
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Marcus Felipe Botacin

Hardware-Assisted Malware Analysis

Análise de Malware com Suporte de Hardware

CAMPINAS
2017

Marcus Felipe Botacin

Hardware-Assisted Malware Analysis

Análise de Malware com Suporte de Hardware

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação, na área de Sistemas de
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science, in the Computer
Systems area.

Supervisor/Orientador: Prof. Dr. Paulo Lício de Geus
Co-supervisor/Coorientador: Prof. Dr. André Ricardo Abed Grégio

Este exemplar corresponde à versão final da
Dissertação defendida por Marcus Felipe
Botacin e orientada pelo Prof. Dr. Paulo
Lício de Geus.

CAMPINAS
2017

Agência(s) de fomento e nº(s) de processo(s): CAPES
ORCID: http://orcid.org/0000-0001-6870-1178

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Márcia Pillon D'Aloia - CRB 8/5180

 Botacin, Marcus Felipe, 1991-
 B657h BotHardware-assisted malware analysis / Marcus Felipe Botacin. – Campinas,

SP : [s.n.], 2017.

 BotOrientador: Paulo Lício de Geus.
 BotCoorientador: André Ricardo Abed Grégio.
 BotDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Bot1. Malware (Software). 2. Tecnologia da informação - Sistemas de

segurança. I. Geus, Paulo Lício de,1956-. II. Grégio, André Ricardo Abed. III.
Universidade Estadual de Campinas. Instituto de Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Análise de malware com suporte de hardware
Palavras-chave em inglês:
Malware (Computer software)
Information technology - Security measures
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Paulo Lício de Geus [Orientador]
Carlos Alberto Maziero
Sandro Rigo
Data de defesa: 28-07-2017
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Marcus Felipe Botacin

Hardware-Assisted Malware Analysis

Análise de Malware com Suporte de Hardware

Banca Examinadora:

• Prof. Dr. Paulo Lício de Geus
IC/UNICAMP

• Prof. Dr. Carlos Alberto Maziero
DInf/UFPR

• Prof. Dr. Sandro Rigo
IC/UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 28 de Julho de 2017

Acknowledgements

To my family, for supporting me.
To my friends, for walking along me.
To Paulo and André, for advising me since I was an undergraduate student.

Resumo

O mundo atual é impulsionado pelo uso de sistemas computacionais, estando estes pre-
sentes em todos aspectos da vida cotidiana. Portanto, o correto funcionamento destes
é essencial para se assegurar a manutenção das possibilidades trazidas pelos desenvolvi-
mentos tecnológicos. Contudo, garantir o correto funcionamento destes não é uma tarefa
fácil, dado que indivíduos mal-intencionados tentam constantemente subvertê-los visando
benefíciar a si próprios ou a terceiros. Os tipos mais comuns de subversão são os ataques
por códigos maliciosos (malware), capazes de dar a um atacante controle total sobre uma
máquina. O combate à ameaça trazida por malware baseia-se na análise dos artefatos
coletados de forma a permitir resposta aos incidentes ocorridos e o desenvolvimento de
contramedidas futuras. No entanto, atacantes têm se especializado em burlar sistemas
de análise e assim manter suas operações ativas. Para este propósito, faz-se uso de uma
série de técnicas denominadas de “anti-análise”, capazes de impedir a inspeção direta dos
códigos maliciosos. Dentre essas técnicas, destaca-se a evasão do processo de análise, na
qual são empregadas exemplares capazes de detectar a presença de um sistema de análise
para então esconder seu comportamento malicioso. Exemplares evasivos têm sido cada
vez mais utilizados em ataques e seu impacto sobre a segurança de sistemas é considerá-
vel, dado que análises antes feitas de forma automática passaram a exigir a supervisão de
analistas humanos em busca de sinais de evasão, aumentando assim o custo de se manter
um sistema protegido. As formas mais comuns de detecção de um ambiente de análise se
dão através da detecção de: (i) código injetado, usado pelo analista para inspecionar a
aplicação; (ii) máquinas virtuais, usadas em ambientes de análise por questões de escala;
(iii) efeitos colaterais de execução, geralmente causados por emuladores, também usados
por analistas. Para lidar com malware evasivo, analistas tem se valido de técnicas ditas
transparentes, isto é, que não requerem injeção de código nem causam efeitos colaterais
de execução. Um modo de se obter transparência em um processo de análise é contar com
suporte do hardware. Desta forma, este trabalho versa sobre a aplicação do suporte de
hardware para fins de análise de ameaças evasivas. No decorrer deste texto, apresenta-se
uma avaliação das tecnologias existentes de suporte de hardware, dentre as quais máqui-
nas virtuais de hardware, suporte de BIOS e monitores de performance. A avaliação crítica
de tais tecnologias oferece uma base de comparação entre diferentes casos de uso. Além
disso, são enumeradas lacunas de desenvolvimento existentes atualmente. Mais que isso,
uma destas lacunas é preenchida neste trabalho pela proposição da expansão do uso dos
monitores de performance para fins de monitoração de malware. Mais especificamente, é
proposto o uso do monitor BTS para fins de construção de um tracer e um debugger. O
framework proposto e desenvolvido neste trabalho é capaz, ainda, de lidar com ataques
do tipo ROP, um dos mais utilizados atualmente para exploração de vulnerabilidades. A
avaliação da solução demonstra que não há a introdução de efeitos colaterais, o que per-
mite análises de forma transparente. Beneficiando-se desta característica, demonstramos
a análise de aplicações protegidas e a identificação de técnicas de evasão.

Abstract

Today’s world is driven by the usage of computer systems, which are present in all aspects
of everyday life. Therefore, the correct working of these systems is essential to ensure the
maintenance of the possibilities brought about by technological developments. However,
ensuring the correct working of such systems is not an easy task, as many people attempt
to subvert systems working for their own benefit. The most common kind of subversion
against computer systems are malware attacks, which can make an attacker to gain com-
plete machine control. The fight against this kind of threat is based on analysis procedures
of the collected malicious artifacts, allowing the incident response and the development
of future countermeasures. However, attackers have specialized in circumventing analysis
systems and thus keeping their operations active. For this purpose, they employ a series
of techniques called anti-analysis, able to prevent the inspection of their malicious codes.
Among these techniques, I highlight the analysis procedure evasion, that is, the usage of
samples able to detect the presence of an analysis solution and then hide their malicious
behavior. Evasive examples have become popular, and their impact on systems security
is considerable, since automatic analysis now requires human supervision in order to find
evasion signs, which significantly raises the cost of maintaining a protected system. The
most common ways for detecting an analysis environment are: i) Injected code detec-
tion, since injection is used by analysts to inspect applications on their way; ii) Virtual
machine detection, since they are used in analysis environments due to scalability issues;
iii) Execution side effects detection, usually caused by emulators, also used by analysts.
To handle evasive malware, analysts have relied on the so-called transparent techniques,
that is, those which do not require code injection nor cause execution side effects. A
way to achieve transparency in an analysis process is to rely on hardware support. In
this way, this work covers the application of the hardware support for the evasive threats
analysis purpose. In the course of this text, I present an assessment of existing hardware
support technologies, including hardware virtual machines, BIOS support, performance
monitors and PCI cards. My critical evaluation of such technologies provides basis for
comparing different usage cases. In addition, I pinpoint development gaps that currently
exists. More than that, I fill one of these gaps by proposing to expand the usage of
performance monitors for malware monitoring purposes. More specifically, I propose the
usage of the BTS monitor for the purpose of developing a tracer and a debugger. The
proposed framework is also able of dealing with ROP attacks, one of the most common
used technique for remote vulnerability exploitation. The framework evaluation shows no
side-effect is introduced, thus allowing transparent analysis. Making use of this capability,
I demonstrate how protected applications can be inspected and how evasion techniques
can be identified.

List of Figures

1.1 Anti-analysis technique usage evolution by sample (A sample may use more
than one at a time). Source: [28] . 17

2.1 Abstraction levels for distinct monitoring techniques. 26
2.2 VM operating layers. 26
2.3 VM memory operation. 28
2.4 Example of a ROP attack - Computing with memory values. Left side

shows a program stack filled with malicious payload (gagdets addresses);
right side illustrates how the possible gadgets look like. 61

2.5 Example of a Branch Stack. 62
2.6 Proposed Architecture. The processor fetches branch instructions from the

monitored code, which trigger the BTS threshold. The raised interrupt is
handled by an ISR at a kernel driver. The captured data is sent to the
userland framework where introspection and disassembling are performed
and policies are applied. 66

2.7 Instrospection mechanism: from raw addresses to functions. 70
2.8 Block identification of two 8-bytes consecutive branches. 72
2.9 Step-Into call graph, all intermediate calls represented. 74
2.10 Step-Over call graph, only CALL/RET represented. 74
2.11 Reconstructed CFG from Listing 2.5 example code. 75
2.12 Step-into CFG. 77
2.13 Step-over CFG. 77
2.14 Uplay execution under an ordinary debugger. 82
2.15 Uplay execution under our solution. 82
2.16 Alert raised by our solution when an attack is detected. 83
2.17 Example of a flow divergence between the code running on bare metal and

on the emulated monitor. 86
2.18 True divergence. 87
2.19 False divergence. 87

3.1 Code Coverage. Example A. The blue values come from the green CALLs.
The last green value is the function return. 104

3.2 Code Coverage. Example B. The blue value is the target of an external
function call. The green value is an unconditional branch. 104

3.3 Code Coverage. Even Values. The gray instructions correspond to the
non-executed odd function. 104

3.4 Code Coverage. Odd Values. The gray instructions correspond to the
non-executed even function. 104

3.5 Dead Code Identification. The gray instructions were not executed. 105

3.6 System Architecture. The data acquisition procedure in user-land is de-
coupled from kernel-land, allowing lower overheads by core-offloading client
processing. 109

3.7 Simultaneous multi-process monitoring: Accumulated branches for each 1-
second interval. The branch-rate for each process may be used for system
profiling and side-channel attack detection. 111

3.8 Multi-core monitoring: Accumulated branches for each 1-second interval.
Enabling the mechanism on all system cores eases whole-system profiling. . 112

A.1 Enabling monitoring: Flags should be set in this MSR in order to activate
LBR, BTS and interrupts. The bitmask also defines the data capture scope
(user and/or kernel-land). Source: Intel manual [78] 135

A.2 LBR MSRs. When LBR is activated, data is stored on LBR MSRs. Branch
source addresses are stored on FROM MSRs whereas branch target ad-
dresses are stored on TO MSRs. These MSR registers are numbered from
0 to N-1, according the number of MSR registers available on the processor.
Source: [78] . 136

A.3 DS MSR. The address pointed by the DS MSR is an OS allocated page
having pointers for the BTS and PEBS mechanisms. Source: [78] 136

A.4 DS fields. The BTS and/or PEBS fields should be filled with the base
address of another OS allocated page, which will store the captured data
itself. Besides, it should be filled with pointers to the current stored entry,
maximum allowed entry, and threshold addresses. Source: [78] 137

A.5 BTS Filtering. By setting the proper flags, data is captured only when the
capture condition is satisfied. Source: [78] 137

A.6 LVT. A series of entries which control interrupts according their source.
Source: [78] . 138

A.7 Performance Counter at LVT. When an PMI occurs, the processor looks
into the performance counter entry to identify how the interrupt has to be
handled. Source: [78] . 138

A.8 Interrupt Configuration. For a given interrupt type, we should set delivery
mode and the vector number, whose IDT entry points to the correct ISR.
Source: [78] . 139

List of Tables

1.1 Identified anti-VM techniques and number of samples showing them. Source: [28] 17

2.1 Summary of HVM-based tools and solutions. 50
2.2 Summary of SMM-based tools and solutions 51
2.3 Summary of privileged rings-based tools and solutions. 52
2.4 Summary of hardware-based tools and solutions. 52
2.5 Summary of performance counters-based tools and solutions. 53
2.6 Protection mechanisms used by overviewed solutions. 54
2.7 Comparison of solutions according to their purposes. 55
2.8 Comparison of solutions according to their overhead. 56
2.9 Comparison of solutions according to development effort. 56
2.10 ASLR - Library placement after two consecutive reboots. 69
2.11 Function Offsets from ntdll.dll library. 70
2.12 CALL Opcodes. 71
2.13 RET Opcodes. 71
2.14 ROP exploit test results . 83
2.15 Excerpt of the ROP payload’s branch window. 84
2.16 Anti-analysis tricks found due to branch-diverged behavior. 87
2.17 Benchmarking the system with and without the monitor. 93

3.1 Solutions Comparison. Comparing our solution to other approaches re-
garding distinct usage scenarios. 98

Abbreviation List

AMT . Active Management Technology
APIC .Advanced Programmable Interrupt Controller
APT .Advanced Persistent Threats
ASLR .Address Space Layout Randomization
AV .Anti-virus
BIOS . Basic Input Output System
BPU .Branch Prediction Unity
BTS . Branch Trace Store
DBG .Debugger
CG .Call Graph
CFG . Control Flow Graph
CFI .Control Flow Integrity
DBI .Dynamic Binary Instrumentation
DBT . Dynamic Binary Translation
DEP . Data Execution Prevention
DLL . Dynamic Linked Library
DMA . Direct Memory Access
EPT .Extended Page Table
GDB .GNU Debugger
GPU .Graphical Processing Unity
HAL . Hardware Abstraction Layer
HAW .Hardware-Assisted White-listing
HPC . Hardware Performance Counter
HVM .Hardware Virtual Machine
I/O . Input/Output
IDS . Intrusion Detection System
IDT .Interrupt Descriptor Table
IOT . Internet Of Things
IPMI . Intelligent Platform Management Interface
IPS . Intrusion Prevention System
IRQ .Interrupt Request
ISR . Interrupt Service Routine
JOP .Jump Oriented Programming
KPP .Kernel Patch Protection
LBR .Last Branch Record
LOP . Loop Oriented Programming
LVM . Logical Volume Manager
LVT . Local Vector Table
MALWARE .Malicious Software

ME .Management Engine
MITM . Man-In-The-Middle
MMU .Memory Management Unity
MSR .Model Specific Register
MTF .Monitor Trap Flag
NDIS . Network Driver Interface Specification
NMI . Non-Maskable Interrupt
NPT .Nested Page Table Translation
NX . No-Execute
OS .Operating System
PAE . Physical Address Extension
PCI .Peripheral Component Interconnect
PE .Portable Executable
PEBS .Precise Event Based Sampling
PMI . Performance Monitoring Interrupt
PXE .Preboot eXecution Environment
ROP .Return Oriented Programming
SGX . Software Guard Extensions
SMI . System Management Interrupt
SMM .System Management Mode
SMRAM .System Management RAM
SOC . System On a Chip
STM . Software Transactional Memory
SVD .Singular Value Decomposition
SVM . Secure Virtual Machine
TCB .Trusted Code Base
TLB . Translation Look-Aside Buffer
TPM .Trusted Platform Module
TSC . Time Stamp Counter
TSX .Transactional Synchronization Extensions
USB .Universal Serial Bus
USB-HC .Universal Serial Bus-Host Controller
VM .Virtual Machine
VMCB .Virtual Machine Control Block
VMCS .Virtual Machine Control Structure
VMI .Virtual Machine Introspection
VMM .Virtual Machine Monitor
XD . Execute Disable

Contents

1 Introduction 16
1.1 Motivation . 16
1.2 Objectives . 18
1.3 Contributions . 19

1.3.1 Publications . 20
1.4 Background . 21

1.4.1 Semantic Gap . 21
1.4.2 Introspection . 21

1.5 Outline . 22

2 Papers 23
2.1 Who watches the watchmen: A review of techniques, tools and methods to

counterfeit anti-analysis techniques on modern platforms 23
2.2 Abstract . 23
2.3 Introduction . 24
2.4 Initial Approaches and their limitations . 25
2.5 Hardware Assisted Hypervisor-Based Approaches 27

2.5.1 HVM background . 27
2.5.2 HVM threats . 29
2.5.3 Malware Analysis . 29
2.5.4 Malware Debugging . 31
2.5.5 A Combined Approach . 32
2.5.6 HVM for Security Policy Enforcement 33
2.5.7 HVM for Attack Prevention and System Integrity 33
2.5.8 HVM for Forensic Procedures . 34
2.5.9 VMI limits . 35

2.6 SMM-based techniques . 36
2.6.1 SMM Background . 36
2.6.2 SMM Threats . 38
2.6.3 SMM for Debugging . 39
2.6.4 SMM for Forensic Purposes . 39
2.6.5 SMM for attack detection and prevention 40
2.6.6 SMM for I/O Integrity . 41
2.6.7 Who protects the hypervisor? . 41
2.6.8 SMM security issues . 42

2.7 The battle of the rings . 43
2.7.1 Management Engine: the lord of the rings 43
2.7.2 Isolated rings and SGX . 43

2.8 Hardware-based techniques . 44
2.8.1 A brief discussion on hardware-based approaches 46

2.9 Other Approaches . 46
2.9.1 Performance Counters . 47
2.9.2 Graphics Processing Units . 48
2.9.3 Transactional Memories . 49

2.10 Summary . 49
2.11 Conclusions . 54
2.12 Enhancing Branch Monitoring for Security Purposes: From Control Flow

Integrity to Malware Analysis and Debugging 56
2.13 Abstract . 57
2.14 Introduction . 57
2.15 Background and threat model . 58

2.15.1 Malware analysis and evasion . 58
2.15.2 Current solutions for evasive malware 59
2.15.3 Transparency . 59
2.15.4 Debuggers: requirements and implementations 60
2.15.5 Current debugger implementations 60
2.15.6 ROP attacks . 61
2.15.7 Performance monitoring . 62
2.15.8 Threat model . 63

2.16 Related work . 63
2.17 Proposed framework . 65

2.17.1 Driver: all about the basis . 67
2.17.2 Handling Interrupts . 67
2.17.3 Handling Data . 68
2.17.4 Performing I/O . 68
2.17.5 What happens after an interrupt 68
2.17.6 Handling monitor branch data . 69
2.17.7 Clients: where the magic happens 69
2.17.8 Introspection . 69
2.17.9 Looking into memory . 70
2.17.10Validation . 72

2.18 Applications . 73
2.18.1 Malware Tracer . 73
2.18.2 Call Graph . 73
2.18.3 Control Flow Graph . 74
2.18.4 Modular malware . 77
2.18.5 Real malware tests . 79
2.18.6 Debugger . 79
2.18.7 Project . 79
2.18.8 Debugger client implementation . 80
2.18.9 Validation test . 81
2.18.10ROP Detector . 82
2.18.11Anti-Analysis tricks detection . 84
2.18.12Execution deviation detection at branch-level 85

2.19 Discussion, limitations and future work . 88
2.19.1 Suggestions for Branch Monitoring improvement 95

2.19.2 Future Work . 95
2.20 Conclusion . 95

3 Discussion 97
3.1 Contributions . 97

3.1.1 Solutions comparison . 97
3.2 The Framework . 98

3.2.1 Process Isolation . 98
3.2.2 Transparency . 99
3.2.3 Implementation efforts . 99
3.2.4 Portability . 99
3.2.5 Tracer . 100
3.2.6 CG Reconstruction . 100
3.2.7 CFG Reconstruction . 101
3.2.8 Trace example . 101
3.2.9 Code Coverage . 103
3.2.10 Debugger . 104
3.2.11 ROP Detection . 106
3.2.12 ROP Detection Policies . 106
3.2.13 Performance . 108
3.2.14 Framework Architecture and performance 109

3.3 Other branch monitor-based solutions . 110
3.4 Future Directions . 111

3.4.1 Multi Process . 111
3.4.2 Multi-core . 112

3.5 Reproducibility . 112

4 Conclusion 113
4.1 Future Work . 113

Bibliography 115

A Appendix 135
A.1 Branch Monitor Implementation . 135

A.1.1 Enabling monitors and interrupts 135
A.1.2 Handling branch-related structures 139

Chapter 1

Introduction

1.1 Motivation
In today’s world, computer systems mediate most of our interactions, with either physical
or digital media. In this scope, the proper working of such systems is always worrisome.
One of the main threats against computer systems is malicious code (also referred to as
malware—malicious software), since it directly affects systems’ capabilities.

Malware can compromise systems—by luring users or exploiting vulnerabilities—and
thus cause a wide range of damage, from data leaks to financial losses. As the technology is
widespread, malware has potential to reach a significant fraction of the world population.

As an example of damage extension caused by malware, FEBRABAN—the Brazilian
Bank Federation—estimated losses of around US$ 500 million in 2015 [62, 81]. RSA
researchers, in turn, estimated losses of US$ 3.8 billion on Brazilian bank payment bills
(a.k.a. boletos) [104]; according to the FBI, the Cryptowall ransomware has yielded US$
18 million from its victims [188].

The usual way of handling malware is through analysis procedures, in which a given
sample is run in a controlled environment in order to provide to the analyst information
about its behavior [179]. By relying on collected data, security professionals are able to
understand attacks, develop patches, vaccines and other countermeasures.

The effectiveness of incident responses depends on the capabilities of sample analysis
, since a malware will keep infecting users if no countermeasure is taken. However, the
analysis of an unknown piece of code may fail due to a lot of reasons: corrupted files,
missing components and anti-analysis techniques.

Anti-analysis techniques are pieces of code intended to detect if a process is running
under an analysis environment. If so, the execution is terminated and the analysis is
unable to proceed. Some samples also rely on split personalities, in which, on detection of
an analysis environment, the malicious behavior is averted and only mild or completely
benign behavior is observed. This way, as no countermeasure could possibly be developed,
the piece of code keeps threatening users.

Given this scenario, concerns about the samples that do employ some kind of anti-
analysis trick arise naturally. A previous work of mine [28] analyzed more than 25 thou-
sand malware samples operating in the Brazilian cyberspace between 2012 and 2015 and
allowed observation of the first signs of evasive malware usage, which indicates armored

16

CHAPTER 1. INTRODUCTION 17

malware analysis may become a problem for our country in the near future.
The graph from Figure 1.1 shows how distinct anti-analysis technique usage evolved

over time. In the 2012 to 2014 period, all techniques showed growth, which may indicate
a tendency for future years.

 0%

10%

20%

30%

40%

50%

60%

70%

2012 2013 2014 2015

Sample Distribution (%) X Obfuscation Technique

Packer
Anti−Dbg
Anti−VM

Figure 1.1: Anti-analysis technique usage evolution by sample (A sample may use more
than one at a time). Source: [28]

A particular set of techniques of interest are those related to virtual-machine evasion.
By looking at Table 1.1, we are able to identify its use in Brazilian samples. Although not
prevalent yet, the knowledge of such techniques by some criminals is clear, so increased
use is expected in the future.

Technique # Samples
VMCheck.dll 2,729 (10.48%)
VMware trick 850 (3.26%)
VirtualBox Detection 306 (1.17%)
Bochs & QEmu CPUID trick 340 (1.31%)
VirtualPC trick 17 (0.07%)

Table 1.1: Identified anti-VM techniques and number of samples showing them.
Source: [28]

In addition to the Brazilian scenario, many other anti-analysis techniques can be found

CHAPTER 1. INTRODUCTION 18

spread worldwide [30, 15], which was the main motivation to consider evasive malware is
the primary concern of this work.

Recent studies about malware evasion have pointed that the key factor for analysis
detection is that analysis solutions are not transparent—the analysis environment behaves
in different ways in comparison to an ordinary user environment. If we could make those
environments look more similar, samples would not have enough information to decide
whether they are in an analysis environment or not.

In a more technical way, transparency is achieved by keeping samples’ integrity and not
introducing side effects. These two points are strong constraints for analysis solutions,
since no code injection, hooking or emulation is allowed. As such, hardware-assisted
approaches have appeared as an alternative way of fulfilling the transparency requirement,
which was chosen to be this work’s research line.

To start with, I present a comprehensive literature review on hardware-assisted tech-
niques in the security context. This review provides a broad comparison of techniques,
highlighting strong and weak points, and also pinpointing development gaps—security so-
lutions which would benefit from hardware support. One significant gap I have identified
is the use of performance counters for monitoring tasks. This way, I made a significant
effort on developing their use on broader scenarios—for debugging and tracing—than
they were originally designed to work with. Both contributions are presented as a paper
collection, whose full content is presented in the next chapter.

1.2 Objectives
My main goal in this dissertation is to evaluate the use of transparent solutions to handle
anti-analysis-armored malicious code. The literature review, presented further ahead, has
revealed a gap in the use of performance counters for such purpose, thus I dedicated
a great effort on studying this mechanism. This way, in general terms, my goals are
presented as questions to be answered during the research development:

• Could I develop a performance-counter-based malware analyzer? This
topic aims to answer whether the branch-collected data along with introspection
procedures are enough to analyze malware and what limitations they present.

• Could I isolate processes’ actions? This topic aims to answer whether the
branch monitor mechanism can isolate malware actions from its system-wide col-
lected data.

• Is the conceived solution’s overhead acceptable? This topic aims to answer
whether the added introspection procedures make the analysis still feasible when
compared to the state-of-the-art tools.

• Could the solution run in real-time? This topic aims to answer whether the
added introspection procedures allows for real-time monitoring or is limited to offline
analysis.

CHAPTER 1. INTRODUCTION 19

• Is the final solution transparent? This topic aims to answer whether the data
collection required for introspection interferes with analysis’ transparency or not.

• Is the solution easy to implement? This topic aims to answer what the devel-
opment cost is when compared to state-of-the-art solutions.

• Is the solution portable? This topic aims to answer whether the adopted intro-
spection procedure can be ported to other systems or not.

My specific goals are the following:

• Is Call Graph (CG) reconstruction possible? This topic aims to answer which
level of granularity I am able to achieve when handling function call data.

• Is Control Flow Graph (CFG) reconstruction possible? This topic aims
to answer which level of granularity I am able to achieve when handling executed
instruction data.

• Could I develop a Debugger? This topic aims to answer whether my solution
can be used for real-time inspection or not, regarding inspected-state consistency.

• Does the solution handle Return-Oriented Programming (ROP) attacks?
This topic aims to provide a comparison with existing branch-based monitoring
tools.

1.3 Contributions
The contributions of this dissertation are those from the included papers. In order to
make my claims clearer, I summarized them below.

The contributions from the paper “Who watches the watchmen” are the following:

• I present current state-of-the-art malicious code attacks and current tools’ limita-
tions.

• I claim the need for transparent systems to overcome current tools’ limitations.

• I introduce the working mechanism of hardware-assisted, transparent approaches to
a range of security tools.

• I present security tools based on this mechanism.

• I evaluate this mechanism according to several criteria, such as protection, trans-
parency, overhead and development efforts.

• I highlight existing development gaps in the evaluated techniques.

The contributions from the paper “Enhancing Branch Monitoring for Security Pur-
poses” are the following:

CHAPTER 1. INTRODUCTION 20

• Current Threats and Solutions scenario review: I present a review of the
threat landscape scenario and current countermeasure and analysis tools, discussing
their advantages and weaknesses. Specifically, I review transparent analysis solu-
tions as well as branch-based ones.

• Branch monitoring framework: I propose a complete, modular framework based
on hardware monitoring features, allowing for further applications that overcome
current and future state-of-the-art limitations and weak points.

• Transparent malware analysis: I leverage my framework to build a transparent
malware analysis tool with lower development efforts than the current state-of-
the-art ones. As far as I know, no other malware tracer is based on this kind of
monitoring.

• Transparent debugger: I demonstrate how to implement granular debugging
based on my framework without using single-step flags. Again, I have no knowledge
of other debugging solutions based on branch monitors.

• ROP attack detector: I present an improved implementation of current ROP
detection heuristics, based on my framework, which does not require code injection
and is a limitation of other approaches.

• Hardware Improvements: I suggest possible hardware enhancements for branch
monitors based on the challenges I faced when developing my solution.

1.3.1 Publications
While the research was being pursued, some work have been accepted or submitted for
publication, although not all of them were included in this dissertation. However, as each
work contributed to the dissertation one way or another, I think it is reasonable to give
them a mention. Below I discuss each one’s implication for this dissertation.

• The paper “The Other Guys: Automated Analysis Of Marginalized Malware” was
published in the “Springer Journal of Computer Virology and Hacking Techniques”
(JCVHT) [26]. This paper is the result of a previous research and the presented
sandbox was used as a ground-truth for detecting evasive samples. It also presents
the sandbox mentioned in the TOPS article.

• The paper “One Thousand and One Nights: Brazilian Malware Stories” was also
submitted to the JCVHT [28]. This paper is the result of a previous research and
its threat review is used as underlying support for the Brazilian scenario landscape
presented in the dissertation’s introduction.

• The paper “Who watches the watchmen: A review of techniques, tools and meth-
ods to counterfeit anti-analysis techniques on modern platforms” was submitted to
“ACM Computing Surveys” (CSUR) [29] and is embedded in this work as part of my
contributions. This paper may be understood as my literature review and critical
evaluation of the current hardware-assisted security scenario.

CHAPTER 1. INTRODUCTION 21

• The paper “Enhancing Branch Monitoring: From Control Flow Integrity to Mal-
ware Analysis and Debugging” was submitted to “ACM Transactions On Privacy
and Security” (TOPS) [27] and is embedded in this work as part of my contribu-
tions. This paper may be understood as my final solution proposal for the stated
problem. Preliminary results from this work were published in the “XVI Brazilian
Symposium on Information and Systems Security” (SBSEG) in the form of the fol-
lowing articles: “VoiDbg: Projeto e Implementação de um Debugger Transparente
para Inspeção de Aplicações Protegidas” [25]; “Detecção de ataques por ROP em
tempo real assistida por hardware” [24]; “Análise Transparente de Malware com
Suporte por Hardware” [23].

1.4 Background
Along the referred papers, I have assumed some concepts are known to the reader. In
order to allow any reader to follow this text, I define them here.

1.4.1 Semantic Gap
The semantic gap problem is the information representation difference on distinct levels.
As an example, consider the differences between programming languages and assembly
code. As can be noticed, the first is richer than the second, given that it provides,
for instance, independent, context-related variable names whereas the second works over
context-independent, shared registers. The semantic gap problem can also be seen in
other contexts, such as computer forensics. When handling memory dumps, data is
seen as a byte-array whereas at the OS level bytes are seen as parts of complex context
structures, such as processes, descriptors and handlers. It is important to notice that such
representation difference is intrinsic to the distinct technologies involved and as such is
present along this work, since we are interested in hardware solutions to monitor OS-level
structures.

1.4.2 Introspection
Considering the stated semantic gap problem, we notice that fully bridging such gap, thus
having the same representation, may be theoretically impossible, since it is technology-
inherent. However, some information may be retrieved. As an example, low-level instruc-
tion addresses can be mapped to libraries’ base address when these are known. Similarly,
memory-dumped bytes can be interpreted as structs when these are known. This infor-
mation recovering process is often named introspection, since one is outside looking to an
inside structure, for a given representation level. Introspection procedures are discussed
along this work, since all hardware-assisted approaches have to bridge this gap to some
extent.

CHAPTER 1. INTRODUCTION 22

1.5 Outline
This dissertation is based on a two-paper collection, presented in Chapter 2 as they were
submitted for publication. Chapter 3 summarizes my results and presents a discussion of
their implications. Finally, I draw my conclusions and present future work in Chapter 4.

Chapter 2

Papers

2.1 Who watches the watchmen: A review of tech-
niques, tools and methods to counterfeit anti-
analysis techniques on modern platforms

Publication: This paper was submited for publication to the ACM Computing Surveys
(CSUR)

Marcus Botacin1, Paulo de Geus2, André Grégio3,
(1) University of Campinas

Email: marcus@lasca.ic.unicamp.br
(2) University of Campinas

Email: paulo@lasca.ic.unicamp.br
(3) Federal University of Paraná

Email: gregio@inf.ufpr.br

2.2 Abstract
Malicious software are still threatening users on a daily basis and their evolution goes
from social-engineering-based bankers to advanced persistent threats (APTs). Recent
research and discoveries have presented us to a wide range of anti-analysis and evasion
techniques, in-memory attacks, such as Returned Oriented Programming (ROP), and
systems subversion, including BIOS and hypervisors. This work presents a survey on
techniques able to detect, mitigate and analyze these kinds of attacks, which require
transparent and fine-grained environments as analysis resources. We cover current tools’
limitations, such as not being fully-transparent, and introduce systems and techniques
to overcome and/or mitigate these constraints. The work presents approaches based on
hypervisor introspection, System Managment Mode (SMM) instrumentation as well as
some hardware-based ones. We also present some threats based on the same techniques.
Our main goal is to give to the reader a broader and more comprehensive understanding

23

CHAPTER 2. PAPERS 24

of recently-surfaced tools and techniques.

2.3 Introduction
Malicious software (also known as malware) attacks are one of the main computer system
security threats and their importance and spreading continuoe to grow. Reported data[9]
shows malware dissemination exceeds rates of 60 thousand new samples per day, with mal-
ware for mobile devices having had a particular growth[189]. In all, losses amounted to
around 200 million dollars in 2016’s first quarter[63]. In order to handle security incidents
generated by malware actions, researchers have proposed a lot of tools to mitigate (Intru-
sion Detection Systems), prevent (Intrusion Prevention Systems, packet filters), remedy
(antivirus, vaccines) and analyze (sandboxes) such malware. But more than growing in
number, malware also have been growing in complexity, being able to bypass filters by
applying polymorphism, evade sandboxes by detecting virtualized environments and even
to subvert whole system operation by taking hypervisor control on virtualized systems.

As threats have been evolving, security has been taking a reactive posture and engaging
the opposing sides into an arms race. Some new tools were recently proposed in order to
handle new security issues related to modern malware, but a clear scenario/panorama is
yet to be formed, which motivates us to work on this survey.

Most new approaches are based on techniques to stealthly and transparently acquire
data from analyzed systems, notably System Managment Mode (SMM) and Hardware-
Assisted Introspection, which are explored in detail in further sections. Having this kind
of system introspection allows the analyst to get a fine-grained view of samples, even
from those employing common evasion techniques, given that the systems are hardware-
supported and run on the most priviledged ring, as is desired for reliable experiments[159].
Moreover, these systems natively handle kernel data, which allows for rootkit analysis and
detection, a recurrent limitation from analysis systems running on the guest OS.

This survey is not limited to sandbox analysis, rather also covering forensic procedures
that can be performed with these new techniques and allow live-procedure without mal-
ware sample-awareness. Besides, we review whole system monitoring tools and present
tools for system and hypervisor integrity, which are on the frontend of new malware at-
tacks. In addition, we extend our overview to general attack classes when it is allowed
by the investigated solution. In summary, we aim to provide a deep understanding of
hardware-assisted isolated execution environments, as stated by Zhang [222].

As these techniques are still in their early uses, new threats to them are also still
evolving, leading to a dangerous scenario of stealth and Operating System-independent
threats, which we deem important to provide a current overview. Finally, we will present
applications built with these underlying techniques and related work that might lead
research in that area.

This work is organized as follows: Section 2.4 presents current monitoring tool ap-
proaches and their limitations, with special emphasis on their drawbacks and how mal-
ware are exploiting them. Section 2.5 describes the hardware-assisted hypervisor, its inner
workings, current threats and how tools can be deployed using current processor support

CHAPTER 2. PAPERS 25

for virtualization. Section 2.6 introduces the use of this priviledged processor mode to get
a complete system view for both malicious and legitimate use cases. Section 2.7 presents
the concepts of privileged rings and isolated execution environments. Section 2.8 presents
some hardware-design tools to achieve system independent monitoring. Section 2.9 intro-
duces complementary approaches to perform system introspection and behavior analysis.
Section 2.10 show tables that aim to summarize the presented approaches. Finally, in
Section 2.20 we present our conclusions and some directions for the future.

2.4 Initial Approaches and their limitations
Considering the limitations from static analysis[129], dynamic monitoring is the most
effective technique for system monitoring and analysis, since the extracted behavioral
information may support a diversity of incident-response measures[84]. However, the
quality of these measures is directly affected by the quality of the dynamic analysis data
extraction process. If a malware could evade the analysis process or subvert some mon-
itoring mechanism, the incident response effort would be ineffective. Handling evasive
and subversive malware is one of biggest challenges system monitors face nowadays. The
particular challenges each monitor type faces are discussed below.

The survey by Egele et al. [59] points to analysis that can be done by instrumenting
the monitored binary or system. Binary monitoring usually employs some kind of code
injection, such as Microsoft detours or DLL injection, in order to instrument the binary.
The injection may be detected by a malware that checks its memory integrity, thereby
leading to an analysis evasion. System instrumentation may be added in or outside the
monitored environment. When monitoring from inside the environment, the approaches
often involve kernel changes by SSDT/IDT hooking, installing kernel callbacks or filters
or wrapping handlers. Its main drawback is its uneffectiveness against rootkits, which
run on the same privileged level and are able to perform the same kind of flow redirection
in order to subvert the system, and in the process detecting the analysis monitor.

The system can be externally instrumented by performing a Dynamic Binary Instru-
mentation (DBI) or a virtual machine instrospection (VMI) procedure. DBI may be
accomplished in either kernel or user-land, allowing for a fine-grained analysis at the in-
struction level. DBI’s use in security was made popular by DynamoRIO[58] and PIN[79],
with lots of tools built on top of it. However, execution in a DBI environment may be
detected by executing an instruction whose translation turns into an abnormal behavior.

In order to overcome such limitations, some proposed work have the ability to translate
some known failure-prone instructions into surely successful ones, notably VAMPIRE[196]
and SPIKE[198], which allowed for stealth-fine-grained tools such as Cobra[197]. However,
this approach has the disadvantage that all known fail-prone instructions have to be
translated, which is not only impractical[87] but also prone to evasion by a malware that
employs a new and unknown “evasion trick”.

