. Leita, O. Thonnard, A. D. Keromytis, and M. Dacier. An analysis of rogue av campaigns. In S. Jha, R. Sommer, and C. Kreibich,
editors, Recent Advances in Intrusion Detection, pages 442–463, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[56] CrowdStrike. Ngav defined. https://www.crowdstrike.com/epp-101/next-generation-antivirus-ngav/, 2020.

[57] D3VI5H4. Antivirus artifacts. https://github.com/D3VI5H4/Antivirus-Artifacts, 2020.

[58] D4stiny. How to use trend micro rootkit remover to install a rootkit. https://d4stiny.github.io/
How-to-use-Trend-Micro-Rootkit-Remover-to-Install-a-Rootkit/, 2020.

[59] deresz. A script to reverse-engineer anti-virus signatures. https://github.com/deresz/avwhy, 2012.

[60] D. Deyannis, E. Papadogiannaki, G. Kalivianakis, G. Vasiliadis, and S. Ioannidis. Trustav: Practical and privacy preserving malware analysis in
the cloud. In Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy, CODASPY ’20, page 39–48, New York,
NY, USA, 2020. Association for Computing Machinery.

[61] N. K. Dien, T. T. Hieu, and T. N. Thinh. Memory-based multi-pattern signature scanning for clamav antivirus. In T. K. Dang, R. Wagner,
E. Neuhold, M. Takizawa, J. Küng, and N. Thoai, editors, Future Data and Security Engineering, pages 58–70, Cham, 2014. Springer International
Publishing.

[62] M. Dodel and G. Mesch. An integrated model for assessing cyber-safety behaviors: How cognitive, socioeconomic and digital determinants affect
diverse safety practices. Computers & Security, 86:75 – 91, 2019.

[63] EICAR. Eicar test file. https://www.eicar.org/?page_id=3950, 2015.

[64] EMSISOFT. Why antivirus uses so much ram – and why that is actually a good thing! https://blog.emsisoft.com/2016/04/13/
why-antivirus-uses-so-much-ram-and-why-that-is-actually-a-good-thing/, 2015.

[65] EricLaw. Spying on https. https://textslashplain.com/2019/08/11/spying-on-https/, 2019.

[66] erocarrera. pefile. https://github.com/erocarrera/pefile, 2016.

[67] ESET. Types of updates. http://support.eset.com/kb309/?viewlocale=en_US, 2018.

[68] R. Fedler, M. Kulicke, and J. Schütte. An antivirus api for android malware recognition. In 2013 8th International Conference on Malicious and
Unwanted Software: "The Americas" (MALWARE), pages 77–84, 2013.

[69] FileGrab. Filegrab. https://sourceforge.net/projects/filegrab/, 2016.

[70] E. Filiol. Malware pattern scanning schemes secure against black-box analysis. Journal in Computer Virology, 2(1):35–50, Aug 2006.

[71] W. Fleshman, E. Raff, R. Zak, M. McLean, and C. Nicholas. Static malware detection subterfuge: Quantifying the robustness of machine learning
and current anti-virus. In 2018 13th International Conference on Malicious and Unwanted Software (MALWARE), pages 1–10, 2018.

[72] FSecure. False positives. https://www.f-secure.com/v-descs/false_positive.shtml, 2019.

[73] S. Furnell and N. Clarke. Power to the people? the evolving recognition of human aspects of security. Computers & Security, 31(8):983 – 988,
2012.

[74] Geek. Defcon race to zero contest angers antivirus vendors. https://www.geek.com/news/defcon-race-to-zero-contest-angers-antivirus-vendors-574487/,
2008.

[75] M. Gorelik. Machine learning can’t protect you from fileless attacks. https://securityboulevard.com/2020/05/
machine-learning-cant-protect-you-from-fileless-attacks/, 2020.

[76] K. Griffin, S. Schneider, X. Hu, and T.-c. Chiueh. Automatic Generation of String Signatures for Malware Detection, pages 101–120. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

46

[77] N. B. Guinde and R. B. Lohani. Fpga based approach for signature based antivirus applications. In Proceedings of the International Conference
& Workshop on Emerging Trends in Technology, ICWET ’11, page 1262–1263, New York, NY, USA, 2011. Association for Computing Machinery.

[78] HackerNews. Kaspersky antivirus flaw exposed users to cross-site tracking online. https://thehackernews.com/2019/08/
kaspersky-antivirus-online-tracking.html, 2019.

[79] J. Haffejee and B. Irwin. Testing antivirus engines to determine their effectiveness as a security layer. In 2014 Information Security for South
Africa, pages 1–6, 2014.

[80] K. W. Hamlen, V. Mohan, M. M. Masud, L. Khan, and B. Thuraisingham. Exploiting an antivirus interface. Computer Standards & Interfaces,
31(6):1182 – 1189, 2009.

[81] Hanno. How kaspersky makes you vulnerable to the freak attack and other ways antivirus software lowers your https security. https://blog.
hboeck.de/archives/869-How-Kaspersky-makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-software-lowers-your-HTTPS-security.
html, 2015.

[82] G. Hoglund and J. Butler. Rootkits: Subverting the Windows Kernel. Addison-Wesley Professional, 2005.

[83] HookShark. Hookshark. https://www.unknowncheats.me/forum/pc-software/72799-hookshark64-beta-0-1-a.html, 2019.

[84] F. Hsu, M. Wu, C. Tso, C. Hsu, and C. Chen. Antivirus software shield against antivirus terminators. IEEE Transactions on Information
Forensics and Security, 7(5):1439–1447, 2012.

[85] M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé, Y. Le Traon, J. Klein, and L. Cavallaro. Euphony: Harmonious unification of
cacophonous anti-virus vendor labels for android malware. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR), pages 425–435, 2017.

[86] N. Hyvärinen. Detecting parent pid spoofing. https://blog.f-secure.com/detecting-parent-pid-spoofing/, 2018.

[87] N. Hyvärinen. Memory injection like a boss. https://blog.f-secure.com/memory-injection-like-a-boss/, 2018.

[88] InfoSecurity. Kaspersky lab hit by av software source code leak. https://www.infosecurity-magazine.com/news/
kaspersky-lab-hit-by-av-software-source-code-leak/, 2011.

[89] iPower. Kasperskyhook. https://github.com/iPower/KasperskyHook, 2020.

[90] James. Upx visual studio. https://github.com/james34602/UPX-Visual-Studio, 2020.

[91] C. Jarabek, D. Barrera, and J. Aycock. Thinav: Truly lightweight mobile cloud-based anti-malware. In Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC ’12, page 209–218, New York, NY, USA, 2012. Association for Computing Machinery.

[92] Jareth. The pros, cons and limitations of ai and machine learning in antivirus software. https://blog.emsisoft.com/en/35668/
the-pros-cons-and-limitations-of-ai-and-machine-learning-in-antivirus-software/, 2019.

[93] A. Kalysch, D. Bove, and T. Müller. How android’s ui security is undermined by accessibility. In Proceedings of the 2nd Reversing and
Offensive-oriented Trends Symposium, ROOTS, pages 2:1–2:10, New York, NY, USA, 2018. ACM.

[94] Kaspersky. Kaspersky lab utilizes nvidia technologies to enhance protection. https://www.kaspersky.com/about/press-releases/2009_
kaspersky-lab-utilizes-nvidia-technologies-to-enhance-protection, 2009.

[95] Kaspersky. Features of using kaspersky anti-virus 2017 with third-party firewalls. https://support.kaspersky.com/12956, 2017.

[96] Kaspersky. How to run a scan task in kaspersky security cloud. https://support.kaspersky.com/us/13393#block6, 2018.

[97] Kaspersky. How to run a virus scan the right way: Step-by-step guide. https://www.kaspersky.com/resource-center/preemptive-safety/
how-to-run-a-virus-scan, 2018.

[98] Kaspersky. Kaspersky security events in windows event log. https://support.kaspersky.com/KS4Exchange/9.4/en-US/127197.htm, 2018.

[99] Kaspersky. Whitelist program. https://usa.kaspersky.com/partners/whitelist-program, 2018.

[100] Kaspersky. About remediation engine. https://support.kaspersky.com/KESWin/11/en-us/151136.htm, 2019.

[101] Kaspersky. Configuring the facade module supporting application interaction with utilities and administration systems. https://support.
kaspersky.com/KLMS/8.2/en-US/82367.htm, 2019.

[102] Kaspersky. Gaming mode on. https://www.kaspersky.co.in/gaming-mode-on/, 2020.

[103] Kaspersky. An immune-based approach to information system security. https://os.kaspersky.com/, 2020.

[104] Kaspersky. Installation error 27300 klhk.sys_x64 error code 2147024891. https://community.kaspersky.com/kaspersky-anti-virus-12/
installation-error-27300-klhk-sys-x64-error-code-2147024891-8516, 2020.

[105] D. W. Kim, P. Yan, and J. Zhang. Detecting fake anti-virus software distribution webpages. Computers & Security, 49:95 – 106, 2015.

[106] J. Koret and E. Bachaalany. The Antivirus Hacker’s Handbook. Wiley Publishing, 1st edition, 2015.

[107] P. Kováč. Fighting malware with machine learning. https://blog.avast.com/fighting-malware-with-machine-learning, 2018.

[108] J. Kraunelis, Y. Chen, Z. Ling, X. Fu, and W. Zhao. On malware leveraging the android accessibility framework. In International Conference
on Mobile and Ubiquitous Systems: Computing, Networking, and Services, pages 512–523. Springer, 2013.

[109] R. Kraus, B. Barber, M. Borkin, and N. J. Alpern. Chapter 6 - internet information services – web service attacks. In R. Kraus, B. Barber,
M. Borkin, and N. J. Alpern, editors, Seven Deadliest Microsoft Attacks, pages 109 – 128. Syngress, Boston, 2010.

[110] Landave. Bitdefender: Upx unpacking featuring ten memory corruptions. https://landave.io/2020/11/
bitdefender-upx-unpacking-featuring-ten-memory-corruptions/, 2020.

[111] F. L. Lévesque, S. Chiasson, A. Somayaji, and J. M. Fernandez. Technological and human factors of malware attacks: A computer security
clinical trial approach. ACM Trans. Priv. Secur., 21(4):18:1–18:30, July 2018.

[112] F. L. Levesque, A. Somayaji, D. Batchelder, and J. M. Fernandez. Measuring the health of antivirus ecosystems. In 2015 10th International
Conference on Malicious and Unwanted Software (MALWARE), pages 101–109, 2015.

[113] m0n0ph1. Process hollowing. https://github.com/m0n0ph1/Process-Hollowing, 2015.

[114] F. Maggi, A. Bellini, G. Salvaneschi, and S. Zanero. Finding non-trivial malware naming inconsistencies. In S. Jajodia and C. Mazumdar, editors,
Information Systems Security, pages 144–159, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[115] Malshare. Malshare. https://malshare.com/, 2018.

47

[116] MalwareBytes. Report false positive found with malwarebytes endpoint security. https://support.malwarebytes.com/hc/en-us/articles/
360038523234-Report-false-positive-found-with-Malwarebytes-Endpoint-Security, 2019.

[117] Matterpreter. Defendercheck. https://github.com/matterpreter/DefenderCheck, 2019.

[118] Mattiwatti. Pplkiler. https://github.com/Mattiwatti/PPLKiller, 2016.

[119] McAffee. How to collect event trace logs, error tracing logs, and boot log tracing logs for host intrusion prevention 8.0 for windows. https:
//kc.mcafee.com/corporate/index?page=content&id=KB72868, 2018.

[120] Microsoft. Detecting reflective dll loading with windows defender atp. https://www.microsoft.com/security/blog/2017/11/13/
detecting-reflective-dll-loading-with-windows-defender-atp/, 2017.

[121] Microsoft. How to create a boot-time global logger session. https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/
how-to-create-a-boot-time-global-logger-session, 2017.

[122] Microsoft. Tracing during boot. https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/tracing-during-boot, 2017.

[123] Microsoft. Event_trace_properties structure. https://docs.microsoft.com/en-us/windows/win32/api/evntrace/ns-evntrace-event_trace_
properties, 2018.

[124] Microsoft. Protecting anti-malware services. https://docs.microsoft.com/en-us/windows/win32/services/
protecting-anti-malware-services-, 2018.

[125] Microsoft. Review event logs and error codes to troubleshoot issues with microsoft defender antivirus. https://docs.microsoft.com/en-us/
windows/security/threat-protection/microsoft-defender-antivirus/troubleshoot-microsoft-defender-antivirus, 2018.

[126] Microsoft. When to use transactional ntfs. https://docs.microsoft.com/en-us/windows/win32/fileio/when-to-use-transactional-ntfs,
2018.

[127] Microsoft. Avscan file system minifilter driver. https://docs.microsoft.com/en-us/samples/microsoft/windows-driver-samples/
avscan-file-system-minifilter-driver/, 2019.

[128] Microsoft. Ndis network interface architecture. https://docs.microsoft.com/en-us/windows-hardware/drivers/network/
ndis-network-interface-architecture, 2019.

[129] Microsoft. Sysinternals. https://docs.microsoft.com/en-us/sysinternals/, 2019.

[130] Microsoft. Freelibrary. https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-freelibrary, 2020.

[131] Microsoft. Introducing kernel data protection, a new platform security technology for preventing data corruption. https://www.microsoft.com/
security/blog/2020/07/08/introducing-kernel-data-protection-a-new-platform-security-technology-for-preventing-data-corruption/,
2020.

[132] B. Min and V. Varadharajan. A novel malware for subversion of self-protection in anti-virus. Software: Practice and Experience, 46(3):361–379,
2016.

[133] B. Min, V. Varadharajan, U. Tupakula, and M. Hitchens. Antivirus security: naked during updates. Software: Practice and Experience,
44(10):1201–1222, 2014.

[134] F. Mira and W. Huang. Performance evaluation of string based malware detection methods. In 2018 24th International Conference on Automation
and Computing (ICAC), pages 1–6, 2018.

[135] mitmproxy. mitmproxy is a free and open source interactive https proxy. https://mitmproxy.org/, 2017.

[136] MITRE. Cve. https://cve.mitre.org/, 2020.

