
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Bruno da Silva Melo

Robustness Testing of CoAP Implementations and
Applications through Fuzzing Techniques

Teste de Robustez de Implementações e Aplicações
utilizando CoAP por meio de Técnicas de Fuzzing

CAMPINAS
2018

Bruno da Silva Melo

Robustness Testing of CoAP Implementations and Applications
through Fuzzing Techniques

Teste de Robustez de Implementações e Aplicações utilizando
CoAP por meio de Técnicas de Fuzzing

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Paulo Lício de Geus

Este exemplar corresponde à versão final da
Dissertação defendida por Bruno da Silva
Melo e orientada pelo Prof. Dr. Paulo Lício
de Geus.

CAMPINAS
2018

.pdf

\AM@currentdocname .pdf

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Bruno da Silva Melo

Robustness Testing of CoAP Implementations and Applications
through Fuzzing Techniques

Teste de Robustez de Implementações e Aplicações utilizando
CoAP por meio de Técnicas de Fuzzing

Banca Examinadora:

• Prof. Dr. Paulo Lício de Geus
IC/UNICAMP

• Prof. Dr. André Ricardo Abed Grégio
DI/UFPR

• Prof. Dr. Leonardo Montecchi
IC/UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 25 de junho de 2018

“It has been said that man is a rational an-
imal. All my life I have been searching for
evidence which could support this.”

(Bertrand Russel)

Agradecimentos

Primeiramente aos meus pais, Ercilia e Jorge. Obrigado pelo amor incondicional, simples
e sincero. Eu amo vocês, e tenho certeza que não teria chegado até aqui sem vosso apoio
às minhas decisões e confiança no meu julgamento, além de muita compreensão. Estendo
esses agradecimentos à extensa família, em especial à da Tia Helenita e do Tio Benedito
(Henio, Leandro...), à da Tia Tereza, Tia Mira, e à da Tia Inácia.

Agradeço também aos amigos, fundamentais em minha vida e no meu desenvolvimento
como pessoa. Tenho a sorte de serem muitos, e espero não esquecer nenhum neste pequeno
texto. E antes da lista...: amo muito todos vocês! Galera de Djahdema, sejam os que
estão juntos comigo “desde os tempos mais primórdios...”, sejam os que chegaram mais
tarde mas que me são muito queridos: Jow, Shin, Ray, Brayan, Vini, Prayboy, Osama...
Valeu! Espero que continuemos nos encontrando com frequência e possamos tocar nossas
discussões aparentemente intermináveis. Aos amigos e gambás de São Carlos, os quais há
tempos já não sei mais se constituem minha segunda ou primeira casa: Bloco 28 (Brayan
(de novo!), Daniel, Condô, Leo, Luiz Otávio, Djaú, Dylon, D2, Ivanzão, Torrinha), geral
do aloja com quem tive mais contato, e a gambazada (e guaxinins!) que apareceu de-
pois: Lúcio, Hérisson, Mari, Tuani, Nahara, Polly, Giovani, Gustavo, Viniboy, Rodolfo,
Perereca... Obrigado por me ensinarem tanto! Galera do BCC 09 e agregados das reps
e eventos correlatos: Maurício, Molina, Sidarta, Rafinha, Marco, Mamilos, Japa, Trops,
Akira, Parkinho, PT... Valeu! Cabe aqui uma atenção especial ao Maurício e ao Molina:
tô com saudade, putos! Faltam palavras pra descrever o quanto eu amo vocês! Pessoal do
intercâmbio: Lennon, Alan, Vinicio, Matheus, Diego, Davi, Ana, Rafael, Kenny, Winny,
Tang, Elisa, Joey, Annabel, Ebube... Enfim, é muuita gente e foi um período incrível o
que passamos juntos! Galera da amdocs: Portella, Gila, Tamego, Andrey, Tomita, enfim,
todo o ST!—tem mais, muito mais, como em todo esse parágrafo; mas infelizmente preciso
parar por aqui... Foi correria isso aí, mas teve bão também! E por último nessa seção,
os amigos de Campinas, minha última parada até o momento: Tuiuiú, Luan, Leo, Mi,
Gabi, Ceará, Bianca, Nara, Iás, Maria Helena, Paula... Enfim, devido à popularidade do
nosso querido elo-comum ainda não-citado, vocês também são muitas e muitos, e foi (e
tem sido!) ótimo conhecer todos vocês. Outro grupo com quem eu aprendo muuuito!

Agradeço ao professor Paulo, por acreditar em mim, neste trabalho, e pela paciência
ao longo desse desenvolvimento. Agradeço também ao CNPq, pela bolsa de mestrado,
com o adendo de que ser pago para fazer um trabalho tão complicado (e de dedicação
exclusiva!) como o de uma pós-graduação é o mínimo. A situação do pós-graduando—e
da Ciência como um todo—vai de mal a pior em nosso país; junto com diversas outras
coisas, aliás.

Por último mas definitivamente não menos importante, agradeço à Talitha, minha
companheira, namorada, amiga... Eu te amo. Espero que possamos seguir juntos por
muito mais tempo nessa jornada, conhecendo muitos lugares, comendo muitas coisas
gostosas, e suportando juntos a realidade dessa sociedade tão doente que nos circunscreve.

Resumo

Constrained Application Protocol (CoAP) é um protocolo da camada de aplicação pa-
dronizado pelo IETF em 2014. Segue o estilo arquitetural RESTful e tem como objetivos
simplicidade e baixa sobrecarga, para ser utilizado como facilitador da Internet das Coi-
sas (IoT). Portanto, apesar de compartilhar características em comum com o HTTP, o
protocolo possui codificação binária, roda sobre UDP etc.

Com o objetivo de estudar e aperfeiçoar na prática a segurança de software para IoT,
nesta dissertação nós projetamos e implementamos uma ferramenta chamada FuzzCoAP.
Este sistema consiste em um ambiente completo para o teste de aspectos de robustez
e segurança de aplicações e implementações lado servidor do CoAP. Cinco técnicas de
fuzzing caixa-preta foram implementadas: Aleatória, Aleatória Informada, Mutacional,
Mutacional Inteligente e Geracional.

Nós utilizamos essa ferramenta para testar um conjunto de amostras selecionadas—
aplicações CoAP rodando diferentes implementações do protocolo. Para selecionar essas
amostras, nós conduzimos buscas online procurando implementações CoAP disponíveis
e detalhes a elas relacionados, como estado de maturidade e popularidade. Nós sele-
cionamos 25 amostras (aplicações), cobrindo 25 bibliotecas (implementações) diferentes
de CoAP distribuídas em 8 linguagens de programação, incluindo amostras dos sistemas
operacionais específicos para IoT RIOT OS e Contiki-NG.

FuzzCoAP foi capaz de detectar um total de 100 falhas em 14 das 25 amostras testa-
das. Resultados experimentais mostram uma média de 31,3% na taxa de falsos positivos
e 87% em reprodutibilidade das falhas (considerando uma “contagem conservadora de fa-
lhas”) e uma média de 1,9% na taxa de falsos positivos com 100% em reprodutibilidade
de falhas considerando uma contagem “otimista”. Campanhas de fuzzing são executadas
na ordem de minutos para a maioria das técnicas (com uma média de 45 minutos por
campanha). A exceção é o fuzzer geracional, que atinge uma média de 12 horas por cam-
panha, dado que este utiliza uma quantidade consideravelmente maior de casos de teste
que as outras técnicas.

Nós fornecemos uma discussão sobre a comparação dessas cinco técnicas de fuzzing no
nosso cenário, e sobre o quão robustas (e seguras) as implementações de CoAP testadas
são. Nossos dados indicam que as técnicas são complementares entre si, corroborando com
outros estudos que sugerem a combinação de várias técnicas para atingir maior cobertura
e encontrar mais vulnerabilidades.

Finalmente, toda a pesquisa foi conduzida com um esforço para ser tão aberta e
reproduzível quanto poderíamos torná-la. Portanto, tanto o código-fonte do FuzzCoAP
como a coleção de amostras estão livremente acessíveis para o público. Também, para
maximizar o impacto real na segurança de IoT, todas as falhas foram reportadas aos
mantenedores das bibliotecas. Algumas já foram corrigidas, enquanto outras estão sendo
manejadas no presente momento.

Abstract

The Constrained Application Protocol (CoAP) is an application-layer protocol standard-
ized by the IETF in 2014. It follows the RESTful architectural style and aims for simplicity
and low overhead, in order to be used as an enabler of the Internet of Things (IoT). Thus,
even though it has features in common with HTTP, it is binary-encoded, runs over UDP
etc.

With the goal of studying and improving practical IoT software security, in this dis-
sertation we design and implement a tool called FuzzCoAP. It is a system comprising
a complete environment for testing robustness and security aspects of CoAP server-side
implementations and applications. Five black-box fuzzing techniques were implemented
in FuzzCoAP: Random, Informed Random, Mutational, Smart Mutational and Gener-
ational fuzzers.

We use this tool to test a set of selected samples—CoAP applications running dif-
ferent implementations of the protocol. To select these samples, we conducted online
searches looking for available CoAP implementations and related details, such as matu-
rity status and popularity. We selected 25 samples (applications), covering 25 different
CoAP libraries (implementations) distributed across 8 programming languages, including
samples from IoT-specific operating systems RIOT OS and Contiki-NG.

FuzzCoAP was able to detect a total of 100 errors in 14 out of the 25 tested samples.
Experimental results show an average of 31.3% false positive rate and 87% error repro-
ducibility when considering a “conservative error counting” and 1.9% false positive rate
with 100% error reproducibility for an “optimistic” one. Fuzzing campaigns are executed
in the order of minutes for most techniques (with an average of 45 minutes per cam-
paign). The exception is the generational fuzzer, which attains an average of 12 hours
per campaign, given it uses a considerably larger amount of test cases than the other
techniques.

We provide a discussion on how those five fuzzing techniques compare to each other in
our scenario, and how robust (and secure) the CoAP implementations targeted are. Our
data indicates the techniques are complementary to each other, corroborating with other
studies suggesting that several techniques should be combined to achieve greater coverage
and find more vulnerabilities.

Finally, the entire research was conducted with an effort to be as open and reproducible
as we could make it. Thus, both FuzzCoAP’s source-code as well as the collection of
samples are freely available to the public. Likewise, to maximize the real-world impact
on IoT security, all errors were reported to library maintainers. Some have already been
fixed, while others are currently being handled, as of this text was written.

List of Figures

1.1 Cisco’s seven-layer model . 2
1.2 6LoWPAN-based IoT stack . 3
1.3 CoAP Web of Things . 4

2.1 CoAP Design Requirements . 9
2.2 CoAP Abstraction Layers . 9
2.3 Examples of basic CoAP interactions . 10
2.4 CoAP Message Format . 10
2.5 CoAP Option Format . 11
2.6 Example of CoAP Observe interaction . 14
2.7 Examples of CoAP Block interactions . 15
2.8 CoAP Block Option Format . 16
2.9 Examples of CoAP Link-Format interactions 17
2.10 Approaches for interface error injection . 21
2.11 Vulnerability discovery through attack injection 22
2.12 Ballista test case generation . 23

3.1 Architecture of the testing system . 26

4.1 Chart of unique errors uncovered per fuzzing technique. 54
4.2 Intersection of errors discovered across all samples and techniques. 55
4.3 Chart of unique errors uncovered per sample and technique. 56
4.4 Classification process for True and False Positives. 57
4.5 Charts of True and False Positives per Sample (%). 58
4.6 Chart of True and False Positives per Sample - Filtered (Absolute). 59
4.7 Chart of Error Reproducibility per Sample. 60
4.8 Charts of Execution Times per Sample (Random, Informed Random, Mu-

tational and Smart Mutational Fuzzers). 61
4.9 Chart of Execution Times per Sample (Generational Fuzzer). 62

List of Tables

2.1 CoAP Option Table . 13
2.2 Comparison of available CoAP Testing Solutions 20

3.1 Parameter mutation rules used by the Smart Mutational Fuzzer 36
3.2 Field mutation rules used by the Smart Mutational Fuzzer. 37
3.3 Smart Mutational Fuzzer - String parameter example 37
3.4 Smart Mutational Fuzzer - Uint parameter example 37
3.5 Generational Fuzzer - Format-based generation rules. 39
3.6 Generational Fuzzer - Option-based generation rules 39
3.7 Generational Fuzzer - Message-based generation rules. 40
3.8 Example fragment of the tr.csv file . 47
3.9 Example fragment of the ftc.csv file . 47

4.1 CoAP Implementations/Libraries targeted in the experimental study. . . . 49

A.1 List of all CoAP Implementations/Libraries found. 73
A.2 Cloud Services and Platforms Supporting CoAP. 78
A.3 Commercial Products using CoAP. 79

List of Listings

1 SUT Configuration File . 27
2 Information extracted in step3 . 29
3 50 “singular” values are used as possible lengths of the UDP datagrams. . . 30
4 Random Fuzzer test case example . 31
5 Informed Random Fuzzer - Header Only test case example 31
6 Informed Random Fuzzer - Empty Payload test case example 32
7 Informed Random Fuzzer - Random Payload test case example 32
8 Mutational Fuzzer test case example . 34
9 Pseudocode for step5.c . 41
10 Example snippet of the crashlist.log file 43
11 Example snippet of a core file . 44
12 Example snippet of the target.log file . 44
13 Example snippet of the packets.log file 46

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 6
1.3 Contributions . 6
1.4 Dissertation Outline . 7

2 Background and Related Work 8
2.1 CoAP Specifications . 8
2.2 CoAP Testing . 17
2.3 Robustness/Security Testing through Fuzzing 21

3 System Architecture and Testing Methodology 26
3.1 Process Monitor . 28
3.2 Fuzzer Controller . 29
3.3 Test Case Generation Engines . 30

3.3.1 Random Fuzzing . 30
3.3.2 Mutational Fuzzing . 33
3.3.3 Generational Fuzzing . 37

3.4 Workload Executor, Gathered Information & Offline Analyzers 41
3.4.1 Test Case Execution and Failure Detection Mechanisms 41
3.4.2 Gathered Information & Offline Analyzers 43

4 Experimental Evaluation 48
4.1 Data Preparation - Applications, Implementations and Products using CoAP 48
4.2 Results and Discussion . 54

5 Conclusion 63
5.1 Limitations . 64
5.2 Future Work . 65

Bibliography 66

A Applications, Implementations and Products using CoAP 72

Chapter 1

Introduction

In this dissertation, we chose to approach a new problem—the robustness testing of an
emerging application-layer protocol—in light of established techniques and practices—
penetration testing through random, mutational and generational fuzzing, both “dumb”
and “smart” fuzzing. To this end, we investigated how those techniques were applied to
other problems and domains, such as the classical Internet and Web protocols; how to
adapt them to our problem, namely an Internet of Things and Web of Things scenario;
and evaluated i) the robustness state of current implementations of this protocol, CoAP;
and ii) how effective these techniques are, compared to each other, when applied to this
new scenario. The following pages document the findings in those directions.

1.1 Motivation

The Internet of Things (IoT) promises to increase the efficiency of our lives by providing
new, value-added services through the integration of several technologies and communi-
cation solutions. Although a common definition for IoT does not exists so far, the IEEE
IoT Initiative1 has recently proposed a document [32] with exactly that goal. At the cur-
rent revision, the community arrived at the following definition for a large environment
scenario:

“Internet of Things envisions a self-configuring, adaptive, complex network
that interconnects ‘things’ to the Internet through the use of standard commu-
nication protocols. The interconnected things have physical or virtual repre-
sentation in the digital world, sensing/actuation capability, a programmability
feature and are uniquely identifiable. The representation contains information
including the thing’s identity, status, location or any other business, social
or privately relevant information. The things offer services, with or without
human intervention, through the exploitation of unique identification, data
capture and communication, and actuation capability. The service is exploited
through the use of intelligent interfaces and is made available anywhere, any-
time, and for anything taking security into consideration.”

1http://iot.ieee.org/definition.html

1

http://iot.ieee.org/definition.html

CHAPTER 1. INTRODUCTION 2

Considering the current technology and communications environment, the IoT vision
is that society would benefit from a wide range of applications in areas such as agricul-
ture, manufacturing, city infrastructure (e.g. mobility & transportation, energy & water
distribution, environment monitoring), retail, logistics, healthcare, home & building, and
many others2.

Regarding its high-level architecture, the Internet of Things is commonly seen as a
composition of different layers, each having their own responsibility. In [47], for instance,
the authors review three widely-known IoT reference models: i) a 3-layer model depicting
the IoT as an extension of Wireless Sensor Networks (WSNs), augmented by the use of
Cloud Servers to offer services to users; ii) a 5-layer model based on service decomposition
and object abstractions for edge nodes, providing a Service-Oriented Architecture (SOA)
and Resource-Oriented Architecture (ROA) ecosystem; and iii) a 7-layer model with even
more granularity, including concepts as Fog/Edge Computing and Data Abstraction layers
between the edge nodes and the higher layers of Applications and Users. Figure 1.1
shows that 7-layer model, as proposed by Cisco at [15] and presented in [47]. In general,
though, what we see is that all those reference models can be thought of as a 3-piece
model (see example in Figure 1.1), herein called edge-side layer, cloud/service layer and
user/application layer.

Figure 1.1: Cisco’s seven-layer model. Adapted from Cisco [15].

At the edge-side layer, sensors and actuators are responsible for bringing physical
objects into the digital world. Technologies used in this layer include, but are not lim-
ited to embedded sensors, valves, Radio-Frequency Identification (RFID) tags and read-
ers, Global Positioning System (GPS), different kinds of routers, switches and gateways,
6LoWPAN, RPL, Bluetooth and Wi-Fi.

2http://www.libelium.com/libelium-smart-world-infographic-smart-cities-internet-of-
things/

http://www.libelium.com/libelium-smart-world-infographic-smart-cities-internet-of-things/
http://www.libelium.com/libelium-smart-world-infographic-smart-cities-internet-of-things/

CHAPTER 1. INTRODUCTION 3

The cloud/service layer includes the traditional Internet and its components. It needs
to deal with heterogeneous networks such as the Internet itself, and a range of WSNs
at personal, local and metropolitan areas, as well as mobile networks. It is responsible
for things such as data accumulation, abstraction and service composition, and enabling
SOA and ROA architecture styles [72].

Then, at the user/application layer, application scenarios—e.g. smart cities, smart
health, smart homes—are deployed by leveraging SOA and ROA, through the use of
technologies such as CoAP, Wireless Application Protocol (WAP), HTTP and Web Ser-
vices. It goes without saying that resources, connections, data and services should be
provided, through all these layers, in a secure manner. Therefore, one can find in the
literature different research efforts, with specific techniques and methods, regarding the
security particularities of each of these layers [25].

Although a number of standards for IoT communications have been proposed in recent
years, and none of them have become a de facto standard yet, the protocol stack composed
by IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) [41, 48, 30], IPv6
Routing Protocol for Low-Power and Lossy Networks (RPL) [76], and the Constrained
Application Protocol (CoAP)[9, 69] running over IEEE 802.15.4 [31] has been thoroughly
explored by the research community, due to its focus on enabling direct end-to-end inte-
gration of edge devices—and initially isolated WSNs—to the Internet [57, 25]. A parallel
between this protocol stack and the current Internet stack can be seen in Figure 1.2.

Figure 1.2: 6LoWPAN-based stack for IoT in comparison with the traditional protocol
stack used in the Internet, depicting the integration of a WSN with the Internet. From
Granjal et al. [25].

Running at the application layer of this protocol stack, CoAP is a RESTful [21] pro-

CHAPTER 1. INTRODUCTION 4

tocol featuring a well-defined mapping to HTTP and its methods (GET, POST, PUT and
DELETE), and supporting multicast, Universal Resource Identifiers (URIs), content-type
identification, resource discovery, response codes and simple subscription and caching
mechanisms. Aiming for simplicity and low overhead, it requires a fixed 4-byte header.
Since the messages are transported over UDP, CoAP implements a simple reliability
mechanism as well. A detailed description of the protocol features, including some of its
extensions proposed so far, is presented in Section 2.1.

CoAP is considered one of the most promising solutions for the IoT and machine-to-
machine (M2M) communications, which can be demonstrated by the different schemes
for the realization of the IoT—considering the proper integration with the traditional
Internet—that have been proposed on top of it, such as a SOAP binding, using Efficient
XML Interchange (EXI) format to provide SOAP Web Services in WSNs [49, 11]; a
Firefox plugin for communicating with CoAP servers, called Copper [38]; and end-to-end
communication schemes between web browsers and CoAP servers, based on JVM-enabled
browsers [12], on Javascript-enabled browsers (called Actinium) [39], and on HTML5 Web
Sockets and Javascript (called SCoAP) [23].

In general, we observe that these communication and integration solutions are con-
verging to a Web-like environment, where complex applications can be built by mixing
real-world devices and a number of services, in a practice called mashups, finally build-
ing up to the Web of Things (WoT) concept [26, 29, 62]. We show in Figure 1.3 the
places in which CoAP is expected to be used across constrained and traditional Internet
environments to implement the Web of Things architecture.

CoAP: An Application Protocol for Billions of Tiny Internet Nodes

MARCH/APRIL 2012 65

By mapping a single HTTP request

to a multicast CoAP request and then

aggregating multiple responses back

into a single HTTP response body,

future types of intermediaries might

even support more complex commu-

nication patterns across HTTP and

CoAP, such as group communication.

Block
Basic CoAP messages work well for

the small payloads we expect from

temperature sensors, light switches,

and similar building-automation

devices. Occasionally, however, appli-

cations will need to transfer larger

payloads — for instance, for �rmware

updates. With HTTP, TCP does the

grunt work of slicing large payloads

up into multiple packets and ensuring

that they all arrive and are handled

in the right order. Although UDP

supports larger payloads through IP

fragmentation, it’s limited to 64 KiB

and, more importantly, doesn’t really

work well for constrained applica-

tions and networks.

Instead of relying on IP fragmen-

tation, CoAP simply adds a pair of

“Block” options, transferring multiple

blocks of information from a resource

representation in multiple request–

response pairs.5 The block options

enable a server to be truly stateless

in the most likely cases: the server

can handle each block transfer sepa-

rately, with no need for a connection

setup or other server-side memory

of previous block transfers.

Observe
In HTTP, transactions are always

client-initiated, and the client must

perform GET operations again and

again (polling) if it wants to stay up

to date about a resource’s status. This

pull model becomes expensive in an

environment with limited power,

limited network resources, and nodes

that sleep most of the time. Web

developers have come up with some

more or less savory workarounds for

HTTP (RFC 6202), but, as a new pro-

tocol, CoAP can do better.

CoAP uses an asynchronous

approach to support pushing infor-

mation from servers to clients:

observation.6 In a GET request, a

client can indicate its interest in

further updates from a resource by

specifying the “Observe” option. If

the server accepts this option, the

client becomes an observer of this

resource and receives an asynchro-

nous noti�cation message each time

it changes. Each such noti�cation

message is identical in structure

to the response to the initial GET

request.

Instead of trying to create another

complex publish–subscribe architec-

ture, CoAP effectively provides a

minimal enhancement to the REST

model, just adding the well-known

observer design pattern.7

Discovery
In the machine-to-machine (M2M)

environments that will be typical

of CoAP applications, devices must

be able to discover each other and

their resources. Resource discovery

is common on the Web, and is called

Web discovery in the HTTP com-

munity. One form of Web discovery

occurs when humans access a serv-

er’s default resource (such as index.

html), which often includes links to

other Web resources available on

that or related servers.

'JHVSF����*NQMFNFOUJOH�UIF�8FC�BSDIJUFDUVSF�XJUI�)551�BOE�UIF�$POTUSBJOFE�"QQMJDBUJPO�1SPUPDPM�	$P"1
��	B
�)551�
BOE�$P"1�XPSL�UPHFUIFS�BDSPTT�DPOTUSBJOFE�BOE�USBEJUJPOBM�*OUFSOFU�FOWJSPONFOUT��	C
�UIF�$P"1�QSPUPDPM�TUBDL�JT�TJNJMBS�
UP�CVU�MFTT�DPNQMFY�UIBO�UIF�)551�QSPUPDPM�TUBDL�

Server

Proxy

Server

C

Node

C

C

C

Internet(a) (b)Constrained environments

Server

CoAP

CoAP

HTTP

HTTP

CoAP

REST

CoAP

Constrained link

IP

UDP

CoAP

Payload

Ethernet link

IP

TCP

HTTP

Payload

Figure 1.3: HTTP and CoAP used together to realize the Web of Things architecture.
Adapted from Bormann [9].

However, considering the complex, heterogeneous scenarios IoT networks—and, fur-
thermore, the Web of Things ecosystem—may lead us to, there are security and privacy
concerns that need to be addressed before this new paradigm can be widely accepted by
the public [7]. Even so, the amount of connected devices is already growing, with the

CHAPTER 1. INTRODUCTION 5

most famous estimates for the number of connected devices ranging from 25 billion3 to 50
billion4 for the year 2020; although most of them are being criticized today, with current
estimates ranging from 6.4 to 17.6 billions for 2016, and from 20.8 to 30.7 billions for
2020 [52].