VMI, in turn, provides a native whole system view and fine-grained analysis capa-
bilities through instruction-level inspection, being suitable for malware analysis, security
policy enforcement and integrity checks. VMI-based techniques have also the advantage

CHAPTER 2. PAPERS 26

of being able to monitor systems that prevent or restrict in-system monitoring, such as
64 bit Windows Kernel Patch Protection (KPP)[109], Many tools were build with the
underlying VMI, like Anubis[16, 83] on top of QEMU[17], for malware analysis and its
Danubis[134] version for drivers, exploring whole-system view capabilities. Bitblaze[182]
and Virtice[152] are built on top of TEMU, a tiny version of QEMU, and provide a com-
plete framework for malware analysis and system inspection. VMI has become popular
to the point of having automatic instrumentation tools, such as Libvmi[100].

However, external monitoring approaches, such as VMI, have a major drawback, which
is the gap between high-level (what is running at the O.S. level, e.g. a file opening) and
low-level information (the machine instruction sequence being processed), also called se-
mantic gap[127]. Despite some proposed automated techniques[64, 167, 164, 56], handling
the semantic gap is still considered hard and requires specific knowledge and big develop-
ment efforts. The semantic gap grows as one gets deeper into abstraction levels. Figure 2.1
shows abstraction levels for techniques presented in the following sections.

Figure 2.1: Abstraction levels for distinct
monitoring techniques. Figure 2.2: VM operating layers.

While possibly being able to bridge the semantic gap, VMI is not perfect since malware
can detect virtualized environments in order to evade an analysis procedure[37]. Given
that most VMI systems run on top of an emulator, such as QEMU, malware can detect the
virtualized environment by testing instruction behavior, which often differs from the ones
presented on a real CPU. Martignoni et al. [107] describe a method, called Red Pill, of
fuzzy-testing a CPU emulator and being able to generate tests for emulator identification,
soon extended by Shi et al. [177]. In addition, Paleari et al [140] developed a way of
automatically generating red pills.

Although research efforts have been done to overcome these challenges, proposed so-
lutions are very expensive, since they either require execution on multiple environments,
such as BareCloud[89] and Splitmal[13] or require a physical machine, such as Barebox[88].
In order to overcome all these limitations, virtualization has to be made more transparent,
something that can be achieved by hardware-assisted virtualization or, to go deeper into
instrospection, by using SMM or similar.

CHAPTER 2. PAPERS 27

2.5 Hardware Assisted Hypervisor-Based Approaches
This section focus on techniques based on hardware-assisted hypervisor (HVM) moni-
toring. Initially, we introduce the concepts of HVM operation, focused on the x86-64
architecture and covering implementations over both Intel VT-x[78] and AMD-v/SVM[5]
platforms. We follow by introducing tools and applications developed over these plat-
forms.

2.5.1 HVM background
Apart from 32 and 64-bit addressing modes, x86 and x86-64 CPUs have 3 operating modes:
Protected Mode, which is the processor’s native mode; Real-Address Mode, which extends
the previous mode; and System Management Mode, covered in details in Section 2.6.

Virtualization instructions augment the CPU instruction set by adding two new oper-
ating modes, root and non-root modes, in a way so that guests and the host (VMM) are
associated with the non-root and the root modes, respectively. The transitions from non-
root to root mode are known as VM-EXITS, which work like an exception or a trap, but
the set of spanning actions can be dynamically configured. After handling these events,
the execution is resumed through VM-RESUME or VM-ENTRY. Figure 2.2 shows an
overview of these new modes and events.

The extended instruction set offers many features to help a hypervisor implementation
and improve system performance. Given that the new memory management unit can be
used to track memory uses and guest registers are directly accessible from the hypervisor,
we can implement a variety of security-oriented techniques that enforce policies. However,
the main advantage offered is the capability of running code directly on the processor, with
no need for instruction translation. This is particularly desirable for malware analysis and
often a drawback for DBI-based systems, for instance, subject to instruction translation
side-effects (Section 2.4). Since this analysis system is not susceptible to CPU emulation
bugs, a malware running on such a system is not able to identify whether it is running
inside a virtual environment or not, achieving the transparency requirement.

An important change when using virtualization instructions is the memory controller.
There are different monitoring mechanisms according to the virtualization platform used,
Intel or AMD, since the AMD’s implementation has the memory controller on-die whereas
Intel’s has it externally. However, the main change is due to the double address translation
mechanism. In a traditional hypervisor, guest virtual addresses are translated into guest
physical ones, which are the host’s physical ones. Intel and AMD have deployed techniques
called Extended Page Table (EPT) and nested page table (NPT), respectively, that add
an additional translation layer. On these systems, guest virtual addresses are translated
into guest physical ones, but contrary to the previous implementations they are further
translated before getting to the host’s physical address lines. This process can be seen in
Figure 2.3.

Knowledge of this mechanism is important since this second translation level could be
instrumented so that memory access is monitored through translation-faults. However,
such memory monitoring is not enough to cover the system as a whole, given that these

CHAPTER 2. PAPERS 28

Figure 2.3: VM memory operation.

are CPU memory accesses; Direct Memory Access (DMA) may also happen and those are
external to the CPU. DMA monitoring is enabled by another mechanism called IOMMU
that intercepts Input/Output (I/O) actions. By following both approaches a more robust
monitoring may take place.

A Hardware-assisted Virtual Machine (HVM) is configured through special control
structures named Virtual Machine Control Structure (VMCS) and Virtual Machine Con-
trol Blocks (VMCB) on Intel and AMD systems, respectively. These blocks include the
initial system state, memory allocation and vm-exits configuration. An advantage of using
this technique is that the system does not need to be booted up in a virtualizated envi-
ronment, but can be conveniently moved to one at runtime, which is called late launch.
Late launch broadens the options for analysts, such as live-forensics, since it does not re-
quire reboot or shutdown. In the late launch case, the initialization blocks are set to the
current system state, but this does require a driver to set specific registers at a privileged
execution level.

When aiming to implement a security framework based on HVM, the usual approach
is to instrument the hypervisor layer in root mode to collect information from non-root
mode and then send them to an external client running on the host userland. In this
case, the abstraction is similar to the one used in Operating Systems (OS): the VM
monitor running in kernelspace and the analyzer in userspace. Even though the client is
stealth for a malware, the hypervisor itself is not, given that the malware could map its
memory to the hypervisor one and so find the monitor. A solution for that is to put the
instrumented framework in a page without malware access, which is done through the
new presented memory mechanism and its fault handler. Even more than the hypervisor
analyzer, the internal driver could also be detected. To counter that, a tool may employ
rootkit techniques to hide itself from the system or to use the same method to map the
HVM-loader driver to a protected physical page.

The challenges faced when developing such kind of tool vary according to its monitoring
goal: i) to register monitored values, as presented, is straightforward, since monitoring
memory access can be done through translation faults and IOMMU; ii) system call tracing
requires bridging the semantic gap by employing taint tracking and event static stack
analysis; iii) finally, breakpoints and step-by-step execution require a more sophisticated
approach.

Breakpoints are usually classified as software and hardware breakpoints. Software
breakpoints are not transparent since they modify instruction bytes. Hardware break-
points are limited in number and are shared between host and guest. Another way of
implementing it is then required. Step-by-step execution has the same sort of limitation.
The way tools overcome these limitations is to monitor the system by raising exceptions,

CHAPTER 2. PAPERS 29

such as hooking the memory management unit to set a given page as read-only, thus
causing a page fault at each execution, or to set performance counter registers to their
maximum value in order to raise an overflow exception at each running step.

The next sections present practical tools and solutions developed using HVM, starting
with an introduction to some threats based on this approach.

2.5.2 HVM threats
Given the transparency and system-wide view of HVM systems, as presented in previous
sections, exploiting a system using this technique is a straightforward thinking. It is hard
to say who was the first person to propose such application for HVM, since most releases
happened in underground hacker forums. However, undoubtedly, the first famous one was
the BluePill rootkit[160].

Bluepill is implemented on Windows Vista using AMD technology and is able to
perform late launch; a network backdoor, with no need for NDIS modification, is shown
as use case. Other examples appeared, like the HVM Rootkit[133], which is AMD based
and targets Windows XP machines. This tool takes a multi-core approach, setting up
each core for an HVM. Its driver loading routine employs the physical page mapping for
stealthiness.

In fact, in-guest, ordinary kernel rootkits are stealth enough against casual analysis,
but to remain stealth before a specialized forensic procedure requires HVM-based ones.
Despite none of these tools being a complete, definitive solution, similar ones have been
improved by both analysts and criminals.

2.5.3 Malware Analysis
The previous HVM rootkit strategies can also be used for well-intended security purposes,
such as malware analysis and debugging. It is not easy to identify this approach’s emer-
gence, as most of the poorly documented rootkits mentioned in the latter section have
already proposed such instrumentation as a countermeasure. Presentations at hacker
conferences have also shown incipient insights on HVM use for malware analysis.

A deeper understanding of HVM for malware analysis uses was provided by Dinaburg
et al. [54], establishing formal foundations to attain transparency, from requirements—
“higher privilege, no non-privileged side effects, identical basic instruction execution se-
mantics, transparent exception handling and identical measurement of time”—to ways of
fulfilling these requirements. The developed tool, Ether, is implemented as a Xen patch
and runs Windows XP guests. The Analyzer architecture is client-server based and no
internal code is required. Fine grained analysis is enabled by setting a trap flag for each
instruction, causing considerable overhead. Memory access is traced by fault trapping
on shadowed page tables. The same trap mechanism is employed to handle system calls,
both on the new, fast syscall mechanisms and on the deprecated sysenter mode. System
data is retrieved by classical VM instrospection techniques. In order to remain stealth,
the Ether hypervisor changes PUSHF instruction behavior, since this instruction could
detect the trap flags for single-step execution. It also changes the Timestamp Counter

CHAPTER 2. PAPERS 30

(TSC) in order to avoid being detected through timing attacks. The study cases provided
(a syscall tracer and an unpack tool, using shadow memory write tracking) show the
tool’s effectiveness against evasion tools available then. Despite its results, Ether is not a
perfectly transparent tool, since some ways of fingerprinting it are known[145]. However,
most of them are overcome by applying patches or by new VM extensions of modern
processors. Moreover, Ether was a sound step towards being ahead of evasion tricks of its
time.

CXPInspector[210] leverages Intel VT-x support on KVM to perform malware anal-
ysis on 64-bit Windows 7. Analysis challenges faced on 64-bit Windows Kernel include
handling Address Space Layout Randomization (ASLR) and overcoming Kernel Patch
Protections hook limitations, for which VMI is an alternative. In order to reconstruct
high level semantics, it bridges the gap by using debug symbols and parsing PE executa-
bles. Branch addresses are reconstructed by using hardware branch facilities (discussed
in Section 2.9). It also changes the TSC to prevent timing attacks. In addition to mal-
ware analysis capabilities, CXP is also able to perform application/system profiling by
measuring the execution time spent on each memory page.

The CXPInspector also presents a more fine-grained concept for memory handling,
named Currently eXecutable Pages (CXP), which allows for multiple scopes and gran-
ularities of the analysis. The three CXP granularities are: one memory region, a set of
memory regions or one single memory page. By capturing transitions and flows among
such CXPs, the system can trace events. In pratice, it is a way of implementing memory
traps based on EPT or NPT facilities. CXP provides study cases of the Purple Haze
64-bit rootkit analysis and a profile of the Apache web server and its modules.

As an evolution of the ideia of analyzing malware on HVM, authors started to care
about developing an ad-hoc malware analyzer VMM. The main reason behind it was
reducing the Trusted Code Base (TCB), which is the code that should be trusted a
priori. General-purpose VMM implements much more features than the one required
for malware analysis, such as virtual devices and plenty of drivers. As is known, larger
numbers of lines of code tend to generate more bugs, which increases the opportunity for
malware evasion.

Given the above, Nguyen et al. [136] presented MAVMM, a malware analysis lightweight
VM hypervisor. The TCB is reduced to 4K lines of code on MAVMM in comparison to
millions of lines on well-known VMMs like Xen and VMWare. MAVMM is implemented
using AMD-v instructions and runs a Ubuntu Linux as guest system. The hypervisor is
loaded at boot time, in contrast to the late launch approach of Ether and others. The
memory is protect using nested page technology. The tool is able to extract different fea-
tures from the system, such as instructions, syscalls and memory accesses, by leveraging
single-step execution and handling VM-Exits. It has 2 modes of feature extraction: Full
and Compact modes. The first is a single step extraction whereas the second reduces the
number of VM-Exits to a set of pre-registered reasons, achieving a significant analysis
speed up. Authors pointed different possibilities of tool usage, such as syscall tracing
and sample unpacking. The study case provided is a Linux rootkit analysis. The tool is
also transparent as the HVM is employed. However, we should consider how likely to be
fingerprinted and detected the environment is, as the hypervisor neither provides virtual

CHAPTER 2. PAPERS 31

devices nor supports multiple guests.
More than just building analysis tools themselves, some authors have employed such

tools for analysis improvements. Quist et al. [151], for instance, proposed using a modified
version of the Ether HVM to improve AV detection accuracy. The work adds to Ether
features for “deobfuscation: section and header rebuilding as well as automated kernel
virtual address descriptor import rebuilding”. With these repair mechanisms, AV showed
detection rate improvements as high as 45%.

2.5.4 Malware Debugging
Beyond automatic execution tracers, complete debuggers were also implemented using
HVM. Fattori et al. [61] presents a complete HVM framework which allows for tools to
be built on top of it. Besides late launch, the framework also allows for online unload-
ing and error handling, such as exceptions, thus being fault-tolerant. The framework
is implemented using Intel VT-x on Windows XP. Its architecture is also client-server
based, where low-level server information is translated into high-level semantics and de-
livered through a well-defined API. It allows for tracing function entries, syscalls, process
switching and I/O operations. As MAVMM does, the system can also limit the tracing
scope through a restricted mode. Traces can be filtered on function arguments, specific
I/O ports and other features. The tool applies classical introspection techniques, includ-
ing using Windows-provided debug symbols, in order to retrieve process and function
names. Memory protection is achieved through extended page tables. For event tracing,
the framework uses two different approaches: Exceptions are handled through hardware
VM-EXITS whereas other mechanisms are handled through page-fault trap technique.
This technique allows for transparent software breakpoints and watchpoints, without the
need of hiding the trap flag, as in Ether. It also allows for syscall tracing, sice the syscall
dispatch table is also trapped. The same happens for memory mapped I/O.

By making use of the framework presented above, the same authors introduced Hyper-
DBG, a kernel debugger built on top of that framework. It boasts the same widespread
functions of kernel debuggers, such as breakpoints, register inspection and tracebacks,
supports guest write access and includes a hypervisor-based graphical user interface and
hotkey support. Due to its self-contained implementation, HyperDBG is able to debug
any kernel component, including components used on its GUI, such as the keyboard.

SPIDER [52] is a KVM implementation of hypervisor-assisted invisible breakpoints
applied to Windows XP and Ubuntu systems. It allows for a complete system monitoring,
including data breakpoints and process creation. It presents a client-server architecture,
with its client implemented on top of the qemu-kvm one. It also prevents timing attacks
by changing the TSC. The approach tries to combine the flexibility provided by software
breakpoints but handling its instruction changes and control-flow-deviations side effects
using the hypervisor MMU layer for spliting the data and code views, which causes a lower
overhead than trapping each instruction, like Ether does. Code splitting is performed by
setting the same virtual pages to two different physical pages, having each one mutually-
exclusive attributes Reading or Executing. The data splitting decision is supported by the
TLB separation on iTLB and dTLB in the x86 architecture, which reduces the number

CHAPTER 2. PAPERS 32

of EPT violations. SPIDER monitors the system using the monitor trap flag (MTF),
which causes a VM-Exit on each instruction. The SPIDER breakpoint handler checks
if the current instruction is an ordinary (guest-set) or an invisible breakpoint, acting as
a pass-through or a breakpoint hider, respectively. In the latter case, it will “clear the
breakpoint and restore the first byte of the instruction that had been replaced”. Whenever
a write occurs, it happens on a data page, which means that self-modifying code is forcibly
not allowed. This could lead to incorrect execution or even to malware evasion. In order
to handle this situation, SPIDER synchronizes data and code pages after any change
on them. The study cases presented show how SPIDER improves the tamper-resistance
of the BEEP [98] attack provenance system and how SPIDER could be used to inspect
instant messaging programs by inspecting them before the messages were encrypted.

2.5.5 A Combined Approach
Considering that, despite being transparent, HVM is an expensive approach, since it is
harder to implement than in-guest monitors and has a greater performance penalty, and
considering that emulation and DBT, despite being easy to instrument, are not trans-
parent, a solution that connects both is desirable. Aiming to bridge this gap, V2e [215]
presents a combined approach of capturing data on an HVM and precisely replaying it
on an emulator. It is implemented on an HVM-KVM and replayed on TEMU, from both
Linux and Windows XP as guests.

The most challenging task for such kind of implementation is to achieve a balance
between captured data and replay feasibility (considering speed, precision and costs). For
such goal, authors have introduced a formal definition of how a replay should look like. For
the capture function, the HVM system implementation is based on using EPT/TDP/NPT
for partitioning the memory space on mutually exclusive recorder and recorded pages.
Besides, both TSC and DMA accesses are recorded. TSC is also changed in order to
prevent timing attacks. The architecture is a client-server one for logging in userspace.
Semantic gap bridging techniques are used for data parsing. For the replayer function,
a conventional emulator has a series of problems in comparison to a real CPU. It uses
block translation—a paradigm absent on real CPUs—, lazy flag calculation, translated
code reuse and TSC redirection for host values. In order to overcome such limitations,
V2e changes 3 instruction category behaviors: general-purpose (branches, data transfer
and integer math), floating-point operations (FPU) and others. For the general class, lazy
flag calculations are disabled; for the FPU one, the flags are passed to the host CPU by
directly launching an assembly call; for others, they are turned into NOPs. Morevoer, as
the same page table mechanism used for capturing is required for replaying, a software
emulator one was developed, called physical page container. The study cases provided
are the adore-ng and 12 other real-world malware samples.

A similar approach is implemented by Kang et al. [87] replaying Ether instructions on
TEMU. This approach allows not only for executing evasive malware but also determines
the points where the behavior differs between the reference and the emulated platforms.
By analyzing divergence causes, the tool performs a dynamic state modification (DSM)
that attributes “new values to specified execution state components, such as registers,

CHAPTER 2. PAPERS 33

memory and so on, which represent a transient alteration to values during the samples’
execution”. Using this technique, however, does not remove the anti-emulation check.
The tool aims to ensure the resulting modifications are robust—still effective when the
same sample is executed with distinct inputs.

2.5.6 HVM for Security Policy Enforcement
Empowered by HVM system-view capabilities, other solutions were designed to enforce
security policies, of which an important one is to enforce I/O policies, since some attacks
such as information leakage rely on bad I/O policies.

To this end, Shinagawa et al. [178] proposed BitVisor, a single para-passthough1 VM
that can enforce I/O security policies. It consists of a specific-purpose hypervisor which
implements only essential I/O drivers, reducing the TCB. Bitvisor works on a single VM
guest as authors claims desktop users run only one system at once. Due to this claim, it has
no need for VM-isolation, which also helps to reduce the TCB and the overhead in general.
The para-passthrough approach requires intercepting only essential communications, such
as those required for protecting the hypervisor and to enforce the policy itself. Hypervisor
memory is protected through a BIOS hook that unmap critical regions. The tool is
implemented using Intel VT-x on WIndows XP, Vista and Linux. As the system is pass-
through, there is no active component on the guest system. In order to correctly enforce
I/O policies, Bitvisor has to handle 3 different types of I/O routines: programmed I/O
(PIO), memory mapped I/O (MMIO) and DMA. PIO are the IN and OUT instructions,
handled by the VT-x port bitmap. which allows for intercepting specified ports. It has
also to intercept PCI PIO in order to handle port remapping. MMIO device registers are
mapped on memory regions, in a way shadow pages are suitable for such interception.
DMA interception is handled by a new technique called shadow DMA. Modern systems
use what is called DMA descriptor, a memory region in which DMA controls are mapped.
However, monitoring such region is not effective since DMA memory accesses themselves
occur in parallel. In order to overcome this situation, Bitvisor states a shadow DMA
descriptor page, mapping the DMA descriptor in hypervisor memory and, after copying
those blocks to the DMA controller buffer, performing a Man-In-The-Middle approach
against the DMA controller, which allows access to all DMA communication. By using
these monitoring processes, the authors present a case study of an ATA Host Controller,
which enforces automatic storage encryption.

2.5.7 HVM for Attack Prevention and System Integrity
Besides malware analysis, HVM may also be employed to apply security policies, detect
known attacks, avoid sensitive information leakage and assure system data integrity. This
section presents an overview of HVM applied to achieve such goals.

In fact, techniques using VMM are already known for a long time. Kernel Guard[155],
for example, is a framework for handling dynamic kernel rootkit through memory access

1A minimal interposition mechanism responsible for I/O filtering

CHAPTER 2. PAPERS 34

policies. Lares[143] extends Xen dom0 with a new secure VM TCB providing secure ser-
vices for an unprotected guest. Osck[76] defeats kernel rootkits by checking control-flow
integrity. NICKLE[156] leverages mixed-page techniques to ensure trusted-code execu-
tion. Finally, Overshadow[36] introduces the concept of multi-shadowing physical pages
to protect applications from untrusted kernels.

These approaches, despite being theoretically correct, are not fully transparent, which
may be a limitation, either by the need of implementing all memory and I/O manage-
ment by software or by the possibility of a malware evasion through virtualized-system
detection. In addition, software implementations present greater overhead as compared to
hardware ones. This way, as soon as the HVM extension was launched, VMM approaches
started making use of it.

Secvisor [173] protects the kernel by assuring that only approved code may run, which
may protect the kernel against injections and even 0-day attacks. Its threat model assumes
the attacker has control of all but the CPU, MMU and IOMMU. It is implemented on
the Linux kernel by leveraging the AMD-v instructions, and since it is a specific-purpose
tool, it has a small TCB. Kernel code modifications are needed in order to handle spe-
cific actions, such as module loading, which requires approval and is performed through
a hypervisor call (hypercall). The need for a patch may be considered a limitation for
some but allowing users to create their own policies may be a justifiable trade-off. Secvi-
sor virtualizes and intercepts MMU and IOMMU, protecting against DMA and memory
writes by using the AMD Device Exclusion Vector (DEV) feature from AMD processors.
Hypervisor memory is protected by assuring that its physical memory pages are never
mapped into the Protection Page Table. Approved code execution is enforced by memory
virtualization. User memory is marked as executable in user mode but not in kernel mode,
in a way Secvisor needs intercepting all transitions in order to adjust flags. Secvisor also
ensures that switching to kernel mode will occur only by setting the IP “to an address
within the approved code”. Likewise, kernel exits should target only user-mode code,
avoiding kernel-flow redirections.

2.5.8 HVM for Forensic Procedures
HVM also has advantages in comparison to ordinary VMM for forensic procedures. Hyper-
Sleuth[106] employs the late launch and unload capabilities to implement a complete foren-
sic framework, for both online and offline inspection. On top of it, authors implemented a
memory dumper, a syscall tracer and a lie detector2. Hypersleuth is implemented on Win
XP and requires a driver for loading its VMM. Since the system is aimed to be loaded on
compromised systems, it has to check whether the procedure was correctly done, given
that a malware running on such system could subvert the procedure. This is done through
a sequence of challenges and responses. The framework also cannot trust on OS network
software, so it implements its own network driver in order to send captured data through
the network.

Syscall tracing is performed as in Ether’s way by trapping memory pages, since VT-
x hardware does not support tracing fast syscall entering (SYSENTER), whereas the

2A system which checks integrity from multiple perspectives in order to assure data consistency

CHAPTER 2. PAPERS 35

memory dumper is implemented in a lazy way. When using it, the memory is dumped in
a dump-on-write policy, similarly to copy-on-write in the Unix fork, by setting non-copied
pages to read-only. This ensures the contents of the stored dump is current as of the time
it was requested.

The dump occurs each time a page fault is triggered and also when halting and per-
forming I/O, with the client being responsible for reassembling the data. Another advan-
tage of such technique is that the system is not frozen, which avoids network connections
to timeout. Those timeouts could be used to identifying the monitoring taking place. As
for the offline analysis, the dump is checked by using the Volatility tool.

The lie detector is implemented through a userland program that asks for system
properties, such as processes running, and sends this information to the trusted host. The
intention is to trigger malicious behavior, such as process hiding. At the time the system
resource call is performed, this program makes a hypercall to the hypervisor that performs
the same action. Given that the hypervisor does not trust the OS and implements its
own discovery mechanisms, it can detect even a lie behavior. The results are compared on
the trusted host. Since the system is changing at runtime, this verification is performed
repeatedly at variable intervals, in order to avoid any time measurement attack.

2.5.9 VMI limits
Despite all the benefits HVM can provide, some limitations are technology-inherent. In
this section, we discuss these limitations and how they affect security measures develop-
ment.

Firstly, we should be aware that the transparency claims made by different authors are
not totally supported by processor vendors. According to Pearce et al. [144], VM trans-
parency would be achieved by accomplishing the three Popek law requirements: efficiency,
resource control and equivalence. Some authors, however, talk about the unfeasibility of
such implementations, such as Garfinkel et al. [66]. In fact, vendors do not make such
claims and often do not consider transparency a major requirement, even though a desir-
able one. This way, an analysis system will be as transparent as the vendor can provide.

Secondly, HVM-support improvements may modify the effectiveness and the way dif-
ferent security techniques are applied. Lengyel et al. [99] presents common pitfalls when
designing VMI systems, delving into some of these modifications. The first one refers
to TLB splitting. The TLB is usually splitt into data (dTLB) and instruction (iTLB)
sections. Newer CPUs have a third section called sTLB, which caches the evicted/flushed
entries from the previous ones, resulting in a considerable performance boost. TLB uses
on security are well known, either for defense or attack purposes. Grsecurity[70], for in-
stance, employed TLB in order to implement page execution attributes before NX was
launched, whereas the Shadow Walker rootkit[183] achieves its stealthiness through a
TLB poison. In this kind of attack, the rootkit remains stealth by taking advantage of
the fact that “a single virtual address can point to distinct pages, according to which TLB
is being used”. By leveraging this technique, it could, for example, evade an AV software,
since the latter would be unable to scan the malware pages.

Lengyel et al. also points that an effective defense mechanism against such attacks is

CHAPTER 2. PAPERS 36

to periodically flush the TLB, since this reduces the analysis-time opportunity window.
Windows 7 and later versions implement this approach. In addition, sTLB also makes it
difficult to tell the existence of a stealth rootkit, as the former “can only store one version
of the evicted TLB entries”. More importantly, the VMI may be employed to skip the
sTLB. By marking pages as execute-only—a feature from the EPT mechanism—data from
iTLB and dTLB will differ and CPU address translation will go through the primed page-
tables again, restoring stealth techniques eventually used. Moreover, newer CPUs rely on
tagged TLB, a mechanism that labels data in order to manage it, resulting in another
performance boost. This way, the TLB is not flushed anymore, thus opening a new
opportunity for stealth rootkits. Another evasion way is related to the EPT mechanism.
When a VM-Exit occurs, its violation reason (Read, Write, Execute) is specified. However,
only the start address is specified, thus “an attacker who is able to break the assumption
that the violation happened at exactly the pointer location may evade an analysis”. As
far as we know, Intel is working on such limitation.

When building a VMI-based system we should also care about monitor triggering,
since a passive monitor (snapshot-based) may be evaded by a timed execution. Wang et
al. [201] present applications using this kind of evasion, which includes stealth file transfer
and a backdoor.

Given the above, although HVM-based systems have raised the bar against evasive
samples, general sandbox solutions may still be detected by advanced threats, like the
examples shown by Brengel et al. [31]. A complete discussion of HVM evasion is provided
by Pek et al. [146]. Although some evasion tricks have already been mitigated since
then, either by introducing new hardware or by leveraging evasion-aware programming
guides, that work provides a way of understanding how transparent machine vendors are
implementing these capabilities.

2.6 SMM-based techniques
This section presents techniques and tools based on the System Management Mode
(SMM). Initially, we present an SMM background, which includes its advantages and
drawbacks. Secondly, we present tools and how they overcome SMM limitations to achieve
whole system monitoring.

2.6.1 SMM Background
The System Management Mode (SMM) is one of CPU operating modes and is intended
to be a mechanism for implementing system control features, such as power management.
SMM operating abstraction is similar to the one presented for HVM; the system under
monitoring executes in ordinary CPU modes (guest-analogous) and the SMM monitor
(hypervisor-analogous) in SMM mode. An SMM enter is triggered by a System Manage-
ment Interrupt (SMI) and exit by executing the RSM instruction.

The RSM exit instruction can only be executed in SMM mode, which protects the
code, whereas the SMI may be triggered in a variety of ways, such as by PCI devices,
writing directly on CPU pins, using a periodic timer or even ACPI/APIC interrupts.

CHAPTER 2. PAPERS 37

Some events need to be rerouted in order to trigger an SMI, which can be done through
the chipset or the Interrupt Descriptor Table (IDT).

When an SMI is triggered, the whole execution context is saved in the System Man-
agement RAM (SMRAM) and the corresponding event handler is executed. The SMRAM
is addressable only in SMM mode, whose address range is rerouted to VGA when run-
ning in other CPU modes, thus protecting its content. An inherent limitation is that, as
every protected data and code is stored in SMRAM, any development is limited to a very
limiting size of a few KB.

When in SMM mode, the addressing mode is a direct mapping to physical pages,
without any translation mechanisms, a significant difference as compared to the HVM
case. In order to bridge the semantic gap of virtual pages, use of the CR3 registers may
be made by SMM code developer/system analysts. Another drawback is the fact that
memory addressed this way is restricted to 4GB, even in Physical Address Extension
(PAE)-enabled systems: the transition to other CPU modes, which fully address system
memory, requires exiting the SMI mode. To overcome this limitation, one may use some
kind of subversion or insertion of a callback instruction directly in the program code.

The SMM code is initialized by the Basic Input/Output System (BIOS), thus the
original BIOS should be replaced by the instrumented one. For this task, Coreboot[44]
and SeaBios[172] are often used.

Building an analyzer in SMM mode is a natural follow-up, since it is well protected
from the “guest” system, which remains completely unaware of the former’s presence
and therefore composes a strong threat model. Besides, such analyzer would also run
instructions directly on the processor, with no address translation but still having memory
access. We can think of such a system as a more fine-grained bare-metal analyzer.

The architecture of this kind of system also follows a client-server model, with the
server being the SMM code and the client some code on an external machine, often
network connected. As it runs in a low-abstraction level, with no O.S. support, all comu-
nication needs to be implemented by the analyst, including network drivers and protocols.
Additionally, as data will be transmitted through an insecure media, cryptography and er-
ror detection/correction also need to be implemented in the client-server communication.
Analyzers’ initialization may be done using SMI triggering facilities, such as listening to
an external serial port or using the Intelligent Platform Management Interface (IPMI).

Security system features may be implemented by making use of the SMM architec-
ture, according to its intended features (data watchpoints, I/O monitoring, step-by-step
execution and so on). The way all of them work is very similar, triggering an SMI for
such actions. Breakpoints, for example, may be implemented by triggering an overflow
event on performance counters.

When building such systems, it is important to reduce the attack surface for properly
handling malware that try to guess whether they are running on an SMM-monitored
environment. Some malware counteractions may include BIOS overwriting, which may
be avoided by employing hardware-assisted Trusted Boot. It is also important to realize
that kernel malware have access to debug and performance counter registers, which may
be harmful to an analysis process based on such values. A corresponding countermeasure
would be to periodically trigger an SMI to check their values.

CHAPTER 2. PAPERS 38

Another problem is BIOS fingerprinting. As BIOS is rewritten, original hash values
and strings are changed. This way, a malware could compare these values to known BIOS-
vendor ones in order to detect the monitoring environment. An effective way to overcome
such problem in to perform an online BIOS flashing to the original one after the modified
one was loaded in memory. However, this is an open problem for systems that do not
allow BIOS online flashing.

As for the future, SMM mode will certainly undergo changes, the most significant one
being the SMM virtualization (STM), which would deny most SMI requests. A possible
solution to this might be rewriting larger parts of BIOS code in order to handle such
events earlier, with a significant increase in complexity.

The next sections present tools developed using the SMM mode. We start by present-
ing some threats that make use of SMM for its inherent stealthiness and follow with some
security-related tools.

2.6.2 SMM Threats
Rootkit development has exhibited an adaptative evolution, counterparting advances in
system security. In the same way HVM was employed for malicious purposes, SMM has
already been targeted. Its attractiveness comes from the same virtues exhibited by HVM:
transparency, system-wide instrumentation capabilities and OS independency. An SMM
rootkit also has advantages in concealing its memory footprint, given that SMRAM is
hardware-protected, and in surviving reboots and re-installations, since it is BIOS-stored.

The first work referring to an SMM rootkit is probably the one presented by Duflot et
al. [57], showing a privilege-escalation attack against x86 OpenBSD. In this attack, the
authors bypass secure-level protections by installing their own SMM handlers, allowing
unrestricted access to physical memory. Following that, the practical Phrack magazine
highlighted some work intended to handle SMM for other purposes, as in [32] and [207].

Academically, Embleton et al. [60] presents the construction of an SMM keylogger
by redireting the keyboard Interrupt Request (IRQ) on the chipset to SMM using the
Advanced Programmable Interrupt Controller (APIC). The pressed keys are logged and
transmitted through the network interface. For such implementation, a kernel driver
was used to set SMM mode. An advantage of this technique is that no IDT hooking is
employed, since one can have an out-of-band access through the chipset APIC redirection.
Redirection is performed directly on the chipset redirection table. The network card
operation has to be manually implemented, working in a client-server way on the PCI
bus and encapsulating data on UDP packets, which are then transmitted when buffers
are full.

Another SMM keylogger is presented by Schiffman and Kaplan [166]. In this imple-
mentation, the authors hijack USB without tunnelling data to SMM, which allows for
interception to occur before the kernel is aware of the event. This is achieved by having
the USB Host Controller reroute the interrupts to a USB-PS/2 emulation SMM handler.
It constitutes a much stealthier way of hijacking the keyboard events, since keystrokes
could be successfully intercepted, replaced and injected, on tests performed in a Linux
environment. The authors also discuss how to extend the approach to perform Man-In-

CHAPTER 2. PAPERS 39

The-Middle (MITM) attacks and to hide USB devices.

2.6.3 SMM for Debugging
Given the system view and transparency offered by the SMM mode, it is naturally suitable
for debugging purposes. Zhang et al. [218] presented MALT, a complete debugging frame-
work based on SMM which implements basic debugging facilities, such as breakpoints,
register access and memory examination. It is implemented on a client-server architec-
ture, offering possibilities of communication by using a GDB-like protocol or through its
user-friendly interface, allowing for integration with several popular debugging clients,
such as IDAPro and GDB.

MALT’s threat model is designed so as to handle armored malware and rootkits. As
the SMMTCB resides in BIOS, it does not handle firmware rootkits. Its implementation is
based on replacing the original BIOS for coreboot and SeaBios as payload. SMI triggering
is done by rerouting actions, and the semantic gap is bridged based on CR3 register
addresses3.

MALT is able to provide four different levels of step-by-step debugging: instruction-
level, branch-level, far control transfer level and near return transfer level. Step-by-step
is implemented by overflowing performance counter registers in order to trigger SMIs.
Breakpoints are also implemented using this technique, comparing the EIP of the current
instruction with the stored breakpoint address.

MALT protection is performed by intercepting register reading actions in order to
check for kernel access to specific system registers. In addition, online flashing is per-
formed, replacing the BIOS with the original image before the debugging process starts,
so fingerprinting is avoided. For configurable timers, their values are recorded after switch-
ing into SMM. The study case provided is about debugging of a kernel on a crash, from
both Windows and Linux, including a complete backtrace.

2.6.4 SMM for Forensic Purposes
The whole-system view of the SMM mode is suitable for system forensic procedures, such
as complete memory dumps. Usage of these capabilities was the premise of many works,
like the ones presented below.

One of them is SMMDumper[154], able to acquire volatile memory contents on run-
ning systems and therefore helping with digital forensic analysis and incident response.
SMMDumper employs the SMM BIOS hardware support in order to be resilient to mal-
ware attacks. It also overcomes the SMM-imposed 4GB barrier to take whole-memory
snapshots. SMMDumper is based on two modules: i) a collector; and ii) a trigger. The
former is a boot-time loaded SMM-resident module responsible for capturing data and
transmitting it to the trusted host, whereas the latter is responsible for activating the
collector using SMIs. There is also an external client, the trusted host, which receives the
collected data. Data transmission is supported by a system-plugged cryptographic device.
It is used for signing data in order to asssure data integrity. In order to communicate with

3As the CR3 stores memory page information, it allows for process identification and isolation

CHAPTER 2. PAPERS 40

the machine’s NIC, SMMDumper implements its own network driver. Data is transmitted
through UDP packets, and since UDP is prone to data loss, lost packets are asked back
by the trusted host to SMMDumper, which recreates and retransmits them.