[137] D. Mohammadbagher. Detecting thread injection by etw & one simple technique. https://www.peerlyst.com/posts/
detecting-thread-injection-by-etw-and-one-simple-technique-damon-mohammadbagher, 2020.

[138] A. Mohanta and A. Saldanha. Antivirus Engines, pages 785–817. Apress, Berkeley, CA, 2020.

[139] M. Montanari and R. H. Campbell. Multi-aspect security configuration assessment. In Proceedings of the 2nd ACM Workshop on Assurable and
Usable Security Configuration, SafeConfig ’09, page 1–6, New York, NY, USA, 2009. Association for Computing Machinery.

[140] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection. In Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007), pages 421–430, 2007.

[141] Mr-Un1k0d3r. Edrs. https://github.com/Mr-Un1k0d3r/EDRs, 2021.

[142] K. Murad, S. N.-u.-H. Shirazi, Y. B. Zikria, and N. Ikram. Evading virus detection using code obfuscation. In T.-h. Kim, Y.-h. Lee, B.-H. Kang,
and D. Ślęzak, editors, Future Generation Information Technology, pages 394–401, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[143] S. Mustaca. Challenges for young anti-malware products today. https://www.virusbulletin.com/uploads/pdf/conference_slides/2019/
VB2019-Mustaca.pdf, 2019.

[144] M. H. Nguyen, D. L. Nguyen, X. M. Nguyen, and T. T. Quan. Auto-detection of sophisticated malware using lazy-binding control flow graph
and deep learning. Computers & Security, 76:128 – 155, 2018.

[145] Nirsoft. Dll export viewer. https://www.nirsoft.net/utils/dll_export_viewer.html, 2016.

[146] Nirsoft. Driverview. https://www.nirsoft.net/utils/driverview.html, 2016.

[147] NoVirusThanks. Dll uninjector. https://www.novirusthanks.org/products/dll-uninjector/, 2016.

[148] Nvidia. Chapter 35. fast virus signature matching on the gpu. https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/
chapter-35-fast-virus-signature-matching-gpu, 2010.

[149] T. Ormandi. Sophail: A critical analysis of sophos antivirus. https://lock.cmpxchg8b.com/sophail.pdf, 2011.

[150] T. Ormandy. Loadlibrary. https://github.com/taviso/loadlibrary, 2017.

[151] PCMagazine. Google adds eset malware detection to chrome. https://www.pcmag.com/news/356830/
google-adds-eset-malware-detection-to-chrome, 2017.

[152] I. Polakis, M. Diamantaris, T. Petsas, F. Maggi, and S. Ioannidis. Powerslave: Analyzing the energy consumption of mobile antivirus software.
In M. Almgren, V. Gulisano, and F. Maggi, editors, Detection of Intrusions and Malware, and Vulnerability Assessment, pages 165–184, Cham,
2015. Springer International Publishing.

[153] ProcessHacker. Processhacker. https://github.com/processhacker/processhacker, 2016.

48

[154] G. ProjectZero. How to compromise the enterprise endpoint. https://googleprojectzero.blogspot.com/2016/06/
how-to-compromise-enterprise-endpoint.html, 2016.

[155] Quarkslab. Guided tour inside windefender’s network inspection driver. https://blog.quarkslab.com/
guided-tour-inside-windefenders-network-inspection-driver.html, 2021.

[156] D. Quarta, F. Salvioni, A. Continella, and S. Zanero. Extended abstract: Toward systematically exploring antivirus engines. In C. Giuffrida,
S. Bardin, and G. Blanc, editors, Detection of Intrusions and Malware, and Vulnerability Assessment, pages 393–403, Cham, 2018. Springer
International Publishing.

[157] R. Raghunarayan. Antivirus is dead: How ai and machine learning will drive cybersecurity. https://techbeacon.com/security/
antivirus-dead-how-ai-machine-learning-will-drive-cybersecurity, 2019.

[158] S. M. Rauen. Madcodehook description. http://www.madshi.net/madCodeHookDescription.htm, 2020.

[159] RegShot. Regshot. https://sourceforge.net/projects/regshot/, 2018.

[160] ReversingLabs. Reversinglabs yara rules. https://github.com/reversinglabs/reversinglabs-yara-rules, 2020.

[161] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H. Bos, and M. v. Steen. Prudent practices for designing malware
experiments: Status quo and outlook. In 2012 IEEE Symposium on Security and Privacy, pages 65–79, 2012.

[162] K. A. Roundy and B. P. Miller. Binary-code obfuscations in prevalent packer tools. ACM Comput. Surv., 46(1), July 2013.

[163] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero. Avclass: A tool for massive malware labeling. In F. Monrose, M. Dacier, G. Blanc, and
J. Garcia-Alfaro, editors, Research in Attacks, Intrusions, and Defenses, pages 230–253, Cham, 2016. Springer International Publishing.

[164] M. Sikorski and A. Honig. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software. No Starch Press, USA, 1st
edition, 2012.

[165] sindoni. Kaspersky hooking engine analysis. https://quequero.org/2014/10/kaspersky-hooking-engine-analysis/, 2014.

[166] J. J. Singh, H. Samuel, and P. Zavarsky. Impact of paranoia levels on the effectiveness of the modsecurity web application firewall. In 2018 1st
International Conference on Data Intelligence and Security (ICDIS), pages 141–144, 2018.

[167] Sophos. Default anti-virus scanning options for sophos central. https://community.sophos.com/kb/en-us/119637, 2016.

[168] Sophos. Sophos antivirus sdk. https://www.sophos.com/en-us/medialibrary/pdfs/factsheets/oem-solutions/sophos-antivirus-sdk-dsna.
pdf, 2016.

[169] stephenfewer. Reflectivedllinjection. https://github.com/stephenfewer/ReflectiveDLLInjection, 2010.

[170] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik, and B. de Weger. Short chosen-prefix collisions for md5 and the
creation of a rogue ca certificate. In S. Halevi, editor, Advances in Cryptology - CRYPTO 2009, pages 55–69, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[171] J. W. Stokes, J. C. Platt, H. J. Wang, J. Faulhaber, J. Keller, M. Marinescu, A. Thomas, and M. Gheorghescu. Scalable telemetry classification
for automated malware detection. In S. Foresti, M. Yung, and F. Martinelli, editors, Computer Security – ESORICS 2012, pages 788–805, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[172] R. Sun, M. Botacin, N. Sapountzis, X. Yuan, M. Bishop, D. E. Porter, X. Li, A. Gregio, and D. Oliveira. A praise for defensive programming:
Leveraginguncertainty for effective malware mitigation. IEEE Transactions on Dependable and Secure Computing, pages 1–1, 2020.

[173] T. Takahashi, C. Kruegel, G. Vigna, K. Yoshioka, and D. Inoue. Tracing and analyzing web access paths based on user-side data collection: How
do users reach malicious urls?, 2020.

[174] talliberman. atom-bombing. https://github.com/BreakingMalwareResearch/atom-bombing, 2016.

[175] tanduRE. Avasthv project overview. https://github.com/tanduRE/AvastHV/tree/master/AvastHV, 2019.

[176] tcpdump. Tcpdump & libpcap. https://www.tcpdump.org/, 2014.

[177] U. Team. the ultimate packer for executables. https://upx.github.io/, 1999.

[178] TheHackerNews. Windows built-in antivirus gets secure sandbox mode – turn it on. https://thehackernews.com/2018/10/
windows-defender-antivirus-sandbox.html, 2018.

[179] TrendMicro. Decrypt encrypted quarantine files. https://docs.trendmicro.com/all/ent/iwsva/v6.5_sp2/en-us/iwsva_6.5_sp2_online_help/
decrypt_encrypted_quarantine_files.htm, 2007.

[180] TrendMicro. Autorun. https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/autorun, 2012.

[181] TrendMicro. Reporting a false positive issue in deep security. https://success.trendmicro.com/solution/
1119869-reporting-a-false-positive-issue-in-deep-security, 2018.

[182] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas. Sok: Deep packer inspection: A longitudinal study of the complexity of run-time
packers. In 2015 IEEE Symposium on Security and Privacy, pages 659–673, 2015.

[183] X. Ugarte-Pedrero, M. Graziano, and D. Balzarotti. A close look at a daily dataset of malware samples. ACM Trans. Priv. Secur., 22(1), Jan.
2019.

[184] D. Uluski, M. Moffie, and D. Kaeli. Characterizing antivirus workload execution. SIGARCH Comput. Archit. News, 33(1):90–98, Mar. 2005.

[185] Unspecified. Mydoom: Do you “get it” yet? Network Security, 2004(2):13 – 15, 2004.

[186] VirusTotal. Virustotal. https://www.virustotal.com/gui/home/upload, 2019.

[187] Virustotal. Yara - the pattern matching swiss knife for malware researchers (and everyone else). https://virustotal.github.io/yara/, 2019.

[188] VMware. What is next-generation antivirus (ngav)? https://www.carbonblack.com/definitions/what-is-next-generation-antivirus-ngav/,
2020.

[189] VxUnderground. Vxunderground. https://vx-underground.org/samples.html, 2020.

[190] A. Wheeler and N. Mehta. 0wning anti-virus: Weaknesses in a critical security component. https://www.blackhat.com/presentations/
bh-usa-05/bh-us-05-wheeler.pdf, 2005.

[191] Z. Whittaker. Anonymous leaks symantec’s norton anti-virus source code. https://www.zdnet.com/article/
anonymous-leaks-symantecs-norton-anti-virus-source-code/, 2012.

49

[192] C. Wressnegger, K. Freeman, F. Yamaguchi, and K. Rieck. Automatically inferring malware signatures for anti-virus assisted attacks. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, ASIA CCS ’17, page 587–598, New York, NY,
USA, 2017. Association for Computing Machinery.

[193] Xiao-bin Wang, Guang-yuan Yang, Yi-chao Li, and Dan Liu. Review on the application of artificial intelligence in antivirus detection systemi.
In 2008 IEEE Conference on Cybernetics and Intelligent Systems, pages 506–509, Sep. 2008.

[194] Yara. Yara rules. https://github.com/Yara-Rules/rules, 2018.

[195] I. Zelinka, S. Das, L. Sikora, and R. Šenkeřík. Swarm virus - next-generation virus and antivirus paradigm? Swarm and Evolutionary Computation,
43:207 – 224, 2018.

[196] Y. Zhang, L. Wu, F. Xia, and X. Liu. Immunity-based model for malicious code detection. In D.-S. Huang, Z. Zhao, V. Bevilacqua, and
J. C. Figueroa, editors, Advanced Intelligent Computing Theories and Applications, pages 399–406, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[197] S. Zhu, J. Shi, L. Yang, B. Qin, Z. Zhang, L. Song, and G. Wang. Measuring and modeling the label dynamics of online anti-malware engines.
In 29th USENIX Security Symposium (USENIX Security 20), pages 2361–2378. USENIX Association, Aug. 2020.

[198] ZoneAlarm. Zonealarm cloud scanning policy. https://www.zonealarm.com/about/cloud-scan-policy, 2018.

[199] A. Zsigovits. Upx anti-unpacking techniques in iot malware. https://cujo.com/upx-anti-unpacking-techniques-in-iot-malware/, 2020.

A AV’s Libraries

50

Table 19: Avast. Libraries.

Library Description

aswScan Low level antivirus engine
aswBoot64 start-up scanner
ring_lient Ring module
burger_lient Burger Client
aswUtil Utility
aswJsFlt Script Blocking filter
fwAux Firewall Helper
lim License Manager
streamback StreamBack
asOutExt AsOutExt Module
aswStrm Streaming Update
ashShell Shell Extension
aswSqLt SQLite
Base English Basic Module
event_anager_a Google Analytics Event Consumer
aswRvrt aswRvrt support
uiext UI extension
aswW8ntf metro notification
tasks_ore task core
aswEngin High level antivirus engine
swhealthex2 Software Health extension
aswRegLib Registry editor
aswwinamapi Metro Application Healer
aswntsqlite NT SQLite
CommChannel Communication Channels
AavmRpch AAVM Remote Procedure Call
aswdetallocator Det
TuneupSmartScan Cleanup Smartscan extension
libcef Chromium Embedded Framework
anen Adapter Network Event Notifier.
libcrypto-1_-x64 OpenSSL
shepherdsync Shepherd Syncer
process_onitor Process Monitor
serialization Serialization
event_outing Event Routing
aswCmnBS Common functions
chrome_lf Chromium
wsc security center dll
libEGL ANGLE libEGL Dynamic Link
browser_ass Browser Pass
aswProperty Property Storage
aswRep Reputation services access
aswLog Log
libssl-1_-x64 OpenSSL
aswSecDns SecureDNS engine
aswIP IP Dynamic Link
aswDld aswDld Dynamic Link
rescue_isk Rescue Disk
aswidpm IDP Monitor
pam Password Manager
ArPot ArPot usermode dll component
mfc140u MFCDLL Shared - Retail Version
Aavm4h Asynchronous Virus Monitor (AAVM)
algo64 Low level antivirus engine

51

Table 19: Avast. Libraries (continued from previous page)

Library Description

aswCmnIS64 Independent functions
vaarclient vaarclient
aswEngLdr(1) Engine loader
aswPatchMgt Software Health
gui_ache GUI cache
aswEngLdr Antivirus engine loader
firefox_ass Firefox Pass
aswCmnIS Antivirus independent functions
aswremoval Removal engine
health Property Storage
aswPropertyAv AV Property Storage
CommonUI Common UI layer
fltlib_rapper Property Storage
event_anager_urger Burger Event Consumer
aswAux Auxiliary
dll_oader dll loader
libGLESv2 ANGLE libGLESv2 Dynamic Link
ashServ antivirus service
module_ifetime module lifetime
gaming_ode_i Gaming Mode
aswJsFlt64 Script Blocking filter
uiLangRes UILangRes
Boot Portuguese Boot Scanner Module
custody Cyber-Capture
aswsys SYS
network_otifications network notifications
BCUEngine Browser Cleanup Engine
ffl2 FF v2
CommonRes Common UI resources
dnd_elper Gaming Mode DND helper
aswData UI Layer
event_outing_pc Event Routing RPC
aswRawFS64 Raw disk access
gaming_ode Gaming Mode
HTMLayout HTMLayout
aswcomm Communication Module
aswidplog Logging
aswBrowser SafeZone Browser
aswpsic Persistent Stream Information Client
ashBase Basic Functionality Module
ashTask Task Handling Module
event_anager Event Manager
PushPin PushPin
aswAMSI AMSI COM object
Cef_enderer Property Storage
Edge_enderer Property Storage
ashTaskEx TaskEx
gaming_robe Gaming Mode Probe
aswhook Hook
snxhk snxhk
aswDataScan DataScan
aswVmm aswVmm comm
aswHds Home Network Security
aswcml CML
instup Antivirus Installer