Regardless of the exact figure, this increase in the number of Internet-connected devices
will definitely increase the overall attack surface in the whole system, and their remote
connectivity opens up new vulnerabilities to be exploited. For instance, despite the fact
that the “real IoT” vision—with uniquely identifiable edge nodes running IPv6, reachable
through a SOA or ROA architecture—is not realized yet, we can find reports of vulnerable
devices in the “ad-hoc, fake IoT”—with devices mostly running HTTP over IPv4 behind
NAT or proprietary stacks—both found in a lab [53, 58] as well as in the wild [13, 54],
the biggest and most famous one probably being the Mirai botnet [40].

Thus, although this Internet-based global interconnection is desired to allow resource
sharing and ubiquitous services provisioning, it is expected that IoT devices exposed to the
Internet will become new targets to malicious entities. One possible attack vector is the
CoAP protocol, which may be exploited by a myriad of vulnerabilities, including protocol
parsing, URI processing, proxying and caching, risk of amplification, IP address spoofing
etc. Threats to the edge-side layer of the IoT include (D)DoS, corrupted nodes, fraudulent
packet injection etc. [47] System-wide, there is always the possibility of a malicious entity
compromising a node to perform lateral movements on a private network.

By reviewing the literature we were able to find research performing security analysis
of CoAP, but while Alghamadi et al. [2] focus on discussing the issues and limitations
of using IPSec or DTLS to secure CoAP at different layers of the protocol stack—by
analyzing the security features provided by each of these approaches using the X.805
security standard—, Rahman and Shah [64] present a survey-like research, mostly covering
DTLS applicability to CoAP. To the best of our knowledge, there is little to no work on the
practical security of this “real IoT” vision, and most of them focus either on cryptographic
approaches [65, 27, 24], or attack scenarios performed by previously compromised CoAP
nodes in a constrained network [43]. Since cryptography alone is not enough to protect
software, this dissertation focus on understanding and finding out the ways in which a
CoAP node could be compromised in the first place.

To that end, we leverage fuzzing techniques to discover vulnerabilities in a range of
available CoAP implementations. Fuzzing or fuzz testing is an automated software testing
technique that involves providing invalid, unexpected/exceptional, or random data as
inputs to a computer program and investigating how such program behaves under those
inputs [71]. In a traditional sense, fuzzing is used to perform robustness testing (i.e. to find
bugs related to non-functional requirements such as performance or exception handling),
but its use can be extended to security testing since, among other reasons, failures due
to exceptions were once estimated to account for two thirds of system crashes and fifty
percent of system security vulnerabilities [45].

Among the reasons to choose fuzzing techniques instead of other vulnerability identi-
fication techniques, such as vulnerability scanners, static analysis and symbolic/concolic

3http://www.gartner.com/newsroom/id/2905717
4http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

http://www.gartner.com/newsroom/id/2905717
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

CHAPTER 1. INTRODUCTION 6

execution, we include: i) its relatively low complexity for implementation and general
usability (when compared to symbolic/concolic execution) [50]; ii) the potential to iden-
tify unknown vulnerabilities (which vulnerability scanners cannot find); iii) the typically
smaller numbers of false positives when compared to static analysis; and iv) given the
black-box nature of this technique, the possibility of a user who might be hiring new WoT
services—or the developer of an WoT solution integrating different WoT services—to use
the developed tools to remotely test such services before finally selecting one of them
(similarly to the situation discussed for the Web Services scenario in [42]).

Therefore, we propose a system architecture and testing methodology to run fuzzing
campaigns against CoAP-based IoT applications, targeting CoAP server-side implemen-
tations. The reason for this is that considering the WoT architecture in Figure 1.3, it is
expected for CoAP servers, and not clients, to be reachable in the IoT. Moreover, we de-
velop the fuzzer tool (which we call FuzzCoAP), use it to run the campaigns on selected
targets, and evaluate both each target’s robustness as well as the techniques themselves
when applied to this scenario. A description of the different fuzzing techniques used in
this research is given in Section 2.3, with their details inside the scope of our system being
further discussed in Section 3.3.

1.2 Objectives

Based on what was exposed in the previous section, our goal with this dissertation is
to find out: i) how robust the CoAP implementations available so far are; ii) which
potential or concrete vulnerabilities are present in those implementations; and iii) how the
different fuzzing techniques used compare to each other in this scenario. To achieve this,
we study: a) the CoAP protocol itself, from specification to implementation, for better
understanding its role in the IoT/WoT practical realization; and b) software robustness
and security testing through fuzzing, understanding the previous uses in the literature,
in order to leverage the different existing techniques to perform this kind of testing for
CoAP server targets. And finally, accomplish this by proposing a system architecture
for the testing tool, implementing it, running experiments with it against selected CoAP
targets, and evaluating the results both from each individual target’s point of view (for i
and ii) and from the techniques’ point of view (for iii).

1.3 Contributions

The main contributions of this dissertation are:

• A brief review of CoAP-related specifications.

• A discussion about available CoAP implementations, including their current de-
velopment status, versions of the implemented specifications, licenses, and links to
download them. This basically forms a centralized collection of samples that can
be easily reused by other researchers. A virtual machine with this collection and

CHAPTER 1. INTRODUCTION 7

all dependencies configured and ready to be used is available as Free Software un-
der the GNU GPLv3 license at https://github.com/bsmelo/fuzzcoap, through
a Vagrant5 file.

• A collection of integrated tools including Fuzzer, Process Monitor and offline ana-
lyzers, comprising a complete test environment for CoAP server targets, which we
call FuzzCoAP. This is available as Free Software under the GNU GPLv3 license
at https://github.com/bsmelo/fuzzcoap.

• A discussion about the robustness and the security aspects of each tested target,
including practical measures such as error reports delivered to the responsible de-
velopers, in order to fix potential or concrete security vulnerabilities.

• A non-exhaustive comparison between five techniques for fuzzing and how they
perform when testing CoAP server targets.

Additionally, during the course of this work, the MSc candidate has published and
presented one paper at a national symposium and took the role of teaching assistant for
one undergraduate course, earning relevant teaching and didactic skills.

1.4 Dissertation Outline

The remainder of this document is organized as follows.
In Chapter 2 there is a brief review of CoAP-related specifications, including the

main functional aspects and discussions based on the Security Considerations section of
each RFC presented. We also present existing work targeting the test of CoAP implemen-
tations and a literature review of fuzzing techniques, ranging from areas such as software
dependability to security and vulnerability research.

In Chapter 3 we present FuzzCoAP, proposing our system architecture and testing
methodology. The complete testing environment is explained, both in terms of design as
well as implementation. This includes the fuzzing engines developed, how each of those
engines generate test cases, how those test cases are executed and how we detect a failure
in the target. We also present which information is captured in an online basis, and how
to analyze this information after fuzzing (offline).

We begin Chapter 4 with data preparation, discussing the samples used in this
research—the CoAP server implementations themselves. We outline how we selected our
samples and present each of the implementations targeted by our tool, giving details about
programming language, development status etc. Then, we present our findings regarding
the robustness and security of each target tested, in terms of detected system errors.
Besides discussing those specific aspects of each target, we also present a discussion on
how the fuzzing techniques compare to each other when used on CoAP server targets.

In Chapter 5 we conclude this dissertation, summarizing the obtained results and
discussing the limitations of the approach taken, as well as presenting future work that
can be further explored.

5https://www.vagrantup.com/

https://github.com/bsmelo/fuzzcoap
https://github.com/bsmelo/fuzzcoap
https://www.vagrantup.com/

Chapter 2

Background and Related Work

In order to reliably perform fuzzing, we need to grasp not only the methods and tech-
niques available, but the structure of what is being fuzzed. In this chapter, we summarize
the standardized specifications defining the message structures and how the CoAP proto-
col works; briefly present existing work targeting the test of CoAP implementations; and
review the research regarding fuzzing approaches and domains in which it has been previ-
ously applied, from UNIX applications and OS APIs to Web Applications, Web Services
and Network Protocols. This, in turn, will be the basis toward our goal of fuzzing CoAP
implementations and applications.

2.1 CoAP Specifications

The IETF Constrained RESTful Environments working group (CoRE-WG) “provides
a framework for resource-oriented applications intended to run on constrained IP net-
works” [17] and is responsible for the documents specifying the CoAP protocol and its
extensions or related functionality.

The goal of CoAP is to enable resource-oriented applications on constrained networks.
These constrained networks often have very limited packet sizes (e.g. 127 bytes using
IEEE 802.15.4), a high rate of packet loss and limited throughput (e.g. tens of kbit/s on
6LoWPAN). Additionally, the nodes participating on these networks consist of constrained
devices, which in turn often have: limited memory (ROM and RAM), implying limited
code size and stored data; limited available power (devices are normally battery-operated
and expected to run for months or years without a recharge); low computing power (CPU);
and, in order to save energy, they may be powered off (sleep) and periodically turned on
(wake-up), a policy usually achieved by Radio Duty Cycling (RDC) protocols using the
hardware’s Low-Power Mode (LPM) mechanisms. The design requirements imposed to
CoAP by all these different factors can be seen in Figure 2.1.

The Base specification for CoAP can be found in RFC7252 [69]. It provides a Re-
quest/Response interaction model, similar to the Client/Server model from HTTP. CoAP
is a RESTful protocol, which means that a Client can send a CoAP Request to a Resource
(identified by a URI) located at a given Server, using a Method Code (CoAP’s binary-
encoded counterpart to HTTP’s GET, POST, PUT, DELETE methods). The Server then

8

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Figure 2.1: CoAP Design Requirements. From Shelby [68].

sends a CoAP Response to the Client with a Response Code (CoAP’s binary-encoded
counterpart to HTTP’s "200 OK", "404 Not Found" etc.), and possibly a Resource rep-
resentation. CoAP also offers Content-Type support (through binary-encoded Options),
simple Proxying and Caching capabilities, stateless HTTP mapping and a security binding
to DTLS [66].

CoAP uses a two-layer approach (although it is still a single protocol), with a messaging
layer dealing with the unreliability of UDP and the asynchronous interactions, and a
request/response layer above it, as shown in Figure 2.2. Sheet1

Page 1

Application

Requests/Responses
CoAP

Messages

Transport (UDP)

Figure 2.2: CoAP Abstraction Layers.

For optional reliability, CoAP defines four types of messages: Confirmable (CON), Non-
confirmable (NON), Acknowledgement (ACK) and Reset (RST). A request can be carried over
CON or NON messages, and a response can be carried over either of those as well as RST, or
be piggybacked in ACK messages. A CON message always requires an ACK from the other
side, so a retransmission must happen in case of packet loss. A Message ID is used to
match messages and detect duplicates. A Token (not to be confused with the Message
ID) is used by the request/response layer to match requests to responses—particularly

CHAPTER 2. BACKGROUND AND RELATED WORK 10

Figure 2.3: Examples of basic CoAP interactions. (a) GET request to a /temp resource,
performed over CON message (and message loss followed by retransmission, reusing the
message id), resulting in a Piggybacked Response. (b) GET request over CON message,
resulting in a Separated Response scenario. When the resource is finally available at the
server, the response is sent (notice the token being used, so this response can be matched
to its request). (c) GET request over NON message, resulting in a response over NON message
as well.

needed in the case of non-piggybacked (i.e. Separated) Responses or responses to requests
carried over NON messages. Examples of CoAP interactions can be seen in Figure 2.3.

CoAP messages are transported over UDP (although other transport bindings are
possible and even specified, such as DTLS, SMS or TCP, they are out-of-scope for this
dissertation) and encoded in a simple and compact binary format. This format starts with
a fixed-size 4-byte Header; followed by an optional Token value, of variable-length from 0
to 8 bytes; a sequence of zero or more Options in Type-Length-Value (TLV) format; and
an optional Payload.

Sheet1

Page 1

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Ver Type TKL Code Message ID

Token (if any, and this field will have TKL bytes) …

Options (if any) …

0xFF (11111111) Payload (if any) …

Figure 2.4: CoAP Message Format.

The CoAP Message Format is shown in Figure 2.4. A brief description for each field
is given below:

Version (Ver) 2-bit unsigned integer. Indicates the CoAP version.

Type 2-bit unsigned integer. Message type, i.e. Confirmable (0), Non-confirmable (1),
Acknowledgement (2) or Reset (3).

CHAPTER 2. BACKGROUND AND RELATED WORK 11

Token Length (TKL) 4-bit unsigned integer. The length of the Token field (0–8 bytes).

Code 8-bit unsigned integer, split by a mask defining a 3-bit class (msb) and 5-bit
detail (lsb), written as "c.dd", where 0 ≤ c ≤ 7 and 00 ≤ dd ≤ 31. It carries a
Request Method in case of a request (e.g. 0.01 means GET), or a Response Code in
case of a response (e.g. 2.05 (Content)).

Message ID 16-bit unsigned integer. Used to detect message duplication and to match
between messages. The standard defines specific rules for generating this.

Token 0–8 bytes. Used to correlate between requests and responses. The rules for
generating this value are standardized as well.

Options 0–* bytes. Each Option instance in a message must specify a Number, a Length
and a Value, as shown in Figure 2.5. A complete list of options defined so far by
the main CoAP-related specifications is shown in Table 2.1. A description of each
subfield of the option field is given below:

Sheet1

Page 1

0 1 2 3 4 5 6 7

Option Delta Option Length 1 byte

Option Delta
0-2 bytes

(Extended)

Option Length
0-2 bytes

(Extended)

0+ bytesOption Value

Figure 2.5: CoAP Option Format.

Option Delta 4-bit unsigned integer. The Option Number is not specified directly;
instead, each option instance must appear in ascending order of their specific
option numbers, and the option number of a given instance is calculated as
the sum of its Option Delta with the ones of the preceding instances. Values
between 0 to 12 are used directly, with 13–15 reserved for special meanings
(see the extended version below).

Option Length 4-bit unsigned integer. Used to specify the length of the Option
Value field. Values between 0 to 12 are used directly, with 13–15 reserved for
special meanings (see the extended version below).

Option Delta (extended) 0–2 bytes. If the Option Delta is specified as 13, an
8-bit unsigned integer indicating the option delta minus 13. If the option delta
is specified as 14, a 16-bit unsigned integer indicating the option delta minus
269.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Option Length (extended) 0–2 bytes. If the Option Length is specified as 13,
an 8-bit unsigned integer indicating the option length minus 13. If the option
length is specified as 14, a 16-bit unsigned integer indicating the option length
minus 269.

Option Value 0–* bytes. The value itself, following a format as defined for the
specific option number. Examples of option formats are empty, opaque, uint
or string, as defined in [69].

Payload 0–* bytes. If present, it is prefixed by a one-byte Payload Marker (0xFF),
indicating the end of the Options and start of the Payload. Its length is calculated
from the datagram size, i.e., the payload data extends to the end of the UDP
datagram.

Regarding caching, it is enabled by a simple mechanism based on freshness and val-
idation information carried as options—Max-Age and ETag, respectively—by CoAP re-
sponses, as defined by the base specification [69]. Proxying is also specified by that
document, with not only the possibility of a CoAP-CoAP proxy, but CoAP-HTTP and
HTTP-CoAP “cross-proxies” as well, since it is quite simple to perform the mapping
between both protocols, given that they are both based on the REST architecture.

Possible threats to the protocol, as analyzed in the Security Considerations section of
RFC7252 [69] include: protocol and URI parsing and processing; communications security
issues with proxying and caching mechanisms—out-of-scope in this study since this would
fall more into a Systems Security approach than a Software Security one; we are, however,
including all CoAP options (and this covers Max-age and Proxy-* as well) in the fuzzing
process—; the risk of amplification, which could be even worse in a multicast scenario;
IP address spoofing, inherent to the use of UDP; cross-protocol attacks; and specific con-
siderations regarding constrained-nodes and constrained-networks, ranging from battery
depletion attacks to physical tampering.

The Observe option can be used to follow state changes of CoAP resources over time,
and the use of this option is specified by RFC7641 [28]. A CoAP client registers its interest
in a given resource by sending a GET request containing the Observe option with value
0 to the server, which, in turn, returns the current representation of the target resource
and adds the client to the list of observers of that resource. From that point onwards,
whenever the state of the observed resource changes, the client receives Notifications
(updates). These are additional CoAP responses to that single GET request it initially
sent, sent until one of the following conditions are met, in which case it is removed from
the server’s list of observers: i) a confirmable notification message is unacknowledged
(either intentionally by the client or by multiple message losses followed by a timeout);
ii) the client sends an explicit Deregistration message (CoAP GET request containing the
same token and options, including their values, as the Registration message—except for
etags and the observe option, which should have the value 1); or iii) the client rejects a
notification by sending an RST. An example interaction using the observation feature is
show in Figure 2.6.

The Security Considerations section of RFC7641 [28] lists an increased risk of ampli-
fication attacks, using the notifications mechanism; and the possible exploitation of the

CHAPTER 2. BACKGROUND AND RELATED WORK 13

Table 2.1: CoAP Option Table. Default option values cannot be assumed unless explicitly
described in here. Length is expressed in bytes.

No Name Format Length Brief Description Rd

1 If-Matcha opaque 0–8 Make a request conditional on the current existence of any representation for
the target resource (empty value), or on the existence of a particular rep-
resentation (Etag value). Useful for protecting against accidental overwrites
when updating resources.

Y

3 Uri-Hosta string 1–255 Internet host of the resource being requested. Default value taken from the
destination IP address of the request message.

4 ETaga opaque 1–8 For differentiating between representations of the same resource varying over
time, this entity-tag is used as a resource-local identifier.

Y

5 If-None-
Matcha

empty 0 Make a request conditional on the current non-existence of any representation
for the target resource. Useful for protecting against accidental overwrites
when creating resources.

6 Observeb uint 0–3 When used in a GET request, value 0 means Register and 1 means Deregister.
When used in a response, the value is a sequence number for reordering
detection.

7 Uri-Porta uint 0–2 Transport-layer port number of the resource. Default value taken from the
destination UDP port of the request message.

8 Location-
Patha

string 0–255 Indicates a relative URI (together with Location-Query), used in a 2.01 (Cre-
ated) response to indicate the location (relative to the request URI) of the
created resource.

Y

11 Uri-Patha string 0–255 One segment of the absolute path to the resource. Y

12 Content-
Formata

uint 0–2 Numeric identifier indicating the representation format of the message pay-
load. E.g. 50 means application/json.

14 Max-Agea uint 0–4 Number of seconds indicating the maximum time a response may be cached
before it is considered not fresh. Default value is 60 seconds.

15 Uri-
Querya

string 0–255 One argument parameterizing the resource, in key=value format. Y

17 Accepta uint 0–2 Numeric identifier indicating which Content-Format is acceptable to the
client. Follows the same IANA registry as the Content-Format option.

20 Location-
Querya

string 0–255 Indicates a relative URI (together with Location-Path), used in a 2.01 (Cre-
ated) response to indicate the location (relative to the request URI) of the
created resource.

Y

23 Block2c uint 0–3 Descriptive or control data related to the response payload.

27 Block1c uint 0–3 Descriptive or control data related to the request payload.

28 Size2c uint 0–4 Relative to the response payload. Used in a request (together with Block2)
with value 0 to ask the server for a total resource size estimate, and in a
response so the server can indicate the resource size estimate.

35 Proxy-
Uria

string 1–1034 Absolute URI used to make a request to a forward-proxy.

39 Proxy-
Schemea

string 1–255 When using a forward-proxy, if the Absolute URI is to be constructed from
Uri-* options (missing Proxy-Uri), this value replaces the scheme part of the
resulting URI.

60 Size1ac uint 0–4 Relative to the request payload. Used in a request (together with Block1) to
indicate the resource size estimate, or in a 4.13 (Request Entity Too Large)
response to indicate the maximum size accepted by the server.

a Specified in RFC7252 Base [69].
b Specified in RFC7641 Observe [28].
c Specified in RFC7959 Block-wise [10].
d Repeatable, i.e. the option can appear more than once in a message.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

Figure 2.6: Example of CoAP interaction using the Observe option. The client registers
itself as an observer for the /humidity resource, receives notifications over time, and later
decides to deregister its interest on the resource. Notice the value of the observe option
and the matching tokens.

server state created to maintain the list of observers, to cause resource exhaustion, as the
main threats added to the protocol by the observe feature.

In case an application needs to transfer large payloads with CoAP—for instance, for
firmware updates or transferring a local log file—the Block option specified by RFC-
7959 [10] can be used. The idea is to avoid IP-layer and/or adaptation-layer fragmentation,
while enabling individual transmission of blocks, if needed, since each one is acknowledged
at CoAP’s messaging layer. Basically, a block-size is agreed upon in the first message
exchange, and from that point onwards the client can simply continue to make normal
requests, with the addition of the block option including the block number being requested.
Examples of interactions using this feature are shown in Figure 2.7.

Options from RFC7959 are defined and named according to the direction of payload
transfer, with Block1 and Size1 options pertaining to the requests’ payload, and Block2
and Size2 pertaining to the responses’ payload. A Block option can have a “descriptive
usage” (e.g. Block1 used in a PUT request or Block2 used in a 2.05 response to a GET
request) or a “control usage” (e.g. Block2 used in a GET request or Block1 in a 2.04 re-
sponse to a POST request). The Block option is a variable-sized (0–3 bytes) uint encoding
three subfields, as shown in Figure 2.8.

A description of each subfield of the Block option is given below:

NUM 4-, 12- or 20-bit unsigned integer. Indicates the block’s relative number, within a
sequence of blocks with the given size.

M 1-bit flag. In “descriptive usage”, holds the value 1 if there are more blocks after
this to be transferred; and 0 otherwise, which means this is the final block. In

CHAPTER 2. BACKGROUND AND RELATED WORK 15

“control usage”, it can serve as indication of an atomically implemented operation
(see Figure 2.7 a).

SZX 3-bit unsigned integer. The “size exponent”, from 0 to 6 (7 is reserved), used to
specify the block-size, according to 2SZX+4; e.g. if SZX=3, then the block-size is
2(3+4) = 128 bytes.

Figure 2.7: Examples of CoAP interactions using the Block options. (a) Shows a client
request containing a payload split-up in blocks, using the Block1 option. It represents
an atomic update operation (M=1 in the ACK messages), which means the server will only
act upon the target resource after receiving all blocks. It also shows how late negotiation
works, which is the block-size negotiation that happens between the first two messages:
notice the increase from 0 to 2 in the NUM parameter from the first to the third message—
the first message already sent two blocks, considering the newly agreed-upon block-size
of 128 bytes instead of the 256 bytes originally used by the client. (b) Shows a simple
block-wise GET to retrieve a resource, which is split in blocks by the server to be sent in
separate payloads in the responses (notice the Block2 option).

Possible threats added to the protocol by the block-wise transfer feature, as stated in
the Security Considerations section of RFC7959 [10], include: requests implemented non-
atomically, which may lead to partially updated or corrupted resource representations;
exploiting stateless servers using a high block number in a Block1 option; and inducing
buffer overflows by including misleading size indications. We can note how these possi-
bilities are good examples for the applicability of fuzzing techniques. It is also mentioned
how the use of the block-wise feature can mitigate the risk for amplification attacks, since
a large resource representation would be split into smaller responses, each requiring an
individual request, effectively reducing amplification factors.

For basic Resource Discovery, a well-known URI defined by RFC6690 [67] can be used
to request the resources hosted by a server, which, in conformance with the same specifi-
cation, must be returned using the CoRE Link Format. This specific link serialization

CHAPTER 2. BACKGROUND AND RELATED WORK 16
Sheet1

Page 1

0

0 1 2 3 4 5 6 7

NUM M SZX (a)

0 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

NUM M SZX (b)

0 1 2

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

NUM M SZX (c)

Figure 2.8: CoAP Block Option Format. This option appears either as (a) a 1-byte uint,
or (b) a 2-byte uint, or (c) a 3-byte uint. Notice that only the length of the NUM field
changes.

format is returned as a payload describing hosted resources, their attributes, and other re-
lationships between links, as a response to a GET request to /.well-known/core—i.e. it is
carried as a resource itself, as opposed to HTTP Link Headers delivered with each specific
resource. The M2M use cases for this feature include: Discovery (a client could match
the attributes Resource Type, Interface Description and Media Type to automatically
find out the appropriate resource as well as how to interact with it); Resource Collections
(nested indexes of resources containing CoRE Link Formats); and Resource Directory
(like a limited search engine for constrained devices, where a centralized Resource Direc-
tory (RD) Server acts as a database of known resources, with individual CoAP servers
registering their resources via POST. Individual CoAP clients can perform lookups using
GET—this specific feature is being specified in an IETF draft, currently at version 13 [70]).
Examples of interactions using this feature can be seen in Figure 2.9.

Besides the relatively complex grammar for the CoRE Link Format, RFC6690 also
specifies filtering through the use of a query string, including the use of wildcards (*),
which definitely increases parsers’ complexity, opening room for possible vulnerabilities
related to input parsing. Automatically following discovered links could also present a
threat (e.g. an attacker could perform “CoRE Link Poisoning”, including malicious links
or removing legitimate ones from the /.well-known/core resource). Besides the Security
Considerations section of RFC6690 [67] itself, we are also taking into account that same
section from RFC3986 [44], which deals with URIs in a more general approach and includes
threats such as maliciously-constructed URIs.