SMMDumper activation is done by pressing a pre-defined key sequence. In order to
implement such functionality, the authors have implemented an SMM-based keylogger.
The SMM ISR is responsible for extracting the scancode from the keyboard controller
buffer by reading from the I/O port. SMI triggering is generated by modifying the I/O
APIC Redirection Table. In order to overcome the 4GB limit, code is injected in mapped
pages and EIP is modified in the State Save Map (SSM) so that it points to the code that
was injected. Once an RSM instruction is raised, EIP is restored from the SSM and thus
the system execution resumes from the custom code. SMMDumper’s evaluation shows it
is practical for 6GB dumps.

A slightly different solution is presented by Wang et al. [203], which leverages PCI
DMA access to complement the SMM mode in order to perform whole-system memory
analysis. In fact, using PCI DMA for memory acquisition is not new. However, it is hard
to obtain the semantics of a memory dump without knowing the values of CPU registers
at the time that the memory snapshot was retrieved, such as the Interrupt Descriptor
Table Register (IDTR) or the base address of the current page table (CR3). To address
these challenges, a new approach where SMM register data is supplied is presented.

Analysis may be performed either online or offline, with the CPU state transmitted
from SMM to an external client through a GDB-compatible protocol. Consistency is
guaranteed because during SMM the OS enters and remains in suspended state. SMI is
triggered through IPMI and the system is supported by coreboot and seaboot, with a
GDB stub written directly on it. The BIOS also holds the NIC driver, which is a better
solution than an in-system driver in a subversion-prone scenario. Another solution for
data transfer would be to build a specific-purpose NIC, but then again that would be
cost-prohibitive.

Memory capture is performed by computing the difference between two consecutive
memory snapshots, thus reducing the amount of data to be recorded. This strategy
requires all memory pages to be marked as read-only and having the exception handler
responsible for recording the memory pages to be modified and sending this information
to its caller. A limitation of this approach is that PCI card access to physical RAM
memory may be blocked on both Intel and AMD solutions.

2.6.5 SMM for attack detection and prevention
SMM transparency and its hardware protection make it a suitable environment to mal-
ware attack analysis and identification. For this purpose, Zhang et al. [221] presented
SPECTRE.

SPECTRE is a specific-purpose SMM tool that allows for memory inspection. Its
specialization brings with it a small TCB, self-protected by the SMM mode. Its threat
model covers most kinds of attack, with the exception of hardware trojans, thus allowing
for host and guest memories’ safe inspection. It is implemented using coreboot and
assumes the SMRAM will be locked after its loading.

CHAPTER 2. PAPERS 41

Its architecture is client-server based and “a heartbeat message is sent securely to
the monitor machine through a gigabit NIC. When a suspicious behavior is detected, an
alert is transmitted as part of the heartbeat message”. SPECTRE uses system timers
to periodically generate SMI. This approach may lead to evidence evasion for a malware
that could act on such time intervals. As other SMM-based tools, SPECTRE also has to
reconstruct virtual pages, since SMM only sees physical ones.

As a modular tool, SPECTRE has rules written for heap spray, buffer overflow and
rootkit (kernel integrity) detection. Shellcode’s NOPs are used as identifiers for memory
overwriting. This detection is performed through a regex matcher implemented inside the
tool. The tool was evaluated against Windows and Linux attacks.

2.6.6 SMM for I/O Integrity
SMM can also be used to ensure I/O integrity, which means known ports will not be
mapped to other ones in order to prevent potential malicious actions. Such integrity is
important since after compromising an I/O controller, attackers can change memory via
DMA or by compromising I/O devices.

Trusted Platform Modules (TPMs) are able to protect firmware and IOMMU in-
tegrity at boot time, but not at runtime. The Input/Output Memory Management Unit
(IOMMU) tries to protect memory from DMA attacks. However, the root entry table’s
base address and other configuration registers may also be under the attacker’s control on
specific scenarios. Besides, the National Vulnerabilities Database (NVD)[138] shows that
many firmware vulnerabilities were discovered since 2010, therefore enlarging the attack
surface.

As such, authors have proposed I/O Check[220], a solution which employs SMM to
check I/O configurations and firmware integrity, enumerating all I/O devices in order
to achieve its goals. I/O Check assumes the system is supported by a TPM hardware
for its boot and also assures BIOS image integrity. It also assumes that SMRAM is
locked in the BIOS after loading. Its verification has as base the premise that the “DMA
Remapping ACPI table should never change after booting” and that “the base address of
the configuration tables for the DMA remapping unit should be static”. Attack detections
are notified through audible beeps. It also assures NIC integrity by storing its original
hash value in SMRAM and by periodically reading the NIC’s memory firmware code,
computing the current image’s hash value and comparing it with the saved value.

2.6.7 Who protects the hypervisor?
In Section 2.5.7, we presented systems whose goal was to protect the guest system running
inside them by running a trusted hypervisor. However, attacks to hypervisors are well
known and widely deployed today. Rootkowska and Wojtczuk [163], for example, present
an attack to the Xen Hypervisor by redirecting memory reads/writes from the internal
guest to the host. Sharkey [176], in turn, presents attacks able to trap special instructions
under secure hypervisors. This way, protecting hypervisors from attacks and corruption
is an important feature in security systems. Given the nature of the SMM mode, it is

CHAPTER 2. PAPERS 42

well suited for such purpose, to the way of being employed by a variety of tools, some of
which presented below.

One of these examples is HyperSentry[11], a hypervisor integrity checker for cloud
environments. Its architecture consists of an agent inside the hypervisor and a client in
SMM. Its output is composed by the memory data plus the hash calculation and, despite
being able to access memory, Hypersentry has to overcome another challenge, which is
bridging the hypervisor semantic gap from within the SMM mode.

In order to assure integrity at boot time, Hypersentry employs trusted boot capabilites
of modern hardware to lock SMRAM after its loading. Since the hypervisor can re-route
and mask SMI, it requires an out-of-band channel. So, SMIs are triggered by using
IPMI specific hardware from IBM servers. When an SMI is triggered, the system has no
power over whether the hypevisor is running on VMX Root or Non-Root mode. However,
in order to handle VMCS data, the CPU must be in root mode. To overcome this
challenge, HyperSentry proposes a new fallback technique, which “guarantees that the
CPU falls back to VMX root operation”. It is based on redirecting the SMI APIC from
the performance counter overflow after a code injection, returning control to the monitor.

The system has some limitations: protected registers from the Intel TXT platform
were not used; cache was not used in order to prevent cache poisoning attacks; when in
SMM mode, interrupts are disabled, which may lead to a crash if it lasts too long; in
a multiprocessor scenario, when monitoring an event on a specific core, other cores are
frozen in order to ensure consistency.

The case study provided is a Xen Hypervisor monitoring. The authors have verified its
code integrity using SHA-1, its control flow pointers in the IDT and whether its physical
memory guest isolation was functional.

A similar approach for hypervisor protection is employed by HyperCheck[202], which
uses a PCI DMA card to collect memory data as well as SMM collected register data to
handle virtual address translation. The system was implemented using two prototypes:
the first is an NIC emulation on QEMU and the other is a real PCI NIC. The system
also has an analyzer to which data is transferred through the network card. This transfer
is protected using a random hash in order to avoid replay attacks, with the key being
locked in SMRAM. In order to prevent attacks where a fake device asks for the key, TPM
hardware can be used. In addition, a random-interval scan is performed to avoid timing
attacks. The study case provided was DMA attacks against the Xen Hypervisor, having
both Linux and Windows XP as guests. However, some kinds of attack are not detected
or prevented by using this technique, for instance using dynamic function pointers or
returned-oriented attacks.

2.6.8 SMM security issues
SMM has been criticized for allowing system subversion in many ways, such as attack-
ing the TXT subsystem, which would allow complete system subversion. SMM virtu-
alization was proposed as a way of sandboxing SMI requests. Some exploits, however,
presented sandbox escapes and therefore still compromising the system, as pointed by
Rutkowska [162]. Intel’s answer was to made available its CHIPSEC tool[42], intended

CHAPTER 2. PAPERS 43

to assure correct configuration of hardware parameters in order to make the system more
secure[41].

2.7 The battle of the rings
Modern processors isolate distinct classes of applications by hardware-imposed privilege
limits. The privilege levels in the x86 architecture are known as rings, where userland
applications run on ring 3 whereas the kernel runs on ring 0. The other rings were aimed
to be used by dynamic libraries but are not used in practice. Recently, as new monitoring
mechanisms have been proposed, new ring names were christened in order to highlight
the higher privileges they impose. This way, HVM became known as ring -1, since it is
more privileged than the kernel’s and userland’s, and SMM became known as ring -2,
since it can monitor even hypervisors. Currently, a more privileged system mode has been
used to monitor even SMM, known as ring -3. This latter is called Management Engine
(ME) and is presented in the following section.

2.7.1 Management Engine: the lord of the rings
The Management Engine (ME) is another management mode present in Intel’s chipsets,
originally aimed to support Intel Active Management Technology (AMT). However, Intel
recently started using it for executing system sensitive applications.

ME can be seen as an embedded processor, having its own timer, RAM and ROM
memories, and DMA. As this mode cannot address system memory, DMA is used to
transfer system data to ME mode. As in the SMM mode case, memory is accessed as
physical addresses. As ME can externally monitor and control the processor, it can inter-
fere even in SMM and BIOS codes, besides kernel and userland rings. These capabilites
resulted in backdoor suspicions[200].

Similarly to the other monitor modes, ME may be suitable for many security related
tasks, from the malicious ones like data stealing to the transparent analysis of protected
software. A talk on BlackHAT[186] presented the use of the ME mode to implement a
system rootkit. In practice, ME implementation flaws[77] may allow an attacker to take
control of the victim’s machine at a very deep level.

ME usage for security purposes, however, is still a limited research field, having few
published articles or available tools when compared to other solutions. Academically,
ME was investigated by some authors, for instance Ververis [199], but a wide range of
research still awaits further progress. The results may be similar to other tools’, providing
the community with transparent malware analyzers, tracers, debuggers, forensic tools and
so on. Finally, environments like ME are not an exclusivity of Intel’s. A similar solution
is present in AMD processors, called Secure Processor[6].

2.7.2 Isolated rings and SGX
As more privileged rings came to be used for inspection, privacy-concerned applications
had to be moved to a place where they could not be monitored. This way, isolated

CHAPTER 2. PAPERS 44

rings/modes were developed, ones that are system-independent and cannot be monitored
by other system facilities.

The most notable isolation solution nowadays is Intel SGX. Isolated rings like SGX,
however, are not exclusive from Intel processors. ARM processors have a similar ring
named Trusted Zone[8], used for instance on recently launched Android Nougat[45]. This
paper, however, focus on Intel’s solution research since they are more developed and
widespread.

Intel Software Guard Extensions (SGX) is a set of instructions that allows software to
run in an isolated mode called enclave. This mode is O.S. independent4, and its encrypted
memory pages are destroyed after usage. The SGX underlying crypto systems also allow
software verification and attestation, which aims to offer tamper-proof capabilities. SGX
integrity itself is assured by hardware TPM and TXT systems.

As SGX is based on a new instruction set, programs should be rewritten to include
such instructions, which allow for enclave initiation, attestation, execution launch and
destruction. Some research has already been conducted in order to clarify SGX crypto
API[10] and SDK usage[103]. Besides a new programming model, SGX also requires spe-
cial hardware—SGX capabilites are available on modern Intel processors, like the Skylake
microarchitecture. In order to provide a research environment, Jaim et al. presented the
OpenSGX[85], a QEMU extension to cover SGX instructions.

An example of a benign application taking advantage of SGX capabilities is the pro-
tected chat[75] presented by Intel, in which images are processed inside the enclave and
therefore protected from external capture. However, malicious actors can also make use
of these capabilities to their benefit, as presented in other solutions. Van Prooijen’s
work[190] illustrates how an attacker could remotely attest its payload is not tampered.
It also points at the hardness of reverse engineering SGX code. This scenario is bound to
bring about new research in coming years since it is currently an open question.

The idea of malware attestation have first appeared in Davenport and Ford’s work [47].
In this article, authors also highlight SGX capabilities for the anti-cheat gaming industry.

Another class of attacks which applies even in the context of SGX is the side-channel
information retrieval. Schwarz et al.[171] presented a malicious sample able to retrieve
RSA keys from co-located enclaves by monitoring cache access patterns.

2.8 Hardware-based techniques
Although hardware design is normally out of reach for most security research, many
defense concepts aforementioned count on hardware support for their implementations,
while others are even mostly hardware-focused. In this article we cover the main ones.

The first widely-recognized attempt to implement a hardware based security monitor
was Copilot[147], which aims to assure kernel integrity. The solution is very similar to
the one presented by Hypercheck, using a PCI card to collect memory data snapshots
and analyze them. Since it is a dedicated hardware, it is protected against tampering. Its
architecture follows the well-known client-server model, where the monitor is responsible

4Many management operations are performed by CPU microcode and not by software

CHAPTER 2. PAPERS 45

for analyzing the received data and identifying threats.
As presented previously, this approach has the disadvantage of not getting CPU regis-

ter values, which imposes limitations on context comprehension and introspection. How-
ever, it was a first step towards overcoming virtual address translation on approaches us-
ing external hardware, which was achieved by deriving page information from the Linux’s
System.map file. The developed prototype helps the authors make clear the main benefit
of their approach, which is the minimal processing overhead; measurements indicated only
1%.

Besides these advantages, Copilot-like approaches have a significant drawback related
to its snapshot characteristic, rendering it susceptible to timing attacks. Also known as
transient attacks, timing attacks allow for an attacker to remain stealth by executing
malicious activities during the time-interval between 2 snapshots.

In order to overcome the previous disadvantage, Moon et al. [125] proposed Vigi-
lare, a System-On-a-Chip (SOC) implementation that snoops the memory bus in order
to perform real-time analysis for kernel integrity evaluation. Aiming to give a better
understanding of the issues related to transient attacks, the authors implemented two
Vigilare versions, each one implementing a distinct capture strategy: a snapshot-based
one (SnapMon) and a snoop-based one (SnoopMon). They were implemented using a
LEON3 processor running Snapgear Linux.

Snapmon is a straightforward implementation of Copilot’s approach, using DMA for
acquiring memory. Its memory verification is performed through hash comparisons to
identify any modifications.

In turn, Snoopmon had to overcome some implementation challenges. One was to
handle virtual address translation, which was done by following Copilot’s System.map
approach. However, the biggest challenge was to handle lots of data at once. If Vigilare
could not analyze all the bus traffic that Snooper provided, the results would be com-
promised. This way, the tool was designed to have a selective bus traffic filter. which
recognizes only meaningful information while truncating unnecessary data. This approach
also allowed Snooper to filter data on traffic bursts.

Vigilare also proposes two ways of protecting its memory content, be it data or in-
structions. Firstly, it uses a separate hardware memory, with no guest access; secondly,
“it implements a memory region controller which specifically drops all memory operation
requests from the host system”. The latter may reduce hardware costs in comparison to
the former. Experimental results have shown that the snapshot approach, even through
the use of a randomized snapshot interval, is susceptible to transient attacks. Its de-
tection rate highly depends on luck, whereas SnoopMon is able to detect all attempts.
Despite Vigilare’s effectiveness against static kernel code modification, it is not capable
of handling dynamic kernel modifications, such as process list changes.

In order to overcome this limitation, Lee et al. [97] proposed Ki-mon, “an event-
triggered verification scheme for mutable kernel objects”. Much like Vigilare, Ki-mon is a
SOC-based system, running Snapgear Linux on a Leon3 processor and also able to snoop
bus traffic. Its memory acquision is performed through a structure called Value Table
Management Unity (VTMU) which, besides snooping the bus, is also able to filter its
capture and perform DMA access.

CHAPTER 2. PAPERS 46

Ki-mon introduces a new form of bus traffic monitoring in order to verify changes in
objects values. It also presents callback verification routines that can be instrumented
to handle specified events. This is named hardware-assisted whitelisting (HAW) and
its registers can be configured to be active in different ways, including a pass-through
operation. Contrary to Vigilare that only alerts occurrences of memory modifications—
which is sufficient for static code modification detection, but not for dynamic ones—
though, Ki-mon “provides the ability to extract data values in write traffic for invariance
assurance”. It is also able to generate events reporting address and value pairs for memory
modifications, using whitelist-based filtering while doing so. The tool also allows an
event-triggered callback verification and provides an API intented to enable monitoring
rule development. Some rules were developed and tested on real rootkits to check the
solution’s effectiveness.

Finally, there are other approaches that inspect memory traffic by using other hard-
ware features, such as Processor Trace capabilities. Such approaches, however, follow
the same previously-presented working principles. Kargos[126], for instance, is a high-
frequency snapshot-based solution.

2.8.1 A brief discussion on hardware-based approaches
An intrinsic limitation of bus monitoring approaches is the handling of memory cache
access. If reading a write-through cache is straightforward, reading a write-back cached
data on the bus may lead to incorrect values. In addition, instrumenting the cache bus may
range from difficult to impossible in many architectures. This way, such implementations
should be aware that “it is possible to devise a transient attack that may reside in write-
back cache before the updated cache contents is flushed to the memory bus” (Moon et
al.).

An additional discussion is needed regarding how portable such approaches are. If, on
one hand, protecting SOC systems is essential in an Internet of Things (IoT) scenario, on
the other hand the well-deployed x86 architecture suffers from a lack of understanding of
external bus monitors. Vigilare’s authors have pointed the problem of a high transmission
rate and burst transmissions but a deeper investigation is required. Besides, although ker-
nel integrity is an essencial issue to be addressed, more bus monitoring applications should
be explored. A natural scenario seems to be extending such data invariants from kernel
to hypervisor integrity monitoring, such as on HyperSentry and HyperCheck solutions.

Finally, external hardware approaches have the significant disadvantage of being pas-
sive tools, without the possibility of naturally acting to block threats. This way, re-
searchers have yet to propose ways to alert users when a violation is identified.

2.9 Other Approaches
Besides using special processor operating modes and developing special purpose hardware,
system monitoring for security purposes may be performed by using additional hardware
features, such as performance counters. Additionally, new trends have also introduced
new threats, such as GPU ones. This section gives an overview of these tools and threats.

CHAPTER 2. PAPERS 47

2.9.1 Performance Counters
The first category of approaches presented here is based on Hardware Performance Coun-
ters (HPCs), a specific-purpose CPU feature that provides detailed information about
hardware and software events, such as cache misses, instructions retired, branches and
others. They can be used for hardware verification, debugging purposes, CPU scheduling,
integrity checking, performance monitoring and so on. Such feature is available on both
AMD and Intel platforms, being known as Last Branch Record (LBR) and/or Branch
Trace Store (BTS) on the last.

By making use of branch monitoring capabilites of HPCs, Willems et al. [209] de-
veloped BranchTrace, a branch monitor able to detect accidental or intended incorrect
behavior of dynamic analysis in an emulated environment. The approach is motivated
due to newly developed delusion-attacks that are able to detect CPU emulators using
the different instruction execution side effects between an emulated and a real machine.

The authors remark that the deviating behavior may be fixed in the emulators. How-
ever, this would require special handling for a variety of instructions that can be used in
conjunction with rep. This not only takes considerable effort to implement, but would
reduce the performance of string copy operations, for example. As such, they chose to
develop the BranchTrace monitor to collect data that allows for identifying these cases
without taking into account the effects of SMC, caching effects or other kinds of delusion
and/or detection attacks. BranchTrace was developed using Branch Trace capabilites on
Intel processors.

Interception happens on each taken branch, including conditional and unconditional
jumps, calls, interrupts and exceptions. Supplied data is the addresses of the source and
target instructions of the branches. However, the authors claim it is still possible to
reconstruct context from such information. They also suggest extending the information
by using Windows debug symbols and disassembling the nearest instructions. For context
reconstruction from such data, the authors devised a technique called binning, in which
the crash reports are automatically grouped into different classes, each one consisting of
crashes that resulted from the same root cause.

For the practical evaluation of this approach, they extended a tool called CWXDetec-
tor that is capable of detecting exploitation attempts and extracting shellcode used during
exploitations. The tool only becomes active after the first shellcode is executed, resulting
in no information gain about the path that led to such exploitation. The way authors
found to gain more information about the exploitation’s path was to utilize BranchTrace
combined with this tool. The extended tool was used to examine a set of 4,869 malicious
PDF documents. The clustering results were normalized and a similarity distance was
applied. The results were compared against the PDF analysis framework Wepawet.

The authors also suggested using this technique for handling Return-Oriented Pro-
gramming (ROP) attacks by applying an heuristics approach: if a RET without a cor-
responding CALL is detected, it is labeled as ROP-RET. Regarding ROP attacks, many
tools try to address this problem by leveraging branch monitors. As examples, approaches
like CFIMon[213], KBouncer[142] and ROPecker[39] make use of the branch record mech-
anism to apply Control Flow Integrity (CFI) policies, in a similar way as the aforemen-

CHAPTER 2. PAPERS 48

tioned ROP-RET. Other approaches, such as the one of Pierce et al. [148], address the
ROP problem by using the branch misprediction monitor, since the RET targets are not
well distributed in memory and thus causes prediction errors.

Another kind of approach that employs HPC for attack detection is presented by
Kompali and Sarat [91], in which a Vtune extension was developed to monitor the Branch
Prediction Unit (BPU). Initially, a baseline is defined by running benign applications on
the system as a training set. Afterwards, a modified version of the Win32/Renos malware
was evaluated. Results show that “branch prediction miss rates are below threshold for
a clean system”. However, in infected systems, “BPU produces a high rate of prediction
misses”. The same approach was extended to runtime memory allocation and usage.

An additional extended approach is presented with HPCHunter[12], which uses HPC
data to build a support vector machine (SVM)-based event feature selection for real time
malicious program detection.

Many authors addressed this problem of online detection, such as Yuan et al. [217]
and Demme et al. [51], and even extending it to the kernel [204]. The biggest advantage
of the performance monitoring approach is its lower overhead when compared to other
solutions[102]. The biggest challenge of these systems, however, is feature selection[185].

Performance monitors are not restricted to complex processors, as many embedded
systems also present performance monitoring capabilities. Confirm[205] is an approach
to validate firmware on embedded systems.

2.9.2 Graphics Processing Units
In addition to HPCs, Graphics Processing Units (GPUs) have also been employed for
security purposes, both for attack and defense. We found tools and techniques leveraging
GPUs for packer detection[72], IDS implementation[4, 194], security log processing[18],
cryptography[192], AV parallelism[193] and even polymorphism[195].

The most significant GPU-implemented threat is a keylogger[95], in which DMA is
remapped to be acessible from the GPU in a way no hook is required. Once the GPU
is aware of the keyboard buffer location, the GPU can retrieve data directly from the
system’s memory pages. Since GPU usage has grown tremendously in the last few years,
we consider this kind of threat as a very relevant aspect to be considered in security
systems. POSTER work[184] suggested an approach to monitoring DMA access in order
to detect DMA malware. The approach consists in trying to identify DMA side-effects,
such as on the timestamp counter (TSC) and HPC ones.

Although the work is preliminary, it was a first step towards taking advantage of this
possibility. We notice that an approach to detect DMA malware could also explore the
HVM system resources, such as IOMMU monitoring, presented in the previous sections.
An extension of the GPU DMA monitoring approach was given in the work by Koromilas
et al. [93], which leveraged these capabilities to perform kernel integrity monitoring on a
periodic snapshot basis.

CHAPTER 2. PAPERS 49

2.9.3 Transactional Memories
Transactional memory is a concurrency control hardware mechanism that allows opera-
tions to be executed atomically, through using a concept similar to database transactions.
Transactional memory support is present on modern systems’ platforms; this paper will
cover Intel’s TSX solution.

TSX is a set of instructions which add transactional memory support on x86. TSX is
able to monitor a small region of memory in order to verify whether a transaction can be
committed or not. TSX’s usage requires code rewriting since new instructions (XACQUIRE,
XRELEASE, XBEGIN, XEND, XABORT and XTEST) should be used.

Due to the monitoring capabilities of TSX, it can be used for security purposes by
monitoring specific system regions. An example of monitoring application supported by
transactional memory might be to monitor thread memory in an efficient way, such as
proposed by Muttik et al [132]. The efficiency is due to the fact that transactional memory
is assynchronously activated, thus without polling needs. In addition, it is more granular
(64 bytes) than trapping the page-fault mechanism, which is 4K byte granular, in general.

Another TSX-support usage is for CFI enforcement[131]. The main advantage of this
approach is that the malicious transaction is not only detected but also not committed,
keeping the system on a secure state. TSX research is still taking place, but it is easy
to imagine use cases, such as detecting system components touched by malware samples.
Another kind of application which will probably benefit from TSX is policy enforcement,
as can be seen in Birgisson et al’s work[19], which proposes a memory introspection
mechanism.

2.10 Summary
In this section, we present an overview of the presented technologies, tools, and solutions,
aiming to ease comparisons. As the tabulated items are themselves related in two distinct
ways—by the employed technology and by the solution goal—we present both, so a given
solution may appear more than once.

Table 2.1 presents the HVM-based tools and solutions.
Table 2.2 presents the SMM-based tools and solutions.
Table 2.3 presents the privileged rings-based tools and solutions.
Table 2.4 presents the hardware-based tools and solutions.
Table 2.5 presents the performance counters-based tools and solutions.
Table 2.6 presents protection mechanisms employed by the presented solutions.
Table 2.7 presents a comparison of solutions according to their purposes.
Table 2.8 presents a comparison of solutions according to their overhead.
Table 2.9 presents a comparison of solutions according to their required development

effort.

CHAPTER 2. PAPERS 50

Table 2.1: Summary of HVM-based tools and solutions.
Tool Purpose Target OS Technology Hypervisor Resources

BluePill offensive Windows
Vista

AMD SVM – network backdoor

HVM
Rootkit

offensive Windows XP AMD SVM – –

Ether malware
analysis

Windows XP – Xen syscall tracer, unpacker

CXPInspectormalware
analysis

Windows 7
x64

Intel VT-x KVM memory tracking,
profiling

MAVMM malware
analysis

Ubuntu
Linux

AMD SVM own
hypervisor

syscall tracer, unpacker

HyperDBG debugging Windows XP Intel VT-x – kernel debugger, graphical
user interface

SPIDER debugging Windows
XP Ubuntu
Linux

– KVM trap flag Hider,
unlimited breakpoints

V2E execution
replay

Linux
Windows XP

HVM DBT TEMU transparent collection,
execution replay,
emulated instruction
changes,
emulated page table
translator

Kang et al.
2009

execution
replay

Windows XP HVM DBT Ether
TEMU

transparent collection,
execution replay,
dynamic state
modifications

BitVisor policy en-
forcement

Windows XP
Windows
Vista Linux

Intel VT-x – para-passthrough,
I/O policy, DMA MITM

SecVisor attack
prevention

– AMD DEV – code execution policy,
code authorization,
kernel-userland flow
integrity

HyperSleuth forensics Windows XP Intel VT-x – syscall tracer,
dump on write,
lie detector

Quist et al.
2001

unpacking Windows XP Intel Vt-x Ether binary section and header
rebuilding,
VAD import rebuilding,
AV submission

CHAPTER 2. PAPERS 51

Table 2.2: Summary of SMM-based tools and solutions
Tool Purpose Target

system
Trigger Resources

Duflot et al.
2007

offensive OpenBSD — unrestricted physical
memory access

Embleton
et al. 2008

offensive – keyboard IRQ on
APIC chipset

keylogger

Schiffman
and Kaplan
2014

offensive Linux USB-PS2
emulation handling
rerouted from
USBHC

keylogger, UDP
transmission

MALT debugging Windows,
Linux

performance
counter overflow

register access,
memory inspection,
step-by-step,
BIOS flashing,
GDB integration

SMMDumper forensics – APIC-redirected
known key-pressed
sequence interrupt

memory dump, UDP
packets, code callbacks

Wang et al.
20011

forensics – IPMI memory dump,
consecutive snapshots,
PCI DMA,
SMM-based semantic gap
bridging,
BIOS NIC driver

SPECTRE attack
detection

Windows,
Linux

periodic timer memory pattern matching,
BIOS NIC heartbeat

I/O Check I/O
integrity

– – APIC remapping check,
NIC firmware hash check

HyperSentry hypervisor
integrity

Intel VT-x,
Xen Hypervisor

IPMI, performance
counter overflow

hash-based integrity check,
SMM-based semantic gap
bridging,
root-non-root transition
bridging

HyperCheck hypervisor
integrity

QEMU,
real NIC,
Xen
hypervisor,
Linux,
Windows

– SMM-based semantic gap
bridging,
hash-based integrity check

CHAPTER 2. PAPERS 52

Table 2.3: Summary of privileged rings-based tools and solutions.
Solution
Class

Ring Underlying
Technology

Capabilities Limitations

HVM -1 extended processor
instruction set

attack: hypervisor attacks,
defense: kernel/userland
monitoring

hypervisor rewriting,
semantic gap, considerable
overhead

SMM -2 system BIOS attack: boot attacks,
defense: kernel, userland
and hypervisor monitoring

BIOS rewriting, semantic
gap,
locked BIOS

AMT -3 Chipset attack: whole system
view,
defense: kernel, userland,
hypervisor and BIOS
monitoring

chipset dependent,
semantic gap

SGX – Processor Enclave attack: malware integrity
check,
defense: running software
cannot be monitored

API-dependent code

hardware – physical external
hardware

attack: –,
defense: tamper-proof
monitoring

hardware development
efforts, bus monitoring
rate, semantic gap

performance
counter

– processor feature attack: side-channel
detection,
defense: low-overhead
tracing and profiling

no process isolation, kernel
mechanism configuration

GPU – PCI Card attack: DMA snooping,
defense: DMA monitoring

semantic gap,
DMA blocking

TSX – concurrency
control hardware

attack: –,
defense: commit-based
control flow

limited block size

Table 2.4: Summary of hardware-based tools and solutions.
Tool Technology Data

Collection
Filtering Vulnerabilities

Copilot PCI Card snapshot No timing,
dynamic state modification

SnapMon SOC snapshot no timing,
dynamic state modification

SnoopMon SOC snooping yes –

Ki-Mon SOC snooping yes
(Hardware-Assisted
Whitelisting)

–

Kargos – snapshot – –

CHAPTER 2. PAPERS 53

T
ab

le
2.
5:

Su
m
m
ar
y
of

p
er
fo
rm

an
ce

co
un

te
rs
-b
as
ed

to
ol
s
an

d
so
lu
ti
on

s.
T
o
o
l

C
la
ss

T
y
p
e

V
en

d
o
r

P
u
rp
o
se

In
te
l.

In
tr
o
.

T
o
o
ls

U
n
d
er
ly
in
g

S
o
lu
ti
o
n

In
je
ct
io
n
L
im

it
s

B
ra
n
ch

T
ra
ce

b
ra
n
ch

m
on

it
or

—
—

d
el
u
si
on

at
-

ta
ck
s,

R
O
P

ro
ot

ca
u
se

an
al
ys
is
,

C
A
L
L
-

R
E
T

C
F
I

W
in
d
ow

s
d
eb

u
g

sy
m
b
ol
s

sh
el
lc
od

e
ex
tr
ac
-

to
r,

R
O
P

d
et
ec
to
r

C
W

X
D
et
ec
to
r

—
n
o
C
G

or
C
F
G

ge
n
er
at
ed

C
F
IM

on
b
ra
n
ch

m
on

it
or

K
B
ou

n
ce
r

b
ra
n
ch

m
on

it
or

L
B
R

In
te
l

R
O
P

d
et
ec
-

to
r

C
A
L
L
-

R
E
T

C
F
I

–
p
ro
ce
ss

b
lo
ck
in
g

–
ye
s

L
B
R

ga
d
ge
t-
le
n
gt
h
,

co
d
e
in
je
ct
io
n

R
O
P
ec
ke
r

b
ra
n
ch

m
on

it
or

L
B
R

In
te
l

R
O
P

d
et
ec
-

to
r

C
A
L
L
-

R
E
T

C
F
I

–
—

—
—

L
B
R

ga
d
ge
t-
le
n
gt
h
,

st
at
ic

co
d
e

d
at
ab

as
e

P
ie
rc
e
et

al
.

20
16

ev
en
ts

m
on

-
it
or

—
—

R
O
P

d
et
ec
-

to
r

b
as
el
in
e

K
om

p
al
i

an
d

S
ar
at

20
14

ev
en
ts

m
on

-
it
or

–
In
te
l

ab
n
or
m
al

b
eh

av
io
r

b
as
el
in
e

N
/A

C
P
U

u
sa
ge
,

m
em

u
sa
ge
,

ca
ch
e

u
s-

ag
e,

b
ra
n
ch

p
re
d
ic
ti
on

V
tu
n
e

–
n
o
p
ro
ce
ss

in
fo
rm

at
io
n
,

V
tu
n
e
li
m
it
s

H
P
C
H
u
nt
er

ev
en
ts

m
on

-
it
or

–
–

ab
n
or
m
al

b
eh

av
io
r

b
as
el
in
e

+
S
V
D
/S

V
M

Y
u
an

et
al
.

20
11

D
em

m
e

et
al
.
20

13

W
an

g
an

d
G
u
o
20

16

M
al
on

e
et

al
.
20

11

T
an

g
et

al
.

20
14

C
on

fi
rm

CHAPTER 2. PAPERS 54

Table 2.6: Protection mechanisms used by overviewed solutions.
Solution Class Mechanism Protection

HVM trap flag exception handler

HVM loader driver rootkit hider technique

HVM hypervisor code page fault handler trap

HVM timing TSC change

SMM BIOS change online BIOS flashing

SMM timing TSC change

performance counter MSR disabling periodic kernel checking

DMA DMA blocking device exclusion vector

2.11 Conclusions
In this work, we presented a complete overview of monitoring tools on modern systems.
We took a deep look into HVM and its application as well as SMM ones, which includes
threat and defense mechanisms. We also presented some hardware-based related tools
and their tamper-proof advantages and early-developed tool limitations.

We do believe that this summarizing work will help researchers improve knowledge
in the area, since there are still have unsolved issues. Among them, despite well-known
ones such as transparency claims which are not supported by the vendors, we have new
ones. An emerging one is nested virtualization support. Questions such as: “How do we
support a VM inside another one?” and “How do we bridge such coupled semantic gap?”
are still unanswered.

We are also aware of a trend on moving to VM is happening: Qubes[161] is a modified
Linux OS that isolates each application on a VM; Windows 10 has implemented the
concept of Virtual Secure Machines (VSMs), “loading a microkernel with its own drivers,
called Secure Kernel Mode (SKM) environment”[82]; the Edge browser also moved to a
micro-VM environment[53]; Samsung, in turn, implemented a hypervisor-based approach
for kernel protection[165].

If this trend consolidates as a de facto standard, we will have another turn, since
just detecting VM environments will not be enough for malware authors: they will have
to detect the monitoring process itself, which is much harder.

The hereby presented approaches solve most of the timing problems when transpar-
ently analyzing a system. However, external approaches still remain effective, such as
NTP time measurements over encrypted connections.

Acknowledgments
This work was supported by the Brazilian National Counsel of Technological and Scientific
Development (CNPq, Universal 14/2014, process 444487/2014-0) and the Coordination

CHAPTER 2. PAPERS 55

Table 2.7: Comparison of solutions according to their purposes.
Purpose Technology Advantages Disadvantages

offensive HVM late launch –

offensive SMM – BIOS locking

offensive SGX remote attestation –

malware analysis HVM late launch hypervisor rewriting,
overhead, semantic gap

malware analysis SMM – BIOS rewriting/locking, semantic
gap

malware analysis performance
counter

low overhead limited data capture,
limited process information

malware analysis GPU low overhead limited to DMA data, DMA
blocking, semantic gap

debug HVM easy register access

debug SMM limited to SMI

attack detection HVM – vulnerable to hypervisor attacks

attack detection SMM inspect hypervisors have to implement network support

attack detection GPU low overhead DMA-limited

attack detection PCI-card low overhead DMA-limited

attack detection hardware tamper-proof no active component

policy
enforcement

HVM IOMMU –

integrity check HVM kernel monitoring hypervisor attacks

integrity check SMM hypervisor check coupled semantic gap

integrity check DMA low overhead timing attacks

side effects event counter low overhead limited process isolation

ROP branch
monitor

runtime code
monitor

increased overhead

ROP event monitor side effects detection limited process information

CHAPTER 2. PAPERS 56

Table 2.8: Comparison of solutions according to their overhead.
Technique Overhead Reason/Limitation

HVM high single-step trap at hypervisor level

SMM high single-step trap at BIOS level

performance counter medium-low branch-step trap at kernel level

GPU DMA near-zero GPU blocked for other calculations

dedicated PCI DMA near-zero specific purpose

external hardware zero no interruption/interference

Table 2.9: Comparison of solutions according to development effort.
Technique Development effort Reason/Limitation

HVM high hypervisor rewrite

SMM high BIOS rewrite

external hardware high hardware project

dedicated PCI DMA medium device driver

performance counter medium ordinary kernel driver

GPU DMA low GPU program

for the Improvement of Higher Education Personnel (CAPES, Project FORTE, Forensics
Sciences Program 24/2014, process 23038.007604/2014-69).