52

Table 19: Avast. Libraries (continued from previous page)

Library Description

event_anager_r Event Consumer
Sf2 Dynamic binary instrumentator
log Logging
exts Antivirus Scanner Extension
aswAR anti-rootkit module
aswCmnOS Antivirus HW dependent
aswCleanerDLL Virus/Worm Cleaner
aswsecapi Secure API
aswFiDb File information database access

Table 20: F-Secure. Libraries

Library Description

ICUDT54 ICU Data DLL
dbghelp Windows Image Helper
fs_e_ttps Enhanced HTTPS support for IE
orspapi64 ORSP API DLL 32-bit (Release)
gkhsm64 Gatekeeper Handler 64-bit
aevdf Avira Engine Module for Windows
spapi64 Scanning API 64-bit
fs_cf_lient_uth_2 Client Authentication API
fs_vents_pi_2 Product Events API
Qt5Core_SC C++ application development framework.
fsvirgo64 Virgo engine
hashlib_64 Hashing 32-bit
F-Secure.Ipc .Ipc
fs_icense_i_2 Licensing UI
OnlineSafety Online Safety plug-in for CUIF
F-Secure.Tools .Tools
HelpPlugin Help Plugin
spapi32 Scanning API 32-bit
SystemInfo System Info Plug-in, 32 bit
fs_vents_pi_4 Product Events API
aeoffice Avira Engine Module for Windows
aecrypto Avira Engine Module for Windows
qico C++ application development framework.
hotfix_lugin Ultralight Hotfix Plugin
qwindows C++ application development framework.
fsetw_pi64 ETW API 64-bit
ICUIN54 ICU I18N DLL
CuifApi64 CuifApi
SupportView .Settings.SupportView
fs_cf_lient_uth_4 Client Authentication API
fs_cf_anager_lugin_2 Host Process Manager Plugin
fs_ustomization_eader_4 Customization Reader
F-Secure.ClientAuth.Api .ClientAuth.Api
aeemu Avira Engine Module for Windows
ICUUC54 ICU Common DLL
FsEventsPlugin Product Events Plugin
qgif C++ application development framework.
xvdfmerge AVIRA XVDF merge
fs_cf_ush_lugin_2 Push Notification Plugin
fs_cf_osmos_lugin_2 COSMOS plugin

53

Table 20: F-Secure. Libraries (continued from previous page)

Library Description

F-Secure.Settings.Model .Settings.Model
fs_cf_osmos_4 COSMOS API
qsvg C++ application development framework.
F-Secure.Latebound .Latebound
fs_ush_otif_lugin_2 Push Notification plugin
fsclm Crypto
fsliball fslib full bundle
F-Secure.Settings.Api .Settings.Api
CCFDLLHosterAPI_4 Host Process API
fships HIPS Logic module (Release)
settings_pstream_lugin_2 Settings Upstream Plugin
Qt5Sensors_SC C++ application development framework.
fs_ubscription_eminder_2 Subscription Reminder
apcfile APC SDK
F-Secure.Cuif.Api .Cuif.Api
fs_ls_i_lg_ontentfilter64 Network Interceptor Content Filter plugin, 64 bit
fs_ettings_onverter_lugin_2 Settings Converter Plugin
CommonSettingsWidgets Common Settings Widgets
aelibinf Avira Engine Module for Windows
daas2inst_4 daas2inst
CuifSimpleAction Simple Action plug-in
CuifWidgets CuifWidgets
daas2 daas2
F-Secure.AutomaticUpdateAgent.Api .AutomaticUpdateAgent.Api
qsqlite C++ application development framework.
ManagementAgent Management Agent Plug-in, 32 bit
Help Help Plug-in, 32 bit
FsShellExtension32 Anti Virus Shell Extension Plug-in, 32 bit
Qt5Sql_SC C++ application development framework.
fslynx Lynx Engine 64-bit
fs_estart_lugin_2 OneClient Restart Plugin
fs_cf_i_lg_anking_rotection64 Network Interceptor Banking Protection plugin, 64 bit
ParserFramework ParserFramework
FsPiscesClient Pisces Client x64
Qt5Multimedia_SC C++ application development framework.
fs_neclient_ore_lugin_2 OneClient Core Plugin
daas2_64 daas2
CommonSettingsPlugin Common Settings Plugin
fs_cf_id64 Network Interceptor Daemon, 64 bit
Qt5Help_SC C++ application development framework.
fs_ult_lugin_2 EULT plugin
Qt5Xml_SC C++ application development framework.
senddump_shoster_lugin64 Senddump Hoster Plugin
fs_cf_atapipeline_pi_2 Data Pipeline API
aeheur Avira Engine Module for Windows
F-Secure.Settings.NotificationsView .Settings.NotificationsView
fshook32 HIPS user-mode hooking module (Release)
Qt5MultimediaWidgets_SC C++ application development framework.
wsc_lugin64 WSC Plugin
aehelp Avira Engine Module for Windows
Qt5WebKit_SC C++ application development framework.
json_64 json-c Dynamic Link
ControlLayer ControlLayer
fs_cf_uts2_lugin_2 GUTS2 Plugin
aescript Avira Engine Module for Windows

54

Table 20: F-Secure. Libraries (continued from previous page)

Library Description

ExpressionEngine ExpressionEngine
fs_in_tore_pp_pi_4 Winstore Application API 32-bit
fshook64 HIPS user-mode hooking module (Release)
ssleay32 OpenSSL Shared
Qt5Svg_SC C++ application development framework.
aepack Avira Engine Module for Windows
fs_lyer_pi_4 Flyer API
fsamsi32 AMSI Client
F-Secure.Sp.Api .Sp.Api
DataLayer DataLayer
qjpeg C++ application development framework.
Qt5Network_SC C++ application development framework.
fs_ecl_2 Service Enabler Client
fm4av File Management x64
Qt5Quick_SC C++ application development framework.
fs_cf_atapipeline_pi_4 Data Pipeline API
fsaua_pi_ll AUA API
F-Secure.Settings.ContentControlView .Settings.ContentControlView
zlib_2 zlib data compression
libeay32 OpenSSL Shared
fs_ecl_4 Service Enabler Client
aerdl Avira Engine Module for Windows
fs_cf_i_lg_lockpage64 Network Interceptor Block Page plugin, 64 bit
DeclarationHandler DeclarationHandler
fs_ustomization_eader_2 Customization Reader
apchash AVIRA APC hash file calculator
ControlPanelTools Online Safety Control Panel Tools plug-in for CUIF
F-Secure.NLog.Extension .NLog.Extension
fs_oaster_2 Toaster
CuifApi CuifApi
fsclm64 Crypto
Localization Localization Framework
sqlite3_2 SQLite
orspplug64 ORSP Client DLL 32-bit (Release)
fs_e_ttps64 Enhanced HTTPS support for IE
fs_lu_oster_lugin64 ULU Hoster Plugin
F-Secure.CrashDump .CrashDump
F-Secure.Settings.Commands .Settings.Commands
Qt5WebKitWidgets_SC C++ application development framework.
Qt5Widgets_SC C++ application development framework.
fsusscr Universal System Scanner Core 64-bit
CuifTypes CuifTypes
F-Secure.OneClient.Api .OneClient.Api
aescn Avira Engine Module for Windows
fs_lyer_lugin_2 Flyer Plugin
aeexp Avira Engine Module for Windows
sqlite3_4 SQLite
Qt5WebChannel_SC C++ application development framework.
fsetw_lugin64 ETW hoster plugin 64-bit
fs_neclient_pi_4 OneClient API
LocaleInfo Locale Info Plug-in, 32 bit
fs_cf_ction_enter_pi_2 Action Center API
fs_vents32 Product Events
daas2inst_2 daas2inst
CuifWebKit CuifWebKit

55

Table 20: F-Secure. Libraries (continued from previous page)

Library Description

CCFIPC64 IPC
Qt5PrintSupport_SC C++ application development framework.
fs_s_tatus_otification Computer Security Status Notification Plug-in, 32 bit
NLog NLog for .NET Framework 4.5
aedroid Avira Engine Module for Windows
Qt5Gui_SC C++ application development framework.
fs_cf_ush_pi_2 Push Notification API
fsaua_pi_ll64 AUA API
fs_cf_ownload_2 Download
fs_otfix_lugin_2 Hotfix Plugin
fs_cf_etrics_lugin_2 CCF Metrics Plugin
F-Secure.SettingsUI.Plugin.Api .SettingsUI.Plugin.Api
CCFDLLHosterAPI Host Process API
qrt Qrt dll for WinNT
F-Secure.Styles .Styles.Consumer
obusclient2_4 OBUS Client
F-Secure.Wpf.Converters .Wpf.Converters
fs_ray_con_2 Tray Icon Plugin
CCFIPC IPC
fs_cf_lient_uth_lugin_2 Client Authentication Plugin
HelpWidgets Help Widgets
Qt5Positioning_SC C++ application development framework.
avdaemon Antivirus Daemon
7z 7z Plugin
fs_neclient_pi_2 OneClient API
JsonParser JsonParser
F-SecureLoader .DllLoader
ActionCenterPlugin Action Center Plugin
Newtonsoft.Json Json.NET
aesbx Avira Engine Module for Windows
fs_cf_oster_ontrol_lugin_2 Host Process Control Plugin
Licensing Licensing Plug-in, 32 bit
ProductInfo Product Info Plug-in, 32 bit
fs_aming_ode_2 Gaming Mode
capricorn64 Engine
aebb Avira Engine Module for Windows
F-Secure.Settings.SecurityView .Settings.SecurityView
fsamsi64 AMSI Client
aemobile Avira Engine Module for Windows
AntiVirus Anti Virus Feature Plug-in, 32 bit
savapi Avira Savapi
Qt5OpenGL_SC C++ application development framework.
OnlineSafetyWidgets Online Safety Widgets plug-in for CUIF
FsShellExtension64 Anti Virus Shell Extension Plug-in, 64 bit
aegen Avira Engine Module for Windows
F-Secure.Datapipeline.Api .Datapipeline.Api
F-Secure.Cosmos.Api .Cosmos.Api
fshive2 Anti-Virus 64-bit
fs_lyer_pi_2 Flyer API
json_ json-c Dynamic Link
Qt5Qml_SC C++ application development framework.
aecore Avira Engine Module for Windows
fs_cf_osmos_2 COSMOS API
fsecr64 Hydra Scan Engine

56

Table 21: Kaspersky. Libraries.

Library Description

klsihk64l
encryption_rypto_isk_egacy Container reader library
Nemerle.Peg Nemerle.Peg
wdiskio WDiskIO
kasperskylab.ui.common KasperskyLab.UI.Common
winlibhlpr WINLIBHLPR
crypto_sl__ OpenSSL library
ushata Ushata module
ie_lugin Kaspersky Protection plugins
uds
kasperskylab.ui.platform.toasts KasperskyLab.UI.Platform.Toasts
licensing_roduct_acade Licensing PDK facade
avzkrnl AVZ Kernel
task_cheduler_andler Kaspersky Anti-Virus Task Scheduler Handler
fsdrvplg Plugin for FSDrv
ksdeinst Modularity configurator
parental_ontrol_acade Parental control facade component
kas_roduct KASEngine EKA library
explode Explode Transformer plugin
base64 Base64
cf_ngines Content Filtering Engines
ac_acade Application Control Facade
Microsoft.Practices.Prism.Interactivity Microsoft.Practices.Prism.Interactivity
report Report System
wifi_rotection Wifi Protection
shellex Shell Extension
Microsoft.Practices.Prism Microsoft.Practices.Prism
kpcengine KPC Engine

dblite
SQLite is a software library that implements a
self-contained, serverless, zero-configuration,
transactional SQL database engine.

remote_ka_rague_oader Helper Library
icuin58 ICU I18N DLL
passdmap PASSDMAP
apuhttps.dbf98b5663cedeeca7c9fb257aec8496_
kasperskylab.ui.platform.ipm
kasperskylab.ui.platform.htmltoinlinesconverter KasperskyLab.Ui.Platform.HtmlToInlinesConverter
kasperskylab.ui.platform.balloons KasperskyLab.UI.Platform.Balloons
kasperskylab.kis.ui.balloons KasperskyLab.Kis.UI.Balloons
content_iltering_eta Kaspersky content filtering pdk meta
kasperskylab.platform.localization.core KasperskyLab.Platform.Localization.Core.Pipeline
icuuc58 ICU Common DLL
buffer BUFFER
regmap REGISTRY_APPER
msoe MSOE
kasperskylab.ui.platform.reports.dataaccess KasperskyLab.UI.Platform.Reports.DataAccess
kas_pconvert Convert dynamic library
prseqio SEQIO
xorio ZIP MiniArchiver plugin
sw_eta System Watcher Meta Information
am_ore
backup_acade Backup service facade
kasperskylab.kis.ui.shell KasperskyLab.Kis.UI.Shell
encryption_rypto_isk_acade Encryption Crypto Disk Facade

57

Table 21: Kaspersky. Libraries (continued from previous page)