Finally, examples of other work being done by the CoRE-WG include the experimental
Group Communications support defined by RFC7390 [63], although the working group
itself will not further develop a reliable multicast solution [17]; IETF drafts specifying a
centralized Resource Directory and its interfaces [70]; and an IETF draft specifying
an extension with PATCH and FETCH RESTful methods. The complete list of the work
done by the CoRE-WG can be found at [17].

CHAPTER 2. BACKGROUND AND RELATED WORK 17

Figure 2.9: Examples of CoAP interactions using Link-Format. (a) Simple GET request
to /.well-known/core resource, returning a payload using the CoRE Link-Format. The
response contains links to two different sensors using the same Interface Descriptions (if
attribute). (b) Link descriptions hierarchically organized (nested indexes). The first
request returns a link to a /sensors resource, which, if acted upon using a GET request,
returns links to two different sensors. Notice the Resource Type (rt) attribute of the
/sensors/light resource, containing two different values separated by a space. Also
note the Content-Format option being used to explicitly tell the payload’s format. (c)
A query filter parameter is used to match the value firmware inside the rt attribute. In
the response payload, we can see the use of the Maximum Size Estimate (sz) attribute,
which could be used by a consumer of this resource to determine if a block-wise transfer
should be used to retrieve it, for instance.

2.2 CoAP Testing

Currently, to the best of our knowledge, there are only a few projects targeting the test
of CoAP implementations and applications. In this section, we present and describe the
key characteristics of those projects.

ETSI Plugtests
The European Telecommunications Standards Institute (ETSI) promotes events
called Plugtests, in which different organizations can take part to test their own
implementations of a given standard. The main goals are to improve the interop-
erability of products and services, support the deployment of new technologies and
validate the standards themselves.

Together with the IPSO Alliance1 and the FP7 Probe-IT project2, ETSI has orga-
nized four IoT CoAP Plugtests so far. The third Plugtest event (CoAP#3) included

1http://www.ipso-alliance.org/
2http://www.probe-it.eu/

http://www.ipso-alliance.org/
http://www.probe-it.eu/

CHAPTER 2. BACKGROUND AND RELATED WORK 18

OMA3 as an organizer, and included tests for LWM2M4, and DTLS implementa-
tions as well; at CoAP#4, the last of these events so far, held in March, 2014, tests
for 6LoWPAN implementations were also added to the list.

Two reports for CoAP#1 are available at [20] and [60], describing the test specifi-
cation process, the two test configurations (direct Client to Server communication,
and communication through a lossy gateway, randomly dropping packets), and the
supporting tools used—a lossy gateway operating at transport layer, developed by
the Beijing University of Posts and Telecommunications (BUPT), and a pcap an-
alyzer used after the execution of the testing scenarios, developed by the Research
Institute of Computer Science and Random Systems (IRISA), and available at [33].
The experience at CoAP#1 and the development of the supporting tools used are
described by Chen et al. in [14]. The most recent test descriptions, for CoAP#4, can
be found at [8]. Considering CoRE specifications only (no 6LoWPAN- or DTLS-
related), it uses up-to-date RFC7252, RFC6690, and outdated Observe (draft-12)
and Block-Wise Transfer (draft-14) specifications. A CoAP Client application5 is
available to automatically submit CoAP Requests to a given CoAP Server, as spec-
ified by each test description. Since the ETSI Plugtests include testing of the CoAP
Clients as well, a CoAP Server application6 is also available, exposing the CoAP
Resources needed by the test descriptions, so any developer can test their Client
implementations against this Server.

F-Interop
Part of the European Union H-2020 programme7, this project was started in Novem-
ber 2015 and is intended to run until October 2018. The aim is to develop and pro-
vide online testing tools to perform remote Conformance, Interoperability, Scalabil-
ity, Quality of Service (QoS) & Quality of Experience (QoE) and Energy Efficiency
testing of emerging technologies, supporting them from research to standardization
and market launch [74]. Initially, the IoT standards being supported by the program
are CoAP, 6TiSCH and 6LoWPAN. Their main goals are cost-savings (time, money
and other resources) and an acceleration of the standardization process, as well as
the development of products based on those standards.

The proposed architecture supports different topological configurations of testing
scenarios, including the use of testbeds deployed across the EU, such as Fed4FIRE8,
OneLab9 and IoT-Lab10. A video demonstration of a Proof-of-Concept (PoC)
CoAP interoperability testing tool is currently available at the project website11.

3http://openmobilealliance.org/
4LWM2M is a Device Management protocol running on top of CoAP. More on https://www.

omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
5http://coap.me/
6coap://coap.me/
7https://ec.europa.eu/programmes/horizon2020/
8https://www.fed4fire.eu/testbeds/
9https://onelab.eu/

10http://www.iotlab.eu/
11http://www.f-interop.eu/index.php/tools-experiments

http://openmobilealliance.org/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
http://coap.me/
coap://coap.me/
https://ec.europa.eu/programmes/horizon2020/
https://www.fed4fire.eu/testbeds/
https://onelab.eu/
http://www.iotlab.eu/
http://www.f-interop.eu/index.php/tools-experiments

CHAPTER 2. BACKGROUND AND RELATED WORK 19

Robustness- and Security-related testing is not covered, and the tool currently re-
quires the user to manually follow instructions from a GUI to perform test stimuli
(e.g. using Firefox Copper to send a CoAP GET request with type CON). It also re-
quires to manually perform input Verification & Validation (V&V) information (e.g.
clicking a button to indicate success or failure of some aspect of a Server’s response
to a Client), providing no automation for test case execution. It does, however,
compare the contents of the exchanged packets against an expected content, and
present the dissected packets in the GUI, in case any further manual inspection is
needed. The test specifications used are the ones from CoAP#4 Plugtests. It is also
important to note that this is an ongoing research project, so further development
in any of these functionalities can be expected.

Eclipse IoT-Testware
The scope of Eclipse IoT-Testware [19] is “to support conformance, interoperability,
robustness and security testing of IoT devices and services via Testing and Test
Control Notation version 3 (TTCN-3) test suites and cases.”12 TTCN-313, in turn,
is a testing language used in conformance testing of communication systems, stan-
dardized by ETSI. Eclipse Titan14 is an implementation of the TTCN-3 language
consisting of a compilation and execution environment.

By using Titan—although it claims to be TTCN-3 tool independent—, Eclipse IoT-
Testware aims to provide a set of TTCN-3 test suites and test cases for different
IoT technologies, so application developers can have their own test environments.
Started in June 2017, the initial contributions of the project focus on developing
test cases for CoAP15 and Message Queuing Telemetry Transport (MQTT) pro-
tocols. At the time of this writing, the project is still in an early phase, with a
basic set of conformance test cases implemented, but still far from the ones from
CoAP#4 Plugtests, for instance. Additionally, robustness and security test cases
have not been implemented yet, and although an “iottestware.fuzzing”16 repository
was created inside the project, it is still empty, and no further details are available.

PEACH Fuzzer
Peach Fuzzer17 is a commercial product, consisting of the Peach Fuzzer Platform
and Peach Pits. The first is a fuzzing engine containing a GUI and capabilities
for logging, monitoring the SUT and generating reports, including test coverage
view. The second is a collection of prewritten test definitions, so the user can
select a specification that fits the test target. It can be used to fuzz file-consuming
applications, network protocols, drivers and so on. Combining automated test case
generation and mutational fuzzing, it is called a “smart fuzzer”.

A CoAP Peach Pit is available at [59], using up-to-date RFC7252 and outdated
12https://projects.eclipse.org/proposals/eclipse-iot-testware
13http://www.ttcn-3.org/
14https://projects.eclipse.org/projects/tools.titan
15https://github.com/eclipse/iottestware.coap
16https://github.com/eclipse/iottestware.fuzzing
17http://www.peachfuzzer.com/products/peach-fuzzer/

https://projects.eclipse.org/proposals/eclipse-iot-testware
http://www.ttcn-3.org/
https://projects.eclipse.org/projects/tools.titan
https://github.com/eclipse/iottestware.coap
https://github.com/eclipse/iottestware.fuzzing
http://www.peachfuzzer.com/products/peach-fuzzer/

CHAPTER 2. BACKGROUND AND RELATED WORK 20

drafts for the Observe (draft-16) and Block-Wise Transfer (draft-17) as reference
specifications. No additional information could be gathered about the use or effi-
ciency of this fuzzer for CoAP targets; we tried to contact the company and obtain
an Academic License to run it, for the sake of comparison, but those are not avail-
able for Peach Pits. There is an open source Community Version available as well,
but the CoAP Peach Pit is not part of that distribution.

Defensics
Codenomicon’s Defensics18 is another commercial product used to perform fuzzing,
initially developed as a span from the PROTOS research project [61]. It comes with
a collection of generational model-based testing modules for more than 270 network
protocols, file formats and other interfaces. Additionally, their tool provides reports
and an online documentation on how to solve commonly-found problems linked by
their test cases. The widely known OpenSSL’s Heartbleed bug19 was discovered
while their team was improving a feature of this tool—not related to fuzzing it-
self, but to the discovery of failed cryptographic certificate checking, authentication
bypass and privacy leaks.

A Test Suite targeting CoAP Servers is available at [16], referencing RFC7252 and
RFC3986 [44] as used specifications. According to their website, it provides au-
tomated testing, ready-made test cases for CoAP Messages over UDP and UDP
multicast, GUI and CLI modes and instrumentation for health-checking capability.
We were not able to obtain an academic license for comparison purposes.

Table 2.2 contains a summary of the work presented in this section.

Table 2.2: Comparison of available CoAP Testing Solutions.

Project CoRE Reference Specification Tool Support /
Automated Testing

Robutness/Security
TestingBase Observe Block Link-Format

ETSI Plugtests RFC7252 draft-12 draft-14 RFC6690 - Offline pcap analyzer
- Automatic stimuli -

F-Interop RFC7252 draft-12 draft-14 RFC6690 - Real-time pcap analyzer
- Manual stimulia -

IoT-Testwareb ? ? ? ? - Automatedc -

PEACH Fuzzer RFC7252 RFC7641 draft-17 - - Automated Mutational Fuzzing

Defensicsd RFC7252 RFC7641 - - - Automated Generational Fuzzing
a Plugtest clients such as coap.me and cf-plugtest-client could be used/integrated.
b Information was not found regarding the reference specifications used. It is safe to assume the authors will follow the
latest specifications, though, since it is a recent project.
c Eclipse Titan’s Executor component performs automated testing, but the actual IoT-Testware provides only the test
cases.
d The CoAP Server test suite from Defensics also includes RFC 3986 - Uniform Resource Identifier.

18http://www.codenomicon.com/products/defensics/
19http://heartbleed.com/

http://www.codenomicon.com/products/defensics/
http://heartbleed.com/

CHAPTER 2. BACKGROUND AND RELATED WORK 21

2.3 Robustness/Security Testing through Fuzzing

The definition of robustness is “[the] degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions” [34]. Ro-
bustness testing, conversely, is a testing process carried out with the goal of characterizing
the behavior of a system when exposed to those erroneous or exceptional conditions [4].

One commonly adopted form of robustness testing is interface error injection, which
is a specific form of fault injection. This approach can be performed in two ways (Fig-
ure 2.10). The first is based on a test driver, which is a program responsible to exercise
the target system or component with invalid inputs, either by using the target’s API
or by sending network packets to it, for instance. The second approach is based on an
interceptor, which is a program intercepting the communication between one system or
component with the target, modifying/corrupting this communication (be it an API call
or an HTTP request, for instance), and finally relaying it to the target [50]. In our work,
even though we use the first approach, we also perform tests similar to the second ap-
proach, by modifying/corrupting previously captured packets and sending them to the
target (see more in Section 3.3.2).

Figure 2.10: Approaches for interface error injection. From Natella et al. [50].

Additionally, the general approach for robustness testing revolves around the well-
known model of fault ⇒ error ⇒ failure. This can be bridged to a security testing point
of view by considering the specialized composite fault model introduced by [1] known
as AVI (attack, vulnerability, intrusion), which “limits the fault space of interest to the
composition (attack + vulnerability)⇒ intrusion” [51]. This leads to the notion of attack
injection: by injecting interface errors consisting of potential attacks, we can monitor the
target to detect signals of intrusions (through the manifestation of errors or failures), and
trace this combination back to find potential vulnerabilities. Figure 2.11 illustrates the
usage of this model applied to vulnerability discovery. One way to perform robustness
(and, more specifically, security) testing by injecting such attacks is to use fuzzing—which
is exactly what we do in this work.

In [55], Oehlert defines fuzzing as “a highly automated testing technique that covers
numerous boundary cases using invalid data (...) as application input to better ensure
the absence of exploitable vulnerabilities.” The author argues for the cost-effectiveness
of fuzzing when compared to techniques such as functional testing; describes two ways
of obtaining testing data for fuzzing—data generation and data mutation—; differentiate
between intelligent fuzzers (those that leverage some knowledge of the target format)

CHAPTER 2. BACKGROUND AND RELATED WORK 22

Remove the vulnerabilities

or prevent the attacks

failureerrorintrusion

vulnerability

attack

Generate various

attacks Look for errors /

failures

(2)

(1)

(3)

TARGET SYSTEM

Figure 1. Using the composite fault model

to demonstrate the vulnerability discovery

methodology.

elimination.

The current version of AJECT mainly targets network

server applications, although it can also be utilized with

most local daemons. We chose servers because, from a se-

curity perspective, they are probably the most relevant com-

ponents that need protection. They constitute the primary

contact points of a network facility – an external hacker

normally can only enter into the facility by connecting to

a server. Moreover, if an adversary compromises a server,

she or he immediately gains access to a local account, which

can then be used as a launch pad for further attacks. The tool

does not need the source code of the server to perform the

attacks, i.e., it treats the server as black box. However, in

order to be able to generate intelligent attacks, AJECT has

to obtain a specification of the protocol implemented by the

target server.

To demonstrate the usefulness of our approach, we have

conducted a number of experiments with several IMAP

servers. The main objective was to show that AJECT could

automatically discover a number of different vulnerabilities,

which were described in bug tracking sites by various peo-

ple. The tests managed to confirm that AJECT could be

used to detect many IMAP vulnerabilities (this was true for

all flawed IMAP servers that we managed to get). More-

over, AJECT was also able to discover a new vulnerability

that was previously unknown to the security community.

2. Using Attacks to Find Vulnerabilities

The AVI (attack, vulnerability, intrusion) composite fault

model introduced in [1, 31] helps us to understand the

mechanisms of failure due to several classes of malicious

faults (see Figure 1). It is a specialization of the well-known

sequence of fault → error → failure applied to malicious

faults – it limits the fault space of interest to the composition

(attack + vulnerability)→ intrusion. Let us analyze these

fault classes. Attacks are malicious external activities1 that

intentionally attempt to violate one or more security proper-

ties of the system – we can have an outsider or insider user

of our network (e.g., a hacker or an administrator) trying

to access sensitive information stored in a server. Vulnera-

bilities are usually created during the development phase of

the system (e.g., a coding bug allowing a buffer overflow),

or during operation (e.g., files with root setuid in UNIX).

These faults can be introduced accidentally or deliberately,

with or without malicious intent. An attack that successfully

activates a vulnerability causes an intrusion. This further

step towards failure is normally succeeded by the produc-

tion of an erroneous state in the system (e.g., a root shell, or

new account with root privileges), and if nothing is done to

process the error, a failure will happen.

The methodology utilized in the construction of AJECT

emulates the behavior of an external adversary attempting

to cause a failure in the target system. The tool first gener-

ates a large number of attacks which it directs against the

interface of the target (step 1, in Figure 1). A majority of

these attacks are expected to be deflected by the validation

mechanisms implemented in the interface, but a few of them

will be able to succeed in exploiting a vulnerability and will

cause an intrusion. Some conditions help to augment the

probability of success of the attack, for example: a correct

understanding of the interaction protocol utilized by the tar-

get facilitates the creation of more efficient attacks (e.g., re-

duces the number of random tests); and a good knowledge

about what type of vulnerabilities appear more frequently

also helps to prioritize the attacks.

While attacks are being carried out, AJECT also moni-

tors how the state of system is evolving, looking for errors

or failures (step 2). Whenever one these problems is ob-

served, it indicates that a new vulnerability has potentially

been discovered. Depending on the collected evidence, it

can indicate with more or less certainty that a vulnerability

exists. For instance, there is a high confidence if the system

crashes during (or after) the attack – this attack at least com-

promises the availability of the system. On the other hand,

if what is observed is the abnormal creation of a large file,

though it might not be a vulnerability – related to a possible

denial of service – it still needs to be further investigated.

After the discovery of a new vulnerability, there are sev-

eral alternatives to deal with it, depending on the current

stage of the development of the system (step 3). If the sys-

tem is, for instance, in a implementation stage, it is best

to provide detailed information about the attack and er-

ror/failure, so that a decision can be made about which cor-

rective action should be taken (e.g., repair a software bug).

On the other hand, if the tests are performed when the sys-

tem is in the operational stage, then besides giving infor-

mation about the problem, other actions might be worth-

1Outside the target system boundaries.

Figure 2.11: Using the composite fault model for vulnerability discovery. From Neves et
al. [51].

and unintelligent fuzzers (those that, for instance, just randomly changes bits); discuss
common fuzzing problems, such as the care to be taken regarding target formats using
hashes or checksums, or the possible need to implement decompression and compression
capabilities in the fuzzer, for formats using compression techniques; and the difficulties to
check if a target application behaves correctly or not—suggesting the use of source code
instrumentation and monitoring parameters, such as memory and CPU usage. In the
following paragraphs we detail these concepts, presenting a brief review on the evolution
of fuzzing techniques and domains in which it was applied.

One of the first studies in this area was done by Miller et al. [46]. The authors evaluated
the robustness of UNIX utilities with regards to external inputs. They developed a tool
called Fuzz, which they used to submit random data to those programs through the
standard input, and were able to find that between 24% and 33% of utility programs in
three UNIX systems were vulnerable to interface errors, crashing or stalling processes.
This approach, which we simply call Random Fuzzing in this work, is the most basic
and cheap one to perform fuzzing, although still capable to discover bugs [50]. The main
issue with this approach is that, depending on the target being tested, it is very hard
to actually find bugs without the message being instantly rejected by the System Under
Test’s (SUT) input parsing and sanitization mechanisms, because most of the times the
message will not resemble a real protocol message or file format. This fostered research
on ways to systematically generate better input streams of corrupted data, in order to
enhance testing efficiency. In our work, we have implemented both a completely random
generation technique as well as a slightly modified version of it, which we call Informed
Random Fuzzer. More details are discussed in Section 3.3.1.

Another influential study in this area was done by Koopman et al., throughout more
than 10 years and is better summarized in their 2008 paper [37]. The authors developed a
tool called Ballista, using data-type-based error injection to test the robustness of POSIX-
compliant OS APIs. Their approach is based on a set of predefined invalid or exceptional
values for different data types. By passing these values to the system call interface (and
observing the outcomes) they were able to assess the robustness of the APIs. Figure 2.12

CHAPTER 2. BACKGROUND AND RELATED WORK 23

shows an example of the input types and values used to test the write system call. These
values were selected from the testing literature and the experience of developers. In our
work we use a similar approach for the four option formats from CoAP (empty, opaque,
uint or string) as well as for the data types in the CoAP header. The details of the
values actually used in our system are further discussed in Chapter 3.

For each POSIX function tested, an interface description was created with the function

name and type information for each argument. In some cases, a more specific type was

created to result in better testing (for example, a file descriptor might be of type int, but

was described to Ballista as a more specific file descriptor data type).

As an example, Figure 11.1 shows test values used to test write(int filedes, const void

*buffer, size_t nbytes), which takes parameters specifying a file descriptor, a memory

buffer, and a number of bytes to be written. Because write() takes three parameters of

three different data types, Ballista draws test values from separate test objects established

for each of the three data types. In Figure 11.1, the arrows indicate that the particular test

case being constructed will test a file descriptor for a file that has been opened with only

read access, a NULL pointer to the buffer, and a size of 16 bytes. Other combinations of

test values are assembled to create other test cases. In the usual case, all combinations of

test values are generated to create a combinatorial number of test cases. For a half-dozen

POSIX calls, the number of parameters is large enough to yield too many test cases for

exhaustive coverage within a reasonable execution time. In these cases, pseudorandom

sampling is used. (Based on a comparison to a run with exhaustive searching on one OS,

sampling 5000 test cases gives results accurate to within 1 percentage point for each func-

tion [Kropp 1998].)

11.3.6. Test Case Construction: Parameter Constructors and

Destructors

Even with a dictionary of test values, there were still difficulties in sequencing the opera-

tions associated with some tests. For example, tests requiring access to files might rely

208 INTERFACE ROBUSTNESS TESTING

Figure 11.1. Ballista test case generation for the write() function. The arrows show a single test

case being generated from three particular test values; in general, all combinations of test values

are tried in the course of testing.

Figure 2.12: Ballista test case generation for the write() function. The arrows show a single
test case being generated from three particular test values; in general, all combinations
of test values are tried in the course of testing. From Koopman et al. [37].

With Ballista, the outcome of a test case (TC) is obtained by the error code returned
by the system call and by a watchdog process responsible for monitoring the target and de-
tecting unexpected termination or task hanging. The authors developed a failure severity
scale called CRASH, classifying test results as:

Catastrophic The OS state becomes corrupted or the machine crashes and reboots.

Restart Task/process hangs and needs manual restart/force termination.

Abort Task/process aborts, e.g. segmentation fault, signaling abnormal termination.

S ilent No error code returned when one should be.

H indering Misleading error code returned.

A more detailed description of the scale can be seen in [37]. This scale was later adapted
to a Web Services environment by Vieira et al. [73], giving birth to the wsCRASH scale,
and later further simplified by Laranjeiro et al. [42] to the wsAS scale, comprising only
the failure modes easily observed (and distinguishable) from a Web Service’s consumer
point of view. In our work we use a similar scale, distinguishing the following failure
modes:

Restart SUT hangs and needs manual restart/force termination. Commonly caused by
unhandled exceptions.

CHAPTER 2. BACKGROUND AND RELATED WORK 24

Abort SUT aborts. Commonly a segmentation fault. Our Process Monitor keeps all
core dump files for further offline analysis.

Another well-known technique for data corruption is bit-flipping, used by Arlat et
al. [6] in their MAFALDA tool for assessing the robustness of microkernels. Our Mu-
tational Fuzzer (a.k.a. template fuzzing) uses this approach. We record good/valid
CoAP conversations based on the CoAP#4 ETSI Plugtests [8], apply bit-flipping and
byte-corruption functions to the captured packets, and finally replay them to the SUTs.
This approach is format-agnostic, which means that the bit-flipping or byte-corruption
functions do not have any knowledge of the target format being fuzzed.

Additionally, we developed what we call a Smart Mutational Fuzzer, which does
have knowledge of the target format, and thus modifies the captured packets in a more
“intelligent” manner, such as duplicating a CoAP Option field or modifying a string field to
contain sensitive values such as non-printable characters. This smarter approach is based
on predefined values associated to a particular data type, as discussed in [37], as well
as other data perturbation techniques, such as the ones proposed by Offutt and Xu [56]
(and later extended by De Melo and Silveira [18]), or by Vieira et al. [73]—all of them
originally proposed for SOAP Web Services and adapted by us. We discuss it in details
in Section 3.3.2.

For our last fuzzing engine, the Generational Fuzzer (a.k.a. model fuzzing, RFC- or
Standards-based fuzzing), we build upon the ideas proposed by Kaksonen [36] during the
development of the PROTOS project [61]. The authors extend the idea of domain/syntax
testing, where input values are divided into input domains. These are ranges of values
which are treated uniformly and thus can be used to generate test cases (making this ap-
proach a combination of equivalent class partitioning with data-type-based fuzzing). They
also propose the use of attribute grammars to model the format of network protocols—
similar to the RIDDLE library by Ghosh et al. [22], in which the authors adopt a grammar
similar to the Backus-Naur Form (BNF) to generate syntactically correct, yet erroneous
inputs.

These models are then used to generate test cases by creating exceptional data of
particular attribute classes [3]. In our work, we use the Scapy20 framework to model
the CoAP protocol format and generate test cases based on attribute type and CoAP
packet/message formats, such as filling out a Uri-Path option with a large, predefined
string comprised only of "\%", filling out the message ID field with values 0 and 65535
(maximum 16-bit unsigned integer) etc. More details are available in Section 3.3.3.

We note the increasing complexity regarding the aforementioned techniques, from the
most basic purely random fuzzing, to a generational fuzzing scheme which is often equiv-
alent in effort to writing a real implementation of a protocol or a format parser, passing
through intermediates such as basic bit-flipping for mutational fuzzing to format-aware
mutations, the latter having similar complexity to a generational fuzzing scheme. We also
note the need to recalculate checksums (UDP checksums in our case) after mutating a
previously captured packet/message template, in our case only needed for the mutational
and smart mutational fuzzers.