2.12 Enhancing Branch Monitoring for Security Pur-
poses: From Control Flow Integrity to Malware
Analysis and Debugging

Publication: This paper was submited for publication to the ACM Transaction On
Privacy and Security (TOPS)

Marcus Botacin1, Paulo de Geus2, André Grégio3,
(1) University of Campinas

Email: marcus@lasca.ic.unicamp.br
(2) University of Campinas

Email: paulo@lasca.ic.unicamp.br
(3) Federal University of Paraná

Email: gregio@inf.ufpr.br

CHAPTER 2. PAPERS 57

2.13 Abstract
Malware and code-reuse attacks are the most significant threats to current systems op-
eration. Solutions developed to countermeasure them have their weaknesses exploited by
attackers through sandbox evasion and anti-debug crafting. To address such weaknesses,
we propose a framework that relies on modern processors’ branch monitor feature to allow
us to transparently analyze malware, thus reducing evasion effects. Transparency is also
key for debuggers, since modern software (malicious or benign) is anti-analysis armored.
We achieve transparent code execution control by using the branch monitor hardware’s
inherent interrupt capabilities, keeping the code under execution intact. Previous work
on branch monitoring have already addressed the ROP attack problem, but require code
injection and/or are limited in their capture window size. Therefore, we also propose an
ROP detector without these limitations.

2.14 Introduction
Malicious Software (malware) is a persistent threat to current systems; dynamic analysis
is one of the main techniques used for malware profiling, identification of features and
development of countermeasures. Malware authors continuously seek ways of preventing
their code from running inside analysis environments (sandboxes) to thwart detection,
while operating system improvements complicate its instrumentation for malware moni-
toring. Hence, hardware-assisted analysis approaches have been developed to overcome
these issues.

In addition to sandboxes, debuggers are also important tools for software development
and analysis, as they support code inspection and, consequently, its validation. In sys-
tems security, debuggers can be used to assist malware analysis and reverse engineering,
allowing researchers to investigate several execution paths. However, both legitimate soft-
ware (for intellectual property protection) and malware (for detection avoidance) are often
equipped with anti-debug techniques. Therefore, we need to accomplish transparency to
overcome these techniques and so perform more dependable malware analysis.

Along with malware infection, code injection used to be one of the main attack vectors
to subvert systems functioning. The adoption of non-executable pages supported by
hardware (No eXecute - NX/eXecute Disable - XD) and data execution prevention (DEP)
eliminated this problem in practice. However, attackers found another way of leveraging
control flow deviation by chaining blocks of code (gadgets) through ret instructions. This
is known as Return-Oriented Programming (ROP) and is currently the main injection
vector. Recently, techniques based on Control Flow Integrity (CFI) and code length arose
to counter such attacks with reasonable effectiveness5.

Based on the aforementioned issues, we introduce a hardware-assisted solution to
address sandbox evasion and anti-debug equipped malware in a transparent way, and to
detect ROP attacks in real time while overcoming limitations of existing state-of-the-art,
hardware-assisted approaches. In summary, we make the following contributions:

5Despite attacks as Control Flow Bending and Jujutsu

CHAPTER 2. PAPERS 58

1. Current Threats and Solutions scenario review: we present a review on the
threat landscape scenario and current countermeasure and analysis tools, discussing
their weaknesses. Specifically, we review transparent analysis solutions as well as
branch-based ones.

2. Branch monitoring framework: we propose a complete, modular framework
based on hardware monitoring features, allowing for further applications that over-
come current and future state-of-the-art limitations and weak points.

3. Transparent malware analysis: we leverage our framework to build a transparent
malware analysis tool with lower development efforts than the current state-of-the-
art ones. As far as we know, no other malware tracer is based on such kind of
monitoring.

4. Transparent debugger: we demonstrate how to implement granular debugging
based on our framework without using single-step flags. Again, we have no knowl-
edge of other debugging solutions based on branch monitors.

5. ROP attack detector: we present an improved implementation of current ROP
detection heuristics, based on our framework, which does not require code injection,
a limitation on other approaches.

6. Hardware Improvements: We suggest possible hardware enhancements for branch
monitors based on the challenges we faced when developing our solution.

The remainder of this paper is organized as follows: in Section 2.15, we define the
threats to be addressed, review the current threat and countermeasure scenario, and
introduce the hardware feature used in our solution; in Section 2.16, we review the state-
of-the-art solutions and pinpoint their weaknesses; in Section 2.17, we state the basis for
our framework; in Section 2.18, we present solutions developed upon our framework; in
Section 2.19, we discuss our contributions, proposal limitations and future developments;
finally, in Section 2.20, we present our conclusions.

2.15 Background and threat model
In this section, we present background information about the covered topics, and introduce
our threat model, which will guide our project decisions and the development itself.

2.15.1 Malware analysis and evasion
Malware analysis makes use of a set of techniques used to inspect malicious artifacts in
order to build a knowledge about it, which allows the development of detection and coun-
termeasure mechanisms. The techniques are usually classified as static or dynamic [179].
Each one presents limitations exploitable by malware. Static analysis may be susceptible
to both theoretical (e.g., opaque constants [128]) and practical (e.g., packing, encryption,
and obfuscation [65]) limitations. Dynamic analysis is often employed as an additional

CHAPTER 2. PAPERS 59

analysis layer in order to overcome such limitations [59], relying on the sample’s execution
in a controlled environment (sandbox). The execution usually happens on an emulator,
due to instrumentation issues, or in a virtualized environment, due to scalability issues.
Code execution in a non-native environment may be used by malware to detect an analysis
environment and thus to hide its malicious intent.

Environment detection is performed mainly through fingerprinting or side-channel
effects on instruction execution [105], since emulator implementations do not exactly look
like physical processors. Currently, there are tools to automatically detect such side
effects [177].

2.15.2 Current solutions for evasive malware
Many authors tried to address evasive malware issues, either by detecting their split
personalities under an emulator [13] and counter-measuring its side effects [198], or by
running the sample on a bare metal environment [89]. Trying to mask execution side
effects is an ineffective solution since it can only assure the execution of samples which
employ known detection tricks. Regarding this scenario, a non-evadable malware analysis
tool should be able to run code in a native processor, which is called transparent execution.

bare metal systems often present another issue related to detection: their intrusiveness
over the traced sample. Systems which rely on techniques such as DLL injection can be
detected by hashing sample’s own memory. For this reason, higher-privileged monitoring
tools are required [159]. However, as the operating system (OS) evolve, high-privileged
instrumentation becomes harder due to new security mechanism – Windows Kernel Patch
Protection (KPP) [109], for example, denies kernel hooking, a frequent approach for API
interception. This way, a non-intrusive instrumentation is a requirement for bare metal
malware analysis on modern OS.

Developing a transparent and non-intrusive malware analysis system is one of the goals
of this work.

2.15.3 Transparency
Along this paper, our most frequent claim regards transparency, which we understand
as the sample behaving under analysis the same way as it behaves out of an analysis
environment. In other words, the sample must not get to be aware of an analysis proce-
dure. In order to give more formal foundation to this claim, we adopt the Dinaburg et al.
definitions for Ether sandbox:

1. Higher privilege. The analyzer has to have more privileges than the analyzed
instance.

2. No non-privileged side-effects. Any instruction which induces side effects should
be handled by an exception able to hide its effect.

3. Identical Basic Instruction Semantics. Each executed instruction has the same
effect and lead to the same next instruction.

CHAPTER 2. PAPERS 60

4. Transparent Exception Handling. Given an exception on a given ith instruction,
the exception handler must return to the i + 1th instruction;

5. Identical Measurement of Time. The measurement of time has to be identical
within and without the analyzer. As this requirement is hard to fulfuill—exception
handling is not constant time, for instance—, small differences are tolerable.

It is clear a bare metal-based system naturally fulfills most of these requirements.
In this work, we discuss how to fulfill the other ones when developing an inspection
mechanism.

2.15.4 Debuggers: requirements and implementations
Debuggers can be used to assist malware analysis and reverse engineering, allowing re-
searchers to investigate several execution paths. In general, a debugger should provide:

• Small Step Execution: A debugger should allow for region of interest inspection
in a granular way—from single step to function call trace.

• Breakpoint Information: A debugger should assure that the breakpoint region
is known. In other words, it should provide predictability to the execution. The
combination of the two aforementioned requirements matches the context require-
ment [158]. Due to the latter, probing approaches are not suitable for debuggers.

• Context Inspection: Given a breakpoint, the debugger should be able to retrieve
information about the current execution context, such as memory and register values
and/or function called.

In addition, there is another characteristic of a good debugger, though not always
implemented in practice:

• Transparency: It is most welcome that the software under analysis be unaware
of a debugger, so it can execute without any restriction. Currently, a lot of soft-
ware employ anti-debug techniques in order either to prevent intellectual property
stealing, in the legitimate case, or to avoid detection, in the malicious case.

2.15.5 Current debugger implementations
Current debuggers are built on top of distinct techniques, such as OS support, emulation
or injection, and hardware support. However, most of them are not transparent, showing
the same limitations discussed previously in Section 2.15.1.

Most OSs provide interfaces that allow process control. Some Unix-like systems, for
instance, provide the ptrace API, which is the base for tools like the strace tracer and
the GDB debugger. This solution is not transparent since the presence of the tool can
be discovered with the tool itself (if (ptrace(PTRACE_TRACEME, 0, NULL, 0) == -1),
then it is detected). Windows also provides its own debug facilities [113]. However, they
are also not transparent, being detected by the IsDebuggerPresent API [118].

CHAPTER 2. PAPERS 61

Emulation and injection-based systems suffer from the same problems stated in Sec-
tion 2.15.2. Other debug solutions rely on hardware features, such as the step-by-step
execution defined by setting a trap flag in a debugctl MSR register, which can be
detected by samples through reading that register, therefore being also not transparent.
Providing a transparent debug solution is another of the goals of this work.

2.15.6 ROP attacks
Code injection used to be one of the main attack vectors to subvert systems functioning.
The adoption of non-executable pages supported by hardware (NX/XD) and data exe-
cution prevention (DEP) eliminated this problem in practice. However, attackers found
another way of leveraging control flow deviation by chaining blocks of code (gadgets)
through ret instructions. This is known as Return-Oriented Programming (ROP) and
is currently the main injection vector. This kind of attack is not prevented by existing
mechanisms since the code chains are not composed of any externally-injected material
but perfectly legitimate code in system memory. In a general way, the chains are com-
posed of a few instructions, which when combined and properly chosen may satisfy the
attacker’s desire to execute specific, arbitrary computation [67].

Figure 2.4 illustrates a ROP attack which adds and subtracts two values in memory.
In a real scenario, those could be addresses of a function or a malicious payload. Notice
that the hexadecimal code on the right side is part of the process’s image, either pieces
of its own binary or of any library it is linked to. Gadgets can make use of existing
instructions by aligning the return jump to the byte boundary of a complete instruction,
but are often built based on instruction unalignment/misalignment. By returning to a
memory address out of phase in relation to the original opcodes, the intermediate bytes
are understood by the CPU as completely different opcodes than the original ones.

Figure 2.4: Example of a ROP attack - Computing with memory values. Left side shows
a program stack filled with malicious payload (gagdets addresses); right side illustrates
how the possible gadgets look like.

Recently, techniques based on Control Flow Integrity (CFI) and code length arose

CHAPTER 2. PAPERS 62

to counter such attacks with reasonable effectiveness. However, many issues are still
posed by them, such as recompilation or code-injection. One of our goals is to propose a
hardware-assisted system that overcomes limitations of state-of-the-art, hardware-assisted
approaches to detect ROP attacks in real-time.

2.15.7 Performance monitoring
Modern processors have many sensors on their platforms which allow for monitoring per-
formance event indicators. These sensors may also be used for other purposes, such as
security ones, as proposed in this work. Each vendor presents their own set of monitors—
Intel [78], AMD [5], and ARM [7]. Due to availability issues, this work is based on the
Intel platform. It is composed of two sub systems: PEBS (Precise Event Based Sam-
pling) and LBR/BTS (Last Branch Record/Branch Trace Store). The first is responsible
for collecting information about general system events, such as instructions retired, cache
hit/misses, branches predicted and so on. The second is responsible for monitoring control
flow deviations. It can store both source and target addresses of deviation instructions.
Despite being called branch monitors, they can monitor any control flow deviation in-
struction, including CALL, RET and exceptions, beside ordinary branch ones (JMP,JNE).
Figure 2.5 illustrates a branch stack.

Figure 2.5: Example of a Branch Stack.

Both schemes have two storage options: register and memory-based. The first option
allows the system to store data in a limited number of specific purpose MSR registers,
whereas the second one provides an unlimited storage in OS memory pages. The branch
monitoring mechanism is named LBR when operating in the first mode and BTS in the
second. Collecting data in MSR registers requires polling, which may cause data loss in the
LBR case. The memory-based approach for PEBS and BTS, in turn, have the advantage
of having the ability to generate an interrupt when a given threshold is reached; this way
no data is lost by the capturing mechanism.

Both systems are activated by setting special flags in MSR controls and impose theo-
retically zero overhead, since they are processor features. For MSR access a kernel driver is
required. In addition, as a processor feature, a physical machine is required, since virtual
machines do not emulate such special MSRs. The mechanisms operate in a system-wide
manner. Therefore, no process information is available for filtering. The LBR mechanism,
however, is able to filter deviation types (branch, call or ret). Both LBR and BTS can
filter at the capture level—kernel or userland.

CHAPTER 2. PAPERS 63

2.15.8 Threat model
The assumptions presented here will guide the solution’s development and evaluation. We
have the following threat model for malware analysis and debug scenario.

• Evasive malware: we target samples with virtual machine detection as the anti-
analysis mechanism.

• Userland threats: we assume that samples will execute in userland and no kernel
activity is performed. This assures the integrity of our kernel driver, as stated by
Rossow et al. Monitoring userland threats is a frequent assumption on malware
sandboxes. It can be seen in solutions like Cuckoo Sandbox [71] and CWSand-
box [208].

• Transparent analysis: we assume that our solution will be running on a physical
machine with performance monitoring support.

• System API usage: we assume that sample-OS interactions are performed through
default system APIs. This allows us to introspect system addresses in order to re-
construct sample flows.

• Modern OS: we assume that the execution environment is a modern OS, where
kernel instrumentation is denied by modern protection mechanisms.

Below, we show the threat model for the ROP scenario.

• Return-based: we assume that attacks are based on return gadgets, ignoring other
forms of code reuse attacks, such as Jump- or Loop-oriented ones.

• Unobtrusive monitoring: we aim to monitor software without any code injection
or emulation.

• No prior information: our solution is aimed to monitor any binary in the system
without additional information about it.

2.16 Related work
Transparent malware analysis Currently, two main kinds of techniques are employed
in transparent malware analysis: HVM (Hardware Virtual Machines) and SMM (System
Management Mode) instrumentation. HVM are systems which rely on virtualization in-
structions available in modern processors—Intel VT-x and AMD SVM—to build a trans-
parent environment, since these technologies allow running code on the physical processor.
In addition, they offer instrumentation facilities, such as double page translation mecha-
nisms. The transitions from root to non-root mode also provide a way to monitor system
events. Systems like the malware tracers Ether [55] and MAVMM [136] make use of this
technique to build their transparent systems. SMM mode, in turn, is a specific processor
mode to manage the system at a very low level. It consists of an executable portion of

CHAPTER 2. PAPERS 64

code resident in the system BIOS, triggered by special interrupts called System Manage-
ment Interrupt (SMI). This mode is well isolated from other execution modes by address
redirection. It allows transparent execution since it is bare metal based. Systems like
MALT [219] and SPECTRE [221] make use of SMM instrumentation to transparently
monitor systems. One main disadvantage of HVM and SMM approaches is their develop-
ment complexity: HVM requires writing an instrumented hypervisor. In some cases, such
as in MAVMM, a hypervisor has to be built from scratch, since a minimal Trusted Code
Base (TCB) is required. SMM, in turn, requires rewriting BIOS code—a task allowed
only on unlocked systems. In addition, such systems cannot rely on any library, given
their low-level placement. Another issue is the overhead imposed by the instrumentation
routines. HVM exits may impose an overhead of the same magnitude as the system ex-
ecution’s, such as on Ether’s case [55], therefore being impractical for some uses. Our
solution intends to be a lightweight version in the same line as these approaches, allowing
native code execution and low level inspection but with a significant reduction in overhead
and development efforts.

Debugger Most of the current debugger developments are focused on complex software
architectures, such as high level constructions [40], distributed systems [101, 168, 74],
and GPU programming [175]. However, few efforts were made toward a more transparent
debugger. The closest attempts to build a transparent debugger as proposed in our work
were made by MALT [219] and HyperDBG [61], which employ SMM introspection and
HVM, respectively. Our work intends to be a lightweight version in the same line as these
approaches, requiring smaller costs of development and performance, although it implies
on some restrictions, such as analysis inside the kernel and therefore requiring protection
to avoid kernel subversion.

ROP attacks ROP detection approaches can be classified in compilation-time, instru-
mentation, binary-rewriting and run-time. Approaches based on compilation time such
as control flow locking [21, 139] aim to avoid vulnerable constructions generation, thus
reducing ROP exploitability. The main disadvantage of this approach is that it cannot
be applied to existing binaries. Instrumentation approaches [49, 35, 68] are applicable
to existing binaries without recompilation. These solutions aim to detect exploitation in
real-time. However, they suffer from limitations of the instrumenting tools they are built
on. Binary rewriting solutions [73, 141, 206] can also be applied to existing binaries and
do not require instrumentation. They rewrite the binary on first execution, hardening it
against exploitation. The main disadvantage of this approach is its limitation to handle
dynamically generated code. A broader approach is to leverage hardware monitors in
order to inspect application flows. This approach can be applied to existing binaries and
do not rely on emulated environments. Hypercrop [86], for instance, leverages HVM to
identify ROP attacks. However, its overhead is prohibitive. A lightweight approach to
hardware assisted monitoring is to leverage performance counters. ROPecker [38] and
KBouncer [142] make use of the LBR mechanism to identify and counter ROP attacks.
ROPecker and KBouncer are the closest related to ours in the scope of ROP detection.
However, they present some limitations, such as using the limited LBR instead of the BTS

CHAPTER 2. PAPERS 65

storage and requiring DLL injection. Our work is intended to overcome such limitations.

Branch Monitoring Distinct solutions have been deployed using performance monitors
in a general way. Beside the ones on ROP detection, they were also applied in other
attack evaluations. Yuan et al. [217] relies on performance data provided by Linux Perf6
in order to identify attacks. Kompalli [92] works in a similar way but its underlying tool
is Intel Vtune7. Both solutions, however, are intended to detect system misbehavior in
a general way, whereas our proposal is to trace specific process activity. In this sense,
the work closest to ours is [209], which is able to rebuild some traces from a program
crash. However, this solution is not aimed at Control Flow Graph (CFG) reconstruction
or debugging. It is also limited to using the few LBR registers. Our work solves it and
provides a broader solution to malware tracing.

The usage of LBR and BTS. Most solutions based on branch monitoring make
use of the LBR mechanism instead of the BTS one. This way, many comparisons made
in this work consider only LBR, such as on ROPecker’s and KBouncer’s study cases.
CFIMon [212], for instance, makes use of BTS to enforce a CFI policy. Unlike this work, it
uses a 2-phase heuristics, which requires binary prior-analysis. This way, it is not directly
comparable to this work, which implements a 1-phase policy, such as in KBouncer.

The work in [3] is the only one we are aware which addresses the specific usage of BTS
for security purposes. In such work, BTS is used to validate control flow path transitions.
The work hereby presented, however, differs from it in many ways, since our goal is to
implement security tools, such as malware tracers and debugging facilities, whereas the
cited work is concerned only with implementing runtime policy enforcement. Its syscall
trace system is more focused on abnormal behavior detection than on tracing a given
binary itself, which is proposed by us. Given these differences, we are able to provide
more flexible solutions, which allows us, for instance, to reduce overhead. Moreover,
our solution presents the same advantages of the aforementioned approach, such as not
requiring binary modifications.

The work of Soffa et al [180] makes use of both LBR and BTS in order to discuss the
application of hardware monitors in the context of software engineering. Although this
work had already suggested branch monitor use in order to track executed paths, it can
be considered as a first step, since many aspects needed to be further discussed, such as:
i) External Library Inspection; ii) Branch-capture granularity; iii) Process Isolation; iv)
Implementation aspects. In this scope, the hereby presented work can be considered as a
second-step, discussing these missing points and presenting real-world sample evaluation.

2.17 Proposed framework
The framework is general in nature and can be applied for collecting and evaluating
control flow deviation data, in particular by the applications developed as part of this
work, which implements extensions to the framework in order to apply security policies.

6https://perf.wiki.kernel.org
7https://software.intel.com/en-us/intel-vtune-amplifier-xe

https://perf.wiki.kernel.org
https://software.intel.com/en-us/intel-vtune-amplifier-xe

CHAPTER 2. PAPERS 66

We are mainly concerned with tracing program paths, so we adopted the branch monitor
subsystem of the performance monitor hardware as our base mechanism. Given that it is
able to collect the address of executed instructions, we can reconstruct the whole scenario
of code execution over binaries, libraries and function calls through introspection.

To avoid losing instruction data, we opted for the BTS mechanism instead of the LBR
one. The advantage relies on the ability to make use of interrupts on our system, which
assures its state is coherent at inspection time. We defined a 1-instruction threshold; this
implies the system will be interrupted at each control flow deviation instruction, therefore
warranting the precise identification of which process is executing such instruction. This
way we can easily and stealthly filter process actions, even though the BTS system itself
is unable to provide such information. Conversely, solutions using LBR require intrusive
hooks to provide similar capabilities, such as in [2].

Our system architecture is designed as a client-server one, in which the kernel driver
is responsible for managing BTS data (server) and the user-land application for applying
policies on the collected data (client). Data collection may be synchronous or asyn-
chronous, in order to best fit a given policy. Data is collected in a system-wide fashion as
it is provided by the BTS mechanism and filtered in the user-land client, so that distinct
policy implementations are allowed, as shown on Figure 2.6.

Figure 2.6: Proposed Architecture. The processor fetches branch instructions from the
monitored code, which trigger the BTS threshold. The raised interrupt is handled by
an ISR at a kernel driver. The captured data is sent to the userland framework where
introspection and disassembling are performed and policies are applied.

The proposed architecture does not require any injection or interaction with the ana-
lyzed process, as data is collected by the processor and processed by distinct, independent
pieces of software. It also provides transparent execution, since instructions are executed
on the real processor. This framework is also easier to implement than other transparent
approaches: it requires only a kernel driver and additional user-land software, with no
need to write a hypervisor or rewrite the BIOS.

As for the solution’s performance, it presents theoretically zero8 overhead at capture
time, since it is performed on hardware, plus some overhead on analysis and/or policy
application. This overhead, however, is application-dependant. As our goal is to minimize
this overhead, we projected the system so that we could make many tasks using offline

8The BTS monitor by itself, not considering data collection and analysis

CHAPTER 2. PAPERS 67

processing, such as address introspection in case of a simple trace. However, some tasks
require online processing, as is the case with attack detection; as policies are implemented
as independent programs, we can run them on a different processor thread/core, which
minimizes performance impact over the analyzed software.

In the next sections, we cover details about the framework implementation and the
characteristics that make it flexible. It was implemented on 32- and 64-bit versions of
Windows 7 and 89.

2.17.1 Driver: all about the basis
We need to access the debugctl MSR register, thus requiring the deployment of a driver.
This driver is also required for allocating and supplying OS memory pages to the BTS
mechanism, as well as providing the Interrupt Service Routine (ISR) to handle BTS
interrupts and the I/O routines which send data from kernel to user-space. Each of these
features are detailed next.

2.17.2 Handling Interrupts
Interrupt handling is the most important step of data collection, because this is where
data preservation is effectively performed. As BTS data is stored in memory pages, we can
collect it by simply using a pointer. Installing the ISR, however, is the hard part: the BTS
interrupt mechanism looks into the Local Vector Table (LVT) to find out how to deliver
the interrupt. The LVT defines if it is delivered through an SMI, NMI or fixed mode (the
default option). In the latter case, an entry into the Interrupt Description Table (IDT)
is performed. The ISR address is placed on the corresponding position of the IDT. On
Windows systems, the defined IDT entry may already be allocated to another portion of
the system. Changing the LVT vector offset could be an option but, in our tests, no IDT
entry was available. Hooking IDT is not an option anymore on newer Windows versions
since the Patch Guard mechanism prevents it.

Hooking the specific performance handler could be an option—it could be done by
calling the _HalpSetSystemInformation() from HalDispatchTable in order to change
the HalpPerfInterruptHandler—but this presents side effects. A non-hooking solution
is to change the delivery mode on LVT to Non-Maskable Interrupt (NMI), a high priority
interrupt originally aimed at exception checking. As an NMI interruption is immediately
handled, it is a good choice for our monitoring goal. The NMI ISR is registered using
the KeRegisterNmiCallback [108] function. When an NMI happens, process execution
is suspended so that we can correctly retrieve its PID. It is performed by using the
PsGetCurrentProcessId [119] function. This information, along BTS branch data, are
stored on a queue, detailed below, to be collected by an I/O call. Finally, the ISR is also
responsible for re-enabling the BTS interrupt mechanism, since it is disabled as soon as
an interrupt happens.

9We chose to implement such solution on Windows since it is the desktop OS most targetted by
malware samples

CHAPTER 2. PAPERS 68

2.17.3 Handling Data
When an interrupt occurs, the BTS buffer is full, so we have to copy its data to some
other place in order to free the buffer and re-enable the monitor. In our solution, BTS
buffer entries are copied to a Windows kernel list, pushed in a FIFO basis, in order to
keep proper order. In the event the buffer is not freed and the monitor is just re-enabled,
entries would be overwritten, thus causing the same effect of using the LBR monitor.

2.17.4 Performing I/O
The client receives data from kernel through I/O routines, with each application presenting
distinct requirements for data collection. Applications that are intended to provide real
time monitoring may require an asynchronous I/O in order to get results as soon as
possible, whereas tracing tools may get delayed data through synchronous I/O. Each
mode is detailed below:

Synchronous I/O In this mode, ISR collected data is enqueued on a circular kernel
list [123] in a FIFO way. Data is transferred to user-mode though IRP [117] generated from
a ReadFile [120] call, since the driver handle is opened as a file. The client periodically
asks for more data through polling the ReadFile call. As the queue follows the FIFO rule,
the data corresponds to ordered events.

Polling frequency In this mode, BTS data will generate data at a rate higher than
the consumption by the polling client. However, no data is lost since it is moved from
the BTS entry to the kernel list. The driver client, however, should define a compatible
polling frequency in order to not exhaust kernel memory. In our tests, a second-long
interval was enough.

Asynchronous I/O In this mode, the collected data is not stored on a queue, but on
a single structure, since it is expected to be consumed as soon as it is retrieved. Once
an interrupt occurs, the driver fires a previously cached I/O request in order to alert
user-mode code that the requested data is available. The client is then responsible for
releasing the I/O routine and collecting the stored data. The client should first release
the I/O since an interrupt is intended to be fast, being protected from locking by a timer
watchdog. This collection mode is named Inverted Call. Notice that the client must have
distinct threads for handling the kernel call and processing the data independently, thus
not blocking the ISR and not causing data loss.

2.17.5 What happens after an interrupt
It is natural to think that interrupts will keep being raised during the ISR, which would
overload the system. However, the BTS mechanism has some filtering features which help
us deal with this. The main one is the execution level filter, which allows us to disable
interrupts generated by the kernel, thus no branch generated by the ISR is captured.

CHAPTER 2. PAPERS 69

2.17.6 Handling monitor branch data
As the BTS captures branches in a system-wide way, the client-generated branches could
also be captured by the client itself. A direct way of preventing such behavior is to run the
client on a core distinct from the one the monitor is running on. An alternative approach
would be to perform PID tracking in the kernel.

2.17.7 Clients: where the magic happens
The user-land clients are the active analyzers of our system. They are responsible for
retrieving the data collected from the driver and applying their policies. They can be
built with complete independence from the drivers. To exemplify this claim, we have
implemented clients both in C and Python. The clients are responsible for keeping system
information in memory and to use them for the analysis process. The basic information
processing they perform are introspection and context retrieval mechanisms, which aim
to enrich the raw data collected. We detail both below.

2.17.8 Introspection
The information provided by the BTS mechanism (addresses) have very little meaning
in the context of a program execution. These addresses must be translated into high
level constructs so that analysts could gain more knowledge about the system state. As
instruction addresses point to the main memory, we can identify which loaded modules
are resident in each memory region. The loaded modules may be the main binary or
dynamic library code images; in the latter case, we can dig into their structure to identify
known function addresses/offsets, giving information about which functions were called
and/or what is being executed. The same could be done for binary images if we had
debug symbols, which is not usually the case.

Code images in memory can be enumerated by using the EnumProcessModules [114]
function. Each of their base locations can be retrieved with the GetModuleHandle [115]
function. However, code images change their placement at every system startup due to
the Address Space Layout Randomization (ASLR) mechanism, as shown in Table 2.10.
Therefore, as we run on a bare metal system10, which requires rebooting for state restoring,
this code image address enumeration procedure should be repeated at every boot, thus
being intrinsically ASLR-aware. If the intended usage scenario is not a sandbox, which
requires rebooting, one may just repeat this procedure before every process invocation in
order to get per-process, ASLR-aware data.

Table 2.10: ASLR - Library placement after two consecutive reboots.
Library NTDLL KERNEL32 KERNELBASE
Address 1 0xBAF80000 0xB9610000 0xB8190000
Address 2 0x987B0000 0x98670000 0x958C0000

10By bare metal we mean a physical machine running an actual processor, with no emulation or
virtualization.

CHAPTER 2. PAPERS 70

Given a BTS-provided address, we can identify the corresponding library it refers to
by looking to the closest base address previously retrieved from module enumeration. By
looking to the difference between the base address of a given library and the address
pointed to by the BTS, we can compute an offset, which is mapped to a library internal
function, thus leading to a higher level semantic construct. Function offsets can be ob-
tained by inspecting host libraries through the use of tools like DLL Export Viewer [137].
Table 2.11 shows function offsets for the NTDLL library, as an example. The whole intro-
spection process is illustrated in Figure 2.7. It is important to notice that such offset
extraction occurs automatically before analysis begins by considering a list of module
names supplied by the analyst. Once the extraction is performed, an offset database is
created. We are able to reuse such data since, unlike module addresses, function offsets
do not change due to ASLR.

Table 2.11: Function Offsets from ntdll.dll library.
Function Offset
NtCreateProcess 0x3691
NtCreateProcessEx 0x30B0
NtCreateProfile 0x36A1
NtCreateProfileEx 0x36B1
NtCreateResourceManager 0x36C1
NtCreateSemaphore 0x36D1
NtCreateSymbolicLinkObject 0x36E1
NtCreateThread 0x30C0
NtCreateThreadEx 0x36F1

Figure 2.7: Instrospection mechanism: from raw addresses to functions.

2.17.9 Looking into memory
In addition to looking into what an address represents, sometimes it is useful to look to
what the address content is—it can be executed instructions, as directly pointed to by the
BTS mechanism, or function arguments, given by an introspection process. Given a mem-
ory address, the contents can be retrieved by using the ReadProcessMemory API [121]. It
is important to notice we are allowed to perform such memory read since our framework

CHAPTER 2. PAPERS 71

execute with administrative privileges. It is also important to notice that memory reads,
unlike writes, do not violate the transparency requirement.

The ability to read memory allows us to read instruction bytes, which can be used
to enrich the software analysis. However, the bytes need to be translated into a higher-
level construct in order to be understood, i.e., instruction opcodes. Given an instruction
address, we can easily get the opcode from the instruction represented by the first byte of
the memory dump by using a simple table. The bytes representing the CALL and RET
instructions are shown respectively in Table 2.12 and Table 2.13. Notice that the same
opcode may have slightly different meanings according to the following bytes (addressing
modes). However, our solution does not need to look to these immediate values to calculate
addresses, since the branch monitor provides the already calculated target addresses.
This way, we can only look to the first byte and thus speed up some kind of instruction
interpretation, as is required for the ROP detector through the CALL-RET CFI policy.

Table 2.12: CALL Opcodes.
Opcode Mnemonic Opcode Mnemonic

0xE8 CALL rel16 0x9A CALL ptr16:16
0xE8 CALL rel32 0x9A CALL ptr16:32
0xFF CALL r/m16 0xFF CALL m16:16
0xFF CALL r/m32 0xFF CALL m16:32

Table 2.13: RET Opcodes.
Opcode Mnemonic Opcode Mnemonic

0xC3 RET 0xC2 RET imm16
0xCB RET 0xCA RET imm16

Despite disassembling only one byte, we may also face the scenario in which a block
of code is provided. As x86 instructions are not fixed-size, we need to find out if the
following bytes are immediate arguments or a new, following instruction. The disassembly
of multiple instructions in our system is performed by two libraries: Pybfd [69], a Python
interface for libopcodes on Linux, is used for offline processing whereas Capstone [33],
a Windows disassembler, is used for real-time processing.

Besides knowing how to interpret instructions from a memory dump, we need to know
how to retrieve addresses from branch information. The straightforward dump of the
first byte indicated by some branch data is not able to identify all instructions executed.
That would require additional data, which can be obtained by looking to two consecutive
branches. The destination address of the first branch indicates a place where the execution
will start; the source address of a consecutive branch indicates that the code execution left
the block at that point. As no other branch may have occurred, all intermediate instruc-
tions were effectively executed. Therefore, reading memory starting on the first address
up to the second leads to all executed instructions. Figure 2.8 illustrates it with data from
Listing 2.1. The execution flow enters a block of code at the first branch target address
(0x48ff5ab8) and leaves it on the source address of the next taken branch (0x48ff5ac0).
As no other deviation occurred, all instructions stored in that range were effectively exe-
cuted. The opcodes of such instructions are identified through the disassembly of 8-bytes
(the exit address minus the entry address) starting from the entry address.

CHAPTER 2. PAPERS 72

Figure 2.8: Block identification of two 8-bytes consecutive branches.

Listing 2.1: Block identification—from
0x48ff5ab8 to 0x48ff5ac0

1 PID : 4876 FROM: 0 x48f f5ab0 TO: 0
x48f f5ab8

2 PID : 4876 FROM: 0 x48 f f 5ac0 TO: 0
x48f f5ad0

2.17.10 Validation
In order to validate our framework, we have implemented the same ideas on Intel PIN, a
dynamic binary translator. In the emulated prototype, we considered only branch data
and reconstructed instruction blocks by relying on two consecutive branches, as shown in
Listing 2.2.

Listing 2.2: Instruction Instru-
mentation on PIN.

1 VOID In s t r u c t i o n (INS ins ,
VOID ∗v) {

2 i f (INS_IsBranchOrCall (
i n s))

3 Disasm (l a s t , cur rent)

We have run sample programs on both solutions and compared the results for each
execution, considering the framework as correct since all of them matched. As an example,
Listing 2.3 and Listing 2.4 present the execution of a given piece of code under PIN and
our solution, respectively. One can verify that the execution of the same block (0x90
offset)11 resulted on the same number of disassembled instructions (0xc96 - 0xc90 =
0x7).

11Base addresses are changed on distinct executions

CHAPTER 2. PAPERS 73

Listing 2.3: Sample code running under PIN.
1 From : 0000000077332F89 To : 0x7732ec90 Disasm o f 1 i n s t r : c a l l
2 From : 000000007732EC97 To : 0x7732ecab Disasm o f 1 i n s t r : jnz
3 Disasm o f 0x7 bytes from 000000007732EC90 : 0x48 0x3b 0xd 0x39

0x8e 0xe 0x0

Listing 2.4: Sample code running under Branch Monitor.
1 Binary Branch . Tester . exe at <0x1ca1> to Binary Branch . Tester .

exe at <0x1c90>
2 Binary Branch . Tester . exe at <0x1c96> to Binary Branch . Tester .

exe at <0x1c9a>
3 should disasm from 7 f f 6d6ec1c90 to 7 f f 6d6ec1c96

2.18 Applications
In this section, we present security applications built upon the presented framework. Each
of them makes use of a distinct feature from it, exemplifying distinct ways branch monitors
can be applied for security purposes. For the sake of readability, since capturing data at
branch level produces huge amounts of data, we present CG and CFG reconstruction
based on minimal examples. However, the evaluation tests presented on further sections,
such as 2.18.5 and 2.18.6, are based on real samples. The complete logs for such samples
can be found on the project page 12.

2.18.1 Malware Tracer
Tracing malware is an important step for malware analysis procedures. Traces can provide
information about malware behavior and its interaction with the system, which can be
used to group similar samples, develop anti-virus vaccines, patch vulnerabilities, and so on.
Our malware tracer follows directly from the data obtained from the BTS mechanism, as
instructions are supplied. In addition, we can enrich the data by adding extra information,
as presented in Section 2.17. We have implemented two analysis features in our prototype:
a call-graph viewer and a Control Flow Graph (CFG) rebuilder. The first allows for
identifying a sample’s behavior whereas the second can provide granular information about
executed instructions, which allows heuristics development like one based on tainting.

2.18.2 Call Graph
The CG represents function calls and their relationships. To exemplify the CG visualiza-
tion application, we will rely on a simple code whose host process was named NewToy.exe:
scanf(“%s”,val); printf(“%s\n”,val);. CALL and RET instructions are directly cap-
tured by the BTS mechanism and function identification is performed by the previously
mentioned introspection process. However, the BTS mechanism has no filter itself, incur-
ring in the capture of the CALL and RET instructions inside libraries in a given process

12https://sites.google.com/site/branchmonitoringproject/

https://sites.google.com/site/branchmonitoringproject/

CHAPTER 2. PAPERS 74

scope. Following code inside libraries might be useful in some situations, but not always.
So, we provide the ability to skip these instructions using a filter in the client. This
selection may be understood as debugging’s Step Into and Step Over navigation.

Step Into Figure 2.9 shows an excerpt from the Step-Into CG from the example code,
presenting the analysis of printf function internals. After the binary under analysis
calls the printf entry point, we can find calls to internal functions responsible for the
printf behavior—locks, for instance—which assures I/O ordering, since printf is a
non-reentrant function.