Library Description

unshrink Unshrink Transformer plugin
kas_ngine KAS-Engine dynamic library
icudt58 ICU Data DLL
backup_etainfo Backup metainfo
app_ontrol Application Control EKA
vkbd2x64 Virtual Keyboard
unstored Unstored Transformer plugin
sys_ritical_bj.dfc5f69e9651d6738c03b143749621b9_ System Critical Objects
bl_sde KL Product Business Logic
dumpwriter Kaspersky Dump Writer DLL
browser_ntegration Browser Integration
backup Backup service
weak_ettings Weak Settings Monitor
stdcomp STDCOMPARE
heurap.03133393e594e8575b749797bdbb245a_ Heuristic anti-phishing service component
kasperskylab.ui.platform.safemoney
kasperskylab.ui.core.visuals KasperskyLab.UI.Core.Visuals
cf_acade Content filtering facade component
icuio58 ICU I/O DLL
shell_ervice Shell Service
hashsha1 Hash SHA1 algorithm implement
prutil Utility Object Library
kas_oader KASEngine EKA library
winreg WINREG
klhkum System Interceptors PDK usermode service interceptor
um_nterceptors_ontroller.cb0ca46bf7ea334ea0760a193400b9bb_
klsihk64
Microsoft.Practices.ServiceLocation Microsoft.Practices.ServiceLocation
mdmap Multipart Direct Mapper plugin
unreduce Unreduce Transformer plugin
avpservice Kaspersky Anti-Virus Service library
ucp_gent UCP agent service
getsysteminfo Kaspersky Get System Information
dtreg DTREG
kl_ervice Component service provider
cbi KAV CBI DLL
ckahrule
pxstub Proxy Stubs
am_atch_anagement
backup_ngine Backup engine
ntfsstrm NTFSSTREAM
avengine.1cc4216c3de3e9ae3f99b74e56a3763c_ AV engine component
kasperskylab.ksde.ui KasperskyLab.Ksde.UI
klfphc Filtering Platform Helper Class
klavasyswatch.2b5073fd10ee2a70bbc6f311743d63e0_ Heuristics proactive detection module
office_ntivirus Kaspersky OfficeAntivirus Component
kasperskylab.pure.restoretool.nativeinterop Restore tool native interop
deflate Deflate Transformer plugin
kerneltracecontrol Performance Analyzer Kernel Tracing Control Library
kasperskylab.platform.nativeinterop Native interop assembly
system_ervice_ilter
kasperskylab.ui.platform.views KasperskyLab.UI.Platform.Views
cf_gmt_acade Content filtering facade management component
updater_acade
uniarc UniArchiver plugin

58

Table 21: Kaspersky. Libraries (continued from previous page)

Library Description

base64p Base64P
plugins_eta Kaspersky plugins pdk meta
params Structure Serializer
antimalware_rovider Kaspersky AntiMalwareProvider Component
schedule Scheduler
kasperskylab.pure.ui.backup KasperskyLab.Pure.UI.Backup
am_in_ux
uninstallation_ssistant Uninstallation assistant
encryption_rypto_isk_eta Encryption Crypto Disk Meta
avpmain Kaspersky Anti-Virus
mailmsg MAILMSG
dmap Direct Mapper plugin
ckahum
crypto_omponents
swpragueplugin System Watcher PRAGUE proxy
unlzx UnLZX Transformer plugin
minizip ZIP MiniArchiver plugin
interprecz.b9ad9b743eed4c3a69ff722e60301e79_ Application Control Interpreter Recognizer
ndetect Nertwork Detection
inproc_gent Kaspersky Inproc Agent
system_nterceptors
Nemerle Nemerle Library
System.Windows.Interactivity System.Windows.Interactivity
localization_anager Localization Manager
hashmd5 HASHMD5
product_nfo Kaspersky Product Info library
clldr CLLDR Protection Library
ksdeuimain Kaspersky Secure Connection
openssl_erifier
propmap PROPMAP
stored Stored Transformer plugin
bi_acade Browser Integration PDK facade
kasperskylab.ui.platform.services Loader
kasperskylab.kis.ui.loader Loader
installation_ssistant_eta Installation assistant meta
winevent_nterceptor_ontroller WinEvent Interceptor Controller
rar RAR
plugins_acade Kaspersky Anti-Virus Plugins PDK facade
pctrlex Parental Control
network_ervices Network services library
restore_ool_ervice Restore tool service
nfio NFIO
volenum Volume enumeration
cd_ervice_rovider
timer Timer
si_onitor.d37220ecb715f59a66c797dafb8b265a_
reportdb Report DB System
activated_rocess_ategorization Activated Process Categorization
bl Product Business Logic
storage
kas_ds UDS dynamic library
prremote PR_EMOTE
klsihk
kasperskylab.ui.platform.reports
tun_acade

59

Table 21: Kaspersky. Libraries (continued from previous page)

Library Description

ksn_acade
System.Data.SQLite System.Data.SQLite Core
crpthlpr CryptoHelper
kasperskylab.pure.backupdiskscanner KasperskyLab.Pure.BackupDiskScanner
app_ontrol_rague Application Control Prague
mailer Mailer library
kasperskylab.ui.core KasperskyLab.UI.Core
avzscan AVZ Scanner
mapiedk MAPI and EDK library
kasperskylab.ksde.ui.loader Loader
vkbd2 Virtual Keyboard
inifile IniFile
ckahcomm
superio SUPERIO
installation_ssistant Installation assistant
ipm_ervice
kas_iltration Content Filtration dynamic library
app_ore_eta
wlengine.5074250125131bd6a0842583c51cbd6d_ Application Control Whitelist Engine
instrumental_eta Instrumental Meta Library
wmihlpr wmi helper
system_nterceptors_eta
kpm_ntegration KPM integration module
instrumental_ervices Instrumental services
kasperskylab.kis.ui.visuals KasperskyLab.Kis.UI.Visual
mdb MDB
application_nvestigator Application Control Application Investigator
antispam AntiSpam mail fiter
mcou Kaspersky Anti-Virus Mail Checker Outlook Plug-In
kasperskylab.kis.ui KasperskyLab.Kis.UI
quantum QUANTUM
safe_anking Safe Banking
inflate Inflate Transformer plugin
kasperskylab.ksde.nativeinterop Native interop assembly
ekasyswatch System Watcher EKA Task
avpuimain Kaspersky Anti-Virus
prcore Prague Core
app_ore_egacy
kasperskylab.kis.ui.reports.dataaccess KasperskyLab.Kis.UI.Reports.DataAccess
product_etainfo Product Metainformation
cm_m Cryptographic Module x86 (56 bit)
crypto_rovider
kas_sg GSG dynamic library
btdisk Disk boot area parser
thpimpl Thread Pool
fssync
traffic_rocessing Traffic Processing PDK
avpinst Modularity configurator

60

Table 22: Symantec. Libraries.

Library Description

FWCore Firewall Core Component
Engine InstallToolBox Engine
coActMgr coActMgr
UISSSH file description missing
wpMcPlg Webcam Protection MC Plugin
FWHelper Firewall Utilities
ccScanW Symantec Scan Engine
rcEmlPxy Symantec Email Proxy Resources
sds_ppendix__64 Symantec Static Data Scanner Component Library
cctFW Norton Protection Center cctFW
SymHTML Symantec HTML Interface
SymRdrSv Symantec Redirector Service Plugin
NPCTray Norton Protection Center System Tray
AVPSVC32 Norton Security Antivirus Product Service Module
speng64 Symantec Platform Component Library
EventSvc Event Service
IronMigr Symantec Iron Data Migration
ELAMCli64 Symantec ELAM
nsWscCtl Norton Security WSC Control
wpNotify Webcam Protection Notify
NISPInst NIS Patch Installer
ccVrTrst Symantec Trust Validation Engine
IPSEng32 IPS Script Engine DLL
SDKWrap Security SDK Wrapper
muis Shortcut MUI Resource
jwNCU Browser and Temporary File Cleaner Job Worker
coSvcPlg coServicePlugIn
buUIPlg Backup UI Plugin
sds_ppendix__64 Symantec Static Data Scanner Component Library
csdklog Client SDK Log
IDSxpx86 Intrusion Detection Interface DLL
coIDSafe coIDSafe
CSDKSH Symantec CSDKSH
tuUI Tuneup UI
coDataPr coDataProvider
MClnTask M Client Task
SNDSvc Symantec Network Service Plugin
CoIEPlg coIEPlugIn
SpocClnt SPOC Client
libcef Chromium Embedded Framework (CEF) Dynamic Link Library
cuTFPlg Temporary File Cleanup Plugin
rcSvcHst Symantec ccServiceHost Resources
FwSesAl Firewall Session Component
Eraser64 Symantec Eraser Engine
chrome_lf Chromium
ccGLog Symantec ccGenericLog Engine
diLueCbk InstallToolBox LUE Callback
csdkprod Client SDK Product Integration
BHSvcPlg BASH Service Plugin
cceraser Symantec Eraser Engine
sds_ppendix__86 Symantec Static Data Scanner Component Library
muis.mui Shortcut MUI Resource
sticprxy Submission Library
buComm Backup Common

61

Table 22: Symantec. Libraries (continued from previous page)

Library Description

buProv Backup Providers
SQLite SQLite
ncpBrExt Norton Communication Platform NCPUI
buFScsdk Backup FScsdk
ccEmlPxy Symantec Email Proxy
SymDltCl SymDelta client DLL
rcErrDsp Symantec Error Display Resources
csdktu Tuneup Client SDK Service
uiMetroN Norton Metro Notifications
NspEng NSP Client Backup Engine
coWPPlg coWebAuthPlugIn
QBackup Quarantine/Backup Engine
FWGenPlg Firewall Generic Plug-in
nasascr file description missing
ISDataSv IS Data Service
SDKCmn Security Status Server
NUMEng Norton Update Manager Engine
spsvc Symantec Platform Component Library
cltLMS Symantec Shared Component
RuleXprt Rule Database Upgrader library
InsImage InstallToolBox Setup
buUI Backup UI
QSPlugin QuickStart Service Plugin
ScanLess Norton Protection Center ScanLess UI Library
patch25d Microdefs Apply Engine
ProxyClt Proxy Client
buVssVst Backup Volume Shadow Support For Vista
v2Client v2 Client
ccIPC Symantec ccIPC Engine
ccSvc Symantec ccService Engine
DSCli Symantec Data Store
ccJobMgr Symantec ccJobMgr Engine
TaskWiz Norton Protection Center N360 Task Wizard
cltFE Symantec Shared Component
csdkaux CSDK Client Auxiliary Interface
asEngine AntiSpam Engine
tuMCFPlg Tuneup Message Center Plugin
MsouPlug AntiSpam MS Outlook Plugin
asHelper AntiSpam Helper
buShell Backup Shell
DefUtDCD Symantec Definition Utilities
SHUIROL file description missing
SymNeti Symantec Network Driver Interface
DSCli64 Symantec Data Store
coParse coParse
OEHeur Symantec OEH
hsui Norton Protection Center Help and Support
UMEngx86 SONAR Engine
coMCPlug Message Center PlugIn
SymHTTP Symantec HTTP Transport
PatchUI InstallToolBox Setup
DuLuCbk Symantec Definitions Deployment
ccGEvt Symantec ccGenericEvent Engine
EFACli64 Symantec Extended File Attributes
msl Symantec MS Light Library

62

Table 22: Symantec. Libraries (continued from previous page)

Library Description

ccSubEng Submission Engine
diStRptr Stat Reporter Job Worker
srtsp64 Symantec AutoProtect
csdk Client SDK
NavShExt Norton Security Shell Extension Module
cltAlDis Symantec Shared Component
FWSetup Firewall Setup Utility
bbRGen64 Rule Preprocessor
sds_ngine_64 Symantec Static Data Scanner Component Library
wpCSDK Webcam Protection CSDK Service
AVPAPP32 Norton Security Antivirus Product Application Module
AppMgr32 Symantec Application Core Manager
coUICtlr Norton Password Manager
NScClt Scandium Client
DiagRpt Diagnostic Report
AVModule Symantec AntiVirus Module
symhtml Symantec HTML Interface
fwMCPlug Firewall Message Center Plug-in
NAVLogV Norton Security NAVLogV
coSfShre coSafeShare
tuTW Tuneup Task Wizard Plugin
FFPrefs N360 FireFox Preferences Component
IDSAux Intrusion Detection Auxiliary DLL
BuEng Backup Engine x64
cuEng Cleanup Engine
NSSSH Symantec HTML Interface
IPSPlug Symantec Intrusion Prevention Plugin
uiAlert Norton Protection Center Alert Provider
AVifc Symantec AntiVirus Interface
IPSEng64 IPS Script Engine DLL
srtspscan Symantec AutoProtect
RuleUI Rule UI
diArkive InstallToolBox Archive
coShdObj coShdObj
NumGui Norton Update Manager Gui
symv8hst Symantec Support Library
PeekUI Norton Protection Center Peek User Interface Component
IDSXpx64 Intrusion Detection Interface DLL
diMaster InstallToolBox Service
SymRedir Symantec Redirector Interface DLL
o2ncpscr NCP Main Script
asDcaCl AntiSpam Delta Custom Action Client
sds_ppendix__86 Symantec Static Data Scanner Component Library
SvcDePlg Service Dependency Plugin
Lue Symantec LiveUpdate Engine
Comm Communications Service
NCW Norton Community Watch Component
BHClient BASH Client
IronUser Symantec Iron User Session
buMC Backup MC
Avifc Symantec AntiVirus Interface
AVExclu Symantec AntiVirus Exclusion Manager
srtsp32 Symantec AutoProtect
isPwd Password Manager
Iron Symantec Iron Engine

63

Table 22: Symantec. Libraries (continued from previous page)