20https://github.com/secdev/scapy

https://github.com/secdev/scapy

CHAPTER 2. BACKGROUND AND RELATED WORK 25

Additionally, we are not using source code instrumentation, as we consider that to be
too much intrusive for a black-box approach intended to be used remotely. In turn, we
monitor the SUTs by sending periodic health-checks (or heartbeats), listening to signals
emitted by them and watching return codes. Finally, we are able to pin out which test
cases failed (and information regarding the failure itself, with the corresponding error)
by crossing this monitoring information with the SUT’s output logs. We are also able
to reproduce (offline) failed TCs by using packet information stored during the fuzzing
campaign. A more detailed description of our system is given in Chapter 3.

Chapter 3

System Architecture and Testing
Methodology

In this Chapter we present the FuzzCoAP tool, a complete test environment for CoAP
server targets. The system architecture is proposed and, as the role of each entity of the
system is detailed, we also describe our testing methodology. This is done by explaining
the details of every step of the execution of a fuzzing campaign.

There are three basic entities in the architecture of our system: the Process Monitor,
the Fuzzer Controller (a.k.a. the Fuzzer), and the System Under Test (SUT) itself. The
Fuzzer Controller is composed by three fuzzing engines, each responsible for a different
test case generation technique, namely Random, Mutational and Generational engines,
plus a Workload Executor. Figure 3.1 shows this system architecture in a high level view.
The role of each entity will be detailed in this chapter, as we also explain details of

Generational
Fuzzing
Engine

(scapy)

Test
Cases

Mutational
Fuzzing
Engine

(scapy)

Random
Fuzzing
Engine

(scapy)

PCAP
Conversation

Workload
Executor

(scapy)

Fuzzer Controller
SUT

Config.

summary.log, packets.log,
mutgen.csv, tr.csv,

ftc.csv

coredumps,
target.log,

crashlist.log

1

4.b

4.a

3

2

4.c

5.b

6

6

5.a, 5.c

CoAP
Packet
Model

Process Monitor
(boofuzz)

SUT

Target MachineAttacker/Fuzzer Machine

Figure 3.1: Architecture of the testing system.

26

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 27

what happens during the execution of a fuzzing campaign—denoted, in sequence, by the
red numbers in the figure. Although this architecture is influenced by Allen et al. [3],
Neves et al. [51], and Antunes and Vieira [5], we should note that none of the approaches
presented by these authors: i) detail the inner workings of the entity equivalent to the
Process Monitor ; and ii) allows the usage of multiple test case generation engines for
comparison of different fuzzing techniques. Also, none of the tools developed in those
works are available as Free or Open Source Software.

The first step (Figure 3.1-step1) is to fill out a configuration file with information
from the target application—see Listing 1. This is a simple Python file (the whole system
was developed in Python) where, for each target we want to support in the system, we
add a python dictionary containing the following mandatory fields:

dictionary name the SUT name (an identifier, line 3);

smart_cmd the full command line to (re)start the SUT (lines 4–5);

time_to_settle the time, in seconds, to wait before considering the SUT up-and-running
(line 9);

heartbeat_path the path of the resource to be used for heartbeats (line 10), which must
be a resource for which the SUT always replies to a simple GET request.

1 BASE_DIR="/home/fuzz/apps"
2 #(...)
3 "libcoap-server": {
4 "start_cmd": "%s/libcoap/coap-server -A %s -p %d -v 9" %
5 (BASE_DIR, aut_host, aut_port), # M
6 "env": {
7 "ENV_VAR_1": "env_var_value",
8 }, # Opt.
9 "time_to_settle": 1, # M

10 "heartbeat_path": [("Uri-Path", ".well-known"), ("Uri-Path", "core")], # M
11 "default_uris": ["reg"], # Opt.
12 "bin_file": "%s/libcoap/coap-server" % (BASE_DIR), # Opt.
13 'strings': ['page', 'count', 'resource-param'], # Opt.
14 }, #(...)

Listing 1: SUT Configuration File - Example for libcoap-server application

Moreover, optional fields can be used to specify:

env environment variables to be exported before the SUT’s execution (lines 6–8);

default_uris a list of default URIs the SUT exposes but does not list under .well-
known/core (line 11), which the Fuzzer is unable to obtain automatically (see further
in step3);

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 28

bin_file the binary file (ideally with debug symbols) used for offline, posterior analysis
of generated core files through the GNU Debugger1 gdb (line 12);

strings a list of user-supplied strings to be used during the test case generation for this
specific SUT (line 13).

At this point, the Fuzzer can be started and step2 in the process is triggered. In this
step, the Fuzzer communicates with the Process Monitor, through Remote Procedure
Calls (RPC), sending the relevant parameters from the SUT configuration file to it, so
the Process Monitor, in turn, is able to properly start the SUT. This entity is described
next.

3.1 Process Monitor

The Process Monitor is a standalone entity responsible for handling and monitoring the
execution of the SUT itself. The entity was adapted from the Boofuzz2 tool. It listens on
a given TCP port and supports, among others, the following methods through RPC:

alive Checks if the connection between Fuzzer and Process Monitor is still alive;

set_* Sets SUT-specific parameters, such as the start command and environment vari-
ables;

start_target Starts the SUT by spawning it as a subprocess and monitoring its exit
status in a new thread;

stop_target Stops the SUT, either by issuing a custom command or by using OS signals
to force termination;

restart_target Restarts the SUT (stop_target followed by a start_target);

pre_send Ensures the SUT thread is operational before sending a test case. This will
also add a mark to the output logs of the SUT, so we can later relate each test
case, by its number, to a particular slice of that log file (see more in Section 3.4 and
Listing 12);

post_send Returns the status of the SUT after a test case is received, so the Fuzzer can
check if the target crashed—this is purely based on exit status and signal handling,
and thus only able to detect anAbort failure in our scale. For detecting Restart fail-
ures we have implemented the healthcheck/heartbeat mechanism further described
in Section 3.4 and Listing 9.

During actual test execution from a fuzzing capaign (step5.a through 5.c) the Process
Monitor will be responsible for collecting core files generated by the SUT and saving them
with a name that can be linked back to the test case that generated it (e.g. TC_3125.dump),

1https://www.gnu.org/software/gdb/
2https://github.com/jtpereyda/boofuzz

https://www.gnu.org/software/gdb/
https://github.com/jtpereyda/boofuzz

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 29

saving information regarding the exit status for each test case causing Abort failures
at crashlist.log, and writing to target.log, together with the SUT itself. Details
regarding the actual information collected in each of these files are presented in Section 3.4.
Currently, it works for Unix processes only, although it could be extended to interface
with hardware debuggers, in order to monitor the status of applications running on real
IoT hardware (e.g. connected through USB or JTAG cables at the target machine).

3.2 Fuzzer Controller

The Fuzzer Controller (or Fuzzer) is the other standalone entity, and is composed by
the test case generation engines plus a workload executor. This entity is responsible for
controlling the actual testing process, by executing a fuzzing campaign. We will detail
the role of each of its inner components in the next sections.

Before further diving into those details, regarding the test execution flow, at this
point the SUT should be up and running. Before the test cases are generated, step3 is
triggered. At this step, the Fuzzer submits a GET .well-known/core request directly to
the SUT, in order to obtain, among other things: a list of available links (a.k.a. paths,
URIs or resources) the SUT exposes, as well as other relevant information about those
links, e.g. if a given link supports the observe feature; which resource type it returns; which
standard interface it follows, if any. For this single request we rely on the CoAPthon3

library to easily perform a GET request using blockwise transfer instead of implementing
block handling ourselves, since this list of resources, due to its possible large size, is
commonly split up in blocks. The response to this message is parsed and produces two
lists, one containing the extracted paths and the other containing the extracted strings.
Both lists are later used by the test generation engines—the general idea is to increase
the chance of reaching deeper levels in the SUT’s code by targeting resources it actually
supports and fuzzing/filtering through strings formed by key-pair values it actually has,
among others. We revisit this idea with concrete examples and further explanation in
Section 3.3. Listing 2 shows an example for the libcoap-server application.

Payload of the CoAP message received
in response to the GET ./well-known/core request
</>;title="General Info";ct=0,</time>;if="clock";rt="Ticks";title="Internal

Clock";ct=0;obs,</async>;ct=0↪→

Output lists
Extracted Paths:
['async', '.well-known/core', 'time']
Extracted Strings:
['rt="Ticks"', 'title="Internal Clock"', 'ct=0', 'title="General Info"', 'obs',

'if="clock"']↪→

Listing 2: Information extracted in step3

3https://github.com/Tanganelli/CoAPthon

https://github.com/Tanganelli/CoAPthon

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 30

3.3 Test Case Generation Engines

The Fuzzer Controller has three test case generation engines, each one focused on a
different way of obtaining test data for fuzzing: random data (step4.a), data mutation
(step4.b) and data generation (step4.c). In this section we describe the inner workings
of each of those engines.

3.3.1 Random Fuzzing

Random data is the easiest, cheapest one to be obtained for fuzz testing. The Random
Fuzzing engine uses Python’s random module—which in turn relies on an OS-specific
source of randomness; in the case of our experiments, Linux’s /dev/random—to generate
test data. Inside our engine, we actually generate test data in two ways: a purely random
one, which we call Random Fuzzer and a slightly smarter one, which we call Informed
Random Fuzzer. We describe each of those next.

Random Fuzzer

The Random Fuzzer generates test cases consisting of raw UDP packets with random
bytes. Half the packets have their lengths randomly chosen to be no bigger than 2176
bytes, as it is the suggested upper bound for CoAP messages (see Section 4.6 from
RFC7252 [69]), and the other half uses boundary (or “singular”) values around impor-
tant powers-of-two from 0 (empty UDP datagram) until 65507, which is the limit for the
data length of a UDP datagram. The idea behind this is that, although the data itself
is random, these data lengths are more inclined to reveal potential off-by-one, integer
overflow and buffer overflow errors. Hence, given these two generators, we can configure
a parameter Krandom to obtain the number of test cases generated for a random fuzzing
campaign:

N random
TCs = 2 ·Krandom (3.1)

Listing 3 contains the possible lengths used for the second half of the test cases. We
present an example packet generated, as dissected by Wireshark4, in Listing 4.

[0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 255,
256, 257, 511, 512, 513, 1023, 1024, 1025, 2047, 2048, 2049, 4095, 4096, 4097,
8191, 8192, 8193, 16383, 16384, 16385, 32752, 32753, 32754, 32767, 32768, 32769,
65506, 65507]

↪→

↪→

↪→

Listing 3: 50 “singular” values are used as possible lengths of the UDP datagrams.

Informed Random Fuzzer

The Informed Random Fuzzer is a modification of the Random Fuzzer which uses the
path information gathered in step3 (see Listing 2). The idea is to improve the odds of a

4https://www.wireshark.org/

https://www.wireshark.org/

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 31

Constrained Application Protocol
10.. = Version: 2
..01 = Type: Non-Confirmable (1)
.... 0001 = Token Length: 1
Code: Unknown (147)

[Malformed Packet: CoAP]
Packet as Hex + ASCII Dump:
0000 91 93 f3 ...

Listing 4: Example of a Random Fuzzer test case consisting of a 3-byte UDP packet.
Note that since a CoAP header has 4 bytes, this is marked by Wireshark as a malformed
CoAP packet.

test case actually reaching parts of the SUT responsible for handling the requests for a
given resource/URI. Instead of raw UDP packets, the test cases generated by this engine
are actual CoAP packets, although not necessarily valid (i.e. the version field can still be
invalid, the code field can still carry a response code instead of a request method etc.).
Three types of packets are generated, for which the target CoAP resources are chosen
randomly, in an uniformly distributed manner:

Header Only Random bytes at the header fields, accompanied by CoAP Uri-Path op-
tions carrying the path to one of the resources obtained in step3. An example is
shown in Listing 5.

Constrained Application Protocol, Acknowledgement, Unknown 253, MID:11505
00.. = Version: 0
..10 = Type: Acknowledgement (2)
.... 0001 = Token Length: 1
Code: Unknown (253)
Message ID: 11505
Token: 8b
Opt Name: #1: Uri-Path: separate

Opt Desc: Type 11, Critical, Unsafe
1011 = Opt Delta: 11
.... 1000 = Opt Length: 8
Uri-Path: separate

Packet as Hex + ASCII Dump:
0000 21 fd 2c f1 8b b8 73 65 70 61 72 61 74 65 !.,...separate

Listing 5: Example of a Header Only test case from the Informed Random Fuzzer. Con-
sisting of the 4-byte header, a 1-byte token and a 9-byte option, it was generated and sent
to the ‘separate’ URI, obtained in step3 for the yacoap-piggyback application.

Empty Payload Similar to the previous one, but in addition to the Uri-Path options
carrying the target resource URI, it includes random bytes where other CoAP op-
tions should be. This slice of “garbage options” can range from 0 to 65503 bytes,
using similar values as those from Listing 3—the last two values in the list becomes
actually smaller, since this is not a UDP raw packet, but instead contains the ad-
ditional CoAP header (4 bytes) and the Uri-Path options carrying the target path.
We present an example in Listing 6.

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 32

Constrained Application Protocol, Reset, Unknown 37, MID:25820
01.. = Version: 1
..11 = Type: Reset (3)
.... 1011 = Token Length: 11
Code: Unknown (37)
Message ID: 25820
Token: a891603e9d10afc8eb3fe4
Opt Name: #1: Uri-Path: separate
[Expert Info (Warning/Malformed): Invalid Option Number 2201]
Opt Name: #2: Unknown Option: 52 31 21 96 ae 13
[Expert Info (Warning/Malformed): option longer than the package]

Packet as Hex + ASCII Dump:
0000 7b 25 64 dc a8 91 60 3e 9d 10 af c8 eb 3f e4 b8 {%d...`>.....?..
0010 73 65 70 61 72 61 74 65 e6 07 81 52 31 21 96 ae separate...R1!..
0020 13 d8 da e2 5f 75 f7 46_u.F

Listing 6: Example of an Empty Payload test case from the Informed Random Fuzzer. We
can see that in addition to the ‘separate’ Uri-Path option, it has a slice of 16 random
bytes where more CoAP options should be. In this specific case, Wireshark is not even
able to correctly dissect the complete packet.

Random Payload Also similar to the first one, but instead of adding a slice of “garbage
options”, the only options present are still the CoAP Uri-Path options carrying the
target resource URI, followed by a payload marker (0xFF), then finally followed
by a payload consisting of 0–65503 random bytes. The length of this payload is
determined analogously to the length of the “garbage options” slice from the previous
type of test case. Listing 7 shows an example.

Constrained Application Protocol, Confirmable, Unknown 169, MID:23948
00.. = Version: 0
..00 = Type: Confirmable (0)
.... 0101 = Token Length: 5
Code: Unknown (169)
Message ID: 23948
Token: 331008db58
Opt Name: #1: Uri-Path: piggyback
End of options marker: 255
Payload: Payload Content-Format: text/plain; charset=utf-8 (no Content-Format)

Payload Desc: text/plain; charset=utf-8
[Payload Length: 31]

Line-based text data: text/plain
\301\204\246\236j6YB 9\316\034\206;\332NM\323<\214$\235\234}\243e\343\234 %/

Packet as Hex + ASCII Dump:
0000 05 a9 5d 8c 33 10 08 db 58 b9 70 69 67 67 79 62 ..].3...X.piggyb
0010 61 63 6b ff c1 84 a6 9e 6a 36 59 42 20 39 ce 1c ack.....j6YB 9..
0020 86 3b da 4e 4d d3 3c 8c 24 9d 9c 7d a3 65 e3 9c .;.NM.<.$..}.e..
0030 20 25 2f %/

Listing 7: Example of a Random Payload test case from the Informed Random Fuzzer.
In this case, it was sent to another URI from the same SUT (‘piggyback’), and we can
see it has a 31-byte random payload.

Therefore, given these three generators, we can configure a parameter Kinf-random to
obtain the number of test cases generated for an informed random fuzzing campaign:

N inf-random
TCs = 3 ·Kinf-random (3.2)

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 33

3.3.2 Mutational Fuzzing

Inside our Mutational Fuzzing engine we also generate test data in two ways: one based
on bit-flipping and byte-corruption, the most straightforward techniques for mutating
previously obtained data, which we simply call Mutational Fuzzer ; and a slightly smarter
one, based on more careful data perturbation techniques and boundary values, as discussed
in Section 2.3, which we call Smart Mutational Fuzzer.

As the primary input for both fuzzers, we need initial data before we can actually
mutate it. In our system, this initial data should be a set of valid CoAP requests. Common
good candidates are messages from real-world interactions between a working CoAP client
and a given CoAP server, or messages used as part of functional test cases—which we
can assume were already designed to exercise at least some boundary or negative cases,
besides the most common or expected positive cases.

We adopt the second approach, by using wireshark to capture the interactions consist-
ing of actual CoAP packets implementing the test descriptions defined by Bormann [8] for
the CoAP#4 ETSI Plugtest, as discussed in Section 2.2. These functional/interoperability-
focused test cases used were the ones implemented in the Californium5 CoAP library. By
running one of the tools distributed with the library, called cf-plugtest-client, we can
exercise all test cases from CoAP#4 against a given CoAP server, and thus capture all
packets using wireshark, so they can later be used as inputs by our mutational engine—
this is the PCAP Conversation represented in Figure 3.1. Based upon this data we can
finally generate our test cases for fuzzing. In the next sections we describe each mutation
approach used.

Mutational Fuzzer

As mentioned before, the bit-flipping and byte-corruption strategy is rather straightfor-
ward. The Mutational Fuzzer loads up the previously captured PCAP Conversation and,
for each packet in there, it generates a user-defined fixed number (Kmut) of test cases
using Scapy’s CorruptedBits and CorruptedBytes classes. The first one “flips a given
percentage or number of bits in the packet” (using a basic bitwise-xor operation), while
the second one “corrupts a given percentage or number of bytes from the packet” (adding
a random number between 1 and 255 to the original byte, modulo 256 to avoid overflow).
We are using the default of 1% for both cases, meaning 1% of the packet’s bits will be
flipped or 1% of its bytes will be corrupted. Therefore, given these two mutation strate-
gies and the number of packets in the PCAP Conversation (NPCAP

pkts), we can obtain the
number of generators (or templates) produced:

Nmut
templates = 2 ·NPCAP

pkts (3.3)

And, from this, the number of test cases generated for a mutational fuzzing campaign:

Nmut
TCs = Kmut ·Nmut

templates (3.4)

5https://www.eclipse.org/californium/

https://www.eclipse.org/californium/

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 34

1 # Original packet:
2 Constrained Application Protocol, Confirmable, GET, MID:750
3 01.. = Version: 1
4 ..00 = Type: Confirmable (0)
5 1000 = Token Length: 8
6 Code: GET (1)
7 Message ID: 750
8 Token: 0c443f4fa4c9c990
9 Opt Name: #1: Etag: 17 29

10 Opt Name: #2: Uri-Path: validate
11 # Original packet as Hex + ASCII Dump:
12 0000 48 01 02 ee 0c 44 3f 4f a4 c9 c9 90 42 17 29 78 H....D?O....B.)x
13 0010 76 61 6c 69 64 61 74 65 validate
14

15 # Packet generated by bit-flipping:
16 Constrained Application Protocol, Confirmable, GET, MID:750
17 01.. = Version: 1
18 ..00 = Type: Confirmable (0)
19 1000 = Token Length: 8
20 Code: GET (1)
21 Message ID: 750
22 Token: 0c443f4fa4c9c990
23 Opt Name: #1: Content-Format: Unknown Type 5929
24 [Expert Info (Warning/Malformed): Invalid Option Number 19]
25 Opt Name: #2: Unknown Option: 76 61 6c 69 64 61 74 65
26 # Bit-flipping packet as Hex + ASCII Dump:
27 0000 48 01 02 ee 0c 44 3f 4f a4 c9 c9 90 c2 17 29 78 H....D?O......)x
28 0010 76 61 6c 69 64 61 74 65 validate
29

30 # Packet generated by byte-corruption:
31 Constrained Application Protocol, Confirmable, GET, MID:750
32 01.. = Version: 1
33 ..00 = Type: Confirmable (0)
34 1000 = Token Length: 8
35 Code: GET (1)
36 Message ID: 750
37 Token: 0c443f4fa4c9c990
38 Opt Name: #1: Etag: 17 29
39 Opt Name: #2: Uri-Path: va\037idate
40 Opt Desc: Type 11, Critical, Unsafe
41 0111 = Opt Delta: 7
42 1000 = Opt Length: 8
43 Uri-Path: va\037idate
44 # Byte-corruption packet as Hex + ASCII Dump:
45 0000 48 01 02 ee 0c 44 3f 4f a4 c9 c9 90 42 17 29 78 H....D?O....B.)x
46 0010 76 61 1f 69 64 61 74 65 va.idate

Listing 8: Example of one CoAP packet obtained from the plugtest set and two test
cases derived from it, generated by the Mutational Fuzzer. The mutation highlighted
in yellow was made by the bit-flipping technique, turning 0x42 (0100 0010) into 0xc2
(1100 0010). The other mutation, highlighted in cyan, was made by the byte-corruption
technique and turned a 0x6c (0110 1100) into a 0x1f (0001 1111).

Listing 8 shows an example of an original packet from the PCAP Conversation and
two possible mutations obtained from it, one using bit-flipping and the other using byte-
corruption. We note how wireshark’s interpretation of the packet changes drastically even
when a single bit is flipped (the most significant bit (MSB) of the byte in position 12,
changing it from 0x42 to 0xC2, highlighted in yellow), in case that bit is located in an
important protocol field—here, the Option Delta. This shows the relevance of bit-flipping,
despite its simplicity, especially when dealing with binary-encoded formats or protocols,
as is the case with CoAP. The second mutation, through byte-corruption, did not change

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 35

wireshark’s interpretation so drastically, but a non-printable character (0x1F, octal 037,
known as Unit Separator) was inserted in the middle of the string representing the target
URI (highlighted in cyan), which definitely represents an exceptional case to be handled
by the SUT.

Smart Mutational Fuzzer

The Smart Mutational Fuzzer yields test cases based on the same collection of packets
(PCAP Conversation), but instead of using basic bit-flipping or byte-corruption, it lever-
ages the knowledge of the CoAP protocol format to mutate specific option values or entire
fields. For every option in each base packet inside that collection, this engine will produce
a number of test cases based on the option format, following the rules from Table 3.1
and Table 3.2. The rules presented in Table 3.1 are applied to a parameter value, such
as a CoAP option value or the value of the payload field. Table 3.2, on the other hand,
presents rules applied to a whole field, such as a CoAP option (including delta, length,
extended and value fields) or the pair paymark + payload. Table 3.3 shows examples
of possible mutations for a string parameter, and Table 3.4 shows examples of possible
mutations for the uint format.

To illustrate, if this engine finds a packet containing an Uri-Host (string) plus an Uri-
Port (uint) option, with no payload, it will generate 8 + 9 + 2 · 3 = 23 test cases. In
addition to those, it will also generate targeted test cases, which are modified versions
of the TCs originally generated, containing Uri-Path options targeting a known-path
(randomly chosen) of the SUT, as obtained in step3. Hence, the single packet with two
options and no payload from the previous example would yield 2 · 23 = 46 test cases. The
idea with the targeted test cases is similar to that mentioned for the Informed Random
Fuzzer : improving the odds of a TC actually reaching request handlers.

Therefore, given these mutation rules, we can obtain the number of test cases generated
for a smart mutational fuzzing campaign:

N smart-mut
TCs = 2 ·

[parameter mutations︷ ︸︸ ︷
8 ·N string

opts + 6 ·Nopaque
opts + 9 ·Nuint

opts + 7 ·N empty
opts + 7 ·Npayload

pkts +

+ 3 ·
(
N string

opts +Nopaque
opts +Nuint

opts +N empty
opts +Npayload

pkts

)
︸ ︷︷ ︸

field mutations

] (3.5)

where:

N string
opts = Number of string options across all packets from the PCAP Conversation

Nopaque
opts = Number of opaque options across all packets from the PCAP Conversation

Nuint
opts = Number of uint options across all packets from the PCAP Conversation

N empty
opts = Number of empty options across all packets from the PCAP Conversation

Npayload
pkts = Number of packets from the PCAP Conversation containing a payload

The constants from Equation 3.5, in order of appearence, are related to: generation

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 36

of both untargeted and targeted TCs (2), number of string mutation rules (8), number of
opaque mutation rules (6), number of uint mutation rules (9), number of empty mutation
rules (7), number of payload mutation rules (7) and number of field mutation rules (3).

Table 3.1: Parameter mutation rules used by the Smart Mutational Fuzzer. Adapted from
Vieira et al. [73].