_lock_file+0x90printf+0xe3__iob_funcprintf+0xcaprintfNewToy

Figure 2.9: Step-Into call graph, all intermediate calls represented.

Step Over Figure 2.10 shows the Step-Over CG from the same code in which only the
called functions appear. The presented excerpt covers the return from the initial scanf
function at the 0x3f offset to our binary (NewToy) and then the call to the entry point
of the printf function, which will print the read value. Internal aspects of both functions
are ommited in this mode.

scanf+0x3f NewToy printf

Figure 2.10: Step-Over call graph, only CALL/RET represented.

2.18.3 Control Flow Graph
CFG is the most granular inspection view possible of a code at the instruction level. By
inspecting it, one can perform taint analysis [170] or identify malicious payloads [135, 216].
In order to rebuild the CFG of a given sample, we rely on the disassembly solution
previously presented. We apply it repeatedly so that we could retrieve information about
each block surrounded by two deviation instructions. Similar to CG’s case, the captured
data also contains information about library internals. Here, our sole interest is about
binary information, so we used the same approach of the Step-Over filtering. For example,
the code from Listing 2.5 results on the corresponding CFG of Figure 2.11.

CHAPTER 2. PAPERS 75

Listing 2.5: Example code
for CFG validation pur-
poses.

1 a=0;
2 s can f ("%d" ,&n) ;
3 f o r (i =0; i<n ; i++)
4 i f (i%2==0)
5 a++;
6 e l s e
7 a−−;
8 p r i n t f ("%d\n " , a) ;

Figure 2.11: Reconstructed CFG from Listing 2.5 example code.

We can observe a match between the presented code and the generated CFG, where
the first block is related to set up routines, such as pushing the stack frame. This block
leads to a decision block related to the for statement. If the iteration reached its limit, the
code proceeds to the left block, where the main function is finished by the execution of a
ret instruction. Otherwise, the execution proceeds to another decision block, associated
to the if statement—we should notice the and eax,0x1 instruction, associated to the
decision calculation. Even values result in the left block being taken (notice the a++

CHAPTER 2. PAPERS 76

represented as an inc) and odd ones in the right one (notice the a– represented as a dec).
The call in the last block is the printf invocation. The execution iterates through the
for backward edge.

As the provided branch information is related to the effectively taken deviation, our
solution has the advantage of capturing and disassembling real instructions; it does not
suffer from alignment tricks (often used for anti-analysis), which is a common problem on
static disassembly.

A brief comparison. Some may find similarities between the hereby presented
approach and the one presented by Paleari in his Fuzztrace tool13, detailed in a blog
post14. In addition to having distinct purposes, the solutions present other differences.
Paleari rebuilds the CFG based on perf-supplied edges. The presented study case is a
heat map of executed blocks, a task which our solution is also able to perform. Since our
framework is modular, a heat map policy would require writing a few lines of code.

Paleari’s solution, however, is more limited since it does not track external function
calls. Our solution, instead, is able to track and introspect into these functions. In
addition, we are able to filter how deep we dig into these libraries by selecting the step-
into and step-over modes. In the step-into mode, the CFG is rebuilt in the same way as in
the viewer tool from Fuzztrace. In the step-over mode, however, a stack is used to filter
out instruction blocks according to the monitored code (internal or library). All details
about our CFG reconstruction algorithm are presented in the next sections.

Additionaly, Fuzztrace only provides instruction addresses as tracing data, which re-
quires performing a static disassembly in order to match addresses and instructions. Con-
versely, our solution is able to perform online, dynamic code disassembly, providing the
executed block as tracing data.

Self Modifying Code. Many malware samples perform in-memory code changes,
also known as Self Modifying Code (SMC) [214, 50]. This is a technique often used
for packing samples in order to avoid static detection. Our solution is able to handle
packed samples since we can monitor their whole behavior, during and after unpacking
(intended execution). In case one wants to monitor the code modification itself, the tracer
needs to be run using asynchronous I/O since, in order to reduce overhead, we have
implemented the presented version using synchronous I/O, which causes delayed code
memory reads. As an advantage, the SMC detection can be performed concurrently with
the CFG reconstruction, by the same algorithm, as shown in the next section/paragraph.

The CFG-SMC algorithm. In this section, we detail the CFG reconstruction,
covering the step-over execution and external function calls. We also show how we can
use the same algorithm (Algorithm 1) to perform SMC detection. The algorithm takes as
input a list of instruction blocks and the flags which enable/disable the step-over and SMC
detection modes. The algorithm iterates over the instruction block list (line 6), updating
the current and previous blocks (line 28), adding edges between them when needed (line
26).

In the step-over mode (line 7), library CALLs (line 9) will be exit nodes from the graph
whereas RETs (line 11) will be entering nodes. In this mode, the instructions in between

13https://github.com/rpaleari/fuzztrace
14http://roberto.greyhats.it/2015/02/fast-coverage-analysis-for-binary.html

https://github.com/rpaleari/fuzztrace
http://roberto.greyhats.it/2015/02/fast-coverage-analysis-for-binary.html

CHAPTER 2. PAPERS 77

are not considered, thus the pass instruction (line 14). As these blocks are passed, the
previous node is kept in the CALL instruction and later edge-linked to the node coming
after the RET. Notice that when the step-over mode is enabled, as the libraries are pushed
into the stack, the library nodes are printed at a distinct CFG level. If necessary, one
may instrument the pass step to generate the whole CFG for a given level (the library
CFG, for instance). An example of such generation modes is provided below.

Figure 2.12 shows the step-into case. As the stack is limited to the first level (binary),
the library internal code, highlighted in the internal bounded box, is inserted as ordinary
binary code blocks. Figure 2.13 shows the step-over case. As the stack changes from
binary to library, these are printed at distinct levels. The two bounded boxes present,
respectively, the binary code (and its library call node) and the library code itself. An
existing corner case is related to branches whose targets are instructions inside other
blocks. In this case (line 19), the existing block has to be split (line 20) in order to keep
the CFG’s definition (set of non-branch instructions limited by a branch).

The same block traverse algorithm can be used as base for SMC detection. In this
case, a shadow memory is used, thus requiring additional memory. When a block node
is created (line 15), its memory content is hashed and stored in a shadow block (line
18). Notice that when a block is split (line 20), block hashes need to be updated (line
22). After the point where the current block is defined, we can check whether the current
block hash matches its shadow (line 24). In case any difference is found, an SMC code is
identified (line 25). The detection routine can be used to immediately return or update
the block hash and keep detecting code changes. Notice that in the SMC case distinct
CFG visualization modes should be used, since the dynamic block content makes plotting
harder.

Figure 2.12: Step-into CFG. Figure 2.13: Step-over CFG.

2.18.4 Modular malware
Many malware use modular approaches to deploy the functions required for infection,
such as dropping a file or downloading a payload from the Internet. This way, splitting
their maliciousness through many processes actually presents a lower malicious profile.

CHAPTER 2. PAPERS 78

ALGORITHM 1: CFG reconstruction and SMC detection
Data: blocks, StepOver, SMC.Detection
Result: CFG, SMC.Detected

1 Stack = {Binary}
2 CFG = ∅
3 Shadow = ∅
4 create_node(block[0],Stack,CFG)
5 previous = block[0]
/* Iterate over the blocks in an ordered way */

6 for current in blocks[1:n] do
/* Case filtering is enabled */

7 if StepOver then
/* Case it’s a library. Otherwise, run */

8 if Introspection(current) is LIBRARY then
/* CALLs are pushed on the stack */

9 if Instruction(current) is CALL then
10 Stack.push(Library(current))

/* RETs pop data from the stack */
11 elseif Instruction(current) is RET then
12 Stack.pop()

/* Ignore any other internal instruction at the for level */
13 else
14 Pass

/* Instead of passing, one can generate a CFG for the
library */

/* Create non-existing nodes in the graph */
15 if not node_exists(current,CFG) then
16 create_node(current,Stack,CFG)

/* Case SMC.Detection is enabled, compute the block hash the
first time */

17 if SMC.Detection then
18 shadow[current]=Hash(Instruction(current))

/* Case there’s a branch to the middle of a previous block */
19 elseif not match_first_address(current,CFG) then

/* split the previous block */
20 current, splitted = split_CFG(current,CFG)

/* Update block hashes to include the splitted one */
21 if SMC.Detection then
22 shadow[splitted]=Hash(Instruction(splitted))
23 if SMC.Detection then

/* Check current block has the same content than before */
24 if shadow[current] is not Hash(Instruction(current)) then
25 SMC.Detected()

/* add edges */
26 if not edge_exists(previous,current,Stack,CFG) then
27 create_edge(previous,current,Stack,CFG)
28 previous=current

CHAPTER 2. PAPERS 79

This effectively achieves a lower malware ranking among Anti-Virus tools and is currently
a common behavior on modern malware samples. Although our introspection process is
able to identify the call to APIs such as CreateProcess [110], we are not able to collect
the created process PID and thus not able to filter its activities. In order to overcome
this limitation, we installed a Process callback [111] which delivers new PIDs to our client
to be monitored. This way, the created process is added to the monitored list plus the
initial PID, which could be a suspended process, as usual on most sandboxes solutions,
or even a running process whose PID is known.

2.18.5 Real malware tests
As our tracing tool is built upon our framework, it allows malware analysis in a transparent
way. In order to validate such property, we ran some evasive samples in our environment
so as to verify if they executed as expected in a real, victim machine. The samples choice
was based on static analysis tools that identify Anti-VM techniques. We selected four
samples15 said to employ QEMU tricks according to PEframe (https://github.com/
guelfoweb/peframe) and executed them in our proposed framework and in our QEMU-
based internal sandbox solution (unpublished). All of them evaded the execution in the
QEMU-based sandbox, not providing any useful behavior to be analyzed. However, they
executed normally under our proposed malware tracer’s monitoring.

2.18.6 Debugger
The malware tracer allows us to understand a great deal of a sample’s behavior through
its execution, but it is not able to suspend the execution at an arbitrary point in order to
provide a deeper introspection view. This could be a useful approach for detecting bugs
or complex constructions, especially those with stealth attack intentions. Extending our
framework to provide such facility is a straightforward path.

2.18.7 Project
A debugger presents some differences on how to use the framework’s features. We present
an overview in this section.

Goals achievement In order to achieve the small step execution goal, we rely on the
BTS mechanism. Although it does not allow step-by-step execution, it provides sequential
block-by-block granularity which, with the help of a block disassembler, brings basically
the same functionality. The breakpoint information goal is achieved by relying on
introspection during interrupts. Finally, the context inspection goal is achieved by
using system APIs. The data consistency is assured due to the raised interrupt which
precedes API calls.

15Samples MD5: f03c0df1f046197019e12f3b41ad8fb2, 2b647bdf374a2d047561212c603f54ea,
7a4b29df077d16c1c186f57403a94356, 340573dd85cf72cdce68c9ddf7abcce6

https://github.com/guelfoweb/peframe
https://github.com/guelfoweb/peframe

CHAPTER 2. PAPERS 80

Debugger working flow As we need to suspend the process execution to inspect it,
the strategy here is different from the Tracer’s. In addition, the process suspension must
proceed as soon as an interrupt occurs; to accomplish this, we made use of the inverted
I/O call. The debugger working flow is as follows: (i) at a given moment, the processor
fetches a deviation instruction whose source and target addresses are stored by the BTS
mechanism; (ii) an interrupt is then raised since we have defined a 1-threshold—at this
point, the process under analysis is active, but interrupted; (iii) the ISR routine releases
the cached I/O in order to alert the user-mode client, which receives the alert, suspends
the process execution and finishes the I/O routine; (iv) when the ISR receives the I/O
completion signal, the interrupt is released and the process is now in suspended state; (v)
then, all introspection and context retrieval processes take place; (vi) when the process is
resumed in the client, the whole debugging process is restarted.

Debugger resources One of the most important resources in a debugger is its inspec-
tion capabilities. Our solution presents the following ones:

• Process management: our solution is able to create a new suspended process to
be inspected or to attach to an existing one.

• State inspection: our solution is able to identify function execution, loaded li-
braries and to read context registers.

• Step execution: our solution is able to perform branch step execution at the block,
function and library levels.

• Integration: our solution can be integrated to other debugging tools, such as GDB.

2.18.8 Debugger client implementation
Although the client was built upon our framework, some features were implemented in
the client itself. The details are given below.

Process management Processes are created using the CreateProcess API. Processes
need to be at the suspend state in order to be inspected consistently. Therefore, new
processes are created using the CREATE_SUSPENDED flag whereas existing ones should be
suspended by calling a specific API. There are three known methods for suspending a
process: (i) enumerating all threads for a given process and calling SuspendThread [124]
to each one, which may lead to a deadlock due to thread desynchronization; (ii) calling
DebugActiveProcess [112], which is detectable by IsDebuggerPresent; and iii) using
the undocumented16 API NtSuspendProcess, which was used in our solution.

Context values Context values are obtained by using system APIs. We rely on our
framework to perform introspection and disassembly. In addition, register values are
retrieved by using the GetThreadContext [116] API.

16Undocumented functions are often found on web forums despite not being present in any official
media.

CHAPTER 2. PAPERS 81

GDB integration Although we have our own interface to our debugging solution, we
opted to integrate it with GDB in order to make use of its extensions and facilities. The
integration is done using a stub, a small protocol that transfers data from our back-end
to GDB. We based our implementation on [130] efforts, porting it to Windows. The use
of our solution with GDB allows an analyst to inspect Windows systems from distinct
platforms and/or over the Internet. The current GDB stub implementation allows for
step and info register commands. We intend to make everything available to the
community after publication.

2.18.9 Validation test
To evaluate our approach’s transparency, we have implemented some tricks. Our goal is
not to provide an exhaustive list of anti-analysis tricks but to demonstrate that practical
aspects match theoretical ones we have been drawing along this text.

IsDebuggerPresent. It is the default way of checking a debugger’s presence on
Windows. This code (shown in Listing 2.6) detected the debugger when running under
ordinary debuggers, but not on our system.

Listing 2.6: Simplest debugger
detection code.

1 i f (IsDebuggerPresent ())
2 p r i n t f (" debugged\n ") ;
3 e l s e
4 p r i n t f ("NO DBG\n ") ;

CheckRemoteDebuggerPresent. A way of checking debugger’s presence on a re-
mote host that is also able to detect whether a process is being debugged when attached
to itself. The code (shown in Listing 2.7) did not detect the debugger on our system.

Listing 2.7: 2nd Simplest debugger detection code.
1 CheckRemoteDebuggerPresent (GetCurrentProcess ()

,& r e s u l t) ;
2 i f (r e s u l t)
3 p r i n t f (" debugged\n ") ;
4 e l s e
5 p r i n t f ("NO DBG\n ") ;

OutputDebugString. This function is the default way of printing a message in the
debugger. The resulting eax values changes according to whether the debugger is attached
or not, thus allowing the debugger presence detection. This code (shown in Listing 2.8)
did not detect the debugger’s presence on our system.

CHAPTER 2. PAPERS 82

Listing 2.8: 3rd Simplest debugger de-
tection code.

1 OutputDebugStringA (OUTPUT_MSG)
;

2 __asm {mov r e su l t , eax ; }
3 i f (r e s u l t==DEBUGGED)
4 p r i n t f (" debugged\n ") ;
5 e l s e
6 p r i n t f ("NO DBG\n ") ;

We also tested our solution in a real scenario, by inspecting an application protected
with an unknown trick. We inspected the Uplay17 binary, a game-launcher, since games
are usually protected [211]. Figure 2.14 shows how the binary refuses to run under an
ordinary debugger, whereas Figure 2.15 shows the inspection under our solution.

Figure 2.14: Uplay execution under an ordinary debugger.

Figure 2.15: Uplay execution under our solution.

2.18.10 ROP Detector
Given our solution is based on a mechanism that provides branch data, addressing the
ROP problem is an immmediate follow-up. Indeed, other authors have already leveraged
branch monitors for such purposes, such as KBouncer, ROPecker and CFIMon, tools that

17www.uplay.com

www.uplay.com

CHAPTER 2. PAPERS 83

were presented in Section 2.16. These approaches, however, are not based on a general
framework, as proposed here. Our framework allows inspecting applications with no code
injection while solutions like Kbouncer require hooking APIs for each process aimed to be
monitored. Although such injection requirement does not impose a working restriction for
these tools, it restricts the usage scenario. On a general way, such protections are suitable
for known vulnerable unpatched applications in which the ROP protector can be injected.
On a broader scenario, where no particular application should be protected but the whole
system instead, such injection must occur on all running process. On this scenario, our
injection-free, system-wide monitoring approach is a more suitable candidate. In addition,
Kbouncer and ROPecker make use of a limited number of LBR entries whereas we can
use unlimited memory space as we rely on BTS instead.

Implementing ROP policies on our framework is a straightforward task, since it pro-
vides us all required information (branch data) and capabilities (process identification,
introspection and disassembling). The user-land client can store data in its memory and
make use of libraries and data structures, therefore reducing implementation efforts.

In order to assure our approach’s correctness, we opted for not developing any new
ROP heuristic. Instead, we relied on verified ones. More specifically, we implemented
the same two methods used by Kbouncer, CALL-RET matching and gadget length. The
CALL-RET policy detects a ROP attack by enforcing that each RET call should be followed
by a RET one. Since ROP attacks are based on RET instruction chaining, they can be
detected.

The gadget length policy is based on the principle that ROP gadgets are usually
smaller than legitimate ones. This policy defines a window of the last executed gadgets
and their lengths, triggering the detection if a specified number of small gadgets occur.
In our solution, we defined the same limits as KBouncer’s. When any of the previous
policies are violated, an alert is raised, as shown in Figure 2.16.

Figure 2.16: Alert raised by our solution when an attack is detected.

To evaluate our ROP detector, we executed some exploits against vulnerable appli-
cations, verifying whether the detection heuristics were triggered or not. The results are
presented in Table 2.14.

Table 2.14: ROP exploit test results
Exploit Vulnerability Result CALL-RET GADGET-SIZE
[181] CVE 2011-006518 Exploited/Crashed 3 7

[90] N/A Exploited 3 7

[1] N/A Crashed 7 3

From the tests, we notice that even the exploits which failed due to an unknown reason
were detected by the second stage heuristics, the gadget-size policy. In order to provide
a more qualitative view on ROP detection, we present some more details about Nguyen’s

CHAPTER 2. PAPERS 84

exploit. Its execution triggered the gadget length policy; a snippet of the branch window
is shown in Table 2.15.

Table 2.15: Excerpt of the ROP payload’s branch window.
FROM TO
—- 0x7c346c0a

0x7c346c0b 0x7c37a140
0x7c37a141 —-

The instruction disassembly of this code region, from the MSVCR71.dll 7.10.3052.4 -
32bits library, is presented in Listing 2.9.

Listing 2.9: Static disassembly of the MSVCR71.dll library.
1 7 c346c08 : f 2 0 f 58 c3 addsd %xmm3,%

xmm0
2 7 c346c0c : 66 0 f 13 44 24 04 movlpd %xmm0,0 x4

(%esp)

The static disassembly provides aligned words. The exploit, however, makes use of
an unaligned one, as indicated by the branch to 0x7c346c0a. If we look to the dynamic
disasm of the corresponding bytes (\x58\xc3), as shown in Listing 2.10, we identify the
actual executed ROP gadget. As expected, our solution detects even unaligned branches.

Listing 2.10: Dynamic disassembly of
the MSVC71.dll executed code.

1 0x7c346c0a (byte=0x58) pop
rax

2 0x7c346c0b (byte=0xc3) r e t

2.18.11 Anti-Analysis tricks detection
Along the previous sections, we have presented our solution’s transparency claims, making
anti-analysis trick detection a natural candidate to be addressed, since it is a straighfor-
ward application. In this section, we present some trick detections using our developed
tools (mostly the tracer, but also the debugger). We have implemented a static detector
that matches the executed code blocks.

Listing 2.11 presents an identified example of the Fake Conditional trick. In order
to confuse solutions that follow the executed paths, this trick tries to purposefully trigger
the path explosion problem [94]. Notice that in practice the branch will always be taken,
given the xor instruction always yields zero.

Listing 2.11: Fake Condi-
tional.

1 0x190 xor eax , eax
2 0x192 jnz 0x19c

CHAPTER 2. PAPERS 85

A variation of this technique consists in changing the unconditional jump to a distinct
instruction. Listing 2.12 shows a trick that changes the control flow by pushing a value
to the stack and then returning to it.

Listing 2.12: Control Flow
Change.

1 0x180 push 0x10a
2 0x185 r e t

Some samples try to detect the presence of a hook, which may indicate it is under
analysis. This is done by checking the presence of the JMP instruction (byte 0xe9). A real
example is shown in Listing 2.13.

Listing 2.13: Hook Detec-
tion

1 0x340 cmp eax , 0 xe9
2 0x345 jnz 0x347

Some samples perform a similar detection in order to detect the presence of a hardware
debugger. The example in Listing 2.14 shows the presence checking of the debugger
register 0 (0x4) inside the debugger context struct (0xc).

Listing 2.14: Hardware Debugger De-
tection

1 0x400 QWORD PTR f s : 0 x0 , rsp
2 0x409 mov rax ,QWORD PTR [

rsp+0xc]
3 0x40e cmp rbx ,QWORD PTR [

rax+0x4]

2.18.12 Execution deviation detection at branch-level
Despite identifying the use of known anti-analysis tricks through a pattern matching
procedure, as previously presented, we can also apply our solution for dynamic trick
identification. When a trick leads to an evasion, a branch is taken in order to not execute
the malicious payload. If this happens on the emulator but not on the bare metal setup,
we can identify the divergence point by comparing the traces. The branch block which
has led to the divergence point may present an anti-analysis trick.

This idea is exemplified in Figure 2.17. The block 0x2 presents an anti-analysis trick.
When running on bare metal, the execution proceeeds to the 0x3 block whereas it proceeds
to the 0x4 block when running on the emulator. For the sake of simplicity, we assume
the execution flow will consolidate onto a single block (0x5). It can be understood as a
common cleanup routine, for instance.

CHAPTER 2. PAPERS 86

Figure 2.17: Example of a flow divergence between the code running on bare metal and
on the emulated monitor.

If we assume this property and consider the execution on bare metal as the groundtruth,
we can implement an algorithm for deviation detection, as presented in Algorithm 2. The
first step consists of discarding the base image addresses and considering just the off-
sets (line 3), due to ASLR. This way, the traces are now comparable and since they will
differ, the second step consists of finding an alignment (line 4) using a global sequence
alignment algorithm19. After that, given the expected CFF structure we have defined,
the aligned traces will be aligned in the beginning (blocks 0x1 and 0x2) and in the end
(blocks 0x5 and 0x6). This way, the blocks in between are the deviating ones and the
last aligned block is the one possibly having the anti-analysis trick. The algorithm pro-
ceeds by traversing the blocks, taking the bare metal trace as reference (line 5). When the
blocks are aligned (line 6), they are just printed (line 7). When they are not aligned (line
8), we iterate one of the sides (line 11) in order to achieve another aligned block (block
0x5). Algorithm 2’s execution, using the inputs for the example presented in Figure 2.17
(0x1 0x2 0x3 0x5 0x6 and 0x1 0x2 0x4 0x5 0x6, respectively), resulted in the output
presented in Listing 2.15.

Listing 2.15: Flow devi-
ation identification by ap-
plying the alignment algo-
rithm.

1 0x01 | 0x01
2 0x02 | 0x02
3 / \
4 0x03 | 0x04
5 \ /
6 0x05 | 0x05
7 0x06 | 0x06

We have evaluated the proposed approach on real samples, by comparing their exe-
cutions under our solution and others. The compared solutions were our branch monitor
solution built upon Intel PIN, presented in Section 2.17.10, and OllyDbg20. We manually

19Python’s alignment library
20http://www.ollydbg.de/

http://www.ollydbg.de/

CHAPTER 2. PAPERS 87

ALGORITHM 2: Flow deviation detection
Data: Bare Metal trace (BM), Emulated trace (E)
Result: Deviated Block

1 = 0
/* Calculate branch offsets */

2 Bare Metal,Emulated = get_offsets(BM,E) /* Align traces */
3 seq1, seq2 = align(Bare Metal,Emulated)
/* Bare Metal trace is reference */

4 while seq1[i] not EOF do
5 if seq1[i]==seq2[j] then
6 emit_aligned(seq1[i],seq2[j])
7 else
8 emit_unaligned(seq1[i])
9 i++

10 while seq1[i]!=seq2[j] do
11 emit_unaligned(seq2[j])
12 j++

inspected the diverging points in order to find possible anti-analysis tricks. Figure 2.18
illustrates a divergence case due to an anti-analysis trick—checking for the NtGlobalFlag
(offset 0x68) in the PEB structure (fs:0x30 offset)—in the instruction block right before
the diverging branch. Some cases, however, are just false positives, since we could not
identify any anti-analysis trick. As an example, Figure 2.19 shows a diverging behavior
related to some kind of random decision (<rand> call). As future work, an automated
decision mechanism may be implemented.

Figure 2.18: True divergence. Figure 2.19: False divergence.

We analyzed 15 random samples from our dataset which presented divergent-like be-
havior. As a general result, some anti-analysis tricks were found, as shown in Table 2.16.
The remaining samples turned out to be false positives.

Table 2.16: Anti-analysis tricks found due to branch-diverged behavior.
of samples Trick Description

2 PUSH-RET Replacing a CALL by a stack-pushed value
2 Fake Conditional XOR itself to trigger branch-related flags
1 NtGlobalFlag Checking data related to the process heap
1 Hook Detection Check for a JMP instruction
1 Hardware Breakpoint Debugger detection by checking context flags

The proposed approach does present limitations, such as the ones related to the CFG

CHAPTER 2. PAPERS 88

format. However, our main goal is not to fully develop a tool for behavior divergence detec-
tion but to suggest how this kind of solution can benefit from using a branch-monitoring-
assisted solution.

2.19 Discussion, limitations and future work
In this section, we provide a general overview of our contributions, current limitations
and open opportunities on branch monitoring development.

Framework advances. The proposed solution differs from previous work by not only
looking at specific branch data, but also proposing a complete framework to handle this
data. Unlike previous work, our solution makes use of the BTS mechanism instead of the
LBR one, which allows us new constructs, used to develop a complete analysis framework.
This framework is characterized by not requiring any code injection and as such relies
on a less intrusive approach than other monitoring tools. Our solution is a lightweight
alternative to the state-of-the-art ones, since it requires less development efforts—no BIOS
rewriting or hypervisor implementation is required—and presents a smaller overhead—
only the monitored core is interrupted and most actions can be offloaded to other cores
in a current multicore system or processed offline. Our implementation does not apply
any system patch, being able to run on modern OSs, even if it has KPP21, for instance.

Achieving Transparency. Besides the practical evaluation of our solution’s trans-
parency, we present here a discussion on how the formal transparency requirements were
fulfilled. The higher privilege requirement was fulfilled since we restricted our threat
model to cover only userland threats and our collection mechanisms operate at the kernel
level and use hardware resources. The no privileged side effects and the identical
basic instruction set semantics requirements are fulfilled by using a physical, real
processor on a bare metal system instead of relying on emulation. The transparency
exception handling requirement is fulfilled by relying on an external data capture mech-
anism (BTS), so no trapping or hooking is required. The Identical measurement of
time requirement is achieved by our proposed performance solutions through performing
offline disassembly and/or performing core-offloading for runtime processing. This way,
no process time is taken on the core on which the monitored sample is running, thus,
identical time should be observed.

Bare metal and transparency. Some transparency requirements are fulfilled by
using a physical machine, a way that might look like sufficient. However, as previously
discussed, transparency is achieved by not introducing side-effects, a feature which is
provided by bare metal, and by not perfoming code injection/interference. The second
requirement comes from the fact that data collection mechanisms usually require inter-
posing binary calls, a task often performed using hooks or debug attachment. Thus, there
are many reported research about anti hooking and hooking detection [43, 157, 34] as
well as debugger detection [30, 15]. In this sense, we have presented a real example of an
interference detection occurrence. The Uplay executable refused to run under a debugger
even on a bare metal machine. In turn, it executed under our solution, since we addressed

21Kernel Patch Protection

CHAPTER 2. PAPERS 89

the non-injection/non-interference requirement.
Solutions Comparison. In order to better position our solution among other propos-

als, we here provide a comparison between our developments and consolidated techniques,
tools and products.

Our malware tracer can be directly compared to public available and state-of-the-art
sandbox solutions. When evaluated against solutions like Cuckoo and CWSandbox, for
instance, our solution is more transparent, since no code injection is performed (these
solutions rely on DLL injection for API hooking)—processor data is used instead—and
no virtual machine is used (hypervisor side effects are often used as analysis environment
indicators by evasive samples), since our solution is bare metal based. In this sense,
ours is closer to the HVM-based ones, such as Ether and MAVMM, presented on related
work. When compared to these solutions, ours presents the same transparency for user
land threats, given that on all approaches the malware code is run on a real processor.
Unlike such solutions, our approach is not able to handle kernel malware. This limitation,
however, is due to the fact that we used a kernel driver to implement our solution and
as such we must assure kernel integrity. This implementation choice, however, gives us
advantages when compared to competing solutions: 1) Developing a kernel driver requires
less development effort than developing a whole hypervisor, which makes our solution
simpler to be implemented; 2) Recompiling a kernel driver is much more portable than
reinstrumenting hypervisors, making our solution much more accessible; 3) Trapping only
branch deviations at kernel level is less costly than trapping each instruction at hypervisor
level, contributing to a much smaller overhead.

Our solution might also be compared to other approaches, such as disassemblers, like
Capstone (used in our framework), Plasma [149] and Udis86 [187]. These solutions are not
analyzers by themselves, rather mere translators of given byte sequences into instruction
opcodes. More importantly, the instruction byte sequence data acquisition procedure
comes first. Although such solutions can be directly applied to original binaries (a naive
static approach), they are vulnerable to anti-disassembly techniques, used by malicious
samples to evade analysis [30]. Conversely, our dynamic instruction address collection
solution, by relying on processor branch data, is able to provide such disassembly tools
over unpacked, ready-to-run code, rendering uneffective most anti-disassembly techniques,
such as instruction misalignment.

A commercial disassembly solution which can also be compared in some way to our
solution is IDA Pro22. IDA disassembler performs static code disassembling and also
allows for CFG and CG reconstruction. In order to tackle anti-analysis techniques, it
relies on dynamic emulation of statically unsolvable pieces of code, therefore mitigating
some of them. In fact, many approaches tried to solve the anti-analysis problem by
relying on rules to defeat known anti-analysis tricks, such as the ones in Cobra [197] and
Vampire [196]. The major drawback of such approaches is that as soon a new anti-analysis
trick is discovered, the software has to be updated and/or recompiled. bare metal-based
solutions like ours, however, are able to handle such new tricks naturally, since the code
is executed on a real processor. Nonetheless, running huge amounts of samples on real
machines does not scale well. Besides being a disassembler, IDA Pro also presents a

22https://www.hex-rays.com/products/ida/index.shtml

CHAPTER 2. PAPERS 90

complete debugger, whose frontend can be attached to GDB, VMWare, QEMU, BOCHS and
others. In this sense, our framework could be extended to provide branch data to the
IDA frontend the same way as the aforementioned tools do.

As for the proposed debugger, our solution can be directly compared to the HVM-
based HyperDbg and the SMM-based MALT, presented in Sec. 2.16 (Related work). Our
solution presents the same functionalities of such systems, such as register and memory
inspection. The most notable difference is that our solution operates at the branch level,
due to the branch monitor inherent working characteristic, whereas the other ones operate
at the instruction level. Despite not being able to stop at every instruction, only at every
block, our debugger is able to reconstruct every executed instruction sequence by making
use of the same introspection procedure used for CFG reconstruction.

Just like in the case of the tracer, our debugger is also restricted to the userland level,
contraty to other solutions like HyperDbg that are able to analyze at even the kernel
land. As previously discussed, this implementation choice gives us many advantages when
compared to such solutions. The same discussion is also valid for MALT, since handling
code at BIOS level is more expensive than using a kernel driver. When compared to the
popular solution GDB, our solution is more transparent, since it does not rely on ptrace
and also provides the same user friendliness, since it is integrated to the GDB frontend.

Finally, our ROP detector solution can be directly compared to Kbouncer and ROPecker,
since the same detection heuristics were implemented. The most significant difference is
the way they are implemented, making our usage scenario broader in two ways:

1. Since we rely on the BTS mechanism instead of the LBR one, we are able to han-
dle larger ROP chains—the BTS mechanism relies on O.S. memory page storage,
which is theoretically unlimited, whereas the LBR one is limited to the number of
MSR registers present in the processor. Our Haswell processor presents 16 of such
registers, which would limit detection to a 16-gadget-length ROP exploit at most;

2. Our approach does not require code injection, allowing us to monitor the whole
system at a time; competing solutions require injecting DLLs on each specific code
one intends to monitor. It allows us to monitor the whole system without knowing
in advance that a specific application is vulnerable.

Implementation limitations. The main limitation of our solution is the process
context inspection mechanism—notably the memory reading mechanism—which is im-
plemented as a userland component, making it less protected from subversion than kernel
components. We considered this project decision as acceptable since we are developing
a proof of concept application. If more protection is required, these mechanisms can be
moved to kernel without significant side effects, apart from the development effort. An-
other limitation of our solution is related to the ROP scenario. Although we are able to
detect its occurrence, we currently cannot block it, since no active component is injected
into the process. An external blocking procedure should be implemented if the user is
concerned about it. This task is eased due to the fact that our framework is constructed
in a modular and independent way, allowing such kind of extensions. Our solution does
not handle some code constructions, such as the use of POP+RET as a replacement for a

CHAPTER 2. PAPERS 91

CALL instruction. This is a frequent assumption with many monitors due to implemen-
tation constraints, although no theoretical limitation is observed. We also targeted only
single-core threats, since they are the most frequently observed ones. The monitoring
platform, however, does not present any limitation to work on a multi-core scenario. In
this case, the framework should be extended to work with multiple sources of data, since
a malicious action could be spread through many different cores in order to avoid an ordi-
nary pattern matching process. Currently, in order to prevent a process from migrating to
a different core than the one where the mechanism was enabled into—which would break
data capture—, we attach the process to a specific core by setting processor affinities, an
O.S. functionality [122].

The BTS mechanism is configured to capture data only in the userland ring—despite
being able to collect data at the kernel level—since we are targeting only userland pro-
cesses in our threat model. Targeting kernel threats would require a more privileged ring
in order to provide the required isolation for the data collection mechanism. This choice
leads us to lose execution control when a syscall is invoked, which is not a problem for
tracing binaries that only call libraries, but is otherwise a problem when tracing libraries
that do perform such calls23.

Introspection limitations. A sample which employs an external or static library
may bypass our introspection procedure, since function names will not be recovered in
this case. The execution of these libraries, however, will still be logged by the BTS mon-
itor, allowing post-analysis by a human analyst. Another corner case is about function
arguments. As BTS provides only instruction addresses, we are only able to directly get
function calls, not their arguments. This is not a limitation per se, since some solutions,
such as some malware variant detection tools [223], rely on function call structures. So-
lutions which require function arguments to enrich their usefulness may instrument the
function calls indicated by our solution, such as in the modular malware case presented
in Section 2.18.4. Notice that, in this case, there will be an overhead penalty according
to the added instrumentation mechanism.

Malware Analysis Limitations. Our malware analysis solution suffers from the
same limitations others do regarding stimulation, which is directly related to the reached
code coverage. In order to overcome such limitation, user interactions can be simulated
by using AutoIT scripts 24 or similar ones. However, in the scope of this work, we are
concerned about reaching code hidden by anti-analysis techniques, for which transparent
solutions like this play a crucial role. Our solution, as a sandbox, is also subject to
fingerprinting, an open problem for all monitoring systems, thus outside the scope of this
work.

Sandbox Restore. As our approach is bare metal based, we have to restore the
system to a clean state after running a malicious sample. In virtualized environments, it
is usually done by reverting to a VM snapshot. On a bare metal system, as automatic
snapshots are not available, it has to be manually done. As a way of automating the task,
PXE boot or LVM volumes may be used.

23Distinctly from Linux, Windows applications do not call the O.S. directly, rather they use O.S.
libraries.

24https://www.autoitscript.com/site/autoit/

https://www.autoitscript.com/site/autoit/

CHAPTER 2. PAPERS 92

Evasion Scenarios. Every new proposed solution will be targetted by attackers in
order to defeat it and so keep their stealthyness. Our solution, as is, relies on PID tracking
for process filtering, a feature we believe is the most probable target for attackers: by
faking a PID, a malware could make the analysis produce no result. As a countermeasure,
we could filter actions not by PID but by the address itself, since each process is mapped
to a unique memory region. This change is straightforward in our solution since the
addresses are exactly the data provided by the BTS mechanism.

Solution Portability.
An important consideration regarding the proposed solution is about its application

on other systems and architectures. In the first case, the system is portable since its main
component is a hardware-resource, so we have to port only the introspection procedure to
the target O.S. Porting our system from Windows to Linux, for instance, would require
only changing DLL imports to a system call table when interpreting target addresses.
In fact, this port is a current work-in-progress. Regarding the architectural support, our
solution depends on a branch monitor mechanism able to provide source and target adress
data. Despite relying on Intel’s facilities, we are aware that similar mechanisms are also
present in the AMD and ARM platforms. Further investigation is required to develop a
port to these architectures.