Library Description

avScnTsk Norton Security avScnTsk Module
ncpClient NCP Client Service
cuIEPlg Internet Explorer Cleanup Engine Plugin
naHelper Norton Account Helper
QStartUI QuickStart UI
RptCrdUI Report Card UI
ccAlert Symantec Alert and Notification
avScanUI Norton Security Scan UI
ProdCbk DING Product Callback DLL
SecureVPN Secure VPN Proxy Feature
NCOLUE NCO LUE Handler
spifc Symantec Platform Component Library
sds_oader_64 Symantec Static Data Scanner Component Library
ccSEBind Submission Engine Connection Library
sqscr Norton Settings User Interface
sqsvc Symantec Error Service Plugin
rcAlert Symantec Alert and Notification Resources
InstUI InstallToolBox Setup
ccSet Symantec Settings Manager Engine
AppMgr64 Symantec Application Core Manager
Datastor Data Store
AppState Norton Metro App State
diFVal InstallToolBox File Validation
cltLMJ Symantec Shared Component
cltJSH Consumer Licensing Technologies cltJSH
BHEng64 BASH Engine
wpSvc Webcam Protection System Service
uiMain Norton Protection Center NPC Status Plugin
AVMail Symantec AntiVirus Email Filter
ccErrDsp Symantec Error Display
jwWDF Windows Defragmentation Job Worker
MCUI Symantec Security History
isDataPr IS Data Provider
coChrmSv ChromiumPlugin
EFACli Symantec Extended File Attributes
ccLib Symantec Library
sds_ngine_86 Symantec Static Data Scanner Component Library
coFeatSv NCO Feature Service
Settings Norton Settings User Interface
buSvc Backup Service
symv8 Symantec Support Library

Table 23: TrendMicro. Libraries

Library Description

TMLCE64 Trend Micro Local Correlation Engine
TmopphSmtp Trend Micro SMTP Handler
TmopsmHttp Trend Micro Scan Manager for HTTP
ciussi64 ciussi Dynamic Link Library
Ssapi64 Anti-Spyware Engine
AIMURLRatingPlugin Trend Micro TrendSecure
Tmopcfscan Trend Micro String Scan Utility Module
helperTMEBCDriver Trend Micro TMEBC Helper DLL

64

Table 23: TrendMicro. Libraries (continued from previous page)

Library Description

smv64.old smv64
TmopphPop3.old Trend Micro POP3 Handler
Nitro Trend Micro Nitro Engine
plugTmv Trend Micro Vault PlugIn DLL
tmsa_ore64 TMSACore Dynamic Link Library
helperOspreyDriver Trend Micro Anti-Malware Solution Platform
Tmopcfscan.old Trend Micro String Scan Utility Module
utilTitaniumLuaHelper Titanium LUA Helper
utilUniClient Trend Micro Client Utility
plugSponge PLUGSPONGE
Tmelapi Trend Micro ELAM Communication Module
utilComponentInfo Trend Micro Anti-Malware Solution Platform
coreFrameworkBuilder Trend Micro Anti-Malware Solution Platform
plugEngineLCE Local correlation Engine Plugin for AMSP
plugEventHub Trend Micro Client Common Plug-in
ICRCHdler ICRCHdler
tmeedbg.old Trend Micro EagleEye Debug Log DLL
TmoppeUrlF Trend Micro URL Filter Engine
TmoppeVS Trend Micro Virus Scan Engine
TmSystemChecking TmSystemChecking
tmncieco Trend Micro NCIE Coordinator (amd64-fre)
plugFeedback Plugin_eedback
TmoppeSsF Trend Micro Safe Search Filter Engine
utilAccessControl Trend Micro Anti-Malware Solution Platform
TMLCE64.old Trend Micro Local Correlation Engine
inner_MSP_lientLibrary Trend Micro Anti-Malware Solution Platform
coreTaskManager Trend Micro Anti-Malware Solution Platform
tmopsent Trend Micro Osprey Sentry
plugEngineDCE Trend Micro Anti-Malware Solution Platform
plugSystemInfo Plugin_ystemInfo
TmopCfg.old Trend Micro Osprey Configuration DLL
DCEBootConfig.old DCEBoot Config
TmopsmIm.old Trend Micro Scan Manager for Instant Message
plugUtilLowConfDB Trend Micro Anti-Malware Solution Platform
tmncieco.old Trend Micro NCIE Coordinator (amd64-fre)
plugEngineVSAPI Trend Micro Anti-Malware Solution Platform
TMAS_FAgent Trend Micro Anti-Spam Dynamic Link Library
helperTMUMHDriver Trend Micro UMH Driver Helper
plugEngineTmCDE Trend Micro PlugEngineCDE
TmoppeHosF Trend Micro Hosts Filter Engine
utilIPC Trend Micro Anti-Malware Solution Platform
plugEngineFalcon Trend Micro Anti-Malware Solution Platform
plugEngineTMSA plugEngi Dynamic Link Library
helperEagleEyeDriver Trend Micro Anti-Malware Solution Platform
TmopPlgAdp.old Trend Micro Plugin Adapter Module
plugEngineAEGIS Trend Micro Anti-Malware Solution Platform
ciuas64 ciuas Dynamic Link Library
TmOverlayIcon Trend Micro Folder Shield Shell Extension
plugServiceBundle Trend Micro Service Bundle PlugIn DLL
helperUCInstallation Trend Micro Client Installation Library
TmopsmHttp.old Trend Micro Scan Manager for HTTP
tmumhmgr.old Trend Micro UMH Engine
plugSecureErase Trend Micro Secure Erase PlugIn DLL
Tmopsent.old Trend Micro Osprey Sentry
plugManualScan Trend Micro Client Common Plug-in

65

Table 23: TrendMicro. Libraries (continued from previous page)

Library Description

plugScan PlugScan
TmUmEvt.old Trend Micro User-Mode Hook Event Module
TmNetworkCost Trend Micro Network Cost Dynamic Link Library
TMAS_LA.mui Trend Micro Anti-Spam Agent for Outlook
libcef Chromium Embedded Framework (CEF) Dynamic Link Library
TMPEM Trend Micro Policy Enforcement Module
DRE Damage Recovery Engine
tmsa_ore64.old TMSACore Dynamic Link Library
PtSdk PtSDK
plugEngineSSAPI Trend Micro Anti-Malware Solution Platform
plugAdapterTMUMH Trend Micro UMH Engine Adapter
TmopIEPlg32.old Trend Micro Osprey IE Plug-In
plugLogHub PlugLogHub
plugEngineTrxHandler Trend Micro Anti-Malware Solution Platform
plugFeatureToggle Trend Micro Client Common Plug-in
fcScan fcScan
plugVizor PlugVizor
coreActionManager Trend Micro Anti-Malware Solution Platform
TmCDEngine Trend Micro Collaberative Detection Engine
SEHelper Trend Micro Secure Erase Helper DLL
plugTrendxScanFlow Trend Micro Anti-Malware Solution Platform
tmmon64 Trend Micro UMH Monitor Engine
TmUmEvt64.old Trend Micro User-Mode Hook Event Module (64-Bit)
utilUIProfile Trend Micro Client Utility
ICRCHdler.old ICRCHdler
DLLForVersionDisplay DllForVersionDisplay
TmopsmIm Trend Micro Scan Manager for Instant Message
TmopphPop3 Trend Micro POP3 Handler
helperSystemDriver Trend Micro Anti-Malware Solution Platform
trxhandler trxHandler
plugUtilException Trend Micro Anti-Malware Solution Platform
CustomActUninst Remove Application
TmopphSmtp.old Trend Micro SMTP Handler
tmufeng.old Trend Micro URL Filtering Engine
TmvHelper Trend Micro Vault Helper DLL
TmToastNotification Trend Micro Toast Notification Dynamic Link Library
TmvExt Trend Micro Vault Extersion DLL
TmOsprey Trend Micro Module
plugParentControl Trend Micro Parent Control DLL
tmwk64.old TMWK Dynamic Link Library
TmopphHttp.old Trend Micro HTTP Protocol Handler Module
util3rdComponentInstall Trend Micro Anti-Malware Solution Platform
TmNSCIns Trend Micro NSC Driver Installation Module
utilInstallation Trend Micro Anti-Malware Solution Platform
tmeectx.old Trend Micro EagleEye Controller (X)
coreConfigRepository Trend Micro Anti-Malware Solution Platform
npToolbarChrome TrendMicro Toolbar Rating Plugin
TmopCtl.old Trend Micro Osprey Control Module
plugWorkflowHost Trend Micro Client Common Plug-in
TmopsmMail Trend Micro Scan Manager for Mail
atse64 ATSE DLL for AMD64
TMAS_LA Trend Micro Anti-Spam Agent for Outlook
TmopphMsn.old Trend Micro MSN Protocol Handler Module
utilRPC Trend Micro Anti-Malware Solution Platform
tmwlchk.old Trend Micro White Listing Module

66

Table 23: TrendMicro. Libraries (continued from previous page)

Library Description

plugBigFileScan plugBigFileScan
tmsa64 TMSAEng Dynamic Link Library
Corridor Corridor Dynamic Link Library
TmMsg.old TMMSG with C interface
tmptfb Trend Micro Platinum Feedback Module
plugCensus Trend Micro Anti-Malware Solution Platform
TmoppeSAL Trend Micro Script Analyzer
TmopphMsn Trend Micro MSN Protocol Handler Module
Tmopsent Trend Micro Osprey Sentry
TmopIEPlg.old Trend Micro Osprey IE Plug-In
plugEngineWL Trend Micro Anti-Malware Solution Platform
wccclient wccclient
atse64.old ATSE DLL for AMD64
fcTmJsFoundation fcTmJsFoundation
plugSha1Cache plugSha1Cache
FtpHandler FtpHandler_D
plugUtilEnum Trend Micro Anti-Malware Solution Platform
pbld64 RTPatch Executable
plugAppDelayLoad Plugin_ppDelayLoad
TmopphHttp2.old Trend Micro HTTP Protocol Handler Module
outer_MSP_lientLibrary Trend Micro Anti-Malware Solution Platform
plugDTP PlugDTP
tmufeng Trend Micro URL Filtering Engine
plugManualScanFlow Trend Micro Anti-Malware Solution Platform
TmMetroPkgMgr Trend Micro Metro Package Manager Dynamic Link Library
ToolbarHelper ToolbarH Dynamic Link Library
DCEBootConfig DCEBoot Config
TmoppeEvts.old Trend Micro Network Events Engine
plugWIFIAdv WIFIAdvP Dynamic Link Library
plugDataShaper Plugin_ataShaper
ssleay32 OpenSSL Shared Library
plugRealtimeScanFlow Trend Micro Anti-Malware Solution Platform
plugRealTimeScanCache Trend Micro Anti-Malware Solution Platform
TmopphYmsg Trend Micro Yahoo Messenger Protocol Handler Module
tmfbeng Trend Micro Feedback Engine
tmfbeng.old Trend Micro Feedback Engine
plugAdapterSystem Trend Micro Anti-Malware Solution Platform
TmoppeSAL.old Trend Micro Script Analyzer
tscdll64 Trend Micro Damage Cleanup Engine (64-Bit)
TmOsprey32.old Trend Micro Module
plugCommonScanCache Trend Micro Anti-Malware Solution Platform
tmdshell Trend Micro Client Shell Extension
plugAdapterEagleEye Trend Micro Anti-Malware Solution Platform
utilThread Trend Micro Anti-Malware Solution Platform
TmCDEngine.old Trend Micro Collaberative Detection Engine
TmOsprey.old Trend Micro Module
plugCloudBroker plugCloudBroker
tmumhmgr Trend Micro UMH Engine
AsSdk Trend Micro Air Support
coreScanManager Trend Micro Anti-Malware Solution Platform
utilServiceTag utilServiceTag Dynamic Link Library
helperELAMDriver Trend Micro Anti-Malware Solution Platform
libeay32 OpenSSL Shared Library
plugTaskManager Plugin_askManager
plugFwOpt PlugFWOpt

67

Table 23: TrendMicro. Libraries (continued from previous page)

Library Description

plugPasswordProtection PlugPasswordProtection
plugAdapterNCIE Trend Micro Anti-Malware Solution Platform
luaWSC Trend Micro Client Utility
TmoppeUrlF.old Trend Micro URL Filter Engine
utilJsonHandle Trend Micro Client Utility
TmSysEvt Trend Micro Driver Communication Module (64-Bit)
plugEngineTMFBE Trend Micro Anti-Malware Solution Platform
plugAdapterOsprey Trend Micro Anti-Malware Solution Platform
TmOsprey32 Trend Micro Module
eextuins.old Trend Micro EEXT Uninstaller
TmoppeHosF.old Trend Micro Hosts Filter Engine
tmeectv Trend Micro EagleEye Controller (V)
TmoppePDP Trend Micro Privacy Data Protection Engine
plugLuaEngine Plugin_uaEngine
TmConfig TmConfig
TmVizorShortCut_8 VizorShortCut Dynamic Link Library for Win8
plugAdapterTMEBC Trend Micro TMEBC Plug In DLL
ToolbarIE Trend Micro TrendSecure
TmMetroTTM TiThreatMap
TMPEM.old Trend Micro Policy Enforcement Module
Redemption Outlook Redemption COM library
tmsa64.old TMSAEng Dynamic Link Library
tmeectv.old Trend Micro EagleEye Controller (V)
tmtap Trend Micro Firewall API Module
tmdbglog TmDbgLog Dynamic Link Library
tmmon64.old Trend Micro UMH Monitor Engine
TmSysEvt.old Trend Micro Driver Communication Module (64-Bit)
tmaseng Trend Micro Anti-Spam Engine
libeay32.old OpenSSL Shared Library
TmopphYmsg.old Trend Micro Yahoo Messenger Protocol Handler Module
DRE.old Damage Recovery Engine
plugEngineDre Damage Recovery Engine
trxhandler.old trxHandler
TmvLib Trend Micro Vault Lib DLL
TmMsg TMMSG with C interface
helperNCIEDriver Trend Micro Anti-Malware Solution Platform
plugAdapterELAM Trend Micro Anti-Malware Solution Platform
paCoreProductAdaptor Trend Micro Client Framework
utilNetCtrl libNetCt DLL
plugEventLog Trend Micro Client Common Plug-in
TmopPlgAdp Trend Micro Plugin Adapter Module
plugEADAgent Trend Micro EAD Agent(64-Bit)
tmmon.old Trend Micro UMH Monitor Engine
tmxfalcon.old Trend Micro Falcon Core Engine
tmwk64 TMWK Dynamic Link Library
plugCfgProxy Trend Micro Client Common Plug-in
plugUpdater Trend Micro Client Common Plug-in
plugUtilSysInfo Trend Micro Anti-Malware Solution Platform
TmopIEPlg32 Trend Micro Osprey IE Plug-In
TmopphHttp Trend Micro HTTP Protocol Handler Module
utilMsgBuffer Trend Micro Anti-Malware Solution Platform
tmwlchk Trend Micro White Listing Module
coreReportManager Trend Micro Anti-Malware Solution Platform
plugToolbar plugTool Dynamic Link Library
plugLocalCorrelationFlow Trend Micro Anti-Malware Solution Platform