Format Test Name Parameter Mutation

st
ri

n
g

StrEmpty Replace by empty string
StrPredefined (5) Replace by predefined stringa

StrAddNonPrintable Add nonprintable characters to the string
StrOverflow Add characters to overflow max size

op
aq

u
e OpaqueEmpty Replace by empty binary string

OpaquePredefined (4) Replace by predefined binary stringb

OpaqueOverflow Add characters to overflow max size

u
in

t

UintNull Replace by null value
UintAbsoluteMinusOne Replace by -1
UintAbsoluteOne Replace by 1
UintAbsoluteZero Replace by 0
UintAddOne Add one
UintSubtractOne Subtract 1
UintMaxRange Replace by maximum value valid for the parameter
UintMinRange Replace by minimum value valid for the parameter
UintMaxRangePlusOne Replace by maximum value valid for the parameter plus one

em
p
ty

EmptyPredefined (4) Replace by predefined [binary] stringc

EmptyAbsoluteMinusOne Replace by -1
EmptyAbsoluteOne Replace by 1
EmptyAbsoluteZero Replace by 0

p
ay

lo
ad PayloadEmpty Replace by empty payload string

PayloadPredefined (5) Replace by predefined payload stringd

PayloadAddNonPrintable Add nonprintable characters to the payload string

a Random amount between the specific option’s minimum and maximum length, of either one of the
following characters or character sequences: ‘\x00’, ‘8’, ‘#’, ‘U+1F60D’, ‘%’
b Same, but for the following: ‘\x00’, ‘\xff’, ‘U+1F60D’, ‘%’
c One of the following: ‘\xff’, ‘#’, ‘U+1F60D’, ‘%’
d Random amount between 1 and 65502 of either one of the following: ‘\x00’, ‘\xff’, ‘#’,
‘U+1F60D’, ‘%’

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 37

Table 3.2: Field mutation rules used by the Smart Mutational Fuzzer.

Test Name Field Mutation

FieldNull Replace by null value
FieldRemove Remove field from the packet
FieldDuplicate Duplicate field from the packet

Table 3.3: Smart Mutational Fuzzer - String parameter example

Original String Option - Uri-Host: ‘sensors.example.com’

Test Name Mutated Parameter

StrEmpty ''
StrPredefined_\x00 '\x00\x00\x00'
StrPredefined_8 '8888888888'
StrPredefined_# '#####...' (len=255)
StrPredefined_U+1F60D 'U+1F60D'
StrPredefined_% '%%%%%'
StrAddNonPrintable 'sensors.example.com\x7f'
StrOverflow 'sensors.example.com%%%%%...' (len=256)

Table 3.4: Smart Mutational Fuzzer - Uint parameter example

Original Uint Option - Accept: 50

Test Name Mutated Parameter

UintNull null
UintAbsoluteMinusOne -1
UintAbsoluteOne 1
UintAbsoluteZero 0
UintAddOne 51
UintSubtractOne 49
UintMaxRange 65535
UintMinRange 0
UintMaxRangePlusOne 65536

3.3.3 Generational Fuzzing

The third and last engine is responsible for the Generational Fuzzer. It works by producing
value generators (or templates), based on the CoAP Packet Model—a description of the
protocol format using Python and Scapy—, which in turn generates test cases following
predefined rules. These value generators can be classified as format-based (Table 3.5),
option-based (Table 3.6) or message-based (Table 3.7). Format-based generators yield
data based on a given CoAP Option format (string, opaque, uint, empty), option-based

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 38

generators yield data based on a specific CoAP Option type (e.g. Uri-Query and Location-
Query options expect values in a key=value format, where the key, in general, assumes
a known attribute name), and message-based ones generate data based either on a CoAP
header field or the entire packet.

Besides the aforementioned protocol-based classification, value generators can be clas-
sified regarding the data generation mode as well: Random, which generates random data
(of a particular format, option or header field, for instance), and Singular, which gen-
erates special data instead (e.g. a 4096-byte string composed only by ’%’ characters, an
Uri-Query with value title=\x00, or a message id with value 65535). The Singular mode
basically encompasses boundary, exceptional and carefully-crafted, focused values, which
may in turn be based on the parameter format (Table 3.5), the CoAP option (Table 3.6)
or the CoAP message itself (Table 3.7).

In addition to the value generators, we have the packet templates. A packet template
can generate actual CoAP packets, with mostly valid header fields (i.e. the version field is
always 1, type is always CON or NON, token always has 0–8 bytes etc.). There are 5 types
of packet templates:

A - PacketSingular Mostly valid header with a slice of “garbage bytes” composed by
a singular string, which can span through the CoAP Options all the way to the
payload field.

B - PacketPayloadEmpty Similar to the previous one, but limits the “garbage bytes”
to the options fields, ensuring an empty payload.

C - PacketPayloadSingular Similar to the previous one, but instead of ensuring an
empty payload, it ensures a payload is present and is composed by a singular string.

D - PacketPayloadEmptyPathKnown Similar to the PacketPayloadEmpty, but in-
cludes Uri-Path options carrying the path to one of the resources obtained in step3.
It can also be seen as a specialization of the “Empty Payload” packet type from
the Informed Random Fuzzer, which, instead of carrying a random slice of “garbage
options”, carries a singular one.

E - PacketPayloadSingularPathKnown Similar to the PacketPayloadSingular, with
the addition of the Uri-Path options as well. It can also be seen as similar to the
“Random Payload” of the Informed Random Fuzzer, but instead of a random one,
it carries a payload comprised of a singular string.

The idea with the combination of these generators/templates is to gradually achieve
better odds of reaching critical parts of the SUT, with critical data. For instance, a
StrRandom value when used with packet templates A, B and C are just random values
within an untargeted packet. In conjunction with packet templates D and E, although
the generated option value will still be random, it will in turn then be targeted towards a
known Uri-Path from the SUT and, finally, by combining a StrSingular value with packet
templates D and E, we get specially-crafted (commonly boundary or known to cause issue)
values sent towards known Uri-Paths. The same reasoning applies to option-based value

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 39

Table 3.5: Generational Fuzzer - Format-based generation rules.

Format Test Name Parameter Generation Templates Used

string StrRandom Random string with random length (min, max) A, B, C, D, E
StrSingular Singular string with singular lengths (min, max) D, E

opaque OpaqueRandom Random binary string with random length (min, max) A, B, C, D, E
OpaqueSingular Singular binary string with singular lengths (min, max) D, E

uint UintRandom Random number (min, max) A, B, C, D, E
UintSingular Singular number (min, max) D, E

empty EmptyRandom Random number (min, max) A, B, C, D, E
EmptySingular Singular number (min, max) D, E

Table 3.6: Generational Fuzzer - Option-based generation rules. All tests are constructed
using packet templates D and E.

Option Type Test Name Parameter Generation

Uri-Query,
Location-Query

QueryStrRandom String formed by a valid query attribute name with random
attribute value. The value has singular lengths (min, max).

QueryStrSingular String formed by a valid query attribute name with singular
attribute value. The value has singular lengths (min, max).

Uri-Port PortSingular Well-known port numbers, such as 53, 8080 and 61615–61633.

Content-Format,
Accept ContentFormatSingular Well-known content format identifiers, such as 41, 50 and 60.

Block1, Block2 BlockSingular Blocks (uints) formed by a singular number concatenated
with all numbers between 0 and 15.

generators in comparison with format-based ones: they are specially-crafted not only with
regards to that options’ format, but to its semantics as well—and, additionaly, are always
combined with packet templates D and E for a targeted approach.

Therefore, given these generation rules, we can obtain the number of generators pro-
duced for a given option:

N o
gen =

format random︷ ︸︸ ︷
3 + 2 ·NSUT

paths+

format singular︷ ︸︸ ︷
2 ·NSUT

paths +

option random︷ ︸︸ ︷
Bo

rand_t · 2 ·NSUT
paths+

option singular︷ ︸︸ ︷
Bo

sing_t · 2 ·NSUT
paths (3.6)

where:

O = { o | o is a CoAP Option type }
S = {Uri-Query,Location-Query,Uri-Port,Content-Format,Accept,Block1,Block2 }
S ′ = {Uri-Query,Location-Query }

Bo
rand_t =

{
1, if o ∈ S ′

0, otherwise
, Bo

sing_t =

{
1, if o ∈ S

0, otherwise

NSUT
paths = Number of paths obtained for the SUT in step3

And, from there, the number of generators produced in a given generational fuzzing

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 40

Table 3.7: Generational Fuzzer - Message-based generation rules.

Protocol
Field Test Name Parameter Generation Templates

Used

All AllFieldsSingular Singular binary string with singular lengths (min, max).
The slice occupied by this string depends on the Packet Template. A, D, E

Message ID MIDSingular Singular number (min, max) E

Token TokenSingular Singular binary string with singular lengths (min, max) E

campaign:

Ngen
gen =

message generators︷︸︸︷
5 +

∑
∀o∈O

N o
gen (3.7)

Furthermore, in order to obtain the number of actual test cases generated for a given
campaign, we need to consider that, for the format-based generators, the number of
singular strings, binary strings or numbers produced (Ko

format) depends on the given CoAP
option, since it is based on two things: that specific option’s minimum and maximum
lengths, which can be seen in Table 2.1, and the number of user-defined crafted elements
of a given option format. Besides, the number of random (Ko

opt_r) or singular (Ko
opt_s)

strings, binary strings or numbers produced by the option-based generators also depends
on the specific option, since it is based on special values relevant for that given option only
(e.g. well-known port numbers are only relevant for Uri-Port, while key=value strings are
relevant only for Uri-Query and Location-Query options). Thus, we define the following
constants:

Kgen = User-defined fixed number of TCs for the <Format>Random generators

Ko
format = Number of <Format>Singular elements produced for option o ∈ O

Ko
opt_r = Number of <Option>Random elements produced for option o ∈ S ′

Ko
opt_s = Number of <Option>Singular elements produced for option o ∈ S

And, by plugging these constants in Equation 3.6, we get the number of test cases gener-
ated for a given option:

N o
TCs = Kgen·

format random︷ ︸︸ ︷
(3 + 2 ·NSUT

paths)+Ko
format·

format singular︷ ︸︸ ︷
(2 ·NSUT

paths) +Ko
opt_r·

option random︷ ︸︸ ︷
(2 ·NSUT

paths) +Ko
opt_s·

option singular︷ ︸︸ ︷
(2 ·NSUT

paths)

From which, finally, we can obtain the total number of test cases generated for a given
generational fuzzing campaign:

Ngen
TCs =

message TCs︷ ︸︸ ︷
Kall

gen · 3 + 49 + 603+
∑
∀o∈O

N o
TCs (3.8)

where

Kall
gen = User-defined fixed number of TCs for the AllFields generators

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 41

3.4 Workload Executor, Gathered Information & Of-
fline Analyzers

After one of the available engines generates the test cases in step4, step5 can be started.
This step is mainly performed by the Workload Executor. At this step, the general work-
flow is to: a) signal a new incoming TC to the Process Monitor ; b) send the actual
packet consisting of that TC to the SUT; and c) through the Process Monitor, check the
status of the SUT after receiving the TC and take the necessary measures to be able to
proceed and send the next TC. Throughout this step numerous information are gathered
and stored in files for a posterior, offline analysis. In this section we detail this workflow,
how failures are detected, which information is gathered and how they are used.

3.4.1 Test Case Execution and Failure Detection Mechanisms

The first two substeps are straightforward. To signal a new incoming test case to the Pro-
cess Monitor (step5.a), we call its pre_send RPC method (mentioned in Section 3.1),
which just ensures the SUT thread is alive and marks the SUT’s output log (target.log
in Figure 3.1). These marks are later used by the offline analyzer to automatically relate
each TC number to a particular slice of logs produced by that TC, in order to obtain
information regarding a particular possible failure and related error (see more, with ex-
amples, in Section 3.4.2). Then, to send the actual packet (step5.b), we simply use
Scapy to assemble the generated packet, send it over the network, and wait for a response
during a given timeout interval. This response (if present) is used during the third and
last substep.

1 ProcMon.post_send():
2 # Checks the SUT subprocess status
3 if not is_alive():
4 # SUT is dead, fill out report...
5 crashlist.write(tcNo, exitStatus)
6 # ... And save core file if available
7 save_coredump(tcNo, corefile)
8 return is_alive()
9

10 # exitStatus examples:
11 # 'Segmentation fault'
12 # 'Stopped with signal <SIGNAL>'
13 # 'Terminated with signal <SIGNAL>'
14 # 'Exit with code - <CODE>'
15 # 'Process died for unknown reason'

Listing 9: Pseudocode for step5.c. The piece on the left is executed by the Fuzzer at
the Attacker/Fuzzer Machine while the Process Monitor is responsible for the one on the
right at the Target Machine.

The last substep, step5.c, is more complex and we detail it with the help of Listing 9.
First, based on the details of the template being currently executed (i.e. templateDetails,
e.g. Generational Fuzzer’s PacketPayloadEmptyPathKnown for a Uri-Host option with
StrSingular), it determines if this TC is a targeted test case (line 2), in which case it
saves this TC (the pair tcNo and pkt, the actual packet sent) to an internal list of last

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 42

TCs sent to a specific URI (line 3). This list can keep a predefined, configured value of
MAXuri elements. In our experiments, this is set to 5. This information is useful for error
reproduction if such an error is related to consecutive packets sent to the same URI, for
instance if it only happens in case a CoAP GET request is issued after a CoAP DELETE
one to the same URI.

Then, if this TC was produced by a “deterministic” mutator or generator (e.g. Smart
Mutational Fuzzer’s StrOverflow instead of any template from Random Fuzzer or Muta-
tional Fuzzer), we save the mutated/generated value as well (lines 4–5). This is done for
potential statistical purposes, but this specific information (represented by the mutgen.csv
in Figure 3.1) is not currently used by us. Next, we save the TC inside another internal
list, which keeps a predefined number of last TCs sent to the SUT (line 6). This infor-
mation is also useful for error reproduction. In this case, if such an error is related to a
sequence of actions which can be captured by the last MAXall packets received by the
SUT, we are able to reproduce it later. In our experiments we set this number to 5.

After that, we check if the TC packet was answered by the SUT: if so, we merely update
the counter of currently unanswered packets (unansCount) to 0 and finish (lines 8–9), so
the next TC can be sent (continuing the loop from steps 5.a to 5.c again); otherwise, we
increment that counter. Then we need to determine if the SUT crashed. As mentioned
before, we can make a distinction between an abort failure and a restart failure. First,
the Fuzzer calls the post_send method from the Process Monitor through RPC (line
15). At the target machine, the Process Monitor will check if the SUT subprocess is still
alive and, if not, it will fill out the crashlist.log file with information regarding the
exit status of the SUT, as well as saving a core file in case one was generated; then, it
will return, through RPC, the liveness status of the SUT to the Fuzzer—this whole part
is presented in lines 1–8 of the right-hand side portion of Listing 9. This information is
useful for understanding the root cause of a failure, as well as distinguishing errors from
each other (see examples in Section 3.4.2). Back to the Fuzzer, if a failure was indeed
detected using this method, we can classify it as an abort failure (line 16).

In case the previous method did not detect a failure (i.e. the SUT subprocess is still
alive), it might still be possible the SUT task just hanged—due to an infinite loop, an
unhandled exception etc. In order not to have an additional heartbeat/healthcheck packet
sent between each unanswered TC, we only do it if the number of currently unanswered
packets is above a configurable threshold MAXunans (in our experiments, 5). If this is
the case, we send the heartbeat (line 18), which is just a basic CoAP packet known to
be always answered by that specific SUT (commonly a GET .well-known/core, but this
is actually configurable in a per-SUT basis, as illustrated in Listing 1, line 10). If this
heartbeat packet is not answered, we can infer a restart failure occurred (line 19).

Finally, if either an abort or a restart failure was detected (line 20), we conclude the
SUT has crashed. We then save the available details of the TC which caused this crash
(line 22), such as number, target URI and base template for mutation/generation—this
is later used to find out which CoAP options are related to which particular errors, for
example, and is represented by the ftc.csv in Figure 3.1. We also save both internal lists
to be used when trying to reproduce this error (packets.log from that same Figure).
Examples of this information can also be seen in Section 3.4.2. Then, we restore the

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 43

necessary counters and lists to zero/empty (lines 24–26) and restart the SUT through an
RPC call to the Process Monitor (line 27). At this point, the SUT should be up-and-
running again and ready to receive the next test case.

The last thing we do before actually executing the next test case is to apply a basic
heuristic to avoid finding too much of the same error. Our assumption is that, given a
combination of template and option type (or target URI, for example) being fuzzed, it
is more likely this combination will reach similar parts of the SUT, thus rendering a—
possibly large—number of the same error. We do this by defining configurable thresholds
per option classes, which are verified after each TC is executed (e.g. proxy- or response-
related options can be defined to stop trying their templates before other, more common
request options). To illustrate: if a template has generated 604 TCs but 50 failures were
already detected at TC #253 in this sequence, we drop the remaining 604−253 = 351 test
cases and proceed to the TCs from the next template. Additionally, when the execution of
a given template terminates (by this heuristic or by reaching the last TC of the template),
we save the details of this template’s execution, represented by tr.csv in Figure 3.1 (see
examples in Section 3.4.2), and finally proceed to the next TC.

3.4.2 Gathered Information & Offline Analyzers

We gather information for mainly four purposes: distinguishing between different errors;
identifying information regarding the possible root cause of a failure; reproducing an error;
and extracting metrics regarding fuzzer execution, such as elapsed times, number of TCs
generated and executed, number of crashes per template, etc. In this section we show
examples and formats of the information gathered and how we automated the analysis of
part of this information. The collection of the scripts mentioned in this section is what
forms the Offline Analyzers.

Distinguishing Errors and Identifying Root Causes

Three files are used to distinguish between different errors and to obtain information on
their root causes:

crashlist.log Produced by the Process Monitor, it lists all abort failures, each with a
summary message. An example can be seen in Listing 10;

[08:30.54] Crash : Test - 530 Reason - Segmentation fault
[08:31.27] Crash : Test - 778 Reason - Exit with code - 1
[08:32.06] Crash : Test - 1124 Reason - Exit with code - 0
[08:35.31] Crash : Test - 3406 Reason - Segmentation fault

Listing 10: Snippet example of the crashlist.log file from the riot-native-gcoap-server
application.

coredump Also produced by the Process Monitor. One core file is generated for every
crash with reason “Segmentation Fault”. In Listing 11 we show an example of one
core file opened in gdb and the stacktrace obtained from it;

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 44

1 Core was generated by `/home/bruno/Dropbox/coap-apps/libnyoci/src/plugtest/.libs/nyoci-plugtest-server'.
2 Program terminated with signal SIGSEGV, Segmentation fault.
3 #0 nyoci_node_list_request_handler (node=0x7ffcc02b41d0) at nyoci-list.c:88
4 88 if(prefix[0]) prefix = NULL;
5 (gdb) bt
6 #0 nyoci_node_list_request_handler (node=0x7ffcc02b41d0) at nyoci-list.c:88
7 #1 0x00007f64dd1becd2 in nyoci_node_router_handler (context=0x7ffcc02b41d0) at nyoci-node-router.c:81
8 #2 0x00007f64dd3c9d43 in nyoci_handle_request () at nyoci-inbound.c:542
9 #3 0x00007f64dd3ca15b in nyoci_inbound_packet_process (self=self@entry=0x2028010,

buffer=buffer@entry=0x7ffcc02b3d70 "B\001\310\373\367\a3", '\200' <repeats 127 times>,
"\210separate%2A%7C", packet_length=packet_length@entry=149, flags=flags@entry=0) at
nyoci-inbound.c:429

↪→
↪→
↪→

10 #4 0x00007f64dd3ce987 in nyoci_plat_process (self=self@entry=0x2028010) at nyoci-plat-net.c:922
11 #5 0x0000000000401990 in main (argc=<optimized out>, argv=0x7ffcc02b4688) at main-server.c:150

Listing 11: Snippet example of a core file from the libnyoci-plugtest application. We
obtain the TC number associated with this crash from the filename (in this case,
TC_26531.dump).

target.log For restart failures and for abort failures with reasons different from “Seg-
mentation Fault”, this file, produced by the SUT itself (and “annotated” by the
Process Monitor) is used. An example can be seen in Listing 12.

...
[11:48.08] pre_send(57)
11:48:08.018 [Thread-7] INFO org.ws4d.coap.core.rest.CoapResourceServer - read ressource: null
Exception in thread "Thread-7" java.lang.NullPointerException

at org.ws4d.coap.core.rest.BasicCoapResource.init(BasicCoapResource.java:74)
at org.ws4d.coap.core.rest.BasicCoapResource.<init>(BasicCoapResource.java:70)
at org.ws4d.coap.core.rest.CoapResourceServer.createResourceFromRequest(CoapResourceServer.java:306)
at org.ws4d.coap.core.rest.CoapResourceServer.onRequest(CoapResourceServer.java:271)
at org.ws4d.coap.core.connection.BasicCoapServerChannel.handleMessage(BasicCoapServerChannel c

.java:129)↪→
at org.ws4d.coap.core.connection.BasicCoapSocketHandler$ReceiveThread c

.handleIncommingMessage(BasicCoapSocketHandler.java:335)↪→
at org.ws4d.coap.core.connection.BasicCoapSocketHandler$ReceiveThread.run(BasicCoapSocketHandler c

.java:221)↪→
[11:48.08] pre_send(58)
...

Listing 12: Snippet example of the target.log file from the jcoap-plugtest application.
It shows the consecutive marks made during step5.a, as well as the output produced by
the SUT when processing a test case during step5.b. In this case, from the annotation
made by the Process Monitor, we can see that TC #57 caused an exception in the SUT.

The format of crashlist.log and the core files are SUT-independent. This way
it was rather straightforward to implemented a script, an_crashlist.py, which parses
the crashlist.log file and, for each test case number in there, reads the correspond-
ing core file (if available). Then, by interfacing with the gdb debugger, we load the
SUT binary configured in Listing 1 together with the core file, obtaining the stack-
trace from a given error. To be able to distinguish between errors, we assign an error
identificator at this point, composed by filename|line_no|function_name, based on
the deepest frame from the stacktrace from which we can extract a filename. To illus-

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 45

trate: the error depicted in Listing 11 would be identified as src/libnyociextra/nyoci-
list.c|88|nyoci_node_list_request_handler. Using this identifier we can find out
which errors are duplicated and which ones are unique errors.

For the target.log file, however, the stacktrace format is dependent on the SUT—
mainly on the SUT language, so there is still some degree of code reuse and generalization.
For this we implemented another script, called an_target.py, which, based on the SUT,
parses the target.log file and, similarly to the previous one, is able to assign an er-
ror identificator to each failure found (as well as associating that error to a given test
case number from the fuzzing campaign, by using the annotation marks produced by
the Process Monitor). Although dependent on the programming language of the SUT,
a given parser is fairly simple and is usually implemented with about 20 lines of Python
code. By following the patterns in our script, users of FuzzCoAP can easily extend it
to support SUTs using programming languages not initially explored in our experiments.
To illustrate the outputs of this script using the example from Listing 12, in that case
the script can detect an error caused by TC #57, which would be identified as Basic-
CoapResource.java:74:java.lang.NullPointerException. Note that we replace the
function_name portion of the identifier by an exception_name, when the last one is
present.

Finally, by identifying only the unique errors detected in each SUT, we can later come
back to those stacktraces to perform a manual Root Cause Analysis (RCA). This manual
analysis is assisted not only by the stacktraces, but by an inspection of the contents from
the test cases actually causing each of those errors as well, obtained by an association of
that information with the information from packets.log. After our experiments, this
was the information provided to the developers of the SUTs so they could not only easily
reproduce the issues, but also have a starting point for investigation and correction of the
errors detected by us.

Reproducing Failures and Errors

For failure and error reproduction we basically use the information gathered on the
packets.log file, consisting of the last packets sent to the SUT (up to MAXall) and
last packets sent to that specific URI target (up to MAXuri). The script developed to do
this, called an_packets.py, tries to reproduce each failure from a specified input list of
test case numbers by replaying the packets related to each of those test cases to the SUT.
If a failure does happen, a check is performed to verify if the (re)produced error is the
same as the one triggered during the actual fuzzing campaign. In our experiments, each
packet was replayed at least three times before rulling out an error as non-reproducible
(see more in Section 4.2).

Using the example from Listing 13, to reproduce the failure detected during execution
of TC #4141, FuzzCoAP can use the three last packets received by the SUT at that
point when it crashed (packets from TCs #4139, #4140 and #4141), as well as one packet
from the last sent to specific URI list (from TC #4141). We note how these two lists
usually contain distinct packets (or number of packets, for that matter), but the last
packet of each list will always be the same, which is the packet from the TC in which the

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 46

...
Crash detected on TC: 4141
Currently Unanswered Packets: 3
TC: 4139
0000 5102D8570CB472696F7405626F617264 Q..W..riot.board
0010 433A5C43454E5C434F4E C:\CEN\CON

TC: 4140
0000 5302387E312F8CB472696F740576616C S.8~1/..riot.val
0010 7565D081D082D083D084D085D086D087 ue..............
0020 D088D089D08AD08BD08CD08DD08ED08F
...[truncated for better readability]...
00a0 D188D189D18AD18BD18CD18DD180D18F

TC: 4141
0000 4101BFE9D8B472696F7405626F617264 A.....riot.board
0010 0D310E0E0E0E0E0E0E0E0E0E0E0E0E0E .1..............
0020 0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E
0030 0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E
0040 0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E

Last Packets sent to this Uri-Path (riot/board/^N...[<repeats 62 times>]...): 1
TC: 4141
0000 4101BFE9D8B472696F7405626F617264 A.....riot.board
0010 0D310E0E0E0E0E0E0E0E0E0E0E0E0E0E .1..............
0020 0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E
0030 0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E
0040 0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E0E

Crash detected on TC: 4317
...