Portability and Linux. The Linux kernel provides an interface for accessing many
performance counters, including branch monitors. These interfaces are used by some
tools, such as the perf profiler. The simple, direct use of these interfaces, however,
does not answer many of the stated questions in this work, such as introspection or code
reconstruction. Besides, these interfaces present some limitations, such as being disabled
in the kernel [180]. This way, it is fully justifiable to develop/port a framework like the
one hereby presented to the Linux environment.

ROP Scenario. This solution is not intended to be the definitive one, since new
ways of constructing gadgets have been constantly presented [169] and new deviation
attacks have been developed, such as Jump Oriented Programming (JOP) [22] and Loop
Oriented Programming (LOP) [96]. In addition, ROP can be seen as only the tip of an
iceberg in the code-reuse attack scenario, since other constructions, like for instance the
weird machines ([191, 14, 174]), may arise in the near future as practical and widespread
attacks. However, monitoring ROP will still be a required task for security purposes, such
as countermeasure development or forensic procedures. Our solution presented advances
by monitoring the whole system without requiring injection and providing a framework
which allows monitoring unorthodox constructs. Therefore, building tools relying on
previous assured characteristics, such as data collection transparency, is now an easier
task.

Overhead.
The branch monitor mechanism theoretically presents zero overhead, since it is a

hardware component that runs independently from the main CPU processing. Some work,
however, suggested some considerable impact [180]. We confirmed a negligible overhead
by measuring the activation overhead25—less than 1%—for both LBR and BTS. Despite
the low impact of this stage, data collection and analysis add overhead to the system,

25With no data handling.

CHAPTER 2. PAPERS 93

since an interrupt is raised and memory access and I/O are performed. This overhead is
application dependent: a delayed collection for malware tracing adds less overhead than
the real-time ROP detection approach. This way, we opt to split the overhead by tasks.

In order to do so, we developed a tiny program—compiled with no optimizations—
which takes a million branches and measured its execution on a dedicated core with
and without the running framework, using synchronous I/O. Data collection in the client,
including interrupt and I/O, adds a 14% overhead; the introspection process adds another
26% overhead; the total overhead when both are combined may go up to 43%. When the
introspection handling was moved to the same core as the monitored application, the
overhead grew up to 75% on the small test program. These results are still smaller
than the related tools Ether and MAVMM, for example, which present, in some cases,
overheads of around 72% and 100%, respectively. Another evaluated scenario is changing
the delayed execution collection to a real time monitor using asynchronou I/O. On these
tests, we measured overheads of 100%. As a comparison, the PIN tool used for validation
purposes presented overheads of 400% in the same scenario. This 4x higher overhead
matches Paleari’s findings on his Fuzztrace solution.

An approach to speed monitoring up is to move the analysis to another core/processor
whenever possible, such as in related approaches [150]. As for disasm, we can build a
disasm database from relevant and trustable portions of code, such as system libraries,
avoiding the cost of a dynamic disasm. This approach would be similar to what ROPecker
applies to its gadgets.

We also evaluated the impact of our solution in real scenarios. Table 2.17 presents the
results of running a benchmark tool26 with and without the monitor enabled. The Base
Value column refers to the values obtained by running the system without the monitor.
The System Monitoring column refers to the values obtained by running the monitor
in a system-wide way, without disassembling instructions. The Benchmark Monitoring
column refers to the data obtained by introspecting and disassembling benchmark instruc-
tions. All results were obtained by using the delayed data collection mode and running
the monitor on a distinct core, the best usage scenario possible.

Table 2.17: Benchmarking the system with and without the monitor.

Task Base value
System

monitoring Penalty
Benchmark
monitoring Penalty

Floating-point
operations (op/s) 101530464 99221196 2.27% 97295048 4.17%
Integer operations

(op/s) 285649964 221666796 22.40% 219928736 23.01%
MD5 Hashes
(hash/s) 777633 568486 26.90% 568435 26.90%

RAM transfer
(MB/s) 7633 6628 13.17% 6224 18.46%

HDD transfer
(MB/s) 90 80 11.11% 75 16.67%

Overall (benchm. pt) 518 470 9.27% 439 15.25%
26https://novabench.com/

https://novabench.com/

CHAPTER 2. PAPERS 94

These results show us that distinct operations are affected in distinct ways, due to the
distinct incidence of branch deviations. An example of such difference is observed between
the floating-point tests and the integer ones. The MD5 calculation is also affected when the
monitor is enabled, since it encompases many branches due to algorithm’s inner loops. We
also notice the monitor imposes higher overheads when monitoring specific applications
instead of the whole system. This result is expect since, besides the additional processing,
some operations, such as memory read, may block. Additionally, in this scenario we
observe a penalty in disk usage, due to log files being written.

Apart from these evaluations, we performed some tests to compare BTS and LBR in
distinct scenarios. Firstly, we evaluated the impact of the data collection procedure on the
test program. As mentioned, the BTS use imposed a 14% overhead. When using a high-
rate27, software interrupt-based polling approach for LBR collected data, the overhead
grows to 26%. These results match CERN’s results [20], which reported overheads from
16% to 25%, depending on applications. We tried to vary the polling interval time from
1ms to 1000ms. The overhead started to decrease after the 200ms threshold, possibly
causing data loss, thus showing our correct choice for BTS instead. We also performed
the same experiment of threshold variation for the BTS hardware interrupt threshold. We
measured a decreased performance impact only after a 50-instruction threshold, which
shows the ISR handling itself as the most performance-expensive event. We also tried to
evaluate the instruction filtering effect provided by the LBR mechanism. We noticed an
overhead decrease of 6% when handling only CALL data compared to the general case. The
result was 3% when handling only JMPs. This impact, however, is application/system-
dependent, since it is impacted by the frequency of such instructions in the executed code.
In order to better demonstrate this point, we implemented the basic handling mechanisms
on Linux, so that we could compare both OSs. The Linux base performance value is 4%
lower than on Windows, which reflects system differences; the same result is seen when
handling the BTS interrupt. The Linux overhead is 6% lower than on Windows. This
way, we conclude that the performance impact should be evaluated in each usage scenario
by considering distinct OSs, applications and architectures.

Hardware-Assisted Approaches for ROP-CFI The main advantage of the pro-
posed branch-monitor-assisted approach when compared to software-dependent solutions
is that no recompilation or binary-rewriting is required. However, if it is not the usage
case, other hardware-assisted approaches are alternative candidates. HAFIX [48] extends
the instruction set to add CFI instructions which implement the same CALL-RET policy
here presented. As no instruction-level monitoring is required, the overhead is significantly
smaller. However, the usage of such instructions depends on (re)compiling the code with
the newly added CFI instructions. The official proposal to extend the x86 architecture to
implement a CFI policy was presented by Intel in its Control Flow Enforcement technol-
ogy [80], whose CFI policy is implemented through a shadow stack, a distinct yet related
approach to the ones previously presented.

27Using Windows kernel timers

CHAPTER 2. PAPERS 95

2.19.1 Suggestions for Branch Monitoring improvement
The BTS and LBR mechanisms were originally developed aiming at profiling issues. How-
ever, as researchers tried to turn them onto a security-oriented monitoring platform, some
resource gaps are apparent. In this section, we pinpoint some missing features we wish
were present on the monitoring platform.

As our work is BTS-based, we would like to see some enhancements to it. Although
BTS supports some kind of filtering, such as userland/kernel capture, it does not support
all the filters of the LBR mode, such as the branch-type-based one. The implementation
of such feature in BTS would allow for more granular policy implementations, such as
those which relies on indirect branches (JOP, for instance).

Despite using the same interrupt vector and O.S. pages, the PEBS mechanism supplies
richer context information than the BTS one. For instance, PEBS is able to provide
register value information on its data units. If such data were provided also on BTS units,
solutions like our debugger proposal would be easier to implement, since data acquisition
would be straightforward.

Having more context data could also allow for fast data processing. If some process
isolation information were available, the introspection procedure would be simplified.
The concept of an O.S. process is not defined at the processor level, but having register
information, such as the CR3 (page directory base register - PDBR), unique for each
process, would ease the filtering task.

We are aware that many of the proposed features might be unfeasible or hard to
implement in a mechanism originally not intended for such tasks, due to either design
constraints or increased costs. As such, developing an independent monitoring platform
which works in a similar way to BTS and LBR might be a better choice for processor
improvement. This kind of proposal tends to look more attractive as computer systems
get more complex to instrument. We see Intel’s Processor Tracer [153] as a first step
toward such direction.

2.19.2 Future Work
An immediate extension of our framework is the implementation of new policies and
monitors, since it provides complete support for such developments. In addition, the
Intel platform brings other opportunities, such as extending our framework to work with
PEBS data, which would allow one to develop distinct policies in the userland client.
These policies include, for instance, malware detection through side effect measurements.
The monitoring platform also provides other implementation opportunities: changing the
interrupt delivery mode to SMI, for instance, could provide SMM-based systems another
triggering mechanism.

2.20 Conclusion
In this paper, we have introduced an extensible framework for transparent software analy-
sis, which is based on performance monitoring hardware features. We have shown how the

CHAPTER 2. PAPERS 96

framework can be applied to convey dynamic malware analysis, debugging facilities and
a ROP detector tool. Our work is intended to be a stealth, lightweight solution compared
to other state-of-the-art developments.

Solution’s Availability

The framework’s source is available on github28. Media is available on youtube29.

Acknowledgments
This work was supported by the Brazilian National Counsel of Technological and Scientific
Development (CNPq, Universal 14/2014, process 444487/2014-0) and the Coordination
for the Improvement of Higher Education Personnel (CAPES, Project FORTE, Forensics
Sciences Program 24/2014, process 23038.007604/2014-69).

28https://github.com/marcusbotacin/BranchMonitoringProject
29https://www.youtube.com/watch?v=BguVzqMt_j0&list=PLVYZ2jULLUDvqFVpU3pCZGlY9gCzYoyXP

https://github.com/marcusbotacin/BranchMonitoringProject
https://www.youtube.com/watch?v=BguVzqMt_j0&list=PLVYZ2jULLUDvqFVpU3pCZGlY9gCzYoyXP

Chapter 3

Discussion

In the previous chapter, I have presented two papers which encompass my contributions
regarding the hardware-assisted security scenario and my proposal of using performance
counters for security purposes. In this chapter, I link the ideas from both papers in order
to build a landscape of my contributions and the current state-of-the-art. I also discuss
goal achievements and limitations. Along this chapter, I answer the questions stated in
Section 1.2, Objectives.

3.1 Contributions
The first contribution presented in this dissertation is the comprehensive review of tools,
techniques and hardware-assisted solutions aiming at assuring a certain level of security
on modern systems. Through a critical evaluation, I compared these solutions and pointed
to development gaps.

The second contribution was that, more than pointing to gaps, I bridged one of them
by leveraging branch-related capabilities to implement security solutions, which has never
been done before to the best of our knowledge. As presented in Section 2.17, I have
developed a general framework in order to provide the basic mechanisms required for
collecting, filtering, and enriching data needed for deployment of such security solutions.

An extra important contribution is that the framework’s code was publicly released
which, beyond allowing for reproducibility, also allows for further work on the approach
itself, its inner security, exhaustive testing and more comprehensive comparison by com-
munity members.

3.1.1 Solutions comparison
When compared to related approaches, our framework presents advantages and disad-
vantages, thus the best usage scenarios for the solution must be preceeded by a criterous
evaluation. In order to clarify some points, we summarize some usage scenarios in the
Table 3.1.

As can be noticed, my solution is the best choice when the goal is to reduce the de-
velopment cost. As a drawback, the model must be restricted to userland threats. My

97

CHAPTER 3. DISCUSSION 98

Table 3.1: Solutions Comparison. Comparing our solution to other approaches regarding
distinct usage scenarios.

Solution Development
Monitoring
(Ring-level) Protection Overhead

HVM
Hard

(Hypervisor) 0/3 Hypervisor-isolated High (HVM exits)

SMM
Hard
(BIOS) -1/0/3 BIOS-isolated High (SMIs)

SGX Easy (API) — Fully-isolated Native
Branch
Monitor Easy (Driver) 3

Processor collection/
No software isolation

Native +
policy selection

solution is also a good candidate for low overhead monitoring in general. As a general lim-
itation, our solution is not protected from system-level subversion, which can be achieved
by moving userland components to the kernel.

3.2 The Framework
The proposed framework is modular, thus allowing separate tool implementations on top
of it, so the tools may benefit from the underlying security properties and capabilities
assured by the framework.

3.2.1 Process Isolation
A required capability for any malware analysis solution is to isolate actions according to
the process that originated them, since many processes may be running simultaneously at
a given time. The BTS mechanism captures data in a system-wide way and has no process
filtering mechanism, therefore capturing actions generated by any running process. As a
consequence, I had to develop a mechanism to do this filtering.

As presented in Section 2.17.2, an interrupt is raised when the user-defined, BTS
buffer threshold is reached. From that moment onwards, the process execution context is
swapped out so that the processor can handle the interrupt. This way, one may inspect
the process state from within the interrupt routine.

However, in the general case, many branch instructions may happen to be stored in
the BTS buffer when the interrupt routine is called. Moreover, these branch instructions
may refer to different processes, especially in the case of a context switch happening right
before the last branch instruction execution. In order to overcome this scenario, I have set
the BTS threshold for a single instruction, which causes an interrupt at every executed
branch instruction. By doing so, I can ensure that only one process is tracked at a time
and that this one is exactly the last process scheduled by the kernel. Afterwards, the
PID filtering proceeds the usual way, by retrieving data from ordinary OS structures. I
consider this insight—and thus the process filtering—as the most important achievement
towards enabling BTS-based process analysis.

This achievement allows me to answer the stated question of “Could I isolate process
actions?”. Not only it is answered, but the framework also offers this filtering capability

CHAPTER 3. DISCUSSION 99

to every tool built on top of it.

3.2.2 Transparency
This work claims transparency as a requirement to handle evasive malware. More specif-
ically, I tackled the anti-analysis problem from the perspective of not introducing side
effects nor performing code-injection.

Considering the stated definitions of transparency (Section 2.15.3), I fulfill those re-
quirements by: i) performing data capture at a more privileged level; ii) performing
transparent instruction handling and time measurement; and iii) providing identical in-
struction semantics.

The first achievement derives from the BTS use, which captures data at the processor
level, thus not being tampered by any software. The second one comes straighforward
from the use of a bare-metal machine whereas the third is a consequence of not injecting
code to interpose malware actions, which might change their behavior.

This way, the framework ensures the transparency property, as evaluated in Sec-
tion 2.18.9. This evaluation allows me to answer the stated question of Is the final solution
transparent?. As with the previous case, this property is inherited by all solutions built
on top of the framework.

3.2.3 Implementation efforts
It is important to evaluate the development aspects of the proposed solution, which is
also one of the stated questions, Is the solution easy to implement?. As discussed in
Section 2.19, Framework Advances, the solution has the advantage of requiring only a
driver to run, whereas other approaches require writing a hypervisor (Section 2.5) or
even the system BIOS (Section 2.6). This is a significant enhancement over competing
solutions, making it easily portable, upgradeable and fixable in the field. It is also easily
testable, whereas an SMM approach requires a cumbersome BIOS flashing to install each
new version of the tool.

The advantages brought about by the driver requirement stem from the fact that BTS
use requires only handling the hardware-raised interrupts while the OS itself takes care
of system management. Conversely, when developing an HVM or SMM-based solution,
the developer has to tackle management issues himself. The drawback, however, is the
need to rely on a much larger code base, thus limiting analysis capabilities. This fact is
reflected in my threat model definition (presented in Section 2.15), since I am not able, for
example, to perform kernel-level analysis. However, this was considered as an acceptable
trade-off for purposes of developing and validating this research idea.

3.2.4 Portability
Another important concern regarding the solution is its portability, as stated in question
Is the solution portable?, since this capability would allow us to monitor distinct OSs and
their versions, broadening the solution use cases and thus expanding its impact. The
discussion from Section 2.19 shows that, as a hardware mechanism, the monitor can be

CHAPTER 3. DISCUSSION 100

enabled in an OS-independent way, only requiring writing a driver to properly handle the
hardware interrupts.

Key to the solution, however, is how to handle the BTS-captured data, which is why
introspection procedures had to be developed, in an OS-dependent way. The latter feature
comes as library offsets change, thus requiring introspection into each OS version prior to
its first use. Nevertheless, the solution’s concepts and its algorithms may be applied to
any BTS-powered system.

3.2.5 Tracer
Previous work on performance counters have addressed the side-effect analysis and the
ROP attack detection problem (Section 2.9.1), but not the malware tracing problem.
Based on the transparency property provided by the framework, my initial feeling was
that such application was possible. So, in order to answer the stated question “Could I
develop a performance-counter-based malware analyzer?”, a prototype was developed, as
presented in Section 2.18.1. The analyzer repeatedly makes use of the branch-collected
data introspection procedure to follow the execution of a given process until its exit.

The possibility of gathering binary information from branch-retrieved data is somehow
straightforward. However, we need to evaluate in a more fine-grained way these possiblities
in order to assure the malware analysis utility. This way, I present below two examples
on how these data can be applied for malware analysis: CG and CFG reconstruction.

3.2.6 CG Reconstruction
Given the developed application could follow processes’ actions, the remaining question
was the analysis granularity I could achieve using this technique. The first question I
aimed to answer was: Is CG reconstruction possible?.

When an interrupt occurs and the filtering mechanism marks a given process to be
monitored, all corresponding branches are captured. These include branches inside library
code, since these are mapped in the binary space. This way, our first task is to identify
when a given branch refers to a library. Fortunately, there are system APIs which provide
library address information.

The second task is to identify which function is being called inside that given library.
Due to the library organization, all functions are placed on fixed offsets from the function
entry point. As such, we can compute such offsets by subtracting the library base address
from the branch target address. As each branch may refer to a distinct function call, I
have to repeat this process for each entry. In order to speed up this process, I have built
an offset database which is loaded at the solution’s startup.

As presented in Section 2.18.2, this reconstruction allows my solution to provide
the same information as the state-of-the-art ones (HVM in Section 2.5 and SMM in
Section 2.6). A drawback from my approach is that no function argument can be re-
trieved, which requires additional information gathering procedures. In the case of a
CreateProcess call, for instance, no PID information is retrieved. In order to overcome
this limitation, a callback was used, as shown in Section 2.18.4.

CHAPTER 3. DISCUSSION 101

3.2.7 CFG Reconstruction
Beyond the call graph, one of the stated questions was Is CFG reconstruction possible?.
This would be an important achievement since I would be able to reconstruct every exe-
cuted instruction, even though the processor feature provides only the branch information.
In addition, it would increase my solution’s analysis capabilities, since execution-level is
the most fine-grained analysis level possible for malware analysis.

As presented in Section 2.18.3, I developed a code block identification procedure based
on two consecutive branches. By repeating this process at every two branches, all executed
code can be retrieved.

It is important to notice that two consecutive branches is the minimum amount of
data required to reconstruct a block. Given BTS data is composed by only a source and a
target addresses, we need to combine two of them in order to confine a generic portion of
code. In addition, as the mechanism provides branch data, we can ensure all instructions
inside this given code section were effectively executed; otherwise, they would be branch-
preceeded, thus being BTS-captured. With that in mind, this code block may be named
as a basic block, since it consists of a code section surrounded by two branch instructions.
As this process repeats until its exit, a collection of basic blocks is presented, thus being
named CFG1.

It is important to notice that the developed solution of two consecutive branches-block
identification is platform-independent, making the approach portable.

3.2.8 Trace example
In previous sections, I have presented the immediate results which can be retrieved from
the solution from a high-level perspective. In order to make clearer how an analysis
proceeds from branch-collected data from a lower level, I present here a detailed, step-
by-step analysis of an execution trace that can be obtained by looking to branch data.
What follows is an interpretation of the data collected by the mechanism when analyzing
the execution of the simple program presented in Listing 3.1.

Listing 3.1: Sample code. The
identification of the function calls
performed by this code is used as
the solution’s validation test.

1 i n t main ()
2 char name [MAX_NAME] ;
3 s can f ("% s " , name) ;
4 p r i n t f (" Hel lo , %s " , name) ;

Before analysis begins, we have to collect addresses and sizes of the main binary and its
libraries, which is performed through an introspection procedure, as shown in Listing 3.2.

1Control Flow Graph

CHAPTER 3. DISCUSSION 102

Listing 3.2: Introspection process. Code image addresses should be enumerated
before starting.

1 Binary : Sample . exe 7 f7ccac0000 e000
2 Library : C: \Windows\System32\msvcr110d . d l l 7 fc05e30000 1 e2000
3 Library : C: \Windows\System32\KernelBase . d l l 7 fc24050000 f3000
4 Library : C: \Windows\System32\ kerne l32 . d l l 7 fc252e0000 136000
5 Library : C: \Windows\System32\ n t d l l . d l l 7 f c26 f90000 1 c0000

The data collection starts when the branch monitor is enabled. In the example shown
in Listing 3.3, the code execution had already reached a system library (ntdll.dll).

Listing 3.3: Starting monitoring. The code
is already in execution at a given library.

1 Started ana lyz ing at 7 f c26 f 92c4a :
2 C: \Windows\System32\ n t d l l . d l l

Since the mechanism collects data in a system-wide way, without any filtering, we are
able to capture libraries’ internal codes as well as transitions from/to them. Listing 3.4
shows one of these transitions, from KernelBase.dll to MSVCR110D.dll.

Listing 3.4: Monitoring Execution. A library
internal code is analyzed.

1 Code swapping from 7 fc240561b9 :
2 C: \Windows\System32\KernelBase . d l l
3 (Unknown Function)
4 TO 7 f c 05 f 3 f 1 1b :
5 C: \Windows\System32\msvcr110d . d l l
6 (_read+0xf4b)

By Capturing RET deviations, we are able to identify when a given function reaches
its end and thus when the flow returns to the calling binary. Listing 3.5 shows the end of
execution of the scanf function, at an offset of 0x3f from the msvcr110d.dll, and the
flow transition to our sample binary.

Listing 3.5: Monitoring Execution. Function
scanf reaches its end and returns.

1 LIB C:\Windows\System32\msvcr110d . d l l
2 at 7 f c05e5d4a f (s can f+0x3f)
3 returned to Binary Sample . exe
4 at 7 f7ccac1037

Since the buffer was read, printf is called. Listing 3.6 shows this call.

CHAPTER 3. DISCUSSION 103

Listing 3.6: Monitoring Execution. Print string function
called.

1 Binary Sample . exe at 7 f7ccac1079 c a l l e d l i b
2 C:\Windows\System32\msvcr110d . d l l
3 at 7 fc05e5c7b0 (p r i n t f)

After the string is printed, the function returns to the calling binary, as shown in
Listing 3.7. In this case, internal printf calls were omitted.

Listing 3.7: Monitoring Execution. Printed string,
now returning.

1 LIB C:\Windows\System32\msvcr110d . d l l
2 at 7 fc05e5c924 (p r i n t f+0x174)
3 returned to Binary Sample . exe
4 at 7 f 7 c ca c107 f

Finally, as shown in Listing 3.8, the exit function is called, finishing program execu-
tion. After this point, no instruction is captured by the mechanism.

Listing 3.8: Monitoring Execution. The execution is
finished when exit is called.

1 Binary Sample . exe at 7 f7ccac15d2 c a l l e d l i b
2 C:\Windows\System32\msvcr110d . d l l
3 at 7 fc05e35520 (e x i t)

3.2.9 Code Coverage
Despite all the claims regarding malware analysis capabilities, I have to make clear that
my proposal is only a first step towards branch monitor-based analysis solutions, being my
tool only a proof-of-concept (PoC). Hence, more research effort has to be made in order
to improve analysis capabilities. As insights into these future improvements, I present
here ideas of how code coverage may be evaluated using the developed solution. To do
so, I present a case study of a simple program used to classify input numbers as odd or
even.

Figures 3.1 and 3.2 present graphical visualizations of executed code. The blue values
indicate branch targets whereas green values indicate branch sources. The intermediate
gray values indicate non-branch executed instructions. Providing such kind of view is
straightforward from collected branch data and increases analysis power for the analyst.

CHAPTER 3. DISCUSSION 104

Figure 3.1: Code Coverage. Example
A. The blue values come from the green
CALLs. The last green value is the func-
tion return.

Figure 3.2: Code Coverage. Example B.
The blue value is the target of an exter-
nal function call. The green value is an
unconditional branch.

Figures 3.3 and 3.4 show the same even-odd code execution for two distinct inputs.
Green values indicate executed code whereas gray values indicate non-executed code.
This data view procedure comes straightforward from branch data and may enhance the
analyst’s capabilities. In a real scenario, these data could be two distinct malware exe-
cutions, such as on bare-metal and on VM-based machines, allowing for evasive behavior
identification.

Figure 3.3: Code Coverage. Even Val-
ues. The gray instructions correspond
to the non-executed odd function.

Figure 3.4: Code Coverage. Odd Values.
The gray instructions correspond to the
non-executed even function.

The same visualization tool could also be used for detecting dead-code, for instance,
since dead code insertion is a popular malware anti-analysis trick. Figure 3.5 shows the
identification of a dead code fragment I have inserted in the previous example’s code.

3.2.10 Debugger
After tracing process actions, it is a natural step ahead to think about interrupting exe-
cution at certain places of interest. In a general way, the stated question here is: Could I

CHAPTER 3. DISCUSSION 105

Figure 3.5: Dead Code Identification. The gray instructions were not executed.

develop a Debugger?. It is important to notice that this task is significantly different from
tracing, since there is no hardware support for process suspension, yet I can still collect
branch data through a hardware interrupt.

As shown in Section 2.18.6, the solution for this problem relies on a combination of OS
process suspension support with an inverted I/O call generated from within an interrupt.
I consider this the key point of the debugger development, since the inspection procedure
itself is based on the previously presented techniques.

For the task of debugging, beyond just collecting branch data, I need to offer the
user the ability to inspect the application at that given moment. For that, I need to
immediately transfer him control whereas this could be done at any time in the tracer
scenario. In order to allow coherent process data inspection, processes must be in the
suspended state. This is what happens during the interrupt routine handler, but the
execution resumes as soon as the interrupt is released. So, a suspension mechanism is
required.

The OS provides a suspension routine, but it requires communicating between two
system components: the ISR and the suspension module. As the ISR is watchdog-limited,
I could not wait for a polling-based I/O request, so an inverted I/O was used instead. In
this mode, the ISR calls the suspension module, which immediately handles the request
and suspends the process. This way, as the interrupt is released, the process is already
suspended.

An additional contribution claim is the novelty of this approach, since I am unaware
of other debugging solutions which make use of a similar technique, given most of them
are based on external hardware support or trap flags (Section 2.5.3). The same aforemen-
tioned PoC principle may be applied to my debugger proposal, which provides the basic
mechanisms for binary inspection but may also be enhanced for specific-purpose actions.
My contribution towards those extensions was given by integrating the solution to GDB,
the most popular debugger solution today.

CHAPTER 3. DISCUSSION 106

3.2.11 ROP Detection
The first performance counters-based approaches showed up in the context of ROP at-
tacks, as I have shown in Section 2.9.1. In this sense, it is natural to compare my solution
to those, so that we can check whether the developed solution presents, at least, the same
capabilities, thus answering the stated question of Does the solution handle ROP attacks?.
It is important to notice that handling ROP attacks was not my first concern. However,
proving such capability demonstrates my solution’s extent.

As presented in Section 2.18.10, the solution does handle ROP attacks. Moreover, it
does that naturally, since checking returns is straightforward from branch-collected data.
As the proposed framework is modular, I was able to retrive the same information used
for malware analysis in the context of ROP attacks. The ROP detector is implemented
as a policy in a framework client module.

In my solution, I have not implemented any new detection heuristics, but the same
ones proposed in the state-of-the-art solutions. This way, the branch-retrieved data is
submitted to the detection processing rules. My solution’s contribution resides in the
ROP detection heuristics being implemented in a system-wide way, due to the intrinsic
framework characteristics. By doing this, broader usage scenarios are opened, since the
system can be globally monitored, not just on a per application basis.

3.2.12 ROP Detection Policies
Since in the included paper I had space limitation issues, I opt to present here some more
details about the ROP heuristics.

CALL-RET Policy. In order to provide a better understanding of the practical appli-
cation of the CALL-RET CFI policy, I present an excerpt of a simple program execution.
The policy is stack-based, pushing values as they appear. Listing 3.9 presents stack
states since execution began. When a function returns to its caller, a CALL-RET MATCH is
detected and the value is pop’ed from the stack.

CHAPTER 3. DISCUSSION 107

Listing 3.9: ROP CALL-RET CFI. CALLs are push’ed on the stack as they appear
and pop’ed from when a matching RET appears. The flow is legitimate when all
CALLs and RETs match.

1 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’]])
2 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’

p r i n t f ’ , ’ __iob_func ’]])
3 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’

p r i n t f ’ , ’ __iob_func ’] , [’ ret ’ , ’__iob_func ’ , ’ p r i n t f ’]])
4 CALL−RET MATCH, REMOVING
5 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’]])
6 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’

p r i n t f ’ , ’ _ lock_f i l e ’]])
7 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’

p r i n t f ’ , ’ _ lock_f i l e ’] , [’ c a l l ’ , ’ _ lock_f i l e ’ , ’ _lock ’]])
8 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’

p r i n t f ’ , ’ _ lock_f i l e ’] , [’ c a l l ’ , ’ _ lock_f i l e ’ , ’ _lock ’] , [’
c a l l ’ , ’ _lock ’ , ’ R t lEn t e rCr i t i c a l S e c t i on ’]])

9 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’
p r i n t f ’ , ’ _ lock_f i l e ’] , [’ c a l l ’ , ’ _ lock_f i l e ’ , ’ _lock ’] , [’
c a l l ’ , ’ _lock ’ , ’ R t lEn t e rCr i t i c a l S e c t i on ’] , [’ ret ’ , ’
R t lEn t e rCr i t i c a l S e c t i on ’ , ’ _lock ’]])

10 CALL−RET MATCH, REMOVING
11 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’

p r i n t f ’ , ’ _ lock_f i l e ’] , [’ c a l l ’ , ’ _ lock_f i l e ’ , ’ _lock ’]])
12 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’

p r i n t f ’ , ’ _ lock_f i l e ’] , [’ c a l l ’ , ’ _ lock_f i l e ’ , ’ _lock ’] , [’ ret
’ , ’ _lock ’ , ’ _ lock_f i l e ’]])

13 CALL−RET MATCH, REMOVING

We should take care of some corner cases, such as those generated by exception
handling. Listing 3.10 presents one such case, where the SetLastError matches the
RtlRestoreLastWin32Error.

Listing 3.10: ROP CALL-RET CFI. Exception handlers are corner cases and should
match according to more flexible rules.

1 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’
p r i n t f ’ , ’ _vcwprintf_s_l ’] , [’ c a l l ’ , ’ _vcwprintf_s_l ’ , ’ void
__cdecl Concurrency ’] , [’ c a l l ’ , ’ void __cdecl Concurrency ’ , ’
_getptd ’] , [’ c a l l ’ , ’ _getptd ’ , ’ _getptd ’] , [’ c a l l ’ , ’ _getptd ’ ,
’ SetLastError ’] , [’ ret ’ , ’ RtlRestoreLastWin32Error ’ , ’

_getptd ’]])
2 CALL−RET MATCH, REMOVING

Listing 3.11 shows execution finish. When the stack is empty, we can assure flow
integrity.

CHAPTER 3. DISCUSSION 108

Listing 3.11: ROP CALL-RET CFI. An integer execution flow matches all CALLs
with RETs.

1 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’
p r i n t f ’ , ’ _unlock_fi le ’] , [’ c a l l ’ , ’ _unlock_fi le ’ , ’ _unlock
’]])

2 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’
p r i n t f ’ , ’ _unlock_fi le ’] , [’ c a l l ’ , ’ _unlock_fi le ’ , ’ _unlock ’] ,
[’ ret ’ , ’ _unlock ’ , ’ _unlock_fi le ’]])

3 CALL−RET MATCH, REMOVING
4 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’

p r i n t f ’ , ’ _unlock_fi le ’]])
5 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ c a l l ’ , ’

p r i n t f ’ , ’ _unlock_fi le ’] , [’ ret ’ , ’ _unlock_fi le ’ , ’ p r i n t f ’]])
6 CALL−RET MATCH, REMOVING
7 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’]])
8 (’CURRENT STACK ’ , [[’ c a l l ’ , ’NewToy ’ , ’ p r i n t f ’] , [’ ret ’ , ’

p r i n t f ’ , ’NewToy ’]])
9 CALL−RET MATCH, REMOVING
10 (’CURRENT STACK ’ , [])

Gadget-Size In order to provide a better understanding of the practical application of
the Gadget-Size policy, we present an excerpt of a simple program execution. Listing 3.12
presents distinctly evaluated windows. When a sequence of small-sized gadgets is found,
it is indicated by the Detect flag.

Listing 3.12: ROP GADGET-SIZE CFI. Sequences of small gadgets are
detected by using a moving window.

1 [34 , 107 , 34 , 107 , 34 , 107 , 34 , 107 , 34 , 107]
2 [107 , 34 , 107 , 34 , 107 , 34 , 107 , 34 , 107 , 34]
3 [3 4 , 107 , 34 , 107 , 34 , 107 , 34 , 107 , 34 , 107]
4 [107 , 34 , 107 , 34 , 107 , 34 , 107 , 34 , 107 , 34]
5 [3 4 , 107 , 34 , 107 , 34 , 107 , 34 , 107 , 34 , 183]
6 [107 , 34 , 107 , 34 , 107 , 34 , 107 , 34 , 183 , 63]
7 [3 4 , 107 , 34 , 107 , 34 , 107 , 34 , 183 , 63 , 166]
8 [107 , 34 , 107 , 34 , 107 , 34 , 183 , 63 , 166 , 29]
9 (’ Detected in ’ , [2 0 , 7 , 4 , 4 , 60 , 8 , 21 , 37 , 62 , 1])

3.2.13 Performance
An important aspect of my contribution is evaluating the performance impact imposed by
the developed solution, thus answering the question Is the conceived solution’s overhead
acceptable? As a hardware feature, the activation overhead itself is negligible, but the data
collection and introspection procedures add overhead to the system. My main concern
regarding overhead was to not add so much overhead in these steps so that I would loose

CHAPTER 3. DISCUSSION 109

any advantage of using a hardware feature. As briefly discussed in Section 2.19, the
measured overhead was significantly smaller than other solutions’ for some scenarios. I
considered having overhead measurements smaller than or equal to the state-of-the-art
figures as acceptable.

The main reason for the acceptable overhead is the framework architecture, discussed
below in details. Since data analysis may be performed on a time/core different from
the data capture one, the performance does not suffer any penalty. Additionaly, it is
important to notice that the overhead is application-dependent. The more branches are
executed, the more interrupts will be raised. The smaller the code blocks, the more often
the interrupts will occur. Moreover, the system load may also affect the performance,
since BTS captures data in a system-wide way.

3.2.14 Framework Architecture and performance
In order to answer the question Could the solution run in real-time?, I developed strategies
to minimize the performance penalty in the general case. The most significant strategy
is to offload execution to a separate core, which is supported by the developed decoupled
system architecture. Also for overhead impact purposes, a decoupled I/O data acquisition
procedure was implemented. As shown in Figure 3.6, the interrupt is released as soon as
data is enqueued. This is further asynchronously dequeued.

Figure 3.6: System Architecture. The data acquisition procedure in user-land is decoupled
from kernel-land, allowing lower overheads by core-offloading client processing.

In a more detailed way:

1. Interrupt Dispatch Step: The interrupt is generated on the processor and for-
warded through the Hardware Abstraction Layer (HAL) to the interrupt handler in
the driver.

2. Enqueue Step: The interrupt handler stores captured data in a global queue.

CHAPTER 3. DISCUSSION 110

3. Interrupt Release Step: The interrupt is released immediately after data en-
queue, without the need for sending data to userland.

4. I/O Query Step: The userland client periodically queries the driver for new data
availability. The driver I/O routine is interrupt-independent.

5. Dequeue Step: The driver I/O routine checks whether the queue is empty or not.
Queue content check may be performed with no locking, since the interrupt only
adds data to the queue.

6. Data Step: When new data is available, it is dequeued by the driver.

7. I/O Data Step: The driver I/O routine supplies data to the client or returns “no
data available”.

3.3 Other branch monitor-based solutions
Given the presented, I think I have effectively contributed for improving the state-of-
the-art scenario, since no other work evaluated or applied the use of branch monitor for
security purposes. In fact, after this work had started, I noticed some work related to
branch monitor use, though not geared towards security. A brief view on these is presented
below.

The most famous application using branch monitor is the Intel Vtune, a performance
profiler. As expected, they use such processor features for their original purpose: evaluat-
ing execution time of code segments. Intel does not provide much public information about
Vtune’s internals, but a forum post2 indicates they hook the HalpPerfInterruptHandler
function in order to handle interrupts.

Another profiler making use of branch monitor is the Linux built-in tool perf. As it
may be checked in the source code3, interrupts are handled by NMI routines, as imple-
mented in the work of this dissertation.

Despite profilers, I also found a gaming cheat-engine, a framework for modifying gam-
ing software behavior, using branch monitors. The gamecheat4 employs branch monitor
for finding specific addresses and thus stopping the monitored process at specific points.
The implementation choice was to hook the interrupt handler.