68

Table 23: TrendMicro. Libraries (continued from previous page)

Library Description

fcTmJsTitanium fcTmJsTitanium
plugTMAS PlugTMAS
VizorUniclientLibrary VizorUniclientLibrary
plugScheduler Plugin_cheduler
7z 7z Plugin
TmoppePDP.old Trend Micro Privacy Data Protection Engine
plugConfigManager plugConfigManager
utilETW Trend Micro Anti-Malware Solution Platform
tmtap.old Trend Micro Firewall API Module
tmxfalcon Trend Micro Falcon Core Engine
utilGenericLoader Trend Micro Anti-Malware Solution Platform
TmopCtl Trend Micro Osprey Control Module
plugDaemonHost PlugHttpSrv
TmDbgLog TmDbgLog Dynamic Link Library
plugPlatinum PlugPlatinum
iaucore Trend Micro ActiveUpdate Module
plugUtilRCM Trend Micro Anti-Malware Solution Platform
TmopIEPlg Trend Micro Osprey IE Plug-In
TmUmEvt64 Trend Micro User-Mode Hook Event Module (64-Bit)
TmopDbg.old Trend Micro Osprey Debug Log DLL
tmmon Trend Micro UMH Monitor Engine
coreEventManager Trend Micro Anti-Malware Solution Platform
tmeesent Trend Micro EagleEye Sentry
TmopsmMail.old Trend Micro Scan Manager for Mail
TmoppeEvts Trend Micro Network Events Engine
plugEngineSMV Trend Micro Anti-Malware Solution Platform
plugSdkStub Trend Micro Anti-Malware Solution Platform
coreCommandManager Trend Micro Anti-Malware Solution Platform
TmopphHttp2 Trend Micro HTTP Protocol Handler Module
TMAS_LShare Trend Micro Anti-Spam Sharor for Outlook
instInstallationLibrary Trend Micro Anti-Malware Solution Platform
TmoppeVS.old Trend Micro Virus Scan Engine
SEShellExt Trend Micro Secure Erase Shell Extension DLL
ProToolbarIMRatingActiveX Trend Micro TrendSecure
patchw64 RTPatch Executable
TmUmEvt Trend Micro User-Mode Hook Event Module
iau Trend Micro ActiveUpdate Module
Ssapi64.old Anti-Spyware Engine
coreUpdateManager Trend Micro Anti-Malware Solution Platform
utilDebugLog Trend Micro Anti-Malware Solution Platform
TmopCfg Trend Micro Osprey Configuration DLL
libcurl.old libcurl Shared Library
TmopDbg Trend Micro Osprey Debug Log DLL
plugLicense PlugLicense
plugEngineTMUFE Trend Micro Anti-Malware Solution Platform
QuietModeHelper QuietModeHelper
smv64 smv64
ssleay32.old OpenSSL Shared Library
tscdll64.old Trend Micro Damage Cleanup Engine (64-Bit)
tmeedbg Trend Micro EagleEye Debug Log DLL
libcurl libcurl Shared Library
TmoppeSsF.old Trend Micro Safe Search Filter Engine
Tmelapi.old Trend Micro ELAM Communication Module

69

Table 24: VIPRE. Libraries

Library Description

Vipre.Models.HistoryModels History
kbu kbu Dynamic Link Library

atcuf32 BitDefender Active Threat Control Usermode
Filter

Vipre.ObjectModel.Events Events
Vipre.Infrastructure.Plugins Plug-In Helper
VIPRE.Common VIPRE.Common
VIPRE.Consumer.Resources VIPRE.Consumer.Resources
scan BitDefender Threat Scanner
log4net Apache log4net for .NET Framework 4.5
Vipre.Infrastructure.Product Product

SbFwe ThreatTrack Security Firewall SDK Firewall
Engine Library

XceedZip Xceed Zip for COM/ActiveX
Vipre.ObjectModel.Services Controllers
Vipre.ObjectModel.DataModel Data Model
Vipre.ViewModels View Models
SerenityRose.Theme SerenityRose Theme
atcuf64 BitDefender Active Threat Control Usermode Filter
SBArva Email Antivirus
IncompatiblePrograms IncompatiblePrograms
mimepp DLL for Hunny MIME++ Library
Dark.Theme Dark Theme
asunicode Bitdefender Antispam Unicode Library
Vipre.Infrastructure.LoggingHelper Logging Helper
Vipre.Models Models
Light.Theme Light Theme
System.Windows.Interactivity System.Windows.Interactivity
Prism Prism
spursdownload Spurs Download Dynamic Link Library
Vipre.Tray.Notifications Tray Notifications
ArcticWaters.Theme ArcticWaters Theme
VSGNx64 VIPRE Search Guard for Internet Explorer (64-bit)
mimepack MIME packer
Microsoft.Practices.Unity.Configuration Microsoft.Practices.Unity.Configuration
Prism.Wpf Prism.Wpf
Vipre.Diagnostics Vipre.Diagnostics
Vipre.SocialWatch.Engine.Interfaces SocialWatch Engine Interfaces
PI_ecovery Recovery Monitor Plug-in

Microsoft.Practices.Unity.Interception.Configuration Microsoft.Practices.Unity.InterceptionExtension
Configuration

patchw32 RTPatch Executable
ascore Bitdefender Antispam Core
Vipre.ObjectModel.Interfaces Interfaces
SBAMSvcPS SBAMSvcP Dynamic Link Library
VSGN VIPRE Search Guard for Internet Explorer (32-bit)
unrar RAR decompression library
SBAMOutlook Outlook Antivirus Plugin
vipre VIPRE Threat detection and remediation system
Vipre.Infrastructure.History History
Vipre.SocialWatch.Scanner.Providers.Facebook.XmlSerializers
bdsmartdb BitDefender SmartDB
Vipre.Models.Interfaces Models Interfaces
Vipre.Infrastructure.UserInterface User Interface

70

Table 24: VIPRE. Libraries (continued from previous page)

Library Description

ThemeManager VIPRE

atccore BitDefender Active Threat Control Communications
Library

SBTIS ThreatTrack Security Firewall SDK Transport
Inspection System Library

Facebook Facebook
Microsoft.WindowsAPICodePack.Shell Microsoft.WindowsAPICodePack.Shell
SBRES_AS_n-US VIPRE English Language Resources
gfiarkup gfiarkup
Vipre.ViewModels.Infrastructure View Models
Microsoft.Practices.ServiceLocation Microsoft.Practices.ServiceLocation
Vipre.Infrastructure.Services Services
Vipre.SocialWatch.Plugins.Facebook Social Watch Facebook Plug In
VIPRE.Consumer.Schemas VIPRE.Consumer.Schemas
SBCA Custom Actions for the Installer
Vipre.Tray.Notifier Notifier
Vipre.Infrastructure.Services.Interfaces Services.Interfaces
Vipre.SocialWatch.Scanner.Interfaces Social Network Scanner
Microsoft.WindowsAPICodePack Microsoft.WindowsAPICodePack
Vipre.ObjectModel.ControllerEventAggregator Controller Event Aggregator
Vipre.Tray.NotificationService Notification Service
PI_atchMonitor Patch Monitor Plug-in
SBAMScanShellExt SBAM Scan Shell Extension
Vipre.SocialWatch.Scanner.Serialization SocialWatch Serialization
AntiSpamThin Bitdefender Anti-Spam SDK Cloud
Vipre.ViewModels.Interfaces ViewModels.Interfaces
Vipre.SocialWatch.Configuration.Facebook Social Watch Configuration Provider For Facebook
Vipre.Commands.Infrastructure Controller Commands

asmcocr BitDefender Antispam Image Processing
Multi-character Optical character recognition Library

SbHips ThreatTrack Security Firewall SDK Host Intrusion
Prevention System Library

Vipre.ObjectModel.Interop.SBAMSvc
gfiark gfiark
remediation VIPRE remediation library
bdcore Bitdefender Core
Vipre.CommandHandlers.Infrastructure CommandHandlers.Infrastructure
DotNetZip Ionic’s Zip Library
Vipre.SocialWatch.Authentication.Facebook.XmlSerializers
sbap Active Protection Library
Microsoft.Expression.Interactions Microsoft.Expression.Interactions
Microsoft.Practices.Unity.Interception Microsoft.Practices.Unity.InterceptionExtension
Vipre.Commands Commands
asregex Bitdefender Regular Expression Module
BDUpdateServiceCom UpdateService
CartSdk CART SDK
bdnc Bitdefender Nimbus Client
Vipre.Views Views
vcore VIPRE Threat detection and remediation system
Vipre.SocialWatch.Scanner.Providers.Facebook Facebook Provider
DarkHorse.Theme DarkHorse Theme
SBTE Threat Engine Library
Vipre.Commanding Commanding
EndlessSierra.Theme EndlessSierra Theme
Vipre.SocialWatch.Configuration.Interfaces Social Watch Configuration

71

Table 24: VIPRE. Libraries (continued from previous page)

Library Description

CityNights.Theme CityNights Theme
SBFE Secure File Eraser Shell Extension
Microsoft.Practices.Unity
Vipre.Infrastructure Infrastructure
Controls Controls
Vipre.SocialWatch.Authentication.Interfaces Authentication
SbWebFilter ThreatTrack Security Firewall SDK WebFilter Library
gfiarksh gfiarksh
Vipre.SocialWatch.Authentication.Facebook Facebook Authentication Provider
updater VIPRE Threat detection and remediation system

72

B Userland Hooks

Table 25: Avast. Userland Hooks.
Library Function

ntdll

LdrLoadDll
RtlQueryEnvironmentVariable
ZwQueryInformationProcess
NtMapViewOfSection
ZwWriteVirtualMemory
NtOpenEvent
NtCreateEvent
NtProtectVirtualMemory
NtResumeThread
ZwCreateMutant
NtCreateSemaphore
ZwCreateUserProcess
ZwOpenMutant
ZwOpenSemaphore
RtlDecompressBuffer

USER32 SetWindowsHookExW
SetWindowsHookExA

Table 26: Bitdefender. Userland Hooks.

Library Function

ntdll

RtlAllocateHeap
ZwSetInformationThread
ZwClose
NtOpenProcess
NtMapViewOfSection
NtTerminateProcess
ZwWriteVirtualMemory
NtDuplicateObject
NtReadVirtualMemory
ZwAdjustPrivilegesToken
ZwQueueApcThread
ZwCreateProcessEx
ZwCreateThread
ZwCreateProcess
ZwCreateThreadEx
ZwCreateUserProcess
ZwRaiseHardError
NtSetContextThread
ZwWow64WriteVirtualMemory64
RtlReportException

KERNEL32

Process32NextW
CreateToolhelp32Snapshot
MoveFileExA
MoveFileWithProgressA
DefineDosDeviceA

KERNELBASE

GetProcAddress
CreateRemoteThreadEx
LoadLibraryW
OpenThread
DeleteFileW
LoadLibraryA
CloseHandle
CreateProcessW
CreateProcessInternalW
GetModuleInformation
K32GetModuleFileNameExW
EnumProcessModules
GetFullPathNameW
MoveFileExW
SetEnvironmentVariableW
GetApplicationRecoveryCallback
GetApplicationRestartSettings
K32EnumProcessMoExEx

73

Table 26: Bitdefender. Userland Hooks (continued from previous page)

Library Function

K32GetModuleBaseNameW
PeekConsoleInputA
PeekConsoleInputW
ReadConsoleInputA
ReadConsoleInputW
GenerateConsoleCtrlEvent
ReadConsoleA
ReadConsoleW
CreateRemoteThread
CreateProcessA
CreateProcessInternalA
DefineDosDeviceW
SetEnvironmentVariableA

SspiCli
DeleteSecurityPackageW+0x100
EnumerateSecurityPackagesW
EnumerateSecurityPackagesA

GDI32

BitBlt
CreateCompatibleDC
CreateCompatibleBitmap
CreateBitmap
Gdi32DllInitialize
CreateDCA
CreateDCW

ADVAPI32

PerfRegQueryValue+0x5490
CryptGetHashParam
CryptCreateHash
CryptImportKey
CryptHashData
CryptExportKey
CryptAcquireContextW
CryptAcquireContextA
CreateProcessAsUserW
CryptGenKey
EncryptFileW
FlushEfsCache
SetUserFileEncryptionKey
CreateProcessAsUserA
CreateServiceA
CreateServiceW
CryptDeriveKey
LsaQueryTrustedDomainInfo
LsaQueryTrustedDomainInfoByName
CreateProcessWithTokenW

USER32

SendMessageW
GetDesktopWindow
SetWindowLongW
UserClientDllInitialize
PeekMessageW
GetKeyState
SystemParametersInfoW
PostMessageW
CallNextHookEx
GetMessageW
GetDC
SetPropW
SendNotifyMessageW
SetWindowsHookExW
UnhookWindowsHookEx
PeekMessageA
SendMessageA
PostMessageA
GetMessageA
GetAsyncKeyState
SystemParametersInfoA
SetWindowLongA
GetClipboardData
SetClipboardData
SetPropA
SetWindowsHookExA
FindWindowExW
GetDCEx
GetKeyboardState

74

Table 26: Bitdefender. Userland Hooks (continued from previous page)

Library Function

GetRawInputData
GetWindowDC
RegisterRawInputDevices
FindWindowExA
SendNotifyMessageA

shell32 Shell_otifyIconW
RegenerateUserEnvironment+0x19A0

cryptsp

CryptExportKey
CryptImportKey
CryptHashData
CryptCreateHash
CryptGetHashParam
CryptAcquireContextW
CryptAcquireContextA
CryptReleaseContext+0xC40

ole32 PropVariantCopy+0x390

combase CoGetClassObject

C Kernel Monitoring

75

Table 27: Vipre. Userland Hooks.
Library Function

ntdll

RtlAllocateHeap
ZwClose
NtOpenProcess
NtMapViewOfSection
NtTerminateProcess
ZwWriteVirtualMemory
NtDuplicateObject
ZwAdjustPrivilegesToken
ZwQueueApcThread
ZwCreateProcessEx
ZwCreateThread
ZwCreateProcess
ZwCreateThreadEx
ZwCreateUserProcess
ZwRaiseHardError
NtSetContextThread
RtlReportException