Listing 13: Snippet example of the packets.log file from the riot-native-nanocoap-server
application, displaying the last packets sent before a failure was detected on TC #4141.

failure was actually detected—not necessarily the packet which caused the failure, since
detecting a failure only after a few (up to MAXunans) other TCs are executed is a common
scenario for restart failures, those in which the SUT just hangs. So, to actually reproduce
it, our tool would send the packet from TC #4139, then check the SUT’s health through
a heartbeat. If the SUT has not crashed, it would send the next packet, and continue this
until all elements from the first list were tried, when it would repeat the same process
for the second list. We argue this is a simple yet effective way of reproducing a given
failure (and related error) without saving every packet sent during the fuzzing campaign,
which would be unfeasible. This is further discussed and supported by FuzzCoAP’s high
reproduction rates and low false positive rates in Chapter 4.

Extracting Fuzzing Campaign Execution Metrics

The last two files we use are tr.csv and ftc.csv. The first one, which is an acronym for
Template Results, is a list of all templates used in the campaign (note that the components
of the Template Details vary between different engines) together with the number of
crashes, number of TCs generated, number of TCs actually executed (which might be
different from the previous one due to our heuristic mentioned at the end of Section 3.4.1)
and the time taken to run that template. An example is shown in Table 3.8. In this
example we show all templates used for the CoAP header and for the Block2 option during

CHAPTER 3. SYSTEM ARCHITECTURE AND TESTING METHODOLOGY 47

Table 3.8: Fragment example of the tr.csv file from the Generation Fuzzer campaign
against the openwsn-server application.

Option
Name

Template Details Crashes Executed
TCs

Generated
TCs

Run
TimePacket Template Generator Type Generator Rule URI ID

header PacketSingular Message-based AllFieldsSingular - 50 280 1000 87.01
header PacketPayloadEmpty Message-based AllFieldsSingular - 50 389 1000 168.56
header PacketPayloadSingular Message-based AllFieldsSingular - 1 1000 1000 43.4
header PacketPayloadEmptyPathKnown Message-based MIDSingular - 1 49 49 3.43
header PacketPayloadSingularPathKnown Message-based TokenSingular - 1 603 603 32.28
Block2 PacketSingular Format-based UintRandom - 7 50 50 16.96
Block2 PacketPayloadEmpty Format-based UintRandom - 5 50 50 20.01
Block2 PacketPayloadSingular Format-based UintRandom - 0 50 50 2.1
Block2 PacketPayloadEmptyPathKnown Format-based UintRandom 0 4 50 50 24.74
Block2 PacketPayloadSingularPathKnown Format-based UintRandom 0 1 50 50 3.32
Block2 PacketPayloadEmptyPathKnown Format-based UintSingular 0 14 97 97 72.14
Block2 PacketPayloadSingularPathKnown Format-based UintSingular 0 6 97 97 11.64
Block2 PacketPayloadEmptyPathKnown Option-based BlockSingular 0 50 454 976 242.78
Block2 PacketPayloadSingularPathKnown Option-based BlockSingular 0 6 976 976 55.71

the execution of a Generational Fuzzer campaign against the openwsn-server application.
From these numbers we can obtain aggregated values for a given option, a given target
URI or even for the entire campaign. These values and their aggregations form the
metrics discussed in Chapter 4. We note how the maximum number of crashes is 50 due
to the threshold we use for the aforementioned heuristic in our experiments. Similarly,
the numbers from the Generated TCs field can be explained by the parameters we use,
in our experiments, for Equation 3.8—we further discuss these experimental details in
Chapter 4 as well.

The second file, which is an acronym for Failed Test Cases, is a list of all TCs in which
a failure was detected, containing the following fields: Option Name, Template Details
and TC Number. Since the reported TC is the one in which the crash was detected, not
the one which actually caused the SUT to crash, what we do is to merge this information
with the information obtained through either an_crashlist or an_target to obtain an
accurate piece. We show an example of this, after merging, in Table 3.9. The template
details field shown in this example is just a condensed/internal version of the one shown
for mr.csv, with no information lost. We note, by the difference in the numbers between
the Detected On and the Crashed On fields, how a restart failure can be detected at most
up to MAXunans = 5 TCs later. Finally, for the third line, the emptiness of the last two
fields indicates a false positive—usually caused by timeout issues between the Fuzzer and
the SUT.

Table 3.9: Fragment example of the ftc.csv file from the Generation Fuzzer campaign
against the openwsn-server application. From this file we can identify which failure de-
tections are false positives (the ones for each there is no respective Error ID).

Option Name Template Details Detected On Crashed On Error ID [truncated]

Block2 D_O_BlockSingular_0 21023 21019 ../coap/coapOption.py:381:NotImplementedError
Block2 E_O_BlockSingular_0 21028 21024 ../coap/coapOption.py:175:AssertionError
Block2 E_O_BlockSingular_0 21083
Block2 E_O_BlockSingular_0 21984 21984 ../coap/coapOption.py:203:ValueError
Block2 E_O_BlockSingular_0 21989 21985 ../coap/coapOption.py:203:ValueError

Chapter 4

Experimental Evaluation

This chapter presents our findings. First we describe which samples were selected to
be used as SUTs, and outline our criteria to look for and choose these samples. Then,
we present the experimental results of running fuzzing campaigns against the selected
samples and discuss these results in terms of detected errors, error reproducibility rates,
false positive rates and execution time, among others. This discussion considers both
possible points of views: per fuzzing technique and per sample.

4.1 Data Preparation - Applications, Implementations
and Products using CoAP

To find target systems to be tested, we had to look for candidates consisting of any appli-
cation listening for CoAP packets at a given UDP port. To that end, we ran searches with
keywords “coap”, “lwm2m” and “onem2m”1 in the following bases: GitHub2, BitBucket3,
GitLab4, Open Hub5, Krugle6, Codeplex7, Grepcode8, Google Code9, Sourceforge10 and
Google Search11 (first 10 pages). Additionally, we considered the lists of protocol imple-
mentations available at the official website for the CoAP protocol12 and at the Wikipedia
article for CoAP13. A complete list with every CoAP implementation (or library) we
found—as well as cloud services offering a CoAP API and 6 commercial products using
the protocol—is shown in Appendix A.

With the list of available implementations built, we have manually inspected each
1Onem2m is a platform architecture standard with CoAP bindings. More on http://www.onem2m.

org/
2https://github.com/
3https://bitbucket.org/
4https://gitlab.com
5https://www.openhub.net/
6http://www.krugle.org/
7https://archive.codeplex.com/
8http://www.grepcode.com/
9https://code.google.com/archive/

10https://sourceforge.net/
11https://www.google.com
12http://coap.technology/
13https://en.wikipedia.org/wiki/Constrained_Application_Protocol

48

http://www.onem2m.org/
http://www.onem2m.org/
https://github.com/
https://bitbucket.org/
https://gitlab.com
https://www.openhub.net/
http://www.krugle.org/
https://archive.codeplex.com/
http://www.grepcode.com/
https://code.google.com/archive/
https://sourceforge.net/
https://www.google.com
http://coap.technology/
https://en.wikipedia.org/wiki/Constrained_Application_Protocol

CHAPTER 4. EXPERIMENTAL EVALUATION 49

Table 4.1: CoAP Implementations/Libraries targeted in the experimental study. Key:
4–Full Support, l–Partial Support and 8–No Support. Reference links to the respective
repositories are available in Appendix A.

CoAP
Implementation

RFC 7252
Base

RFC 7641
Observe

RFC 7959
Block-Wise
Transfer

RFC 6690
Link-Format Language License

aiocoap 4 4 4 4 Python MIT
Californium 4 4 4 4 Java EPL/EDL
canopus 4 4 4 4 Go Apache-2.0
cantcoap 4 8 8 8 C++ BSD-2-Clause
CoaPP 4 4 8 4 C++ MPL 2.0
CoAPthon 4 4 4 4 Python MIT
Erbium 4 4 4 4 C BSD-3-Clause
FreeCoAP 4 l 4 l C BSD-like
gcoap 4 4 8 l C LGPLv2.1
gen_coap 4 4 4 4 Erlang MPL 1.1
go-coap l 8 8 8 Go MIT
java-coap 4 4 4 4 Java Apache-2.0
jcoap 4 4 4 4 Java Apache-2.0
libcoap 4 4 4 4 C GPLv2/BSD-2-Clause
LibNyoci 4 4 4 4 C MIT
microcoap l 8 8 8 C MIT
mongoose-coap 4 8 8 8 C GPLv2/Commercial
nanocoap l l 8 l C LGPLv2.1
nCoAP 4 4 4 4 Java BSD-3-Clause
node-coap 4 4 4 4 Javascript MIT
openwsn l 8 l 8 Python BSD-3-Clause
ruby-coap 4 4 l 4 Ruby MIT
Soletta-CoAP 4 4 8 8 C Apache-2.0
txThings 4 4 4 4 Python MIT
YaCoAP l 8 8 4 C MIT

implementations’ code repository and/or website looking for information from which we
could infer a maturity and popularity status. This information included, but was not
limited to: versions of the reference standards implemented, frequency of updates to the
repository (as well as the date from the last update), number of forks and stars the project
had (since most of the results are located in bases with these metrics, such as GitHub)
and applications using that library. In possession of this information and considering
platform constraints—e.g. discarding libraries requiring different Operating Systems or
specific embedded hardware—we filtered the initial list with 78 implementations down to
26 relevant candidates, and finally to 25 libraries, since we were not able to successfully
install one of those. The list with all the 25 libraries targeted in this study is presented
in Table 4.1.

Finally, for each targeted library we have selected one application to be used as a sam-
ple in our study. For most cases, the sample is an example server application distributed
with the library itself. We briefly describe each of these samples below, including which
version of the underlying library was tested (composed of the prefix of the commit hash
and the commit date) and a “Short ID” (between parenthesis) to be used in Section 4.2
for better readability of the presented results. The fragments describing the underlying
libraries were mostly obtained from the repositories presented in Table 4.1 and is based
on developers’ claims:

CHAPTER 4. EXPERIMENTAL EVALUATION 50

aiocoap-server (aiocoap) Example server exposing .well-known/core plus 3 resources:
one triggering block-wise transfer, another using separate responses and an observ-
able one. The underlying library, aiocoap, uses Python 3’s asynchronous I/O to
facilitate concurrent operations while maintaining a simple to use interface and not
depending on anything outside the standard library. Version a2c2abe @ 2017-05-11
was used;

californium-plugtest (calif) Example server exposing .well-known/core plus 28
resources, including resources triggering block-wise transfers, using separate re-
sponses and observable ones. The library, Eclipse Californium, is a Java 7 im-
plementation of CoAP for IoT cloud services. Thus, the focus is on scalability and
usability instead of resource-efficiency like for embedded devices. Yet Californium
is also suitable for embedded JVMs. The version used was 0533403 @ 2017-07-27;

canopus-server (canopus) Server application14 created by us by putting together snip-
pets from the simple, block1 and observe examples distributed with the library,
just so we could obtain a single sample with all this functionality. It exposes
.well-known/core plus 6 resources, including resources triggering block-wise trans-
fers and observable ones. The library, canopus, is a Go implementation of the proto-
col. Version e374f5b @ 2018-02-07 of the library was used. Since this application
is not distributed with the library, although composed simply and exclusively from
snippets that are, it has its own version: 4a79a8d @ 2018-04-11;

cantcoap-server (cant) Example server exposing a single resource with piggybacked
response. The underlying library, cantcoap, is a C++ implementation with a focus
on simplicity. The library only provides Protocol Data Unit (PDU) construction
and de-construction, and users are expected to deal with retransmissions, timeouts
and message ID matching themselves. Version 14e7afc @ 2016-09-26 was used;

coapp-server (coapp) Example server exposing 4 resources, including an observable
one. CoaPP, the used library, is a C++11 implementation for which additional
details on its goals and design philosophy were not found. The sample uses version
dc271bf @ 2017-04-12 of the library;

coapthon-server (thon) Example server exposing .well-known/core plus 12 resources,
including resources triggering block-wise transfers, using separate responses and ob-
servable ones. The underlying library, CoAPthon, is a Python 2.7 implementation
focused on developers’ usability. Version b6983fb @ 2017-07-06 of the library was
used;

contiking-native-erbium-plugtest (erbium) Contiki OS15 is one of the most popular
open source operating systems for the Internet of Things. Contiki-NG16, in turn,
started as a fork of the Contiki OS focusing on dependable (secure and reliable)

14https://github.com/bsmelo/canopus
15http://www.contiki-os.org
16http://contiki-ng.org/

https://github.com/bsmelo/canopus
http://www.contiki-os.org
http://contiki-ng.org/

CHAPTER 4. EXPERIMENTAL EVALUATION 51

low-power communication and standard protocols. It is currently more actively
maintained than Contiki OS itself, and easier to use and test inside a Linux process.
Erbium17 is a CoAP implementation written in C and available in both Contiki OS
and Contiki-NG. In our study, version 9777ac4 @ 2018-02-03 of Contiki-NG was
used. The tested application, using Erbium, is an example server exposing .well-
known/core plus 20 resources, including resources triggering block-wise transfers,
using separate responses and observable ones;

freecoap-server (free) Example server exposing 3 resources, including one triggering
block-wise transfer and an observable one. FreeCoAP is an implementation of the
CoAP protocol in C for GNU/Linux. The library version used was 948b01a @ 2018-
01-18;

riot-native-gcoap-server (gcoap) RIOT OS18 is another popular open source oper-
ating system for the IoT. Gcoap is a CoAP implementation written in C and sup-
ported by RIOT. It provides a high-level interface for writing CoAP messages via
RIOT’s sock networking API. By internalizing network event processing, an appli-
cation only needs to focus on request/response handling. Internally, gcoap depends
on the nanocoap package for base level structs and functionality. Running inside
a Linux native process, the sample used is an example server exposing 2 resources
with piggybacked responses. The version used was 23f4f9b @ 2017-09-08;

gen_coap-server (gen) Example server exposing a single .well-known/core resource.
The underlying library, gen_coap, is a pure Erlang implementation of the protocol.
The sample uses version c820035 @ 2017-06-23 of the library;

ibm-crosscoap-proxy (ibm-go) This sample is a CoAP-to-HTTP translator proxy, built
in Go, called crosscoap19, intially developed by developerWorks20, an open source
division from IBM. It is a UDP server which translates incoming CoAP requests
to corresponding HTTP requests which are sent to a backend HTTP server. The
HTTP responses from the backend are translated back to CoAP and sent over to
the CoAP client. It exposes no resources by default, depending on what is exposed
by the HTTP backend. Version bcdf74f @ 2016-03-22 of the application was used.
Internally, this sample relies on the go-coap library to handle CoAP packets. Version
ddcc806 @ 2017-02-13 of the library was used;

java-coap-server (java-mb) Server application21 created by us, since this library did
not distribute a server-side example. It exposes .well-known/core plus 4 resources.
Java-coap, the underlying library, is a Java SE 8 implementation of the proto-
col developed by ARM mbed22 to be used within their cloud services. Version

17http://people.inf.ethz.ch/mkovatsc/erbium.php
18http://www.riot-os.org/
19https://github.com/ibm-security-innovation/crosscoap
20https://developer.ibm.com/code/2016/02/20/crosscoap-puts-coap-to-work-for-you/
21https://github.com/bsmelo/java-coap
22https://www.mbed.com/en/

http://people.inf.ethz.ch/mkovatsc/erbium.php
http://www.riot-os.org/
https://github.com/ibm-security-innovation/crosscoap
https://developer.ibm.com/code/2016/02/20/crosscoap-puts-coap-to-work-for-you/
https://github.com/bsmelo/java-coap
https://www.mbed.com/en/

CHAPTER 4. EXPERIMENTAL EVALUATION 52

23e62f3 @ 2018-03-21 of the library was used. Since this application is not dis-
tributed with the library, it has its own version: 52a9b80 @ 2018-03-22;

jcoap-plugtest (jcoap) Example server exposing .well-known/core plus 3 resources,
including an observable one. The library used, jCoAP, is a Java 6 implementation
of the CoAP protocol and is part of the bigger Web Services for Devices (WS4D)23

project. Version 673fa68 @ 2017-06-21 of the library was used.

libcoap-server (libcoap) Example server exposing .well-known/core plus 2 resources,
including one using separate responses and an observable one. Libcoap is a C im-
plementation for devices that are constrained by their resources such as computing
power, RF range, memory, bandwidth or network packet sizes. It is designed to run
on embedded devices as well as high-end computer systems with a POSIX API. It
was recently ported to the Win32 API as well. Library version 44f392d @ 2017-
07-18 was used;

libnyoci-plugtest (nyoci) Example server exposing .well-known/core plus 6 re-
sources, including resources triggering block-wise transfers, using separate responses
and observable ones. LibNyoci, the library used in this sample, is a highly-configurable
CoAP stack developed in C, which is suitable for a wide range of devices, from bare-
metal sensor nodes with kilobytes of RAM to Linux-based devices with megabytes
of RAM. Version 4a984c2 @ 2017-07-08 of the library was used;

riot-native-microcoap-server (micro) Another sample using RIOT OS. Microcoap
is actually an OS-independent CoAP implementation written in C and supported
as external package by RIOT. It is branded as a small CoAP implementation for
microcontrollers. Running inside a Linux native process, the sample used is an
example server exposing .well-known/core plus 2 resources with piggybacked re-
sponses. The library version used was ef27289 @ 2016-02-05, linked by RIOT OS
23f4f9b @ 2017-09-08;

mongoose-server (mongoose) Example server exposing a single resource with piggy-
backed response. This sample uses the CoAP implementation from Mongoose24, an
embedded web server & networking library. On the market since 2004, Mongoose is
used by a vast number of open source and commercial products—running even on
the International Space Station. Version 2516da1 @ 2018-03-12 of the library was
used in this sample;

riot-native-nanocoap-server (nano) Another sample using RIOT OS. Nanocoap is
a CoAP implementation written in C and supported by RIOT. It provides CoAP
functionality optimized for minimal resource usage, in a philosophy similar to that
of cantcoap. Running inside a Linux native process, the sample used is an example
server exposing .well-known/core plus 3 resources with piggybacked responses.
The version used was 23f4f9b @ 2017-09-08;

23http://ws4d.org/
24https://cesanta.com/

http://ws4d.org/
https://cesanta.com/

CHAPTER 4. EXPERIMENTAL EVALUATION 53

ncoap-server (ncoap) Example server exposing .well-known/core plus 2 resources,
including resources triggering block-wise transfers and an observable one. The li-
brary used in this sample is nCoAP, a Java 7 implementation based on Netty, an
asynchronous and event-driven network application framework. Version 15d5a76 @ 2018-
03-20 of the library was used;

node-coap-server (node) Simple example server exposing a single resource with piggy-
backed response. The node-coap library used by this sample is a Node.js (Javascript)
client and server library for CoAP modeled after Node.js’s http module. Library
version e4bbe97 @ 2018-03-18 was used;

openwsn-server (openwsn) Simple example server exposing a single resource with pig-
gybacked response. The library used is a Python implementation of the protocol
and is part of the bigger OpenWSN25 project from UC Berkeley. This sample uses
library version bdf2cac @ 2017-07-14;

ruby-david-server (ruby-dv) Example server called david26 exposing .well-known/
core plus 8 resources, including resources triggering block-wise transfers, using sep-
arate responses and observable ones. David is a CoAP server developed in Ruby
and uses the ruby-coap library internally. It has a Rack interface and its goal is
to enable the usage of Rack-compatible web frameworks for the Internet of Things.
Ruby-coap version 86c8419 @ 2016-01-26 was used, and since david is distributed
separately, it has its own version: b9413ce @ 2018-03-04;

soletta-coap-server (soletta) Simple example server exposing a single resource with
piggybacked response. The CoAP library used is part of the bigger Soletta27 project,
developed by 01, Intel’s open source division. It is a framework written in C and
aims to ease the software development for IoT devices. Version 0e492a8 @ 2017-
06-08 was used;

txthings-server (txthings) Example server exposing .well-known/core plus 4 re-
sources, including resources triggering block-wise transfers, using separate responses
and observable ones. It uses txThings, a Python library based on Twisted, an asyn-
chronous I/O framework and networking engine. Version 3ad1e3a @ 2016-05-01
was used;

yacoap-piggyback (yacoap) Example server exposing .well-known/core plus 2 re-
sources, including one using separate responses. This sample uses YaCoAP, a C im-
plementation that started as a fork from microcoap. Library version d32b128 @ 2016-
11-25 was used;

Due to the number of programming languages (8) used across all samples, and thus the
number of different application development environments and building tools involved, it
is not straightforward to get all these samples properly running for a given experiment.

25http://www.openwsn.org/
26https://github.com/nning/david
27https://solettaproject.org/

http://www.openwsn.org/
https://github.com/nning/david
https://solettaproject.org/

CHAPTER 4. EXPERIMENTAL EVALUATION 54

Thus, we provide a virtual machine (through a Vagrant file) with this collection and
all dependencies configured and ready to be used, available as Free Software under the
GNU GPLv3 license at https://github.com/bsmelo/fuzzcoap. We highlight this as
a contribution facilitating future research investigating any practical aspects of CoAP
implementations.

4.2 Results and Discussion

In this section we present the experimental results of the fuzzing campaigns executed.
All experiments were performed on a Lenovo Y570 laptop with Intel(R) Core(TM) i7-
2670QM CPU @ 2.20GHz processor and 8Gb of RAM. This machine was running Linux
Mint 17.3 distribution with GNU/Linux 3.19.0-32-generic x86_64 kernel.

Total Random Informed
Random

Mutational Smart
Mutational

Generational
0

20

40

60

80

100

120

100

42
37

64

45

76

Unique Errors per Technique

Techniques

U
ni

qu
e

 F
ai

lu
re

s

Figure 4.1: Chart of unique errors uncovered per fuzzing technique. Although it shows
the generational and mutational fuzzers with the highest scores, we can also see how far
from the total (100) these scores are. This suggests that the fuzzing techniques used are
complementary to each other—in other words, there are no full intersections between the
sets of uncovered errors per technique, as further detailed in Figure 4.2.

Of the 25 samples being tested, FuzzCoAP found at least one error in 14 (or 56%)
of them. As shown in Figure 4.1, a total of 100 unique errors were detected across
all samples. Figure 4.2 contains a detailed visualization of the same data presented in
Figure 4.1. Based on this visualization, we are able to draw one basic conclusion: the
techniques are mostly complementary with regard to each other. From the 100 errors, only
13 were detected by all 5 techniques, while other 24 errors were exclusively detected by
only one of the techniques—with the generational fuzzer having the highest “exclusiveness
score” of 12 errors.

Figure 4.3 further drills down this data, not only on a per-technique but on a per-
sample basis too. Only the samples for which at least one error was sucessfully detected
are displayed. We highlight that although for half (7 out of 14) of the samples displayed, a
single technique was able to uncover the total errors uncovered by the set of all techniques

28Generated using InteractiVenn http://www.interactivenn.net/

https://github.com/bsmelo/fuzzcoap
http://www.interactivenn.net/

CHAPTER 4. EXPERIMENTAL EVALUATION 55

 3

 2

 2 12

 5

 1

 2

 13
 2

 11

 1

 1

 13

 2

 2

 3

 7

 1

 2

 1
 1

 4

 6

 3

Generational Smart Mutational

Random Mutational

Informed Random

(77) (45)

(64)

(37)

(42)

Figure 4.2: Intersection of errors discovered across all samples and techniques28. Empty
regions contain 0 elements; the number was removed for better readability.

for that sample (a “perfect score”), this technique was not necessarily one of the complex
or more sophisticated ones; corroborating the conclusion that the techniques are comple-
mentary. From these 7 samples for which a “perfect technique score” was attained, the
generational fuzzer was the most successful technique, covering 4/7 samples, followed by
the mutational fuzzer with 3/7 samples, finally followed by the three other techniques—
random, informed random and smart mutational fuzzers—with 2/7 samples. Considering
only the samples for which the total uncovered errors (across all techniques) is greater
than one, only the generational fuzzer (for the nyoci sample) and the mutational fuzzer
(for openwsn and thon) were able to attain a “perfect technique score”.

When FuzzCoAP detects a failure, we say an alarm is raised. Information regarding
that alarm, including latest TCs executed and logs, is saved as detailed in Section 3.4.1.
Then, during offline analysis, every alarm is checked—in the semi-automatic manner
described in Section 3.4.2—to become either a confirmed failure (those for which there is
evidence of the related error) or non-confirmed (mostly due to the time-based detection
heuristic by heartbeats). Additionally, any confirmed failure can be either reproducible
or not reproducible. Reproducible failures are those failures we are able to reproduce,
a posteriori, using information from its respective alarm (i.e. by replaying the TCs from
packets.log we obtain the same stacktrace, or error, found in either target.log or
core.dump). Non-reproducible failures are those from which, although in possession of
evidence generated during the fuzzing campaign (after all, they are confirmed failures), we

CHAPTER 4. EXPERIMENTAL EVALUATION 56

canopus

coapp

thon

erbium

gcoap

ibm-go

java-mb

jcoap

libcoap

nyoci

mongoose

nano

openwsn

ruby-dv

0 2 4 6 8 10 12 14 16 18

Unique Errors per Technique and Sample

Random Informed Random Mutational

Smart Mutational Generational Total

Unique Failures

S
am

p
le

s

Figure 4.3: Chart of unique errors uncovered per sample and technique. Considering
only the samples for which at least one error was uncovered, in only half of them there
was a single technique that was able to uncover all errors—but not necessarily the same
technique—, corroborating once more the complementary nature of the techniques stud-
ied.