Finally, in mid-2016, a year after this research had started, I found claims from the
Checkpoint company which suggest they might be using branch monitors in their products
in some way. As posted in their blog5, “SandBlast CPU-level protection uses Intel’s
HW debugging and profiling features (which were not originally designed for security),
extracts the raw data out of it and implements a sophisticated software logic layer inside
a customized hypervisor. This allows it to detect the existence of an ROP exploit during
emulation, and therefore block the malicious content before it is delivered to the end user”.

2https://software.intel.com/en-us/forums/intel-vtune-amplifier-xe/topic/594762
3https://github.com/torvalds/linux/blob/08328814256d888634ff15ba8fb67e2ae4340b64/

arch/x86/events/intel/bts.c
4https://github.com/cheat-engine/cheat-engine/blob/master/DBKKernel/ultimap2.c
5http://blog.checkpoint.com/2016/06/22/intel-spot-on-with-cet/

https://software.intel.com/en-us/forums/intel-vtune-amplifier-xe/topic/594762
https://github.com/torvalds/linux/blob/08328814256d888634ff15ba8fb67e2ae4340b64/arch/x86/events/intel/bts.c
https://github.com/torvalds/linux/blob/08328814256d888634ff15ba8fb67e2ae4340b64/arch/x86/events/intel/bts.c
https://github.com/cheat-engine/cheat-engine/blob/master/DBKKernel/ultimap2.c
http://blog.checkpoint.com/2016/06/22/intel-spot-on-with-cet/

CHAPTER 3. DISCUSSION 111

In addition, a product benchmark6 reports a “1% Threat Extraction Overhead”, similar
to this work’s measurements. The product description suggests branch monitor use for
helping VM introspection and semantic gap bridging, instead of direct data collection, as
hereby presented. However, no further information is provided.

3.4 Future Directions
Given the presented scenario and contributions, I present here some insights on future
directions for Branch Monitor development.

3.4.1 Multi Process
Besides implementing CFI policies, branch monitor could be used to detect attacks by
checking deviations from a baseline. Figure 3.7 shows instant branch rates of avgnt, dwm,
svchost and explorer processes.

 0

 5000

 10000

 15000

 20000

 25000

1 2 3 4 5 6 7 8 9 10

avgnt.exe

Branches

 0

 5000

 10000

 15000

 20000

 25000

 30000

1 2 3 4 5 6 7 8 9 10

dwm.exe

Branches

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7 8 9 10

svchost.exe

Branches

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7 8 9 10

explorer.exe

Branches

Figure 3.7: Simultaneous multi-process monitoring: Accumulated branches for each 1-
second interval. The branch-rate for each process may be used for system profiling and
side-channel attack detection.

As a first step, if we monitor these rates for a reasonable time and under ordinary
user activities, we could define a baseline. As a follow-up, the same mechanism running
as a daemon could detect any deviations from the previously established baseline. It is
important to notice that this monitoring procedure should be done in a process basis, since
each process presents distinct profiling metrics regarding their CPU-bound or I/O-bound
behavior.

6https://www.she.net/content/produktbl%C3%A4tter/sandblast-datenblatt.pdf

https://www.she.net/content/produktbl%C3%A4tter/sandblast-datenblatt.pdf

CHAPTER 3. DISCUSSION 112

3.4.2 Multi-core
In a similar way, the same approach could be used for whole-system profiling. As modern
systems are multi-core, profiling should be considered for each core. Although my system
is not able to fully support multi-core yet, I could retrieve preliminary data in order to
illustrate this possibility, as shown in Figure 3.8.

 0

 5000

 10000

 15000

 20000

1 2 3 4 5 6 7 8 9 10

Core 1

Branches

 0

 5000

 10000

 15000

 20000

1 2 3 4 5 6 7 8 9 10

Core 2

Branches

 0

 5000

 10000

 15000

 20000

1 2 3 4 5 6 7 8 9 10

Core 3

Branches

 0

 5000

 10000

 15000

 20000

1 2 3 4 5 6 7 8 9 10

Core 4

Branches

Figure 3.8: Multi-core monitoring: Accumulated branches for each 1-second interval.
Enabling the mechanism on all system cores eases whole-system profiling.

We should notice some cores present higher branch rates than others, thus core mi-
gration is a corner case to be handled for this kind of policy.

3.5 Reproducibility
Finally, I am concerned about this work’s reproducibility, since many technical details are
involved with developing a branch tracer. In order to provide an overview on such details, I
present explanations on how to set the proper flags as well as some code examples showing
how to handle data at the kernel level. These examples are presented in Appendix A.1.
Besides, I released the framework’s source code on Github7;

7https://github.com/marcusbotacin/BranchMonitoringProject

https://github.com/marcusbotacin/BranchMonitoringProject

Chapter 4

Conclusion

In this work, I have presented an extensive review of hardware-assisted security solutions
aimed to handle evasive malicious pieces of code and modern threats. I have discussed the
role of special-purpose hardware on modern systems security, such as HVM, SMM mode,
GPU and others. This review has led to a critical analysis of current tools and solutions.

In my evaluation, I was able to identify development gaps related to solutions which
could be improved by using a hardware-supported mechanism. More specifically, I have
identified a gap in the usage of performance counters, which I further discussed inn this
dissertation.

My proposal for performance monitor use resulted in a transparent, modular, branch
monitor-based framework able to reconstruct binary execution paths (CG and CFG)
through an introspection procedure.

Based on the proposed framework, I developed three distinct tools to address security
problems: a malware tracer, able to handle evasive malware; a debugger, able to inspect
protected applications; an injection-free, system-wide ROP attack detector.

I believe I have contributed to the field since no other branch-based proposal addressed
these issues.

4.1 Future Work
My proposed solution opens broad possibilities for developing security solutions. Although
I have developed some applications, many others were left as future work. Below I present
some extension possibilities.

The framework was developed as a modular architecture, so extensions are straight-
forward tasks. A natural first step on enhancing the solution is to develop more security
policies, such as active agents, flow monitors and so on. A special interest one is to lever-
age branch monitor use to cluster similar malware samples. Since the CG reconstruction
approach allows the analyst to retrieve the really executed functions, there are possibil-
ities of overcoming the data collection limitation of current state-of-the-art approaches,
usually based on static disassembly.

Another natural thought regarding the solution’s portability is to develop framework
versions for distinct OSs. In fact, while writing this document, I am already developing

113

CHAPTER 4. CONCLUSION 114

a Linux version of my solution.
Finally, the framework could be enriched with additional monitor data. The PEBS

monitor (discussed on Section 2.15.7) is a good candidate to provide event data to the
framework, allowing an extension to the monitoring model to include side effects-based
malware detection. A possible analysis extension towards side channel attack detection
is to profile process branch rates and/or even whole-system branch rate.

Bibliography

[1] Julien Ahrens. Easy file management web server 5.3 - userid remote buffer overflow
(rop). https://www.exploit-db.com/exploits/33610/, 2014. Access Date: 2017.

[2] Y. Akao and T. Yamauchi. Proposal of kernel rootkits detection method by moni-
toring branches using hardware features. In 2015 IIAI 4th International Congress on
Advanced Applied Informatics, pages 721–722, Okayama,Japan, July 2015. IEEE.

[3] Erdem Aktas and Kanad Ghose. Run-time control flow authentication: An as-
sessment on contemporary x86 platforms. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC ’13, pages 1859–1866, New York, NY, USA,
2013. ACM.

[4] Malak Alshawabkeh, Byunghyun Jang, and David Kaeli. Accelerating the local out-
lier factor algorithm on a gpu for intrusion detection systems. In Proc. 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, GPGPU-3, pages
104–110, New York, NY, USA, 2010. ACM.

[5] AMD. AMD64 Architecture Programmer’s Manual Volume 2. AMD, 2013.

[6] AMD. Amd secure processor (built-in technology). http://www.amd.com/en-gb/
innovations/software-technologies/security, 2016.

[7] ARM. Cortex-A Series Programmer’s Guide.

[8] ARM. ARM Security Technology - Building a Secure System using TrustZone Tech-
nology. ARM, 2009.

[9] Warwick Ashford. Malware growth reaches record rate. http:
//www.computerweekly.com/news/1280094367/Malware-growth-reaches-
record-rate, 2010.

[10] JP Aumasson and Luis Merino. Sgx secure enclaves in practice: Security and crypto
review, 2016.

[11] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and
Nathan C. Skalsky. Hypersentry: Enabling stealthy in-context measurement of
hypervisor integrity. In Proc. 17th ACM Conf. on Computer and Communications
Security, CCS ’10, pages 38–49, New York, NY, USA, 2010. ACM.

115

https://www.exploit-db.com/exploits/33610/
http://www.amd.com/en-gb/innovations/software-technologies/security
http://www.amd.com/en-gb/innovations/software-technologies/security
http://www.computerweekly.com/news/1280094367/Malware-growth-reaches-record-rate
http://www.computerweekly.com/news/1280094367/Malware-growth-reaches-record-rate
http://www.computerweekly.com/news/1280094367/Malware-growth-reaches-record-rate

BIBLIOGRAPHY 116

[12] M.B. Bahador, M. Abadi, and A. Tajoddin. Hpcmalhunter: Behavioral malware
detection using hardware performance counters and singular value decomposition.
In 2014 4th Intl. Conf. on Computer and Knowledge Engineering (ICCKE), pages
703–708, Oct 2014.

[13] Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher Kruegel, Engin
Kirda, and Giovanni Vigna. Efficient detection of split personalities in malware.
In NDSS 2010, 17th Annual Network and Distributed System Security Symposium,
February 28th-March 3rd, 2010, San Diego, USA, pages 1–17, San Diego, UNITED
STATES, 02 2010. EURECOM.

[14] Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W. Smith. The page-
fault weird machine: Lessons in instruction-less computation. In Proc. of the 7th
USENIX Conf. on Offensive Technologies, WOOT’13, pages 13–13, 2013.

[15] Gabriel Negreira Barbosa and Rodrigo Rubira Branco. Prevalent characteristics in
modern malware. http://www.kernelhacking.com/rodrigo/docs/blackhat2014-
presentation.pdf, 2014. Access in May 11, 2016.

[16] U. Bayer, C. Kruegel, and E. Kirda. Ttanalyze: A tool for analyzing malware. In
15th European Inst. for Computer Antivirus Research (EICAR 2006) Annual Conf.,
pages 1–12, Hamburg, Germany, 2006. EICAR.

[17] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proc. USENIX
Annual Technical Conf., ATEC ’05, pages 41–41, Berkeley, CA, USA, 2005. USENIX
Association.

[18] Xavier J. A. Bellekens, Christos Tachtatzis, Robert C. Atkinson, Craig Renfrew, and
Tony Kirkham. Glop: Enabling massively parallel incident response through gpu
log processing. In Proc. 7th Intl. Conf. on Security of Information and Networks,
SIN ’14, pages 295:295–295:301, New York, NY, USA, 2014. ACM.

[19] Arnar Birgisson, Mohan Dhawan, Úlfar Erlingsson, Vinod Ganapathy, and Liviu
Iftode. Enforcing authorization policies using transactional memory introspection.
In Proc. 15th ACM Conf. on Computer and Communications Security, CCS ’08,
pages 223–234, New York, NY, USA, 2008. ACM.

[20] Georgios Bitzes and Andrzej Nowak. The overhead of profiling us-
ing pmu hardware counters. https://zenodo.org/record/10800/files/
TheOverheadOfProfilingUsingPMUhardwareCounters.pdf, 2014. Access Date:
May/2017.

[21] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. Mitigating code-reuse attacks with
control-flow locking. In Proceedings of the 27th Annual Computer Security Applica-
tions Conference, ACSAC ’11, pages 353–362, New York, NY, USA, 2011. ACM.

[22] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-oriented
programming: A new class of code-reuse attack. In Proceedings of the 6th ACM

http://www.kernelhacking.com/rodrigo/docs/blackhat2014-presentation.pdf
http://www.kernelhacking.com/rodrigo/docs/blackhat2014-presentation.pdf
https://zenodo.org/record/10800/files/TheOverheadOfProfilingUsingPMUhardwareCounters.pdf
https://zenodo.org/record/10800/files/TheOverheadOfProfilingUsingPMUhardwareCounters.pdf

BIBLIOGRAPHY 117

Symposium on Information, Computer and Communications Security, ASIACCS
’11, pages 30–40, New York, NY, USA, 2011. ACM.

[23] Marcus Botacin, Paulo de Geus, and André Grégio. Análise transparente de malware
com suporte por hardware. In SBSeg 2016 - Artigos completos (), Niterói, nov 2016.

[24] Marcus Botacin, Paulo de Geus, and André Grégio. Detecção de ataques por rop em
tempo real assistida por hardware. In SBSeg 2016 - Artigos completos (), Niterói,
nov 2016.

[25] Marcus Botacin, Paulo de Geus, and André Grégio. Voidbg: Projeto e implemen-
tação de um debugger transparente para inspeção de aplicações protegidas. In SBSeg
2016 - Artigos completos (), Niterói, nov 2016.

[26] Marcus Felipe Botacin, Paulo Lício de Geus, and André Ricardo Abed Grégio. The
other guys: automated analysis of marginalized malware. Journal of Computer
Virology and Hacking Techniques, pages 1–12, 2017.

[27] Marcus Felipe Botacin, Paulo Lício de Geus, and André Ricardo Abed Grégio.
Enhancing branch monitoring for security purposes: From control flow integrity
to malware analysis and debugging. ACM Transactions On Privacy and Security,
pages 1–29, Submitted in 2017.

[28] Marcus Felipe Botacin, Paulo Lício de Geus, and André Ricardo Abed Grégio. One
thousand and one nights: Brazilian malware stories. Journal in Computer Virology
and Hacking Techniques, pages 1–28, Submitted in 2017.

[29] Marcus Felipe Botacin, Paulo Lício de Geus, and André Ricardo Abed Grégio. Who
watches the watchmen: A review of techniques, tools and methods to counterfeit
anti-analysis techniques on modern platforms. ACM Computer Surveys, pages 1–38,
Submitted in 2017.

[30] Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto. Sci-
entific but not academical overview of malware anti-debugging, anti-disassembly
and anti- vm technologies. http://www.kernelhacking.com/rodrigo/docs/
blackhat2012-paper.pdf, 2012. Access in May 11, 2016.

[31] Michael Brengel, Michael Backes, and Christian Rossow. Detecting hardware-
assisted virtualization. In Proc. 13th Intl. Conf. on Detection of Intrusions and
Malware, and Vulnerability Assessment - Volume 9721, DIMVA 2016, pages 207–
227, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

[32] BSDaemon, coideloco, and D0nad0n. System management mode hack - using smm
for "other purposes". http://phrack.org/issues/65/7.html, 2008.

[33] Capstone. The ultimate disassembly framework. http://www.capstone-
engine.org/, 2016. Access Date: July/2016.

http://www.kernelhacking.com/rodrigo/docs/blackhat2012-paper.pdf
http://www.kernelhacking.com/rodrigo/docs/blackhat2012-paper.pdf
http://phrack.org/issues/65/7.html
http://www.capstone-engine.org/
http://www.capstone-engine.org/

BIBLIOGRAPHY 118

[34] Alexander Chailytko and Stanislav Skuratovich. Vb2016 paper: Defeating sandbox
evasion: how to increase the successful emulation rate in your virtual envi-
ronment. https://www.virusbulletin.com/virusbulletin/2016/12/vb2016-
paper-defeating-sandbox-evasion-how-increase-successful-emulation-
rate-your-virtual-environment/, 2016. Access Date: 2017.

[35] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao, and Li Xie. Drop:
Detecting return-oriented programming malicious code. In Proceedings of the 5th
International Conference on Information Systems Security, ICISS ’09, pages 163–
177, Berlin, Heidelberg, 2009. Springer-Verlag.

[36] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A.
Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. Overshadow:
A virtualization-based approach to retrofitting protection in commodity operating
systems. SIGPLAN Not., 43(3):2–13, March 2008.

[37] Xu Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. Towards an under-
standing of anti-virtualization and anti-debugging behavior in modern malware. In
2008 IEEE Intl. Conf. on Dependable Systems and Networks With FTCS and DCC
(DSN), pages 177–186, Anchorage, Alaska, USA, June 2008. IEEE.

[38] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, Huijie DENG, et al.
Ropecker: A generic and practical approach for defending against rop attack. NDSS
Symposium 2014, 2014.

[39] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Huijie Robert Deng.
Ropecker: A generic and practical approach for defending against rop attacks. In
Symp. on Network and Distributed System Security (NDSS, pages 1–15, San Diego,
CA, USA, 2014. Internet Society.

[40] Andrei Chiş, Marcus Denker, Tudor Gîrba, and Oscar Nierstrasz. Practical Domain-
specific Debuggers Using the Moldable Debugger Framework. Comput. Lang. Syst. Struct.,
44(PA):89–113, December 2015.

[41] CHIPSEC. Chipsec platform security assessment framework. https:
//www.blackhat.com/docs/us-14/materials/arsenal/us-14-Bulygin-
CHIPSEC-Slides.pdf, 2014.

[42] CHIPSEC. Chipsec. https://github.com/chipsec/chipsec, 2016.

[43] CloudBurst. Reverse engineering for malware: Shellcodes and av/api
hook evasion. https://www.cloudburstsecurity.com/2016/06/10/reverse-
engineering-for-malware-shellcodes-and-avapi-hook-evasion/, 2016.

[44] CoreBoot. Coreboot. http://www.coreboot.org/, 2015.

[45] Paul Crowley. Pixel security: Better, faster, stronger. http:
//security.googleblog.com/2016/11/pixel-security-better-faster-
stronger.html, 2016.

https://www.virusbulletin.com/virusbulletin/2016/12/vb2016-paper-defeating-sandbox-evasion-how-increase-successful-emulation-rate-your-virtual-environment/
https://www.virusbulletin.com/virusbulletin/2016/12/vb2016-paper-defeating-sandbox-evasion-how-increase-successful-emulation-rate-your-virtual-environment/
https://www.virusbulletin.com/virusbulletin/2016/12/vb2016-paper-defeating-sandbox-evasion-how-increase-successful-emulation-rate-your-virtual-environment/
https://www.blackhat.com/docs/us-14/materials/arsenal/us-14-Bulygin-CHIPSEC-Slides.pdf
https://www.blackhat.com/docs/us-14/materials/arsenal/us-14-Bulygin-CHIPSEC-Slides.pdf
https://www.blackhat.com/docs/us-14/materials/arsenal/us-14-Bulygin-CHIPSEC-Slides.pdf
https://github.com/chipsec/chipsec
https://www.cloudburstsecurity.com/2016/06/10/reverse-engineering-for-malware-shellcodes-and-avapi-hook-evasion/
https://www.cloudburstsecurity.com/2016/06/10/reverse-engineering-for-malware-shellcodes-and-avapi-hook-evasion/
http://www.coreboot.org/
http://security.googleblog.com/2016/11/pixel-security-better-faster-stronger.html
http://security.googleblog.com/2016/11/pixel-security-better-faster-stronger.html
http://security.googleblog.com/2016/11/pixel-security-better-faster-stronger.html

BIBLIOGRAPHY 119

[46] CVE. Cve-2011-0065. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2011-0065, 2011. Acessado em junho/2016.

[47] Shaun Davenport and Richard Ford. Sgx: the good, the bad and the downright
ugly. https://www.virusbulletin.com/virusbulletin/2014/01/sgx-good-bad-
and-downright-ugly, 2014.

[48] L. Davi, M. Hanreich, D. Paul, A. R. Sadeghi, P. Koeberl, D. Sullivan, O. Arias,
and Y. Jin. Hafix: Hardware-assisted flow integrity extension. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, San Fran-
cisco, CA, USA, June 2015. ACM/IEEE.

[49] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Dynamic integrity mea-
surement and attestation: Towards defense against return-oriented programming
attacks. In Proceedings of the 2009 ACM Workshop on Scalable Trusted Computing,
STC ’09, pages 49–54, New York, NY, USA, 2009. ACM.

[50] S. Debray and J. Patel. Reverse engineering self-modifying code: Unpacker extrac-
tion. In 2010 17th Working Conference on Reverse Engineering, pages 131–140,
Beverly, MA, USA, Oct 2010. IEEE.

[51] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman,
Simha Sethumadhavan, and Salvatore Stolfo. On the feasibility of online malware
detection with performance counters. SIGARCH Comput. Archit. News, 41(3):559–
570, June 2013.

[52] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. Spider: Stealthy binary program
instrumentation and debugging via hardware virtualization. In Proc. 29th Annual
Computer Security Applications Conf., ACSAC ’13, pages 289–298, New York, NY,
USA, 2013. ACM.

[53] Steve Dent. Microsoft’s edge browser stays secure by acting as a virtual
pc. https://www.engadget.com/2016/09/27/microsofts-edge-browser-stays-
secure-by-acting-as-a-virtual-pc/, 2016.

[54] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: Malware anal-
ysis via hardware virtualization extensions. In Proc. 15th ACM Conf. on Computer
and Communications Security, CCS ’08, pages 51–62, NY, USA, 2008. ACM.

[55] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: Malware
analysis via hardware virtualization extensions. In Proceedings of the 15th ACM
Conference on Computer and Communications Security, CCS ’08, pages 51–62,
New York, NY, USA, 2008. ACM.

[56] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke
Lee. Virtuoso: Narrowing the semantic gap in virtual machine introspection. In
Proc. 2011 IEEE Symp. on Security and Privacy, SP ’11, pages 297–312, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0065
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0065
https://www.virusbulletin.com/virusbulletin/2014/01/sgx-good-bad-and-downright-ugly
https://www.virusbulletin.com/virusbulletin/2014/01/sgx-good-bad-and-downright-ugly
https://www.engadget.com/2016/09/27/microsofts-edge-browser-stays-secure-by-acting-as-a-virtual-pc/
https://www.engadget.com/2016/09/27/microsofts-edge-browser-stays-secure-by-acting-as-a-virtual-pc/

BIBLIOGRAPHY 120

[57] L. Duflot, D. Etiemble, and O. Grumelard. Using cpu system management mode
to circumvent operating system security functions. http://fawlty.cs.usfca.edu/
~cruse/cs630f06/duflot.pdf, 2007.

[58] DynamoRIO. Dynamorio - dynamic instrumentation tool platform. http://
dynamorio.org/home.html, 2001.

[59] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey
on automated dynamic malware-analysis techniques and tools. ACM Comput. Surv.,
44(2):6:1–6:42, March 2008.

[60] Shawn Embleton, Sherri Sparks, and Cliff Zou. Smm rootkits: A new breed of os
independent malware. In Proc. 4th Intl. Conf. on Security and Privacy in Commu-
nication Netowrks, SecureComm ’08, pages 11:1–11:12, New York, NY, USA, 2008.
ACM.

[61] Aristide Fattori, Roberto Paleari, Lorenzo Martignoni, and Mattia Monga. Dynamic
and transparent analysis of commodity production systems. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, ASE
’10, pages 417–426, New York, NY, USA, 2010. ACM.

[62] FEBRABAN. FEBRABAN dá dicas de segurança eletrônica. http://
www.febraban.org.br/Noticias1.asp?id_texto=2758, December 2015. Access in
May 22, 2016.

[63] David Fitzpatrick and Drew Griffin. Cyber-extortion losses skyrocket,
says fbi. http://money.cnn.com/2016/04/15/technology/ransomware-cyber-
security/, 2016.

[64] Yangchun Fu and Zhiqiang Lin. Bridging the semantic gap in virtual machine
introspection via online kernel data redirection. ACM Trans. Inf. Syst. Secur.,
16(2):7:1–7:29, September 2013.

[65] Yuxin Gao, Zexin Lu, and Yuqing Luo. Survey on malware anti-analysis. In In-
telligent Control and Information Processing (ICICIP), 2014 Fifth International
Conference on, pages 270–275, Aug 2014.

[66] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. Compatibility
is not transparency: Vmm detection myths and realities. In Proc. 11th USENIX
Workshop on Hot Topics in Operating Systems, HOTOS’07, pages 6:1–6:6, Berkeley,
CA, USA, 2007. USENIX Association.

[67] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and Geor-
gios Portokalidis. Size does matter: Why using gadget-chain length to prevent code-
reuse attacks is hard. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 417–432, San Diego, CA, August 2014. USENIX Association.

http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf
http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf
http://dynamorio.org/home.html
http://dynamorio.org/home.html
http://www.febraban.org.br/Noticias1.asp?id_texto=2758
http://www.febraban.org.br/Noticias1.asp?id_texto=2758
http://money.cnn.com/2016/04/15/technology/ransomware-cyber-security/
http://money.cnn.com/2016/04/15/technology/ransomware-cyber-security/

BIBLIOGRAPHY 121

[68] Mariano Graziano, Davide Balzarotti, and Alain Zidouemba. ROPMEMU: A frame-
work for the analysis of complex code-reuse attacks. In ASIACCS 2016, 11th ACM
Asia Conference on Computer and Communications Security, May 30-June 3, 2016,
Xi’ian, China, 2016.

[69] Groundworkstech. A python interface to the gnu binary file descriptor (bfd) library.
https://github.com/Groundworkstech/pybfd, 2016. Access Date: July/2016.

[70] Grsecurity. Grsecurity. https://grsecurity.net/, 2013.

[71] Claudio Guarnieri. Cuckoo sandbox. http://www.cuckoosandbox.org/, 2013.

[72] Neha Gupta, Smita Naval, Vijay Laxmi, M.S. Gaur, and Muttukrishnan Rajarajan.
P-spade: Gpu accelerated malware packer detection. In Privacy, Security and Trust
(PST), 2014 Twelfth Annual Intl. Conf. on, pages 257 – 263, Toronto, Canada, 2014.
IEEE.

[73] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W. Davidson.
Ilr: Where’d my gadgets go? In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, SP ’12, pages 571–585, Washington, DC, USA, 2012. IEEE
Computer Society.

[74] A. Ho, S. Hand, and T. Harris. Pdb: pervasive debugging with xen. In Grid
Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on, pages
260–265, Nov 2004.

[75] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. Using innovative instructions to create trustworthy software solutions.
In Proc. 2nd Intl. Workshop on Hardware and Architectural Support for Security
and Privacy, HASP ’13, pages 11:1–11:1, NY, USA, 2013. ACM.

[76] Owen S. Hofmann, Alan M. Dunn, Sangman Kim, Indrajit Roy, and Emmett
Witchel. Ensuring operating system kernel integrity with osck. In Proc. 16th Intl.
Conf. on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XVI, pages 279–290, New York, NY, USA, 2011. ACM.

[77] Joel Hruska. Report claims intel cpus contain enormous security flaw.
http://www.extremetech.com/computing/230342-report-claims-intel-
cpus-contain-enormous-security-flaw, 2016.

[78] Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual. Intel, 2013.

[79] Intel. Pin - a dynamic binary instrumentation tool. https://software.intel.com/
en-us/articles/pin-a-dynamic-binary-instrumentation-tool, 2015.

[80] Intel. Control-flow enforcement technology preview. https://software.intel.com/
sites/default/files/managed/4d/2a/control-flow-enforcement-
technology-preview.pdf, 2016. Access Date: January/2017.

https://github.com/Groundworkstech/pybfd
https://grsecurity.net/
http://www.cuckoosandbox.org/
http://www.extremetech.com/computing/230342-report-claims-intel-cpus-contain-enormous-security-flaw
http://www.extremetech.com/computing/230342-report-claims-intel-cpus-contain-enormous-security-flaw
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

BIBLIOGRAPHY 122

[81] Intel Security. Net losses: Estimating the global cost of cybercrime.
http://www.mcafee.com/br/resources/reports/rp-economic-impact-
cybercrime2.pdf, 2014.

[82] Alex Ionescu. Battle of the skm and ium: How windows 10 rewrites os architec-
ture. https://www.blackhat.com/us-15/briefings.html#battle-of-the-skm-
and-ium-how-windows-10-rewrites-os-architecture, 2015.

[83] iseclab. Anubis - malware analysis for unknown binaries. https://
anubis.iseclab.org/, 2010.

[84] Grégoire Jacob, Hervé Debar, and Eric Filiol. Behavioral detection of malware:
from a survey towards an established taxonomy. Journal in Computer Virology,
4(3):251–266, 2008.

[85] P. Jain, S. Desai, S. Kim, M.-W. Shih, J. Lee, C. Choi, Y. Shin, T. Kim, B. B.
Kang, and D. Han. Opensgx: An open platform for sgx research. In Proc. 2016
Annual Network and Distributed System Security Symp., pages 1–16, San Diego,
CA, USA, 2016. Internet Society.

[86] Jun Jiang, Xiaoqi Jia, Dengguo Feng, Shengzhi Zhang, and Peng Liu. Hypercrop: A
hypervisor-based countermeasure for return oriented programming. In Proceedings
of the 13th International Conference on Information and Communications Security,
ICICS’11, pages 360–373, Berlin, Heidelberg, 2011. Springer-Verlag.

[87] Min Gyung Kang, Heng Yin, Steve Hanna, Stephen McCamant, and Dawn Song.
Emulating emulation-resistant malware. In Proc. 1st ACM Workshop on Virtual
Machine Security, VMSec ’09, pages 11–22, New York, NY, USA, 2009. ACM.

[88] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barebox: Efficient mal-
ware analysis on bare-metal. In Proc. 27th Annual Computer Security Applications
Conf., ACSAC ’11, pages 403–412, NY, USA, 2011. ACM.

[89] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barecloud: Bare-metal
analysis-based evasive malware detection. In Proceedings of the 23rd USENIX Con-
ference on Security Symposium, SEC’14, pages 287–301, Berkeley, CA, USA, 2014.
USENIX Association.

[90] Knaps. Easy file sharing web server 7.2 - remote buffer overflow (seh) (dep bypass
with rop). https://www.exploit-db.com/exploits/38829/, 2015. Access Date:
2017.

[91] Kompalli and Sarat. Using existing hardware services for malware detection. In
Proc. 2014 IEEE Security and Privacy Workshops, SPW’14, pages 204–208, Wash-
ington, DC, USA, 2014. IEEE Computer Society.

[92] S. Kompalli. Using existing hardware services for malware detection. In Security
and Privacy Workshops (SPW), 2014 IEEE, pages 204–208, May 2014.

http://www.mcafee.com/br/resources/reports/rp-economic-impact-cybercrime2.pdf
http://www.mcafee.com/br/resources/reports/rp-economic-impact-cybercrime2.pdf
https://www.blackhat.com/us-15/briefings.html#battle-of-the-skm-and-ium-how-windows-10-rewrites-os-architecture
https://www.blackhat.com/us-15/briefings.html#battle-of-the-skm-and-ium-how-windows-10-rewrites-os-architecture
https://anubis.iseclab.org/
https://anubis.iseclab.org/
https://www.exploit-db.com/exploits/38829/

BIBLIOGRAPHY 123

[93] Lazaros Koromilas, Giorgos Vasiliadis, Elias Athanasopoulos, and Sotiris Ioannidis.
GRIM: Leveraging GPUs for Kernel Integrity Monitoring, pages 3–23. Springer
International Publishing, Cham, 2016.

[94] S. Krishnamoorthy, M. S. Hsiao, and L. Lingappan. Tackling the path explosion
problem in symbolic execution-driven test generation for programs. In 2010 19th
IEEE Asian Test Symposium, pages 59–64, Shanghai, China, Dec 2010. IEEE.

[95] Evangelos Ladakis, Lazaros Koromilas, Giorgos Vasiliadis, Michalis Poly-
chronakis, and Sotiris Ioannidis. You can type, but you can’t hide: A
stealthy gpu-based keylogger. http://www.cs.columbia.edu/~mikepo/papers/
gpukeylogger.eurosec13.pdf, 2013.

[96] Bingchen Lan, Yan Li, Hao Sun, Chao Su, Yao Liu, and Qingkai Zeng. Loop-
oriented programming: A new code reuse attack to bypass modern defenses. In
Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 1, pages 190–197, Aug 2015.

[97] Hojoon Lee, HyunGon Moon, DaeHee Jang, Kihwan Kim, Jihoon Lee, Yunheung
Paek, and Brent ByungHoon Kang. Ki-mon: A hardware-assisted event-triggered
monitoring platform for mutable kernel object. In 22nd USENIX Security Sympo-
sium, pages 511–526, Washington, D.C., 2013. USENIX.

[98] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy attack prove-
nance via binary-based execution partition. In 20th Annual Network and Distributed
System Security Symp., NDSS 2013, San Diego, California, USA, February 24-27,
2013, page 16, San Diego, CA, USA, 2013. Internet Society.

[99] Tamas Lengyel, Thomas Kittel, George Webster, and Jacob Torrey. Pitfalls of
virtual machine introspection on modern hardware. In 1st Workshop on Malware
Memory Forensics (MMF), pages 1–7, New Orleans, Louisiana, USA, December
2014. ACM.

[100] LibVMI. Introduction to libvmi. http://libvmi.com/docs/gcode-intro.html,
2015.

[101] Jari-Matti Mäkelä, Ville Leppänen, and Martti Forsell. Towards a parallel debugging
framework for the massively multi-threaded, step-synchronous replica architecture.
In Proc. 14th Intl. Conf. Computer Systems and Technologies, CompSysTech ’13,
pages 153–160, NY, USA, 2013. ACM.

[102] Corey Malone, Mohamed Zahran, and Ramesh Karri. Are hardware performance
counters a cost effective way for integrity checking of programs. In Proc. 6th ACM
Workshop on Scalable Trusted Computing, STC ’11, pages 1–6, New York, NY,
USA, 2011. ACM.

[103] Tarjei Mandt, Mathew Solnik, and David Wang. Demystifying the secure enclave
processor, 2016.

http://www.cs.columbia.edu/~mikepo/papers/gpukeylogger.eurosec13.pdf
http://www.cs.columbia.edu/~mikepo/papers/gpukeylogger.eurosec13.pdf
http://libvmi.com/docs/gcode-intro.html

BIBLIOGRAPHY 124

[104] Eli Marcus. RSA Uncovers Boleto Fraud Ring in Brazil. https://blogs.rsa.com/
rsa-uncovers-boleto-fraud-ring-brazil/, July 2014. Access in May 11, 2016.

[105] J.A.P. Marpaung, M. Sain, and Hoon-Jae Lee. Survey on malware evasion tech-
niques: State of the art and challenges. In Advanced Communication Technology
(ICACT), 2012 14th International Conference on, pages 744–749, Feb 2012.

[106] Lorenzo Martignoni, Aristide Fattori, Roberto Paleari, and Lorenzo Cavallaro. Live
and trustworthy forensic analysis of commodity production systems. In Proc. 13th
Intl. Conf. on Recent Advances in Intrusion Detection, RAID’10, pages 297–316,
Berlin, Heidelberg, 2010. Springer-Verlag.

[107] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.
Testing cpu emulators. In Proc. 18th Intl Symp. on Software Testing and Analysis,
ISSTA ’09, pages 261–272, NY, USA, 2009. ACM.

[108] Microsoft. Keregisternmicallback routine. https://msdn.microsoft.com/en-us/
library/windows/hardware/ff553116%28v=vs.85%29.aspx, 2013. Access Date:
July/2016.

[109] Microsoft. Kernel patch protection for x64-based operating systems. https://
technet.microsoft.com/en-us/library/cc759759%28v=ws.10%29.aspx, 2015.

[110] Microsoft. Createprocess function. https://msdn.microsoft.com/en-us/library/
windows/desktop/ms682425%28v=vs.85%29.aspx, 2016. Access Date: July/2016.

[111] Microsoft. Createprocessnotifyex routine. https://msdn.microsoft.com/en-us/
library/windows/hardware/ff542860%28v=vs.85%29.aspx, 2016. Access Date:
July/2016.

[112] Microsoft. Debugactiveprocess function. https://msdn.microsoft.com/pt-br/
library/windows/desktop/ms679295%28v=vs.85%29.aspx, 2016. Access Date: Ju-
ly/2016.

[113] Microsoft. Debugging functions. https://msdn.microsoft.com/en-us/library/
windows/desktop/ms679303%28v=vs.85%29.aspx, 2016. Access Date: July/2016.

[114] Microsoft. Enumprocessmodules function. https://msdn.microsoft.com/en-us/
library/windows/desktop/ms682631%28v=vs.85%29.aspx, 2016. Access Date: Ju-
ly/2016.

[115] Microsoft. Getmodulehandle function. https://msdn.microsoft.com/pt-br/
library/windows/desktop/ms683199%28v=vs.85%29.aspx, 2016. Access Date: Ju-
ly/2016.

[116] Microsoft. Getthreadcontext function. https://msdn.microsoft.com/pt-br/
library/windows/desktop/ms679362%28v=vs.85%29.aspx, 2016. Access Date: Ju-
ly/2016.

https://blogs.rsa.com/rsa-uncovers-boleto-fraud-ring-brazil/
https://blogs.rsa.com/rsa-uncovers-boleto-fraud-ring-brazil/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff553116%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff553116%28v=vs.85%29.aspx
https://technet.microsoft.com/en-us/library/cc759759%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/cc759759%28v=ws.10%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff542860%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff542860%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms679295%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms679295%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679303%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679303%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682631%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682631%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683199%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683199%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms679362%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms679362%28v=vs.85%29.aspx

BIBLIOGRAPHY 125

[117] Microsoft. I/o request packets. https://msdn.microsoft.com/en-us/library/
windows/hardware/hh439638%28v=vs.85%29.aspx, 2016. Access Date: July/2016.

[118] Microsoft. Isdebuggerpresent. https://msdn.microsoft.com/pt-br/library/
windows/desktop/ms680345%28v=vs.85%29.aspx, 2016. Access Date: July/2016.