KERNEL32

Process32NextW
CreateToolhelp32Snapshot
MoveFileExA
MoveFileWithProgressA
DefineDosDeviceA

KERNELBASE

GetProcAddress
CreateRemoteThreadEx
LoadLibraryW
OpenThread
DeleteFileW
LoadLibteSyst
CloseHandle
CreateProcessW
InitializeContext2+0xFFFFFFFFFFFAD740
MoveFileWithProgressW
MoveFileExW
SetEnvironmentVariableW
PeekConsoleInputA
PeekConsoleInputW
ReadConsoleInputA
ReadConsoleInputW
ReadConsoleA
ReadConsoleW
CreateRemoteThread
CreateProcessA
CreateProcessInternalA
DefineDosDeviceW
SetEnvironmentVariableA

76

Table 28: FSecure. Userland Hooks.
Library Function

KERNEL32 OpenMutexA

KERNELBASE

CreateRemoteThreadEx
CreateDirectoryW
CreateMutexW
OpenMutexW
CreateMutexExW
GetFileSize
GetFileSizeEx
WriteProcessMemory
CopyFileExW
CreateDirectoryExW
TerminateThread

sechost

ControlService
OpenServiceW
CloseServiceHandle
OpenServiceA

USER32 SetWindowsHookExW
SetWindowsHookExA

D AV’s Databases

1 [{19 EA8BF0 -A12F -1AF0 -FB25 -293 AD7155932 }]
2 Comment =* @1009
3 DefaultTask =1
4 Job=Scan
5 Label =* @1008
6 Priority =1
7 ScanAreas=
8 ScanFullFiles =1
9 ScanPackers=All

10 ScanPUP =1
11 ScanType=Content
12 ScanTypes=AllFiles
13 SpecialTask =0
14 TaskImage=chest
15 TaskSensitivity =100
16 UseCodeEmulation =1

Code 3: Avast Configuration File

file_info

sha256 VARCHAR(256)

last_access INT

data BLOB

file_info_settings

id INT

last_db_cleanup INT

Figure 14: Avast File Database.

Paths

time INT

path VARCHAR(512)

ShortHash INT

LongHash VARCHAR(512)

Flags INT

URLs

time INT

URL TEXT

ShortHash INT

LongHash VARCHAR(5…

Flags INT

Figure 15: Avast URL Database.

77

Table 29: Avast. Kernel Drivers.
Driver Description Imports

aswArDisk.sys Anti Rootkit Filter IoAttachDeviceToDeviceStack

aswArPot.sys Anti Rootkit

PsSetLoadImageNotifyRoutine
PsSetCreateThreadNotifyRoutine

KeStackAttachProcess
ExRegisterCallback

aswbidsdriver.sys IDS Activity Monitor

FltRegisterFilter
PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutine

aswbidsh.sys IDS Helper IoRegisterShutdownNotification
PsSetCreateProcessNotifyRoutine

aswbuniv.sys Universal Driver
PsSetLoadImageNotifyRoutine

PsSetCreateProcessNotifyRoutine
EtwRegister

aswHdsKe.sys Network Security
PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutine

aswKbd.sys Keyboard Filter IoAttachDeviceToDeviceStackSafe

aswMonFlt.sys Filesystem minifilter

FltRegisterFilter
PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutine
PsSetLoadImageNotifyRoutine

aswRdr2.sys WFP Redirect

PsSetLoadImageNotifyRoutine
PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutine

FwpmCalloutAdd0
aswRvrt.sys Avast Revert PsSetCreateProcessNotifyRoutine

aswSnx.sys Virtualization

FltStartFiltering
PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutine
IoRegisterPlugPlayNotification

KeStackAttachProcess

aswSP.sys Self Protection

IoAttachDevice
PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutine

FltStartFiltering

aswStm.sys Stream Filter

PsSetCreateProcessNotifyRoutine
PsSetCreateThreadNotifyRoutine
PsSetLoadImageNotifyRoutine

FwpsCalloutRegister1

aswVmm.sys VMMonitor PsSetLoadImageNotifyRoutine
PsSetCreateProcessNotifyRoutine

78

Adapter

Id INT

Name TEXT

Counter

Id INT

CounterId INT

Time INT

Count INT

DailyFwStat

Id INT

Time INT

BytesIn INT

BytesOut INT

ItemType INT

ItemSubtype INT

DailyUpdStat

Id INT

Time INT

StreamingUpdate_Count INT

DecennaryFwStat

Id INT

Time INT

BytesIn INT

BytesOut INT

ItemType INT

ItemSubtype INT

DecennaryResStat

Id INT

Time INT

FileSystemShield_Scanned INT

FileSystemShield_Infected INT

IMShield_Scanned INT

IMShield_Infected INT

P2PShield_Scanned INT

P2PShield_Infected INT

EmailShield_Scanned INT

EmailShield_Infected INT

WebShield_Scanned INT

WebShield_Infected INT

NetworkShield_Scanned INT

NetworkShield_Infected INT

ScriptShield_Scanned INT

ScriptShield_Infected INT

AntiSpamShield_Scanned INT

AntiSpamShield_Infected INT

BehaviorShield_Scanned INT

BehaviorShield_Infected INT

ExchangeShield_Scanned INT

ExchangeShield_Infected INT

SharepointShield_Scanned INT

SharepointShield_Infected INT

AntiRansomwareShield_Scanned I…

AntiRansomwareShield_Infected INT

BrowserProtection_Scanned INT

BrowserProtection_Infected INT

SecureDnsShield_Scanned INT

SecureDnsShield_Infected INT

DecennaryUpdStat

Id INT

Time INT

StreamingUpdate_Count INT

Event

Id INT

Time INT

Level INT

Module INT

MessageId INT

Param1 INT

Param2 INT

Param3 TEXT

Param4 TEXT

MonthlyFwStat

Id INT

Time INT

BytesIn INT

BytesOut INT

ItemType INT

ItemSubtype INT

MonthlyResStat

Id INT

Time INT

FileSystemShield_Scanned INT

FileSystemShield_Infected INT

IMShield_Scanned INT

IMShield_Infected INT

P2PShield_Scanned INT

P2PShield_Infected INT

EmailShield_Scanned INT

EmailShield_Infected INT

WebShield_Scanned INT

WebShield_Infected INT

NetworkShield_Scanned INT

NetworkShield_Infected INT

ScriptShield_Scanned INT

ScriptShield_Infected INT

AntiSpamShield_Scanned INT

AntiSpamShield_Infected INT

BehaviorShield_Scanned INT

BehaviorShield_Infected INT

ExchangeShield_Scanned INT

ExchangeShield_Infected INT

SharepointShield_Scanned INT

SharepointShield_Infected INT

AntiRansomwareShield_Scanned I…

AntiRansomwareShield_Infected INT

BrowserProtection_Scanned INT

BrowserProtection_Infected INT

SecureDnsShield_Scanned INT

SecureDnsShield_Infected INT

MonthlyUpdStat

Id INT

Time INT

StreamingUpdate_Count INT

Path

Id INT

Name TEXT

Process

Id INT

Name TEXT

ScanSession

Id INT

Type INT

TaskGuid TEXT

TestedFiles INT

TestedFolders INT

TestedData INT

InfectedFiles INT

Started INT

RunTime INT

Status INT

Error INT

Percent INT

LastScanned TEXT

Flags INT

User

Id INT

Name TEXT

WeeklyFwStat

Id INT

Time INT

BytesIn INT

BytesOut INT

ItemType INT

ItemSubtype INT

WeeklyResStat

Id INT

Time INT

FileSystemShield_Scanned INT

FileSystemShield_Infected INT

IMShield_Scanned INT

IMShield_Infected INT

P2PShield_Scanned INT

P2PShield_Infected INT

EmailShield_Scanned INT

EmailShield_Infected INT

WebShield_Scanned INT

WebShield_Infected INT

NetworkShield_Scanned INT

NetworkShield_Infected INT

ScriptShield_Scanned INT

ScriptShield_Infected INT

AntiSpamShield_Scanned INT

AntiSpamShield_Infected INT

BehaviorShield_Scanned INT

BehaviorShield_Infected INT

ExchangeShield_Scanned INT

ExchangeShield_Infected INT

SharepointShield_Scanned INT

SharepointShield_Infected INT

AntiRansomwareShield_Scanned I…

AntiRansomwareShield_Infected INT

BrowserProtection_Scanned INT

BrowserProtection_Infected INT

SecureDnsShield_Scanned INT

SecureDnsShield_Infected INT

WeeklyUpdStat

Id INT

Time INT

StreamingUpdate_Count INT

YearlyFwStat

Id INT

Time INT

BytesIn INT

BytesOut INT

ItemType INT

ItemSubtype INT

YearlyResStat

Id INT

Time INT

FileSystemShield_Scanned INT

FileSystemShield_Infected INT

IMShield_Scanned INT

IMShield_Infected INT

P2PShield_Scanned INT

P2PShield_Infected INT

EmailShield_Scanned INT

EmailShield_Infected INT

WebShield_Scanned INT

WebShield_Infected INT

NetworkShield_Scanned INT

NetworkShield_Infected INT

ScriptShield_Scanned INT

ScriptShield_Infected INT

AntiSpamShield_Scanned INT

AntiSpamShield_Infected INT

BehaviorShield_Scanned INT

BehaviorShield_Infected INT

ExchangeShield_Scanned INT

ExchangeShield_Infected INT

SharepointShield_Scanned INT

SharepointShield_Infected INT

AntiRansomwareShield_Scanned I…

AntiRansomwareShield_Infected INT

BrowserProtection_Scanned INT

BrowserProtection_Infected INT

SecureDnsShield_Scanned INT

SecureDnsShield_Infected INT

YearlyUpdStat

Id INT

Time INT

StreamingUpdate_Count INT

Figure 16: Avast Log Database.

79

Table 30: BitDefender. Kernel Drivers.
Driver Description Imports

atc.sys Active Threat Control

FltRegisterFilter
KeStackAttachProcess

PsSetLoadImageNotifyRoutine
PsSetCreateProcessNotifyRoutineEx
PsSetCreateThreadNotifyRoutine

bddci.sys DCI filter driver FwpmCalloutAdd0
PsSetCreateProcessNotifyRoutineEx

gemma.sys Generic Exploit Mitigation

FltStartFiltering
KeStackAttachProcess

PsSetLoadImageNotifyRoutine
PsSetCreateProcessNotifyRoutineEx

gzflt.sys Gonzales Filtesystem filter PsSetCreateProcessNotifyRoutine
FltStartFiltering

trufos.sys Trufos Module

PsSetCreateProcessNotifyRoutine
PsSetCreateThreadNotifyRoutine

KeAttachProcess
FltStartFiltering

Table 31: FSecure. Kernel Drivers.
Driver Description Imports
fsbts.sys Boot Time Scanner

fshs.sys DG Module PsSetCreateProcessNotifyRoutineEx
PsSetLoadImageNotifyRoutine

fsni64.sys Network Interceptor FwpsCalloutRegister1
fsulgk.sys GateKeeper FltStartFiltering

TCMFeedBack

ModuleID INT

Timestamp TEXT

TCmdLine

CmdLineID INT

CmdLine TEXT

CmdLineHash INT

TDnsMeta

DnsID INT

Dns TEXT

DnsHash BIGINT

FirstSight INT

BookMark TINYINT(1)

TEadConfig

Id INT

TimeStamp INT

ReportFlag INT

TFile

FileID INT

FileName TEXT

FileNameHash INT

FilePathID INT

TFileOP

ModuleID INT

SrcFileID INT

DstFileID INT

OPType INT

ZoneId INT

Timestamp INT

Millisecond SMALLINT

Section INT

TFilePath

FilePathID INT

FilePath TEXT

FilePathHash INT

TInjectionModuleInfo

InjectionModuleID INT

HostModuleID INT

TimeStamp INT

TInvokeRoute

RouteID INT

ParentID INT

ChildID INT

Route TEXT

HashID INT

RefCount INT

OpType INT

Score INT

Source TEXT

Reserve1 TEXT

TIpMeta

IP INT

IPStr TEXT

IPStrHash BIGINT

FirstSight INT

BookMark TINYINT(1)

TKOName

NameID INT

Type SMALLINT

Name TEXT

TModuleHistory

ModuleHistoryID INT

ModuleID INT

PID INT

CMDLine INT

Timestamp INT

SHA1ID INT

SessionID INT

Section INT

TModuleTree

ModuleID INT

FileID INT

ParentID INT

UpLinkType SMALLINT

TreeID INT

TNetworkConnection

ModuleID INT

Operation INT

SrcIP INT

SrcPort INT

DstIP INT

DstPort INT

Direction INT

TimeStamp INT

BookMark TINYINT(1)

TPopularString

String TEXT

DBID INT

RefCount INT

StringType INT
TRegKey

RegKeyID INT

RegKey TEXT

TRegValueData

RegValueDataID INT

RegValueData TEXT

TRegValueName

RegValueNameID INT

RegValueName TEXT

TRegistryHistory

ModuleID INT

RegistryType INT

RegKeyID INT

RegValueNameID INT

RegValueDataID INT

TimeStamp INT

TSHA1

SHA1ID INT

SHA1 TEXT

FileSize INT

TSHA12File

SHA1ID INT

FileID INT

TServerNameMeta

ServerNameID INT

Server TEXT

ServerHash BIGINT

FirstSight INT

TSessionMeta

SessionMetaID INT

Session INT

LogonType INT

DomainID INT

ServerID INT

UserNameID INT

DnsDomainNameID INT

Timestamp INT

BookMark TINYINT(1)

TSystemConfig

MajorVersion INT

MinorVersion INT

InnerVersion INT

MinSection INT

MaxSection INT

TURL

SHA1ID INT

OpTime INT

UrlID INT

Section INT

TURL2SHA1History

ModuleID INT

SourceUrlID INT

LandingUrlID INT

LandingTime INT

SHA1ID INT

Section INT

TURLHost

URLHostID INT

URLHost TEXT

URLHostHash INT

TURLID

UrlID INT

UrlStr TEXT

Host INT

URLHash INT

TURLLanding

LandingTime INT

DetectionResult SMALLINT

LandingUrlID INT

LandedUrlID INT

Section INT

TUpnMeta

UpnId INT

Upn TEXT

UpnHash BIGINT

FirstSight INT

BookMark TINYINT(1)

Figure 17: Trend Micro MBG database.