CHAPTER 4. EXPERIMENTAL EVALUATION 57

are not able to consistently reproduce them—this might happen due to race conditions,
for instance.

Based on those classes, we can classify an alarm as either a True Positive (TP) or a
False Positive (FP). True Positives are reproduced, confirmed failures and errors. False
Positives are non-confirmed failures. This raises a question regarding how to classify the
remaining group: non-reproducible, confirmed failures. In the charts to follow we use
both possible counting approaches: “optimistic”, in which non-reproducible failures are
considered true positives (data with this approach is displayed with a star (*) in the
charts and tables); and “conservative”, in which non-reproducible failures are considered
false positives (data with this approach is displayed with no remarks in the charts and
tables). Figure 4.4 summarizes this decision process.

Experiment
Phase

Fuzzing
Campaign

Offline Analysis

Artifacts
Used

(classifiers)

Process Monitor and
heartbeats heuristic

target.log, core.dump
packets.log,

target.log, core.dump

Failure
Class ALARM

[FP]
NON-CONFIRMED

(e.g. timeouts)

CONFIRMED

[TP*/FP]
NON-REPRODUCED
(e.g. race conditions)

[TP]
REPRODUCED

Figure 4.4: Classification process for True and False Positives.

We argue that FuzzCoAP has a low false positive rate. The only way for a false
positive to occur is due to timeouts on the heartbeat heuristic—and as explained in the
previous Chapter, it only happens for possible restart failures; alarms for abort failures
are always true positives, due to the nature of the Process Monitor. The proportional
charts in Figure 4.5 supports this claim. Empty lines are samples which did not generate
any alarm. If we look at the chart in (a), displaying all 25 samples, we see 7 samples (out
of 20 if we exclude the empty ones) dominated by false positives. However, if we filter
out this chart, displaying only the samples for which at least one of the alarms was a true
positive, we obtain the chart in (b). In this chart, only 1 bar (out of 14) is dominated
by false positives; and it is a “conservative counting” bar—meaning that these failures
occurred and were confirmed, they are just intermitent for some unknown reason. From
the chart in (b) and considering the “optimistic counting” bars, we can see that the only
sample presenting a high false positive rate is jcoap. We performed a further inspection
and found out that, for a number of test cases, this sample tends to block (either due
to a time-consuming processing task or due to too much logging output), causing the
heartbeat heuristic to timeout and (incorrectly) assume a restart failure. This could be
easily improved by a configurable heartbeat timeout per SUT—trading-off with execution

CHAPTER 4. EXPERIMENTAL EVALUATION 58

aiocoap
calif

canopus
cant

coapp
thon

thon*
erbium

free
gcoap

gcoap*
gen

ibm-go
java-mb

jcoap
libcoap

nyoci
nyoci*
micro

mongoose
nano

nano*
ncoap
node

openwsn
ruby-dv

ruby-dv*
soletta

txthings
yacoap

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

True and False Positives per Sample (%)

False Positives True Positives

True/False Positives (Percentages)

S
am

p
le

s

(a)

canopus

coapp

thon

thon*

erbium

gcoap

gcoap*

ibm-go

java-mb

jcoap

libcoap

nyoci

nyoci*

mongoose

nano

nano*

openwsn

ruby-dv

ruby-dv*

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

True and False Positives per Sample - Filtered (%)

S
am

p
le

s

False Positives True Positives

True/False Positives (Percentages)

(b)

Figure 4.5: Charts of True and False Positives per Sample (%). (a) Displays all samples.
(b) Filtered to display only the samples with at least one true positive.

time for that specific SUT as well, of course. Additionally, the average number of alarms
from the filtered out samples (txthings, ncoap, micro, gen, calif and aiocoap) is 49.7,
with half of them (txthings, ncoap and calif) triggering less than 15 alarms each. The
same improvement suggested for jcoap applies.

Figure 4.6 displays the same data (true and false positives per sample), but in absolute
numbers. Large true positive numbers suggest the presence of “shallow failures”: failures
that are so easily triggered it makes it difficult to reach deeper parts of the SUT. This is
a common problem with fuzzing, even more so when testing new or immature software.
After further inspection, delivery of the reports and follow-up discussions with the main-
tainers, we have confirmed this is the case for thon, openwsn and ruby-dv. Others are
currently being handled, but the trend exists.

Regarding failure and error reproducibility, 87% of the confirmed failures uncovered
by FuzzCoAP were consistently reproduced. This number is, of course, based on the
“conservative counting”; “optimistic counting”, which includes all confirmed failures—those
for which the tool was able to gather evidence of an error, but occurs intermitently—,

CHAPTER 4. EXPERIMENTAL EVALUATION 59

canopus

coapp

thon

thon*

erbium

gcoap

gcoap*

ibm-go

java-mb

jcoap

libcoap

nyoci

nyoci*

mongoose

nano

nano*

openwsn

ruby-dv

ruby-dv*

0 5000 10000 15000 20000 25000 30000 35000

0

0

27

1

0

180

0

1

2

1341

0

2

1

1

259

54

71

1

0

16614

20347

20841

20867

1

53

233

3008

1415

5794

554

441

442

49

1135

1340

7296

33407

33408

True and False Positives per Sample

False Positives True Positives
True/False Positives

S
am

p
le

s

Figure 4.6: Chart of True and False Positives per Sample, in absolute values—filtered to
display only the samples with at least one true positive.

would render a score of 100%. Every packet (or test case) was replayed at least three times
before a given failure or error was ruled out as non-reproduced. Figure 4.7 displays error
reproducibility data, based on the “conservative counting”, per individual sample. It also
shows that 11/13 (or 85%) of those non-reproduced errors belong to samples developed
in C (nano, nyoci and gcoap), a low-level language more prone to race conditions and
other issues that might impact consistent reproducibility. Further supporting this claim,
10/11 (or 91%) of these non-reproduced errors belong to samples based on a specific
IoT OS (RIOT OS), relying on custom timer, scheduler and IPC implementations. These
implementations are not as mature as those of a widespread OS as GNU/Linux, and could
have a greater impact on reproducibility (again due to higher chances of race conditions
and similar issues) as well.

Furthermore, in Figures 4.8 and 4.9 we present data regarding the execution times per
sample, for each fuzzing technique implemented. The data series labeled as “real” is formed
by the actual execution times of the fuzzing campaigns. The “projection” one shows how
long it would take to run the same campaign, if the heuristics to avoid finding too much of
the same errors—presented at the end of Section 3.4.1—were not in place. Throughout all
fuzzing techniques, we see these heuristics having most of their impacts on the same set
of samples (ruby-dv, openwsn, java-mb, ibm-go, thon, coapp, canopus). These samples
are basically the same ones with large true positive rates presented in Figure 4.6. We
can make two inferences from this: i) those heuristcs greatly reduce execution time which

CHAPTER 4. EXPERIMENTAL EVALUATION 60

canopus
coapp

thon
erbium
gcoap

ibm-go
java-mb

jcoap
libcoap

nyoci
mongoose

nano
openwsn

ruby-dv

0 2 4 6 8 10 12 14 16 18

Unique Errors and Reproducibility per Sample (Filtered)

Reproduced Not Reproduced

Unique Failures

S
am

p
le

s

Figure 4.7: Chart of Error Reproducibility per Sample, considering the “conservative
counting”.

would be wasted in finding the same “shallow failures” (by an average of 823 minutes
per sample, or 54% of the projected time, when considering all techniques); ii) given the
large numbers from Figure 4.6, there is still room for improvement on those heuristics.
Additionally, we associate the increase in the order of magnitude (easily seen from the
mean lines), from all other techniques to the generational fuzzer, to the fact that this
fuzzer is the only one with a variable amount of generated test cases. This amount is
proportional to the number of paths of a given sample (see Equations 3.6 and 3.8), and
we highlight ruby-dv (9), erbium (21), thon (13) and calif (29) as the biggest targeted
samples in that sense.

Finally, we reiterate the real-world impact on IoT security made by this research. All
errors were reported to respective library maintainers, accompanied by simple Python
scripts to easily reproduce each error themselves. Currently, there is an ongoing follow-up
process between us and the maintainers, and some of the errors were already fixed. Our
goal is to maximize these fixes with the community.

CHAPTER 4. EXPERIMENTAL EVALUATION 61

aiocoap
calif

canopus
cant

coapp
thon

erbium
free

gcoap
gen

ibm-go
java-mb

jcoap
libcoap

nyoci
micro

mongoose
nano

ncoap
node

openwsn
ruby-dv
soletta

txthings
yacoap

1 10 100 1000

19
19
3
20
2
17
63
20
44
22
7
22
24
20
20
42
20
45
17
17
26
4
20
19
20

Execution Time per Sample - Random Fuzzer

Projection Real Mean (Real)

28

Minutes (logscale)

S
am

p
le

s

(a)

aiocoap
calif

canopus
cant

coapp
thon

erbium
free

gcoap
gen

ibm-go
java-mb

jcoap
libcoap

nyoci
micro

mongoose
nano

ncoap
node

openwsn
ruby-dv
soletta

txthings
yacoap

1 10 100 1000

19
19
3
20
2
17
63
20
44
22
7
22
24
20
20
42
20
45
17
17
26
4
20
19
20

Execution Time per Sample - Informed Random Fuzzer

Projection Real Mean (Real)

22

Minutes (logscale)

S
am

p
le

s

(b)

aiocoap
calif

canopus
cant

coapp
thon

erbium
free

gcoap
gen

ibm-go
java-mb

jcoap
libcoap

nyoci
micro

mongoose
nano

ncoap
node

openwsn
ruby-dv
soletta

txthings
yacoap

1 10 100 1000

31
32
79
52
45
352
137
35
110
40
59
68
156
46
31
79
34
108
34
34
249
169
36
33
33

Execution Time per Sample - Mutational Fuzzer

Projection Real Mean (Real)

83

Minutes (logscale)

S
am

p
le

s

(c)

aiocoap
calif

canopus
cant

coapp
thon

erbium
free

gcoap
gen

ibm-go
java-mb

jcoap
libcoap

nyoci
micro

mongoose
nano

ncoap
node

openwsn
ruby-dv
soletta

txthings
yacoap

1 10 100 1000 10000

17
16
20
21
32
84
47
14
54
22
31
26
149
16
24
47
14
89
14
14
263
73
13
16
14

Execution Time per Sample - Smart Mutational Fuzzer

Projection Real Mean (Real)

45

Minutes (logscale)

S
am

p
le

s

(d)

Figure 4.8: Charts of Execution Times per Sample (1). (a) Random Fuzzer. (b) Informed
Random Fuzzer. (c) Mutational Fuzzer. (d) Smart Mutational Fuzzer. Colored vertical
lines displays the average between all samples.

CHAPTER 4. EXPERIMENTAL EVALUATION 62

aiocoap
calif

canopus
cant

coapp
thon

erbium
free

gcoap
gen

ibm-go
java-mb

jcoap
libcoap

nyoci
micro

mongoose
nano

ncoap
node

openwsn
ruby-dv
soletta

txthings
yacoap

1 10 100 1000 10000

420
4713
604
160
271
1050
5257
250
316
84
162
531
356
241
688
470
83
727
258
73
111
1116
80
699
257

Execution Time per Sample - Generational Fuzzer

Projection Real Mean (Real)

759

Minutes (logscale)

S
am

p
le

s

Figure 4.9: Chart of Execution Times per Sample (2). Generational Fuzzer. The colored
vertical line displays the average between all samples.

Chapter 5

Conclusion

Motivated by the growth of research and applications for an Internet of Things scenario
and considering possible security issues in emerging technologies, in this dissertation we
approached the problem of robustness/security testing of the CoAP protocol. In this
chapter we wrap up the work by summarizing what was done, pointing out its limitations
and suggesting work that could be further developed in this area.

In Chapter 1, an introduction to the Internet of Things and Web of Things concepts
was presented, as well as to the Constrained Application Protocol (CoAP) as a technol-
ogy enabler for those concepts. Likewise, an overview was given on why security is an
important concern in the IoT domain, including examples of security incidents in this
domain, and what kind of work has been done regarding CoAP security. Based on this, a
decision was taken to explore practical IoT software security, by using fuzzing techniques
to test the robustness/security status of available CoAP implementations. The chapter
ended with an outline of the objectives, contributions and dissertation structure.

Chapter 2 presented an overview of the CoAP protocol through its main specifica-
tions, allowing one to better understand the protocol itself. Then, existing research and
tools for testing CoAP implementations was presented, highlighting not only the need for
a study to better understand the current status of CoAP implementations, but also the
need for an open, free, readily available tool to test robustness and security aspects of
CoAP applications and implementations. The open tools found can only perform func-
tional (conformance and interoperability) tests, while tools that could be used to perform
robustness/security testing of the protocol are not open. Finally, relevant work regarding
fuzzing techniques was presented, together with their usage and evolution. This served
as the basis for the development of a CoAP-focused testing environment and fuzzer, a
system we called FuzzCoAP.

The design and implementation of that system was presented in Chapter 3. Every
aspect of every entity involved in the fuzzing process was detailed, ranging from the
Process Monitor, responsible for monitoring the status of a given System Under Test
(SUT), through the online failure detection mechanisms from the Workload Executor and
to the five fuzzing techniques used to generate test cases—how they work, what they
do and why it was done. Additionally detailed were the information collected during a
fuzzing campaign and how that information is used afterwards, during offline analysis,
to distinguish between different errors, reproduce these failures and errors and extract

63

CHAPTER 5. CONCLUSION 64

execution metrics.
Finally, in Chapter 4, the experimental results were presented, starting by explaining

the data preparation phase, showing how and why the samples were found and selected.
Then follows a discussion of the obtained results, focusing on interpreting what the data
points to in terms of specific fuzzing techniques and individual samples. It is highlighted
that this discussion is highly tied to the discussion presented in Chapter 3, which explains
design decisions, implemented heuristics and other aspects directly related to the resulting
experimental data.

The tool was able to detect a total of 100 errors in 14 out of 25 tested samples, with
an average false positive rate of 31.3% and 87% of error reproducibility. Considering
only the samples presenting at least one true positive (i.e. at least one confirmed fail-
ure), the average false positive rate attained is 1.86%. Fuzzing campaigns executed with
FuzzCoAP take an average of 12 hours using the generational fuzzer, and 45 minutes
using the other techniques implemented—considering specific, configurable parameters
and thresholds. Besides the practical, real-world impact of these findings—errors were
reported and are currently being fixed by library maintainers—, our data corroborates
Johansson et al.’s [35] and Winter et al.’s [75], which suggests that several techniques
should be combined to achieve greater coverage and find more vulnerabilities. The tech-
niques implemented are complementary to each other, with a presumably more complex
technique being not necessarily better than a simple technique—most of the time, they
are able to uncover different errors.

Another contribution was the centralized collection of samples. Since the samples use
different programming languages, and thus different build systems, the task of setting up
an environment to deal with all of them is not trivial. To aid future research involving
available CoAP implementations, we provided a Virtual Machine with this collection and
all dependencies configured and ready to be used.

5.1 Limitations

One must be aware that the results and comparisons between the fuzzing techniques
implemented might not be generalizable to other domains. In fact, one may see this as
another motivation for this work: understand how each technique behaves in the specific
scenario of testing the CoAP protocol.

Additionally, concerns regarding the quality of the tested samples were highlighted.
Since a black-box technique is used, actual applications to be targeted are needed, al-
though through the applications one is actually testing the underlying libraries. Since
CoAP is a new protocol with very few commercial products using it as of now, most
samples are demo/example server applications that ship with the respective libraries.
While this is considered a possible limitation, it is also an interesting finding regarding
the current adoption status of the protocol itself.

Regarding root cause analysis of the errors found by FuzzCoAP, it was not performed
since it would require a time-consuming, non-repeatable effort: to properly investigate
particular errors and find out their causes, we would need to know the details of each

CHAPTER 5. CONCLUSION 65

implementation, their architectures, programming languages used etc. Instead, as previ-
ously stated, we have chosen to report the errors to the respective developers, who with
proper knowledge of the implementations, are able to understand and fix the errors with
greater ease. Thus, we are currently not able to say if a given sample leak some data, for
instance; but we do know some buffer overflow errors found are indeed exploitable, as is
the case for LibNyoci1 and Contiki-NG’s Erbium2.

Finally, in the interest of full disclosure, this author has also contributed to the de-
velopment of one of the tested libraries: Soletta-CoAP. Contributions were minor and
originated from a Google Summer of Code3 project, in which the original author devel-
oped an LWM2M security layer for the Soletta Framework. Since LWM2M uses CoAP as
a transport, some modifications were made in the Soletta-CoAP API. Due to the nature
of these changes and their minor overall impact in the library itself, there is no conflict of
interests.

5.2 Future Work

FuzzCoAP itself can be further improved and extended with regards to a number of
things:

• Making the timeout configurable on a per-SUT basis could improve the heartbeat
heuristic and lower the false positive rate.

• The heuristic to avoid finding too much of the same error could be improved as well:
since a given SUT suffering from the problem of “shallow failures” will exhibit this
problem for all techniques, the observation of the results from a first run with a fast
technique (e.g. random fuzzer) could be used to tune the configurable thresholds
before running a technique that takes more time. This would also lower the false
positive rate. In case the user of the tool is the developer of the SUT, she could
even fix the shallow failure before running longer campaigns.

• Adding packet models (descriptions of the protocol format written in Python using
Scapy) to better support CoAP Resource Directory, oneM2M and LWM2M targets.

• Multiple testing threads, simulating multiple clients. It would mean higher com-
plexity on reproducibility, but should be possible and could uncover new errors.
Even though, this would probably have a bigger impact on LWM2M targets than
on plain CoAP ones, since LWM2M is stateful, unlike CoAP.

Finally, after studying, implementing and better grasping the challenges of fuzz testing,
it would be interesting to explore other approaches and techniques, in either the IoT
scenario or in a different one. This could include research on evolutionary fuzzing, guided
fuzzing, improved SUT monitoring, online error identification and classification etc.

1https://github.com/darconeous/libnyoci/pull/12
2https://github.com/contiki-ng/contiki-ng/issues/425
3https://summerofcode.withgoogle.com/archive/2016/projects/5629807966552064/

https://github.com/darconeous/libnyoci/pull/12
https://github.com/contiki-ng/contiki-ng/issues/425
https://summerofcode.withgoogle.com/archive/2016/projects/5629807966552064/

Bibliography

[1] A. Adelsbach, C. Cachin, S. Creese, Y. Deswarte, K. Kursawe, J.-C. Laprie, B.
Pfitzmann, D. Powell, B. Randell, J. Riodan, and Others. Maftia conceptual model
and architecture. Technical report, 2001.

[2] T. A. Alghamdi, A. Lasebae, and M. Aiash. Security analysis of the constrained
application protocol in the internet of things. In Second International Conference
on Future Generation Communication Technologies (FGCT 2013), pages 163–168.
IEEE, nov 2013.

[3] W. H. Allen, C. Dou, and G. A. Marin. A model-based approach to the security test-
ing of network protocol implementations. In Local Computer Networks, Proceedings
2006 31st IEEE Conference on, pages 1008–1015, 2006.

[4] N. Antunes and M. Vieira. Security testing in SOAs: Techniques and tools. In
Innovative Technologies for Dependable OTS-Based Critical Systems, pages 159–174.
Springer Milan, Milano, 2013.

[5] N. Antunes and M. Vieira. Designing vulnerability testing tools for web services:
approach, components, and tools. International Journal of Information Security,
pages 1–23, 2016.

[6] J. Arlat, J.-C. Fabre, and M. Rodriguez. Dependability of COTS microkernel-based
systems. IEEE Transactions on Computers, 51(2):138–163, 2002.

[7] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer
Networks, 54(15):2787–2805, 2010.

[8] C. Bormann. Test descriptions for CoAP#4. https://github.com/cabo/td-coap4.
Access in March 03, 2017.

[9] C. Bormann, A. Castellani, and Z. Shelby. CoAP: An application protocol for billions
of tiny internet nodes. IEEE Internet Computing, 16(2):62–67, mar 2012.

[10] C. Bormann and Z. Shelby. RFC7959 - block-wise transfers in the constrained appli-
cation protocol (CoAP), 2016.

[11] A. P. Castellani, M. Gheda, N. Bui, M. Rossi, and M. Zorzi. Web services for the
internet of things through CoAP and EXI. In 2011 IEEE International Conference
on Communications Workshops (ICC), pages 1–6. IEEE, jun 2011.

66

https://github.com/cabo/td-coap4

BIBLIOGRAPHY 67

[12] M. Castro, A. J. Jara, and A. F. Skarmeta. Enabling end-to-end CoAP-based com-
munications for the web of things. Journal of Network and Computer Applications,
59(C):230–236, jan 2016.

[13] Check Point Software. Media alert: Check point researchers discover ISP vulnera-
bilities that hackers could use to take over millions of consumer internet and wi-fi
devices. http://www.checkpoint.com/press/2014/media-alert-check-point-
researchers-discover-isp-vulnerabilities-hackers-use-take-millions-
consumer-internet-wi-fi-devices/. Access in April 09, 2015.

[14] N. Chen, C. Viho, A. Baire, X. Huang, and J. Zha. Ensuring interoperability for the
internet of things: Experience with CoAP protocol testing. Automatika - Journal for
Control, Measurement, Electronics, Computing and Communications, 54(4):448–458,
2013.

[15] Cisco. The internet of things reference model. http://cdn.iotwf.com/resources/
71/IoT_Reference_Model_White_Paper_June_4_2014.pdf, 2014.

[16] Codenomicon. CoAP server suite | codenomicon. http://www.codenomicon.
com/products/defensics/datasheets/coap-server.html. Access in February 25,
2017.

[17] CORE-WG. Constrained restful environments (core). https://datatracker.ietf.
org/wg/core/charter/. Access in March 07, 2017.

[18] A. C. V. De Melo and P. Silveira. Improving data perturbation testing techniques
for web services. Information Sciences, 181(3):600–619, 2011.

[19] Eclipse. Eclipse IoT-testware | projects.eclipse.org. https://projects.eclipse.
org/projects/technology.iottestware. Access in April 11, 2018.

[20] ETSI. ETSI CTI CoAP plugtests guide first draft v0. http://www.etsi.org/
plugtests/CoAP/Document/CoAP_TestDescriptions_v015.pdf. Access in March
03, 2017.

[21] R. T. Fielding. Architectural styles and the design of network-based software archi-
tectures. Ph.d. thesis, University of California, Irvine, 2000.

[22] A. K. Ghosh, M. Schmid, and V. Shah. Testing the robustness of windows NT
software. In Proceedings Ninth International Symposium on Software Reliability En-
gineering (Cat. No.98TB100257), pages 231–235. IEEE Comput. Soc, 1998.

[23] N. K. Giang, Minkeun Ha, and Daeyoung Kim. SCoAP: An integration of CoAP pro-
tocol with web-based application. In 2013 IEEE Global Communications Conference
(GLOBECOM), number December, pages 2648–2653. IEEE, dec 2013.

[24] J. Granjal and E. Monteiro. End-to-end transparent transport-layer security for
internet-integrated mobile sensing devices. In 2016 IFIP Networking Conference
(IFIP Networking) and Workshops, pages 306–314. IEEE, may 2016.

http://www.checkpoint.com/press/2014/media-alert-check-point-researchers-discover-isp-vulnerabilities-hackers-use-take-millions-consumer-internet-wi-fi-devices/
http://www.checkpoint.com/press/2014/media-alert-check-point-researchers-discover-isp-vulnerabilities-hackers-use-take-millions-consumer-internet-wi-fi-devices/
http://www.checkpoint.com/press/2014/media-alert-check-point-researchers-discover-isp-vulnerabilities-hackers-use-take-millions-consumer-internet-wi-fi-devices/
http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf
http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf
http://www.codenomicon.com/products/defensics/datasheets/coap-server.html
http://www.codenomicon.com/products/defensics/datasheets/coap-server.html
https://datatracker.ietf.org/wg/core/charter/
https://datatracker.ietf.org/wg/core/charter/
https://projects.eclipse.org/projects/technology.iottestware
https://projects.eclipse.org/projects/technology.iottestware
http://www.etsi.org/plugtests/CoAP/Document/CoAP_TestDescriptions_v015.pdf
http://www.etsi.org/plugtests/CoAP/Document/CoAP_TestDescriptions_v015.pdf

BIBLIOGRAPHY 68

[25] J. Granjal, E. Monteiro, and J. Sa Silva. Security for the internet of things: A survey
of existing protocols and open research issues. IEEE Communications Surveys &
Tutorials, 17(3):1294–1312, 2015.