[119] Microsoft. Psgetcurrentprocessid routine. https://msdn.microsoft.com/en-us/
library/windows/hardware/ff559935%28v=vs.85%29.aspx, 2016. Access Date:
July/2016.

[120] Microsoft. Readfile function. https://msdn.microsoft.com/en-us/library/
windows/desktop/aa365467%28v=vs.85%29.aspx, 2016. Access Date: July/2016.

[121] Microsoft. Readprocessmemory function. https://msdn.microsoft.com/pt-br/
library/windows/desktop/ms680553%28v=vs.85%29.aspx, 2016. Access Date: Ju-
ly/2016.

[122] Microsoft. Setprocessaffinitymask function. https://msdn.microsoft.com/en-
us/library/windows/desktop/ms686223%28v=vs.85%29.aspx, 2016. Access Date:
January/2017.

[123] Microsoft. Singly and doubly linked lists. https://msdn.microsoft.com/en-us/
library/windows/hardware/ff563802%28v=vs.85%29.aspx, 2016. Access Date:
July/2016.

[124] Microsoft. Suspendthread function. https://msdn.microsoft.com/pt-br/
library/windows/desktop/ms686345%28v=vs.85%29.aspx, 2016. Access Date: Ju-
ly/2016.

[125] Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim, Yunheung Paek, and
Brent Byunghoon Kang. Vigilare: Toward snoop-based kernel integrity monitor.
In Proc. 2012 ACM Conf. on Computer and Communications Security, CCS ’12,
pages 28–37, New York, NY, USA, 2012. ACM.

[126] Hyungon Moon, Jinyong Lee, Dongil Hwang, Seonhwa Jung, Jiwon Seo, and Yunhe-
ung Paek. Architectural supports to protect os kernels from code-injection attacks.
In Proc. Hardware and Architectural Support for Security and Privacy 2016, HASP
2016, pages 5:1–5:8, New York, NY, USA, 2016. ACM.

[127] Asit More and Shashikala Tapaswi. Virtual machine introspection: towards bridging
the semantic gap. Journal of Cloud Computing, 3(1):1–14, 2014.

[128] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection.
In Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third
Annual, pages 421–430, Dec 2007.

[129] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for
malware detection. In Annual Computer Security Applications Conf., pages 1–10,
Miami Beach, FL, USA, 2007. ACM.

https://msdn.microsoft.com/en-us/library/windows/hardware/hh439638%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh439638%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms680345%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms680345%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff559935%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff559935%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365467%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365467%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms680553%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms680553%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686223%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686223%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff563802%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff563802%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms686345%28v=vs.85%29.aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms686345%28v=vs.85%29.aspx

BIBLIOGRAPHY 126

[130] mseaborn. gdb-debug-stub. github.com/mseaborn/gdb-debug-stub, 2014. Access
Date: July/2016.

[131] Marius Muench, Fabio Pagani, Yan Shoshitaishvili, Christopher Kruegel, Giovanni
Vigna, and Davide Balzarotti. Taming Transactions: Towards Hardware-Assisted
Control Flow Integrity Using Transactional Memory, pages 24–48. Springer Inter-
national Publishing, 2016.

[132] Igor Muttik, Alex Nayshtut, and Roman Dementlev. Creating a spider goat: using
transactional memory support for security, 2014.

[133] Michael Myers and Stephen Youndt. An introduction to hardware-assisted virtual
machine (hvm) rootkits. http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.90.8832&rep=rep1&type=pdf, 2007.

[134] Matthias Neugschwandtner, Christian Platzer, PaoloMilani Comparetti, and Ulrich
Bayer. danubis – dynamic device driver analysis based on virtual machine introspec-
tion. In Christian Kreibich and Marko Jahnke, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment, volume 6201 of Lecture Notes in Computer
Science, pages 41–60. Springer Berlin Heidelberg, Bonn, Germany, 2010.

[135] James Newsome and Dawn Song. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. "", ""(""):17,
2005.

[136] Anh M. Nguyen, Nabil Schear, HeeDong Jung, Apeksha Godiyal, Samuel T. King,
and Hai D. Nguyen. Mavmm: Lightweight and purpose built vmm for malware
analysis. In Proceedings of the 2009 Annual Computer Security Applications Con-
ference, ACSAC ’09, pages 441–450, Washington, DC, USA, 2009. IEEE Computer
Society.

[137] NirSoft. Dll export viewer. http://www.nirsoft.net/utils/
dll_export_viewer.html, 2016. Access Date: July/2016.

[138] Nist.gov. National vulnerability database. https://web.nvd.nist.gov/view/vuln/
search-results?query=firmware&search_type=all&cves=on, 2017.

[139] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda.
G-free: Defeating return-oriented programming through gadget-less binaries. In
Proceedings of the 26th Annual Computer Security Applications Conference, ACSAC
’10, pages 49–58, New York, NY, USA, 2010. ACM.

[140] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi.
A fistful of red-pills: How to automatically generate procedures to detect cpu em-
ulators. In Proc. 3rd USENIX Conf. on Offensive Technologies, WOOT’09, pages
2–2, Berkeley, CA, USA, 2009. USENIX Association.

github.com/mseaborn/gdb-debug-stub
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.8832&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.8832&rep=rep1&type=pdf
http://www.nirsoft.net/utils/dll_export_viewer.html
http://www.nirsoft.net/utils/dll_export_viewer.html
https://web.nvd.nist.gov/view/vuln/search-results?query=firmware&search_type=all&cves=on
https://web.nvd.nist.gov/view/vuln/search-results?query=firmware&search_type=all&cves=on

BIBLIOGRAPHY 127

[141] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code randomiza-
tion. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12,
pages 601–615, Washington, DC, USA, 2012. IEEE Computer Society.

[142] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Transparent rop
exploit mitigation using indirect branch tracing. In Proceedings of the 22Nd USENIX
Conference on Security, SEC’13, pages 447–462, Berkeley, CA, USA, 2013. USENIX
Association.

[143] Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares: An
architecture for secure active monitoring using virtualization. In Proc. 2008 IEEE
Symp. on Security and Privacy, SP ’08, pages 233–247, Washington, DC, USA,
2008. IEEE Computer Society.

[144] Michael Pearce, Sherali Zeadally, and Ray Hunt. Virtualization: Issues, security
threats, and solutions. ACM Comput. Surv., 45(2):17:1–17:39, March 2013.

[145] Gábor Pék, Boldizsár Bencsáth, and Levente Buttyán. nether: In-guest detection
of out-of-the-guest malware analyzers. In Proc. 4th Eur. Wksp on System Security,
EUROSEC ’11, pages 3:1–3:6. ACM, 2011.

[146] Gábor Pék, Levente Buttyán, and Boldizsár Bencsáth. A survey of security issues
in hardware virtualization. ACM Comput. Surv., 45(3):40:1–40:34, July 2013.

[147] Nick L. Petroni, Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copi-
lot - a coprocessor-based kernel runtime integrity monitor. In Proc. 13th Conf. on
USENIX Security Symp. - Volume 13, SSYM’04, pages 13–13, Berkeley, CA, USA,
2004. USENIX Association.

[148] Cody Pierce, Matthew Spisak, and Kenneth Fitch. Capturing 0day exploits
with perfectly placed hardware traps. https://www.blackhat.com/docs/us-
16/materials/us-16-Pierce-Capturing-0days-With-PERFectly-Placed-
Hardware-Traps-wp.pdf, 2016.

[149] Plasma. Plasma. https://github.com/plasma-disassembler/plasma, 2015. Ac-
cess Date: January/2017.

[150] Rian Quinn. Detection of malware via side channel information. PhD thesis, Bing-
hamton University, 2012.

[151] Daniel Quist, Lorie Liebrock, and Joshua Neil. Improving antivirus accuracy with
hypervisor assisted analysis. J. Comput. Virol., 7(2):121–131, May 2011.

[152] Nguyen Anh Quynh and Kuniyasu Suzaki. Virt-ice: Next-generation debugger
for malware analysis. https://media.blackhat.com/bh-us-10/whitepapers/Anh/
BlackHat-USA-2010-Anh-Virt-ICE-wp.pdf, 2010.

https://www.blackhat.com/docs/us-16/materials/us-16-Pierce-Capturing-0days-With-PERFectly-Placed-Hardware-Traps-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Pierce-Capturing-0days-With-PERFectly-Placed-Hardware-Traps-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Pierce-Capturing-0days-With-PERFectly-Placed-Hardware-Traps-wp.pdf
https://github.com/plasma-disassembler/plasma
https://media.blackhat.com/bh-us-10/whitepapers/Anh/BlackHat-USA-2010-Anh-Virt-ICE-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Anh/BlackHat-USA-2010-Anh-Virt-ICE-wp.pdf

BIBLIOGRAPHY 128

[153] James R. Processor tracing. https://software.intel.com/en-us/blogs/2013/
09/18/processor-tracing, 2013. Access Date: May/2017.

[154] Alessandro Reina, Aristide Fattori, Fabio Pagani, Lorenzo Cavallaro, and Danilo
Bruschi. When hardware meets software: A bulletproof solution to forensic memory
acquisition. In Proc. 28th Annual Computer Security Applications Conf., ACSAC
’12, pages 79–88, New York, NY, USA, 2012. ACM.

[155] Junghwan Rhee, Ryan Riley, Dongyan Xu, and Xuxian Jiang. Defeating dynamic
data kernel rootkit attacks via vmm-based guest-transparent monitoring. 2012 7th
Intl. Conf. on Availability, Reliability and Security, 0:74–81, 2009.

[156] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of kernel
rootkits with vmm-based memory shadowing. In Proc. 11th Intl. Symp. on Recent
Advances in Intrusion Detection, RAID ’08, pages 1–20, Berlin, Heidelberg, 2008.
Springer-Verlag.

[157] Thomas Roccia. An overview of malware self-defense and protection.
https://securingtomorrow.mcafee.com/mcafee-labs/overview-malware-
self-defense-protection/, 2016.

[158] Jonathan B. Rosenberg. How Debuggers Work: Algorithms, Data Structures, and
Architecture. John Wiley & Sons, Inc., New York, NY, USA, 1996.

[159] Christian Rossow, Christian J. Dietrich, Christian Kreibich, Chris Grier, Vern Pax-
son, Norbert Pohlmann, Herbert Bos, and Maarten van Steen. Prudent Practices
for Designing Malware Experiments: Status Quo and Outlook . In Proceedings
of the 33rd IEEE Symposium on Security and Privacy (S&P) , pages 1–15, San
Francisco, CA, May 2012. IEEE.

[160] Rutkowska. Subverting vista kernel for fun and for profit. https://
www.blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf, 2006.

[161] Rutkowska. Qubes os project. https://www.qubes-os.org/, 2010.

[162] Joanna Rutkowska. Intel x86 considered harmful. https://
blog.invisiblethings.org/papers/2015/x86_harmful.pdf, 2015.

[163] Joanna Rutkowska and Rafał Wojtczuk. Preventing and detecting xen hy-
pervisor subversions. http://invisiblethingslab.com/resources/bh08/part2-
full.pdf, 2008.

[164] Alireza Saberi, Yangchun Fu, and Zhiqiang Lin. Hybrid-bridge: Efficiently bridging
the semantic gap in virtual machine introspection via decoupled execution and train-
ing memoization. In Proc. 21st Annual Network and Distributed System Security
Symp. (NDSS’14), San Diego, CA, USA, 2014. Internet Society.

[165] Samsung. Samsung knox. https://www.samsungknox.com/en, 2017.

https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://securingtomorrow.mcafee.com/mcafee-labs/overview-malware-self-defense-protection/
https://securingtomorrow.mcafee.com/mcafee-labs/overview-malware-self-defense-protection/
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
https://www.qubes-os.org/
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
http://invisiblethingslab.com/resources/bh08/part2-full.pdf
http://invisiblethingslab.com/resources/bh08/part2-full.pdf
https://www.samsungknox.com/en

BIBLIOGRAPHY 129

[166] J. Schiffman and D. Kaplan. The smm rootkit revisited: Fun with usb. In Avail-
ability, Reliability and Security (ARES), 2014 9th Intl. Conf. on, pages 279–286,
Fribourg, Switzerland, Sept 2014. IEEE.

[167] Christian Schneider, Jonas Pfoh, and Claudia Eckert. A universal semantic bridge
for virtual machine introspection. In Proc. 7th Intl. Conf. on Information Systems
Security, ICISS’11, pages 370–373, Berlin, Heidelberg, 2011. Springer-Verlag.

[168] Daniel Schulz and Frank Mueller. A thread-aware debugger with an open interface.
In Proc. 2000 ACM SIGSOFT Intl. Symp. Software Testing and Analysis, ISSTA
’00, pages 201–211, USA, 2000. ACM.

[169] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß, Martin Steeg-
manns, Moritz Contag, and Thorsten Holz. Evaluating the effectiveness of current
anti-rop defenses. In Research in Attacks, Intrusions and Defenses: 17th Interna-
tional Symposium, RAID 2014, pages 88–108, 2014.

[170] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted
to know about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask). In Security and privacy (SP), 2010 IEEE symposium on,
pages 317–331, Berkley, CA, 2010. IEEE, IEEE.

[171] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clementine Maurice, and Stefan
Mangard. Malware guard extension: Using sgx to conceal cache attacks. https:
//arxiv.org/abs/1702.08719, 2017.

[172] SeaBIOS. Seabios. http://www.seabios.org/SeaBIOS, 2015.

[173] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. Secvisor: A tiny hypervi-
sor to provide lifetime kernel code integrity for commodity oses. In Proc. 21st ACM
SIGOPS Symp. on Operating Systems Principles, SOSP ’07, pages 335–350, New
York, NY, USA, 2007. ACM.

[174] Rebecca Shapiro, Sergey Bratus, and Sean W. Smith. "weird machines" in elf: A
spotlight on the underappreciated metadata. In Proc. of the 7th USENIX Conf. on
Offensive Technologies, WOOT’13, pages 11–11, 2013.

[175] Ahmad Sharif and Hsien-Hsin S. Lee. Total recall: A debugging framework for
gpus. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium
on Graphics Hardware, GH ’08, pages 13–20, Aire-la-Ville, Switzerland, Switzerland,
2008. Eurographics Association.

[176] Joseph Sharkey. Breaking hardware-enforced security with hypervisors.
https://www.blackhat.com/docs/us-16/materials/us-16-Sharkey-Breaking-
Hardware-Enforced-Security-With-Hypervisors.pdf, 2016.

[177] Hao Shi, Abdulla Alwabel, and Jelena Mirkovic. Cardinal pill testing of system
virtual machines. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 271–285, San Diego, CA, August 2014. USENIX Association.

https://arxiv.org/abs/1702.08719
https://arxiv.org/abs/1702.08719
http://www.seabios.org/SeaBIOS
https://www.blackhat.com/docs/us-16/materials/us-16-Sharkey-Breaking-Hardware-Enforced-Security-With-Hypervisors.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Sharkey-Breaking-Hardware-Enforced-Security-With-Hypervisors.pdf

BIBLIOGRAPHY 130

[178] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa Omote, Shoichi
Hasegawa, Takashi Horie, Manabu Hirano, Kenichi Kourai, Yoshihiro Oyama, Eiji
Kawai, Kenji Kono, Shigeru Chiba, Yasushi Shinjo, and Kazuhiko Kato. Bitvisor: A
thin hypervisor for enforcing i/o device security. In Proc. ACM SIGPLAN/SIGOPS
Intl. Conf. on Virtual Execution Environments, VEE ’09, pages 121–130, 2009.

[179] Michael Sikorski and Andrew Honig. Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. No Starch Press, San Francisco, CA, USA,
1st edition, 2012.

[180] M. L. Soffa, K. R. Walcott, and J. Mars. Exploiting hardware advances for soft-
ware testing and debugging: Nier track. In 2011 33rd International Conference on
Software Engineering (ICSE), pages 888–891, Honolulu, Hawaii, USA, May 2011.
IEEE.

[181] Nguyen Hong Son. Rop chain for windows 8. http://security.bkav.com/home/-/
blogs/rop-chain-for-windows-8/normal, 2011. Acessado em junho/2016.

[182] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
Bitblaze: A new approach to computer security via binary analysis. In Proc. 4th Intl.
Conf. on Information Systems Security, ICISS ’08, pages 1–25, Berlin, Heidelberg,
2008. Springer-Verlag.

[183] Sherri Sparks and Jamie Butler. Shadow walker - raising the bar for windows rootkit
detection. http://phrack.org/issues/63/8.html, 2005.

[184] Patrick Stewin, Jean-Pierre Seifert, and Collin Mulliner. Poster: Towards detect-
ing dma malware. In Proc. 18th ACM Conf. on Computer and Communications
Security, CCS ’11, pages 857–860, NY, USA, 2011.

[185] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. Unsupervised
Anomaly-Based Malware Detection Using Hardware Features, pages 109–129.
Springer International Publishing, 2014.

[186] Alexander Tereshkin and Rafal Wojtczuk. Introducing ring -3 rootkits.
https://www.blackhat.com/presentations/bh-usa-09/TERESHKIN/BHUSA09-
Tereshkin-Ring3Rootkit-SLIDES.pdf, 2009.

[187] Vivek Thampi. Udis86 disassembler library for x86/x86-64. http://
udis86.sourceforge.net/, 2009. Access Date: January/2017.

[188] The Register. Feds count Cryptowall cost: $18 mil-
lion says FBI. http://www.theregister.co.uk/2015/06/24/
feds_count_cryptowall_cost_18_million_says_fbi/, June 2015. Access
in May 11, 2016.

http://security.bkav.com/home/-/blogs/rop-chain-for-windows-8/normal
http://security.bkav.com/home/-/blogs/rop-chain-for-windows-8/normal
http://phrack.org/issues/63/8.html
https://www.blackhat.com/presentations/bh-usa-09/TERESHKIN/BHUSA09-Tereshkin-Ring3Rootkit-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/TERESHKIN/BHUSA09-Tereshkin-Ring3Rootkit-SLIDES.pdf
http://udis86.sourceforge.net/
http://udis86.sourceforge.net/
http://www.theregister.co.uk/2015/06/24/feds_count_cryptowall_cost_18_million_says_fbi/
http://www.theregister.co.uk/2015/06/24/feds_count_cryptowall_cost_18_million_says_fbi/

BIBLIOGRAPHY 131

[189] Kevin Townsend. Mobile malware shows rapid growth in volume and sophisti-
cation. http://www.securityweek.com/mobile-malware-shows-rapid-growth-
volume-and-sophistication, 2016.

[190] Jeroen van Prooijen. The design of malware on modern hardware. http://
www.delaat.net/rp/2015-2016/p89/report.pdf, 2016.

[191] J. Vanegue. The weird machines in proof-carrying code. In Security and Privacy
Workshops (SPW), 2014 IEEE, pages 209–213, May 2014.

[192] Giorgos Vasiliadis, Elias Athanasopoulos, Michalis Polychronakis, and Sotiris Ioan-
nidis. Pixelvault: Using gpus for securing cryptographic operations. In Proc. 2014
ACM SIGSAC Conf. on Computer and Communications Security, CCS ’14, pages
1131–1142, New York, NY, USA, 2014.

[193] Giorgos Vasiliadis and Sotiris Ioannidis. Gravity: A massively parallel antivirus en-
gine. In Proc. 13th Intl. Conf. on Recent Advances in Intrusion Detection, RAID’10,
pages 79–96. Springer-Verlag, 2010.

[194] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. Midea: A multi-
parallel intrusion detection architecture. In Proc. 18th ACM Conf. on Computer
and Communications Security, CCS ’11, pages 297–308, New York, NY, USA, 2011.
ACM.

[195] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. Gpu-assisted mal-
ware. Int. J. Inf. Secur., 14(3):289–297, June 2015.

[196] Amit Vasudevan and Ramesh Yerraballi. Stealth breakpoints. In Proceedings of
the 21st Annual Computer Security Applications Conference, ACSAC ’05, pages
381–392, Washington, DC, USA, 2005. IEEE Computer Society.

[197] Amit Vasudevan and Ramesh Yerraballi. Cobra: Fine-grained malware analysis
using stealth localized-executions. In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, SP ’06, pages 264–279, Washington, DC, USA, 2006. IEEE
Computer Society.

[198] Amit Vasudevan and Ramesh Yerraballi. Spike: Engineering malware analysis tools
using unobtrusive binary-instrumentation. In Proceedings of the 29th Australasian
Computer Science Conference - Volume 48, ACSC ’06, pages 311–320, Darlinghurst,
Australia, Australia, 2006. Australian Computer Society, Inc.

[199] Vassilios Ververis. Security Evaluation of Intel’s Active Management Technology.
PhD thesis, KTH Information and Communication Technology, 2010.

[200] Jack Wallen. Is the intel management engine a backdoor? http:
//www.techrepublic.com/article/is-the-intel-management-engine-a-
backdoor/, 2016.

http://www.securityweek.com/mobile-malware-shows-rapid-growth-volume-and-sophistication
http://www.securityweek.com/mobile-malware-shows-rapid-growth-volume-and-sophistication
http://www.delaat.net/rp/2015-2016/p89/report.pdf
http://www.delaat.net/rp/2015-2016/p89/report.pdf
http://www.techrepublic.com/article/is-the-intel-management-engine-a-backdoor/
http://www.techrepublic.com/article/is-the-intel-management-engine-a-backdoor/
http://www.techrepublic.com/article/is-the-intel-management-engine-a-backdoor/

BIBLIOGRAPHY 132

[201] Gary Wang, Zachary J. Estrada, Cuong Pham, Zbigniew Kalbarczyk, and Ravis-
hankar K. Iyer. Hypervisor introspection: A technique for evading passive virtual
machine monitoring. In 9th USENIX Wksp on Offensive Technologies (WOOT 15),
pages 1–8, Washington, D.C., August 2015. USENIX Association.

[202] Jiang Wang, Angelos Stavrou, and Anup Ghosh. Hypercheck: A hardware-assisted
integrity monitor. In Proc. 13th Intl. Conf. on Recent Advances in Intrusion Detec-
tion, RAID’10, pages 158–177. Springer-Verlag, 2010.

[203] Jiang Wang, Fengwei Zhang, Kun Sun, and Angelos Stavrou. Firmware-assisted
memory acquisition and analysis tools for digital forensics. In Proc. 2011 6th IEEE
Intl. Wksp on Systematic Approaches to Digital Forensic Engineering, SADFE ’11,
pages 1–5, Washington, DC, USA, 2011. IEEE Computer Society.

[204] Xueyan Wang and Xiaofei Guo. Numchecker: A system approach for kernel
rootkit detection and identification. https://www.blackhat.com/docs/asia-
16/materials/asia-16-Guo-NumChecker-A-System-Approach-For-Kernel-
Rootkit-Detection-And-Identification.pdf, 2016.

[205] Xueyang Wang, Charalambos Konstantinou, Michail Maniatakos, and Ramesh
Karri. Confirm: Detecting firmware modifications in embedded systems using hard-
ware performance counters. In Proc. IEEE/ACM Intl. Conf. on Computer-Aided
Design, ICCAD ’15, pages 544–551, NJ, USA, 2015. IEEE Press.

[206] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary code. In Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, pages 157–168, New York, NY, USA, 2012. ACM.

[207] Filip Wecherowski. A real smm rootkit: Reversing and hooking bios smi handlers.
http://phrack.org/issues/66/11.html, 2009.

[208] C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis
using cwsandbox. IEEE Security & Privacy, 5:32–39, March-April 2007.

[209] Carsten Willems, Ralf Hund, Andreas Fobian, Dennis Felsch, Thorsten Holz, and
Amit Vasudevan. Down to the bare metal: Using processor features for binary anal-
ysis. In Proceedings of the 28th Annual Computer Security Applications Conference,
ACSAC ’12, pages 189–198, New York, NY, USA, 2012. ACM.

[210] Carsten Willems, Ralf Hund, and Thorsten Holz. Cxpinspector: Hypervisor-based,
hardware-assisted system monitoring. Technical report, Horst Gortz Institute for
IT Security, 2012.

[211] Jiyoung Woo and Huy Kang Kim. Survey and research direction on online game
security. In Proceedings of the Workshop at SIGGRAPH Asia, WASA ’12, pages
19–25, New York, NY, USA, 2012. ACM.

https://www.blackhat.com/docs/asia-16/materials/asia-16-Guo-NumChecker-A-System-Approach-For-Kernel-Rootkit-Detection-And-Identification.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-Guo-NumChecker-A-System-Approach-For-Kernel-Rootkit-Detection-And-Identification.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-Guo-NumChecker-A-System-Approach-For-Kernel-Rootkit-Detection-And-Identification.pdf
http://phrack.org/issues/66/11.html

BIBLIOGRAPHY 133

[212] Yubin Xia, Yutao Liu, H. Chen, and B. Zang. Cfimon: Detecting violation of control
flow integrity using performance counters. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2012), pages 1–12, Boston, MA, June
2012. IEEE.

[213] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. Cfimon: Detecting violation
of control flow integrity using performance counters. In Proc. 2012 42nd Annual
IEEE/IFIP Intl. Conf. on Dependable Systems and Networks (DSN), DSN ’12, pages
1–12, Washington, DC, USA, 2012. IEEE Computer Society.

[214] M. Xianya, Z. Yi, W. Baosheng, and T. Yong. A survey of software protection meth-
ods based on self-modifying code. In 2015 International Conference on Computa-
tional Intelligence and Communication Networks (CICN), pages 589–593, Jabalpur,
India, Dec 2015. IEEE.

[215] Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang, and Heng Yin. V2e: Com-
bining hardware virtualization and softwareemulation for transparent and extensible
malware analysis. In Proc. 8th ACM SIGPLAN/SIGOPS Conf. on Virtual Execu-
tion Environments, VEE ’12, pages 227–238, NY, USA, 2012.

[216] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: capturing system-wide information flow for malware detection and anal-
ysis. In Proceedings of the 14th ACM conference on Computer and communications
security, pages 116–127, Miami, Florida, 2007. ACM, ACM.

[217] Liwei Yuan, Weichao Xing, Haibo Chen, and Binyu Zang. Security breaches as pmu
deviation: Detecting and identifying security attacks using performance counters.
In Proceedings of the Second Asia-Pacific Workshop on Systems, APSys ’11, pages
6:1–6:5, New York, NY, USA, 2011. ACM.

[218] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun. Using hardware features for
increased debugging transparency. In 2015 IEEE Symp. on Security and Privacy,
pages 55–69, San Jose, CA, USA, May 2015. IEEE.

[219] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun. Using hardware features
for increased debugging transparency. In IEEE Symp. Security and Privacy (SP),
pages 55–69, May 2015.

[220] Fengwei Zhang. Iocheck: A framework to enhance the security of i/o devices at run-
time. In 2013 43rd Annual IEEE/IFIP Conf. on Dependable Systems and Networks
Wksp (DSN-W), pages 1–4, Budapest, June 2013.

[221] Fengwei Zhang, Kevin Leach, Kun Sun, and Angelos Stavrou. Spectre: A de-
pendable introspection framework via system management mode. In Proceedings of
the 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), DSN ’13, pages 1–12, Washington, DC, USA, 2013. IEEE
Computer Society.

BIBLIOGRAPHY 134

[222] Fengwei Zhang and Hongwei Zhang. Sok: A study of using hardware-assisted iso-
lated execution environments for security. In Proc. Hardware and Architectural
Support for Security and Privacy, HASP, pages 3:1–3:8, New York, NY, USA, 2016.
ACM.

[223] Y. Zhong, H. Yamaki, and H. Takakura. A malware classification method based on
similarity of function structure. In 2012 IEEE/IPSJ 12th International Symposium
on Applications and the Internet, pages 256–261, Izmir,Turkey, July 2012. ACM.

Appendix A

Appendix

A.1 Branch Monitor Implementation
I present here details on how to enable the branch monitor and how to handle its internal
structures.

A.1.1 Enabling monitors and interrupts
All monitoring mechanisms (PEBS, BTS, LBR) are activated by setting the proper flags
on the IA32_DEBUGCTL MSR register, as shown on Figure A.1. LBR and BTS flags activate
the LBR and BTS mechanisms, respectively, whereas BTINT flag enables the interrupt
generation.

Figure A.1: Enabling monitoring: Flags should be set in this MSR in order to activate
LBR, BTS and interrupts. The bitmask also defines the data capture scope (user and/or
kernel-land). Source: Intel manual [78]

If the LBR mechanism is enabled, the captured data is stored on MSR registers. Each
register stores either the source or the target address of a given taken branch, thus being
named LAST_BRANCH_FROM or LAST_BRANCH_TO, respectively, as shown on Figure A.2.

135

APPENDIX A. APPENDIX 136

Figure A.2: LBR MSRs. When LBR is activated, data is stored on LBR MSRs. Branch
source addresses are stored on FROM MSRs whereas branch target addresses are stored
on TO MSRs. These MSR registers are numbered from 0 to N-1, according the number
of MSR registers available on the processor. Source: [78]

If the BTS is used, an OS-allocated page must be supplied to the processor. This is
made by writing the base page address to the DS_AREA MSR. The page supplied to the
DS register must be filled with data in the pattern shown on Figure A.3. The first fields
are related to the BTS data whereas the last are related to the PEBS mechanism.

Figure A.3: DS MSR. The address pointed by the DS MSR is an OS allocated page having
pointers for the BTS and PEBS mechanisms. Source: [78]

A closer look to the fields, as shown on Figure A.4, shows we are required to supply
some data. The Buffer Base address is a pointer to another OS allocated page which
stores Branch Records sequentially. We are also required to provide BTS Index address,
which is usually the page base address. The BTS Absolute Maximum is the address of the
last allowed entry – which can be calculated as buffer size - 1. The BTS Interrupt

APPENDIX A. APPENDIX 137

Threshold is the address of the Branch Record which raises an interruption when filled.
The same fields are also present for the PEBS mechanism.

Figure A.4: DS fields. The BTS and/or PEBS fields should be filled with the base address
of another OS allocated page, which will store the captured data itself. Besides, it should
be filled with pointers to the current stored entry, maximum allowed entry, and threshold
addresses. Source: [78]

The BTS mechanism allows us to filter some actions through the CPL-Qualified BTS
Encodings, as shown on Figure A.5. By setting the proper flags, we are able to select,
for instance, if we want the capture to occur at user-land (BTS_OFF_USR) or kernel-land
(BTS_OFF_OS).

Figure A.5: BTS Filtering. By setting the proper flags, data is captured only when the
capture condition is satisfied. Source: [78]

When the BTINT bit is set, an interruption is raised an must be handled at kernel-
level. When it is raised, the processor looks to the interruption configuration on the Local
Vector Table (LVT), presented on Figure A.6.

APPENDIX A. APPENDIX 138

Figure A.6: LVT. A series of entries which control interrupts according their source.
Source: [78]

As shown on Figure A.7, we can observe the system stores interrupt configurations for
distinct interrupt-sources. On our case, the processor will look for interrupt configurations
on the Performance Mon. Counters vector.

Figure A.7: Performance Counter at LVT. When an PMI occurs, the processor looks into
the performance counter entry to identify how the interrupt has to be handled. Source: [78]

Figure A.8 details an LVT entry. Regarding the performance monitor, we have to
look to the Delivery Mode and Vector fields. The first indicates what type of interrupt
will be raised: An NMI, as we have used, handled by an special Kernel handler; an SMI,
handled by BIOS; Fixed-Mode, as recommended by the vendor. In this case, the number
supplied on the Vector field is used as IDT entry for ISR registration.

APPENDIX A. APPENDIX 139

Figure A.8: Interrupt Configuration. For a given interrupt type, we should set delivery
mode and the vector number, whose IDT entry points to the correct ISR. Source: [78]

A.1.2 Handling branch-related structures
In order to allow for reproducibility, I present some implementation details which make
a developer’s life easier.

Initially, we have to define flags, register and memory values, since most configura-
tions depend on properly setting them. Listing A.1 shows definitions of MSR registers
(MSR_), memory-mapped APIC register (PERF_COUNTER_APIC), and flags for enabling BTS
(BTS_FILTER).

Listing A.1: BTS Definitions. Flag values and
MSR numbers. These values are used to interact
to the hardware resources.

1 #de f i n e MSR_LBR_SELECT 456
2 #de f i n e MSR_DEBUGCTL 473
3 #de f i n e MSR_DS_AREA 1536
4 #de f i n e MSR_FROM_BASE 1664
5 #de f i n e MSR_TO_BASE 1728
6 #de f i n e PERF_COUNTER_APIC 0xFEE00340
7 #de f i n e PERF_COUNTER_APIC_VALUE 0x400
8 #de f i n e BTS_FILTER_INTERRUPT 0x381

We also have to define structures to manipulate DS and BTS entries. Listing A.2 shows
definitions for these structures.

APPENDIX A. APPENDIX 140

Listing A.2: BTS Definitions. Structs definitions for BTS and DS structures.
1 typede f s t r u c t st_BTSBUFFER
2 {
3 UINT64 FROM,TO,MISC;
4 }TBTS_BUFFER,∗PTBTS_BUFFER;
5
6 typede f s t r u c t st_DSBASE
7 {
8 PTBTS_BUFFER BUFFER_BASE,BTS_INDEX,MAXIMUM,THRESHOLD;
9 }TDS_BASE,∗PTDS_BASE;

As we need to set the interruption vector properly, we have to map the APIC register
into our driver space. Listing A.3 shows an example of such mapping.

Listing A.3: BTS Definitions. APIC register mapping into userspace.
1 pa . QuadPart=PERF_COUNTER_APIC;
2 APIC=(UINT32∗)MmMapIoSpace(pa , s i z e o f (UINT32) ,MmNonCached) ;
3 i f (APIC!=NULL)
4 {
5 ∗APIC=PERF_COUNTER_APIC_VALUE;
6 MmUnmapIoSpace(APIC, s i z e o f (UINT32)) ;
7 }

We also have to set the DS area properly to define interrupt thresholds.Listing A.4
shows the definition of DS fields.

Listing A.4: BTS Definitions. DS entries should be filled with pointers to the BTS
storage page.

1 void FILL_DS_WITH_BUFFER(PTDS_BASE DS_BASE,PTBTS_BUFFER
BTS_BUFFER) {

2 /∗ BTS BUFFER BASE ∗/
3 DS_BASE−>BUFFER_BASE=BTS_BUFFER;
4 /∗ BTS INDEX ∗/
5 DS_BASE−>BTS_INDEX=BTS_BUFFER;
6 /∗ BTS MAX ∗/
7 DS_BASE−>MAXIMUM=(PTBTS_BUFFER) (((UINT_PTR)BTS_BUFFER)+(

SIZE_BTS_BUFFER∗ s i z e o f (TBTS_BUFFER))) ;
8 /∗ BTS Threshold ∗/
9 DS_BASE−>THRESHOLD=(PTBTS_BUFFER) (((UINT_PTR)BTS_BUFFER)+(

THRESHOLD_BTS_BUFFER∗ s i z e o f (TBTS_BUFFER))) ;

	Introduction
	Motivation
	Objectives
	Contributions
	Publications

	Background
	Semantic Gap
	Introspection

	Outline

	Papers
	Who watches the watchmen: A review of techniques, tools and methods to counterfeit anti-analysis techniques on modern platforms
	Abstract
	Introduction
	Initial Approaches and their limitations
	Hardware Assisted Hypervisor-Based Approaches
	HVM background
	HVM threats
	Malware Analysis
	Malware Debugging
	A Combined Approach
	HVM for Security Policy Enforcement
	HVM for Attack Prevention and System Integrity
	HVM for Forensic Procedures
	VMI limits

	SMM-based techniques
	SMM Background
	SMM Threats
	SMM for Debugging
	SMM for Forensic Purposes
	SMM for attack detection and prevention
	SMM for I/O Integrity
	Who protects the hypervisor?
	SMM security issues

	The battle of the rings
	Management Engine: the lord of the rings
	Isolated rings and SGX

	Hardware-based techniques
	A brief discussion on hardware-based approaches

	Other Approaches
	Performance Counters
	Graphics Processing Units
	Transactional Memories

	Summary
	Conclusions
	Enhancing Branch Monitoring for Security Purposes: From Control Flow Integrity to Malware Analysis and Debugging
	Abstract
	Introduction
	Background and threat model
	Malware analysis and evasion
	Current solutions for evasive malware
	Transparency
	Debuggers: requirements and implementations
	Current debugger implementations
	ROP attacks
	Performance monitoring
	Threat model

	Related work
	Proposed framework
	Driver: all about the basis
	Handling Interrupts
	Handling Data
	Performing I/O
	What happens after an interrupt
	Handling monitor branch data
	Clients: where the magic happens
	Introspection
	Looking into memory
	Validation

	Applications
	Malware Tracer
	Call Graph
	Control Flow Graph
	Modular malware
	Real malware tests
	Debugger
	Project
	Debugger client implementation
	Validation test
	ROP Detector
	Anti-Analysis tricks detection
	Execution deviation detection at branch-level

	Discussion, limitations and future work
	Suggestions for Branch Monitoring improvement
	Future Work

	Conclusion

	Discussion
	Contributions
	Solutions comparison

	The Framework
	Process Isolation
	Transparency
	Implementation efforts
	Portability
	Tracer
	CG Reconstruction
	CFG Reconstruction
	Trace example
	Code Coverage
	Debugger
	ROP Detection
	ROP Detection Policies
	Performance
	Framework Architecture and performance

	Other branch monitor-based solutions
	Future Directions
	Multi Process
	Multi-core

	Reproducibility

	Conclusion
	Future Work

	Bibliography
	Appendix
	Branch Monitor Implementation
	Enabling monitors and interrupts
	Handling branch-related structures