80

Table 32: Kaspersky. Kernel Drivers.
Driver Description Imports

klbackupdisk.sys Backup Disk Filter IoAttachDeviceToDeviceStackSafe
klbackupflt.sys Backup File Filter FltRegisterFilter

kldisk.sys Virtual Disk PsSetCreateProcessNotifyRoutine
klelam.sys Early Launch Anti Malware IoRegisterBootDriverCallback

klflt.sys Filter Core

PsSetCreateProcessNotifyRoutine
PsSetCreateThreadNotifyRoutine
IoRegisterPlugPlayNotification

IoRegisterBootDriverReinitialization

klhk.sys ???

PsSetLoadImageNotifyRoutine
IoRegisterShutdownNotification

KeStackAttachProcess
KeAddSystemServiceTable

klim6.sys Packet Filter NdisRegisterDeviceEx
klkbdflt.sys Keyboard Filter IoAttachDeviceToDeviceStackSafe
klmouflt.sys Mouse Filter IoAttachDeviceToDeviceStackSafe
klpd.sys Format Recognizer

klpnpflt.sys PnP Filter
kltap.sys OpenVPN Adapter NdisRegisterDeviceEx

klupd_klif_arkmon.sys Anti Rootkit Monitor
PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutine

klupd_klif_kimul.sys Kernel Heuristics Engine

klupd_klif_klark Anti Rootkit IoRegisterPlugPlayNotification
IoAttachDeviceToDeviceStack

klupd_klif_klbg.sys Boot Guard Driver
PsSetCreateProcessNotifyRoutine
PsSetCreateThreadNotifyRoutine
PsSetLoadImageNotifyRoutine

klupd_klif_mark.sys Anti Rootkit Memory Driver IoAttachDeviceToDeviceStack
klwfp.sys Network Filter FwpsCalloutRegister0
klwtp.sys Network Connection Filter FwpsCalloutRegister0
kneps.sys Network Processor

Table 33: Malware Bytes. Kernel Drivers.
Driver Description Imports

farflt.sys Anti Ransomware

FltStartFiltering
PsSetCreateThreadNotifyRoutine
PsSetLoadImageNotifyRoutine

PsSetCreateProcessNotifyRoutineEx
KeStackAttachProcess

mbae64.sys Anti Exploit
PsSetCreateProcessNotifyRoutine
PsSetLoadImageNotifyRoutine

KeStackAttachProcess

mbamchameleon.sys Chameleon

KeStackAttachProcess
PsSetCreateProcessNotifyRoutineEx
PsSetCreateThreadNotifyRoutine
PsSetLoadImageNotifyRoutine

mbamelam.sys Early Launch

mbamswissarmy.sys Swiss Army PsSetCreateProcessNotifyRoutineEx
KeStackAttachProcess

mbam.sys Real Time Protection
KeStackAttachProcess

PsSetCreateProcessNotifyRoutineEx
PsSetLoadImageNotifyRoutine

mwac.sys Web Protection
FwpmCalloutAdd0

PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutineEx

81

Table 34: Norton. Kernel Drivers.
Driver Description Imports

BHDrvx64.sys BASH Driver KeStackAttachProcess
ccSetx64.sys Common Client Settings

IDSvia64.sys IDS Core
KeStackAttachProcess
FwpmCalloutAdd0

NotifyUnicastIpAddressChange
IRONx64.sys IRON Driver
srtsp64.sys AutoProtect KeStackAttachProcess
srtspx64.sys AutoProtect

SymEFASI64.sys Extended File Attributes
SymELAM.sys ELAM

symnets.sys Network Security
FwpmCalloutAdd0

NotifyUnicastIpAddressChange
NotifyIpInterfaceChange

wpCtrlDrv.sys Webcam Protection IoAttachDeviceToDeviceStackSafe

Table 35: Trend Micro. Kernel Drivers.
Driver Description Imports

tmactmon.sys Activity Monitor KeStackAttachProcess

tmcomm.sys Common Module
KeStackAttachProcess

PsSetCreateProcessNotifyRoutine
ZwNotifyChangeKey

tmebc64.sys Early Boot Driver PsSetCreateProcessNotifyRoutine

tmeevw.sys Eagle Eye KeStackAttachProcess
FwpmCalloutAdd0

tmel.sys ELAM
tmevtmgr.sys Event Management PsSetCreateProcessNotifyRoutine
tmnciesc.sys NCIE Scanner PsSetCreateProcessNotifyRoutine

tm.sys Transaction Manager

tmumh.sys UMH Driver

PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutine
PsSetLoadImageNotifyRoutine

KeStackAttachProcess
tmusa.sys Osprey Scanner PsSetCreateProcessNotifyRoutine

Table 36: VIPRE. Kernel Drivers.
Driver Description Imports

atc.sys Active Threat Control (BitDefender)

KeStackAttachProcess
PsSetLoadImageNotifyRoutine

PsSetCreateProcessNotifyRoutineEx
PsSetCreateThreadNotifyRoutine

sbapifs.sys Active Protection (Threat Track)
PsSetLoadImageNotifyRoutine

PsSetCreateProcessNotifyRoutine
KeStackAttachProcess

sbwfw.sys VIPRE Firewall

KeStackAttachProcess
FwpmCalloutAdd0

NotifyUnicastIpAddressChange
NotifyIpInterfaceChange

sbwtis.sys Threat Track Firewall
FwpmCalloutAdd0

PsSetCreateThreadNotifyRoutine
KeStackAttachProcess

webexaminer64.sys Threat Track WFP FwpmCalloutAdd0

82

LOG_AEGIS

PemReport_version INT

Time INT

PemReport_Type INT

PemReport_SuspiciousLevel INT

RcaID VARCHAR(64)

PemReport_ProcessSha1 VARCHAR(64)

PemReport_DetectionInfo VARCHAR(128)

PemReport_CallerModuleSha1 VARCHAR(64)

PemPolicyMatched_SubjectProcessId INT

PemPolicyMatched_SubjectProcessImage VARCHAR(256)

PemPolicyMatched_SectionId VARCHAR(256)

PemPolicyMatched_PolicyId VARCHAR(256)

PemPolicyMatched_ConfidenceLevel INT

PemPolicyMatched_CallerModule VARCHAR(256)

PemPolicyMatched_MatchFlags INT

PemExploitInfo_EventType INT

PemExploitInfo_NewProtect INT

PemExploitInfo_ApiName VARCHAR(256)

PemExploitInfo_ModuleName VARCHAR(256)

PemExploitInfo_LibraryPath VARCHAR(256)

PemDocumentControlMatched_SubjectProcessImage VARCHAR(256)

PemDocumentControlMatched_ViolationRecordRow BLOB

PemDocumentControlMatched_SubjectProcessAction INT

PemDocumentControl_DetectionType INT

PemDocumentControl_UpperProcess VARCHAR(256)

PemDocumentControlMatched_VirusNameAfterReboot VARCHAR(256)

PemFeedback_TrackingId VARCHAR(64)

PemFeedback_Action INT

39 more...

LOG_COUNT

Time INT

TLBNAME VARCHAR(16)

Count INT

LOG_DIRECTPASS_STRENGTH

Time INT

fair_num INT

strong_num INT

tooshort_num INT

weak_num INT

LOG_DTP

Time INT

Protocol INT

Name VARCHAR(36)

ProcessID INT

ProcessPath VARCHAR(256)

LOG_ELAM

Time INT

Classification INT

ImageName VARCHAR(256)

RegistryPath VARCHAR(256)

ExtraInfo VARCHAR(256)

CertificateIssuer VARCHAR(256)

PolicyStatus INT

LOG_FILESCANNED

Time INT

Count INT

LOG_FOLDERSHIELD

time INT

FileData BINARY(1)

LOG_IAU

Time INT

Status INT

Download VARCHAR(100)

OriVersion VARCHAR(36)

NewVersion VARCHAR(36)

LOG_MALWARE

Time INT

ThreatType INT

ThreatName VARCHAR(256)

InfectedFile VARCHAR(256)

TrackingID VARCHAR(64)

ActionID INT

ActionResult INT

FileCompressed TEXT

Backup TEXT

ActionReason INT

EngineType INT

Domain TEXT

Account TEXT

Id INT

ToolToken VARCHAR(50)

IsQuarantine INT

ScanResult INT

ScannedBy INT

RcaID VARCHAR(50)

RcaGenerated INT

EmailFrom TEXT

EmailTo TEXT

EmailSubject TEXT

EmailProtocol INT

LOG_NCIE

Time INT

Version INT

ThreatType INT

Protocol INT

LocalIP VARCHAR(50)

RemoteIP VARCHAR(50)

LocalPort INT

RemotePort INT

Direction INT

ThreatName VARCHAR(256)

ProcessPath VARCHAR(256)

Action INT

Flag INT

RcaID VARCHAR(50)

RcaGenerated INT

LOG_PARENTCONTROL

Time INT

URL VARCHAR(512)

UserName VARCHAR(32)

ResAction INT

CategoryGroupCode VARCHAR(256)

CategoryGroupName VARCHAR(256)

ResType INT

LOG_PLATINUM_FILE

Time INT

BigFileSize INT

DupFileSize INT

LOG_PLATINUM_PRIVACY

Session VARCHAR(64)

Time INT

ActionType INT

Item VARCHAR(64)

Status INT

LOG_PLATINUM_STARTUPTIME

Session VARCHAR(64)

Time INT

ProgramName VARCHAR(256)

ProgramPath TEXT

ProgramType VARCHAR(16)

LoadingTime INT

Identifier BIGINT

LOG_PLATINUM_STORAGE

Session VARCHAR(64)

Time INT

browserTemp INT

recycler INT

userTemp INT

osTemp INT

winUpdateData INT

LOG_PLATINUM_SYSTEMINFO

Time INT

BootupTime INT

LOG_QUIETMODE

time INT

ProcessControlList BLOB

LOG_RANSOMWARE

time INT

ThreatType INT

ThreatName VARCHAR(256)

InfectedFile VARCHAR(256)

TrackingID VARCHAR(64)

ActionID INT

ActionResult INT

FileCompressed TEXT

Backup TEXT

ActionReason INT

EngineType INT

Domain TEXT

Account TEXT

Id INT

ToolToken VARCHAR(50)

IsQuarantine INT

ScanResult INT

ScannedBy INT

RcaID VARCHAR(50)

RcaGenerated INT

EmailFrom TEXT

EmailTo TEXT

EmailSubject TEXT

EmailProtocol INT

URL VARCHAR(512)

ResAction INT

CategoryGroupCode VARCHAR(256)

RealIp VARCHAR(256)

71 more...
LOG_RCA

Time INT

RcaID VARCHAR(50)

RcaReport BLOB

LOG_SECUREERASE

Time INT

FileName VARCHAR(260)

EraseLevel INT

LOG_SETTINGS

time INT

Settings VARCHAR(10000)

Key_ INT

LOG_SPYWARE

Time INT

CompanyId INT

CompanyName VARCHAR(256)

ItemRoot VARCHAR(256)

ItemName VARCHAR(256)

ItemLocation VARCHAR(256)

ItemValue VARCHAR(256)

ItemData VARCHAR(256)

ItemOptData VARCHAR(256)

ItemScanId INT

ItemSubType INT

ItemThreatId INT

TrackingID VARCHAR(64)

ActionID INT

ActionResult INT

Id INT

IsQuarantine INT

EngineType INT

Domain TEXT

Account TEXT

Backup TEXT

ScanResult INT

ScannedBy INT

RcaID VARCHAR(50)

RcaGenerated INT

EmailFrom TEXT

EmailTo TEXT

EmailSubject TEXT

EmailProtocol INT

LOG_SUMMARY

TLBNAME VARCHAR(256)

Time INT

Response VARCHAR(256)

TrackingID VARCHAR(64)

EngineType INT

ToolToken VARCHAR(50)

IsQuarantine INT

Backup TEXT

Id INT

ActionID INT

ActionResult INT

ThreatName VARCHAR(256)

InfectedFile VARCHAR(256)

ThreatType INT

FileCompressed TEXT

ScanResult INT

ScannedBy INT

RcaID VARCHAR(50)

RcaGenerated INT

LOG_UBM

Time INT

USID INT

ComponentID VARCHAR(64)

Value VARCHAR(128)

LOG_URLFILTER

Time INT

URL VARCHAR(512)

ResAction INT

CategoryGroupCode VARCHAR(256)

RealIp VARCHAR(256)

CredLevel INT

Mode INT

CategoryGroupName VARCHAR(256)

CredScore INT

ResType INT

DetectedBy INT

RcaID VARCHAR(50)

RcaGenerated INT

ProcessID INT

ProcessPath VARCHAR(256)

LOG_WIFIADV

time INT

APNAME VARCHAR(50)

AP_ID VARCHAR(50)

AP_MAC VARCHAR(50)

NIC_NAME VARCHAR(50)

NIC_ID VARCHAR(50)

NIC_MAC VARCHAR(50)

EVENT INT

SECURE_LEVEL INT

Figure 18: Trend Micro EventLog database.

83

1 alert tcp $NETWORK $PORT -> $NETWORK any (SBRuleId:XXX; msg:"[CVE -2018 -12826]..."; dsize:<
XXX; content:"HTTP /1.1␣200"; offset:XXX; depth:XXX; content:"Vector |0b|__AS3__.vec |06␣
53␣...."; distance:XXX; within:XXX; classtype:trojan -activity; SBRiskLevel :2;
SBCategory:"trojan -activity";)

Code 4: VIPRE’s Snort Rules.

84