[26] D. Guinard, V. Trifa, F. Mattern, and E. Wilde. Architecting the Internet of Things.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[27] J. Han, M. Ha, and D. Kim. Practical security analysis for the constrained node
networks: Focusing on the dtls protocol. In 2015 5th International Conference on
the Internet of Things (IOT), pages 22–29. IEEE, oct 2015.

[28] K. Hartke. RFC7641 - observing resources in the constrained application protocol
(CoAP), 2015.

[29] J. Heuer, J. Hund, and O. Pfaff. Toward the web of things: Applying web technologies
to the physical world. Computer, 48(5):34–42, may 2015.

[30] J. Hui and P. Thubert. RFC6282 - compression format for IPv6 datagrams over
IEEE 802.15.4-based networks, 2011.

[31] IEEE. IEEE Standard for Local and metropolitan area networks, Part 15.4: Low-Rate
Wireless Personal Area Networks. 2011.

[32] IEEE. Towards a definition of the internet of things (IoT), 2015.

[33] IRISA. Passive validation tool for CoAP [TIPI - testing internet protocols inter-
operability]. http://www.irisa.fr/tipi/wiki/doku.php/Passive_validation_
tool_for_CoAP. Access in March 03, 2017.

[34] ISO/IEC/IEEE. ISO/IEC/IEEE 24765 : 2017(E): ISO/IEC/IEEE International
Standard - Systems and software engineering–Vocabulary. IEEE, 2017.

[35] A. Johansson, N. Suri, and B. Murphy. On the selection of error model(s) for OS ro-
bustness evaluation. Proc. IEEE/IFIP Intl. Conf. Dependable Systems and Networks,
pages 502–511, 2007.

[36] R. Kaksonen. A functional method for assessing protocol implementation security.
VTT Publications 448, 2001.

[37] P. Koopman, K. Devale, and J. Devale. Interface robustness testing: Experience and
lessons learned from the ballista project. Dependability Benchmarking for Computer
Systems, pages 201–226, 2008.

[38] M. Kovatsch. Demo abstract: Human-CoAP interaction with copper. In 2011 In-
ternational Conference on Distributed Computing in Sensor Systems and Workshops
(DCOSS), pages 1–2. IEEE, jun 2011.

[39] M. Kovatsch, M. Lanter, and S. Duquennoy. Actinium: A restful runtime container
for scriptable internet of things applications. In 2012 3rd IEEE International Con-
ference on the Internet of Things, pages 135–142. IEEE, oct 2012.

http://www.irisa.fr/tipi/wiki/doku.php/Passive_validation_tool_for_CoAP
http://www.irisa.fr/tipi/wiki/doku.php/Passive_validation_tool_for_CoAP

BIBLIOGRAPHY 69

[40] B. Krebs. Hacked cameras, DVRs powered today’s massive internet out-
age. https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-
todays-massive-internet-outage/. Access in April 28, 2017.

[41] N. Kushalnagar, G. Montenegro, and C. Schumacher. RFC4919 - IPv6 over low-
power wireless personal area networks (6LoWPANs): Overview, assumptions, prob-
lem statement, and goals, 2007.

[42] N. Laranjeiro, S. Canelas, and M. Vieira. Wsrbench: An on-line tool for robustness
benchmarking. In Proceedings - 2008 IEEE International Conference on Services
Computing, SCC 2008, volume 2, pages 187–194, 2008.

[43] R. d. J. Martins, V. G. Schaurich, L. A. D. Knob, J. A. Wickboldt, A. S. Filho, L. Z.
Granville, and M. Pias. Performance analysis of 6LoWPAN and CoAP for secure
communications in smart homes. In 2016 IEEE 30th International Conference on
Advanced Information Networking and Applications (AINA), pages 1027–1034, 2016.

[44] L. Masinter, T. Berners-Lee, and R. T. Fielding. RFC3986 - uniform resource iden-
tifier (URI): Generic syntax, 2005.

[45] R. A. Maxion and R. T. Olszewski. Improving software robustness with dependability
cases. In Proceedings of the The Twenty-Eighth Annual International Symposium on
Fault-Tolerant Computing, page 496. IEEE Computer Society Press, 1998.

[46] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of unix
utilities. Communications of the ACM, 33(12):32–44, dec 1990.

[47] A. Mohsen Nia and N. K. Jha. A comprehensive study of security of internet-of-
things. IEEE Transactions on Emerging Topics in Computing, 5(4):586 – 602, 2016.

[48] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. RFC4944 - transmission of
IPv6 packets over IEEE 802.15.4 networks, 2007.

[49] G. Moritz, F. Golatowski, and D. Timmermann. A lightweight SOAP over CoAP
transport binding for resource constraint networks. In 2011 IEEE Eighth Interna-
tional Conference on Mobile Ad-Hoc and Sensor Systems, pages 861–866. IEEE, oct
2011.

[50] R. Natella, D. Cotroneo, and H. S. Madeira. Assessing dependability with software
fault injection. ACM Computing Surveys, 48(3):1–55, feb 2016.

[51] N. F. Neves, J. Antunes, M. Correia, P. Veríssimo, and R. F. Neves. Using attack in-
jection to discover new vulnerabilities. In Proceedings of the International Conference
on Dependable Systems and Networks, volume 27513, pages 457–466, 2006.

[52] A. Nordrum. Popular internet of things forecast of 50 billion devices by
2020 is outdated - IEEE spectrum. http://spectrum.ieee.org/tech-
talk/telecom/internet/popular-internet-of-things-forecast-of-50-
billion-devices-by-2020-is-outdated. Access in April 28, 2017.

https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated

BIBLIOGRAPHY 70

[53] S. Notra, M. Siddiqi, H. Habibi Gharakheili, V. Sivaraman, and R. Boreli. An
experimental study of security and privacy risks with emerging household appliances.
In 2014 IEEE Conference on Communications and Network Security, pages 79–84,
2014.

[54] L. O’Donnell. 8 DDoS attacks that made enterprises rethink IoT se-
curity. http://www.crn.com/slide-shows/internet-of-things/300084663/8-
ddos-attacks-that-made-enterprises-rethink-iot-security.htm, apr. Access
in April 27, 2017.

[55] P. Oehlert. Violating assumptions with fuzzing. IEEE Security and Privacy Maga-
zine, 3(2):58–62, mar 2005.

[56] J. Offutt and W. Xu. Generating test cases for web services using data perturbation.
ACM SIGSOFT Software Engineering Notes, 29(5):1–10, sep 2004.

[57] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco, G. Boggia,
and M. Dohler. Standardized protocol stack for the internet of (important) things.
IEEE Communications Surveys & Tutorials, 15(3):1389–1406, 2013.

[58] M. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, and H. Chen. Uninvited
connections: A study of vulnerable devices on the internet of things (IoT). 2014
IEEE Joint Intelligence and Security Informatics Conference, pages 232–235, 2014.

[59] PEACH. CoAP peach pit user guide. http://www.peachfuzzer.com/wp-content/
uploads/CoAP.pdf. Access in February 25, 2017.

[60] Probe-IT. CoAP white paper. http://www.probe-it.eu/wp-content/uploads/
2012/04/CoAP-whitePaper.pdf. Access in March 03, 2017.

[61] PROTOS. Protos - OUSPG. https://www.ee.oulu.fi/research/ouspg/Protos.
Access in February 25, 2017.

[62] D. Raggett. The web of things: Challenges and opportunities. Computer, 48(5):26–
32, may 2015.

[63] R. A. Rahman and E. Dijk. RFC7390 - group communication for the constrained
application protocol (CoAP), 2014.

[64] R. A. Rahman and B. Shah. Security analysis of IoT protocols: A focus in CoAP.
In 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC),
pages 1–7. IEEE, mar 2016.

[65] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt. Lithe: Lightweight
secure CoAP for the internet of things. IEEE Sensors Journal, 13(10):3711–3720,
oct 2013.

[66] E. Rescorla and N. Modadugu. RFC6347 - datagram transport layer security version
1.2, 2012.

http://www.crn.com/slide-shows/internet-of-things/300084663/8-ddos-attacks-that-made-enterprises-rethink-iot-security.htm
http://www.crn.com/slide-shows/internet-of-things/300084663/8-ddos-attacks-that-made-enterprises-rethink-iot-security.htm
http://www.peachfuzzer.com/wp-content/uploads/CoAP.pdf
http://www.peachfuzzer.com/wp-content/uploads/CoAP.pdf
http://www.probe-it.eu/wp-content/uploads/2012/04/CoAP-whitePaper.pdf
http://www.probe-it.eu/wp-content/uploads/2012/04/CoAP-whitePaper.pdf
https://www.ee.oulu.fi/research/ouspg/Protos

BIBLIOGRAPHY 71

[67] Z. Shelby. RFC6690 - constrained restful environments (CoRE) link format, 2012.

[68] Z. Shelby. Constrained application protocol (CoAP) tutorial - youtube. https:
//www.youtube.com/watch?v=4bSr5x5gKvA. Access in March 10, 2017.

[69] Z. Shelby, K. Hartke, and C. Bormann. RFC7252 - the constrained application
protocol (CoAP), 2014.

[70] Z. Shelby, M. Koster, C. Bormann, and P. van der Stok. I-D - CoRE resource
directory, 2017.

[71] M. Sutton, A. Greene, and P. Amini. Fuzzing - Brute Force Vulnerability Discovery.
2007.

[72] R. T. Tiburski, L. A. Amaral, E. D. Matos, and F. Hessel. The importance of a stan-
dard security architecture for SOA-based IoT middleware. IEEE Communications
Magazine, 53(12):20–26, dec 2015.

[73] M. Vieira, N. Laranjeiro, and H. Madeira. Benchmarking the robustness of web
services. In 13th Pacific Rim International Symposium on Dependable Computing
(PRDC 2007), pages 322–329. IEEE, dec 2007.

[74] C. Viho and F. Sismondi. F-interop - remote conformance & interop testing. http://
www.f-interop.eu/images/Articles/20160922_F-Interop_TPAC-WoT.pdf. Ac-
cess in February 24, 2017.

[75] S. Winter, C. Sârbu, N. Suri, and B. Murphy. The impact of fault models on software
robustness evaluations. In Proceeding of the 33rd international conference on Software
engineering - ICSE ’11, page 51, New York, New York, USA, 2011. ACM Press.

[76] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,
J. Vasseur, and R. Alexander. RFC6550 - RPL: IPv6 routing protocol for low-power
and lossy networks, 2012.

https://www.youtube.com/watch?v=4bSr5x5gKvA
https://www.youtube.com/watch?v=4bSr5x5gKvA
http://www.f-interop.eu/images/Articles/20160922_F-Interop_TPAC-WoT.pdf
http://www.f-interop.eu/images/Articles/20160922_F-Interop_TPAC-WoT.pdf

Appendix A

Applications, Implementations and
Products using CoAP

This appendix contains additional results from the internet searches conducted in Sec-
tion 4.1. First, Table A.1 displays every CoAP implementation we found. Then, in
Table A.2, we display information on Cloud Services or Platforms supporting CoAP. Fi-
nally, in Table A.3, we list every commercial product we found that uses CoAP. These
results can be used as a starting point for other research on practical aspects of CoAP
applications, implementations, products and its uses.

72

A
P

P
E

N
D

IX
A

.
A

P
P

LIC
A
T

IO
N

S,IM
P

LE
M

E
N

TA
T

IO
N

S
A

N
D

P
R

O
D

U
C

T
S

U
SIN

G
C

O
A

P
73

Table A.1: List of all CoAP Implementations/Libraries found. The “Last Updated” field was checked in March 2018. Implementations
with no marks for the RFCs are the most immature ones, for which little to no information was found, except for the source code.

CoAP
Implementation

RFC
7252
Base

RFC
7641
Obs.

RFC
7959
Block

RFC
6690
Link

Language License Repository or Reference(s)
Last

Updated

aadya 4 4 l l Elixir LGPLv3 https://gitlab.com/ahamtech/coap/aadya 12/03/18
aiocoap 4 4 4 4 Python MIT https://github.com/chrysn/aiocoap 07/03/18
anjay 4 4 4 4 C Apache-2.0 https://github.com/AVSystem/Anjay/tree/master/src/

coap
08/01/18

ArduinoCoAP C++ GPLv2 https://github.com/dgiannakop/Arduino-CoAP 14/06/13
bosch-xdk-coap 4 8 4 4 C Commercial https://xdk.bosch-connectivity.com/documents/37728/

286250/XDK110_CoAP_Guide.pdf, http://xdk.bosch-
connectivity.com/xdk_docs/html/group__coapgroup.
html

07/09/17

Californium 4 4 4 4 Java EPL, EDL https://github.com/eclipse/californium/ 17/02/18
canopus 4 4 4 4 Go Apache-2.0 https://github.com/zubairhamed/canopus 07/02/18
cantcoap 4 8 8 8 C++ BSD-2-

Clause
https://github.com/staropram/cantcoap 26/09/16

Catarinum l l l 8 C# ? https://github.com/marcelcastilho/Catarinum 08/05/12
ccoap l 8 8 8 C Apache-2.0 https://github.com/ipflavors/ccoap 22/04/13
coap-on-lon C# MIT https://sourceforge.net/projects/coap-on-lon/ 29/12/16
coap-rs 4 8 8 8 Rust MIT https://github.com/Covertness/coap-rs 06/12/17
CoAP-simple-
library

l 8 8 8 C++ MIT https://github.com/hirotakaster/CoAP-simple-library 10/03/18

CoAP.NET 4 4 4 4 C# BSD-3-
Clause

https://github.com/smeshlink/CoAP.NET 21/07/16

coapBlip l l 8 8 C/nesC BSD-2-
Clause

http://tinyos.stanford.edu/tinyos-wiki/index.php/
CoAP

29/07/14

CoAPEmbedded C++ MIT https://github.com/Tanganelli/CoAPEmbedded 21/01/17
coapex l 4 8 8 Elixir ? https://github.com/lucastorri/coapex 24/03/16
coapi C++ MIT https://github.com/linkineo/coapi 18/03/17
CoAPLib 4 8 l l C++ ? https://github.com/jfajkowski/CoAPLib 14/06/17

https://gitlab.com/ahamtech/coap/aadya
https://github.com/chrysn/aiocoap
https://github.com/AVSystem/Anjay/tree/master/src/coap
https://github.com/AVSystem/Anjay/tree/master/src/coap
https://github.com/dgiannakop/Arduino-CoAP
https://xdk.bosch-connectivity.com/documents/37728/286250/XDK110_CoAP_Guide.pdf
https://xdk.bosch-connectivity.com/documents/37728/286250/XDK110_CoAP_Guide.pdf
http://xdk.bosch-connectivity.com/xdk_docs/html/group__coapgroup.html
http://xdk.bosch-connectivity.com/xdk_docs/html/group__coapgroup.html
http://xdk.bosch-connectivity.com/xdk_docs/html/group__coapgroup.html
https://github.com/eclipse/californium/
https://github.com/zubairhamed/canopus
https://github.com/staropram/cantcoap
https://github.com/marcelcastilho/Catarinum
https://github.com/ipflavors/ccoap
https://sourceforge.net/projects/coap-on-lon/
https://github.com/Covertness/coap-rs
https://github.com/hirotakaster/CoAP-simple-library
https://github.com/smeshlink/CoAP.NET
http://tinyos.stanford.edu/tinyos-wiki/index.php/CoAP
http://tinyos.stanford.edu/tinyos-wiki/index.php/CoAP
https://github.com/Tanganelli/CoAPEmbedded
https://github.com/lucastorri/coapex
https://github.com/linkineo/coapi
https://github.com/jfajkowski/CoAPLib

A
P

P
E

N
D

IX
A

.
A

P
P

LIC
A
T

IO
N

S,IM
P

LE
M

E
N

TA
T

IO
N

S
A

N
D

P
R

O
D

U
C

T
S

U
SIN

G
C

O
A

P
74

Table A.1 continued from previous page

CoAP
Implementation

RFC
7252
Base

RFC
7641
Obs.

RFC
7959
Block

RFC
6690
Link

Language License Repository or Reference(s)
Last

Updated

CoAPP 4 4 8 4 C++ MPL 2.0 https://github.com/zerom0/CoaPP 12/04/17
CoAPSharp 4 4 4 4 C# LGPL http://www.coapsharp.com/ 12/06/14
CoAPthon 4 4 4 4 Python MIT https://github.com/Tanganelli/CoAPthon 01/02/18
Copper l 4 4 4 Javascript BSD-3-

Clause
https://github.com/mkovatsc/Copper 06/12/17

dart-coap 4 4 4 4 Dart MIT https://github.com/shamblett/coap 03/11/17
eCoAP l 8 8 8 C MIT https://gitlab.com/jobol/ecoap 30/01/16
Erbium 4 4 4 4 C BSD-3-

Clause
https://github.com/contiki-ng/contiki-ng/tree/
develop/os/net/app-layer/coap

05/03/18

erika-coap l 8 8 8 C GPLv2+LE http://rtn.sssup.it/index.php/research-activities/
middleware-of-things/middleware-of-things/11-
research-activities/35-coaperika

2011

ESP-CoAP l l l l C++ GPLv3 https://github.com/automote/ESP-CoAP 13/11/17
excoap Elixir MIT https://github.com/mbialon/excoap 20/09/15
FreeCoAP 4 l 4 l C BSD-like https://github.com/keith-cullen/FreeCoAP 18/01/18
gcoap 4 4 8 l C LGPLv2.1 https://github.com/RIOT-OS/RIOT/tree/master/sys/

net/application_layer/gcoap
16/02/18

gen_coap 4 4 4 4 Erlang MPL 1.1 https://github.com/gotthardp/gen_coap 23/06/17
geog-coap ? ? https://sourceforge.net/projects/geog-server-

embedded/
07/10/16

go-coap l 8 8 8 Go MIT https://github.com/dustin/go-coap 14/02/17
h5.coap l l l 8 Javascript MIT https://github.com/morkai/h5.coap 27/01/14
hcoap l 8 8 8 Haskell BSD-3-

Clause
https://github.com/lulf/hcoap 25/02/16

iCoAP l l l 8 Objective-C MIT https://github.com/stuffrabbit/iCoAP 31/01/18
IoTivity-
Constrained

4 4 4 l C Apache-2.0 https://github.com/iotivity/iotivity-constrained/
tree/master/messaging/coap

14/02/18

java-coap 4 4 4 4 Java Apache-2.0 https://github.com/ARMmbed/java-coap 10/01/18

https://github.com/zerom0/CoaPP
http://www.coapsharp.com/
https://github.com/Tanganelli/CoAPthon
https://github.com/mkovatsc/Copper
https://github.com/shamblett/coap
https://gitlab.com/jobol/ecoap
https://github.com/contiki-ng/contiki-ng/tree/develop/os/net/app-layer/coap
https://github.com/contiki-ng/contiki-ng/tree/develop/os/net/app-layer/coap
http://rtn.sssup.it/index.php/research-activities/middleware-of-things/middleware-of-things/11-research-activities/35-coaperika
http://rtn.sssup.it/index.php/research-activities/middleware-of-things/middleware-of-things/11-research-activities/35-coaperika
http://rtn.sssup.it/index.php/research-activities/middleware-of-things/middleware-of-things/11-research-activities/35-coaperika
https://github.com/automote/ESP-CoAP
https://github.com/mbialon/excoap
https://github.com/keith-cullen/FreeCoAP
https://github.com/RIOT-OS/RIOT/tree/master/sys/net/application_layer/gcoap
https://github.com/RIOT-OS/RIOT/tree/master/sys/net/application_layer/gcoap
https://github.com/gotthardp/gen_coap
https://sourceforge.net/projects/geog-server-embedded/
https://sourceforge.net/projects/geog-server-embedded/
https://github.com/dustin/go-coap
https://github.com/morkai/h5.coap
https://github.com/lulf/hcoap
https://github.com/stuffrabbit/iCoAP
https://github.com/iotivity/iotivity-constrained/tree/master/messaging/coap
https://github.com/iotivity/iotivity-constrained/tree/master/messaging/coap
https://github.com/ARMmbed/java-coap

A
P

P
E

N
D

IX
A

.
A

P
P

LIC
A
T

IO
N

S,IM
P

LE
M

E
N

TA
T

IO
N

S
A

N
D

P
R

O
D

U
C

T
S

U
SIN

G
C

O
A

P
75

Table A.1 continued from previous page

CoAP
Implementation

RFC
7252
Base

RFC
7641
Obs.

RFC
7959
Block

RFC
6690
Link

Language License Repository or Reference(s)
Last

Updated

jcoap 4 4 4 4 Java Apache-2.0 https://gitlab.amd.e-technik.uni-rostock.de/ws4d/
jcoap, http://ws4d.org/ws4d-jcoap/

08/11/16

libcoap 4 4 4 4 C GPLv2,
BSD-2-
Clause

https://github.com/obgm/libcoap/, https://libcoap.
net/

06/03/17

libnyoci 4 4 4 4 C MIT https://github.com/darconeous/libnyoci 20/12/17
linted-coap l 8 8 8 C Apache-2.0 https://gitlab.com/linted/coap/ 22/07/16
lobaro-coap 4 4 4 4 C MIT https://github.com/Lobaro/lobaro-coap 05/03/18
lobaro-coapgo 4 4 4 4 Go MIT https://github.com/Lobaro/coap-go/ 05/03/18
LosCoAP l 8 8 8 C BSD-3-

Clause
https://github.com/zhoubo85/LosCoAP 26/08/17

mbed-coap 4 4 4 4 C Apache-2.0 https://github.com/ARMmbed/mbed-coap 14/03/18
microchip-coap l 8 l 8 C Commercial http://ww1.microchip.com/downloads/en/AppNotes/

00002512A.pdf, http://ww1.microchip.com/downloads/
en/DeviceDoc/release_notes_coap_library_v1_0_0.pdf

08/08/17

microcoap l 8 8 8 C MIT https://github.com/1248/microcoap 05/02/16
MinT l 8 8 8 Java GPLv2 https://github.com/soobinjeon/MinT 13/09/17
mongoose-coap 4 8 8 8 C GPLv2,

Commercial
https://github.com/cesanta/mongoose/tree/master/
examples/coap_server

12/03/18

mr-coap l l l l Java BSD-3-
Clause

https://github.com/MR-CoAP/CoAP 21/07/14

nanocoap l l 8 l C LGPLv2.1 https://github.com/kaspar030/sock/tree/master/
nanocoap

11/12/17

nCoAP 4 4 4 4 Java BSD-3-
Clause

https://github.com/okleine/nCoAP 29/03/17

node-coap 4 4 4 4 Javascript MIT https://github.com/mcollina/node-coap 21/02/18
node-coap-ed Javascript ? https://github.com/errordeveloper/node-coap 05/06/13
node-coap-old Javascript ? https://github.com/errordeveloper/node-coap-old 17/05/12

https://gitlab.amd.e-technik.uni-rostock.de/ws4d/jcoap
https://gitlab.amd.e-technik.uni-rostock.de/ws4d/jcoap
http://ws4d.org/ws4d-jcoap/
https://github.com/obgm/libcoap/
https://libcoap.net/
https://libcoap.net/
https://github.com/darconeous/libnyoci
https://gitlab.com/linted/coap/
https://github.com/Lobaro/lobaro-coap
https://github.com/Lobaro/coap-go/
https://github.com/zhoubo85/LosCoAP
https://github.com/ARMmbed/mbed-coap
http://ww1.microchip.com/downloads/en/AppNotes/00002512A.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00002512A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/release_notes_coap_library_v1_0_0.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/release_notes_coap_library_v1_0_0.pdf
https://github.com/1248/microcoap
https://github.com/soobinjeon/MinT
https://github.com/cesanta/mongoose/tree/master/examples/coap_server
https://github.com/cesanta/mongoose/tree/master/examples/coap_server
https://github.com/MR-CoAP/CoAP
https://github.com/kaspar030/sock/tree/master/nanocoap
https://github.com/kaspar030/sock/tree/master/nanocoap
https://github.com/okleine/nCoAP
https://github.com/mcollina/node-coap
https://github.com/errordeveloper/node-coap
https://github.com/errordeveloper/node-coap-old

A
P

P
E

N
D

IX
A

.
A

P
P

LIC
A
T

IO
N

S,IM
P

LE
M

E
N

TA
T

IO
N

S
A

N
D

P
R

O
D

U
C

T
S

U
SIN

G
C

O
A

P
76

Table A.1 continued from previous page

CoAP
Implementation

RFC
7252
Base

RFC
7641
Obs.

RFC
7959
Block

RFC
6690
Link

Language License Repository or Reference(s)
Last

Updated

nodemcu-coap l 8 8 8 C/Lua MIT https://github.com/nodemcu/nodemcu-firmware/blob/
master/app/modules/coap.c

02/08/16

NZSmartie.CoAPNet 4 8 l l C# Apache-2.0 https://github.com/NZSmartie/CoAP.Net 19/03/18
openthread 4 4 8 8 C++ BSD-3-

Clause
https://github.com/openthread/openthread/tree/
master/src/core/coap

26/02/18

openwsn l 8 l 8 Python BSD-3-
Clause

https://github.com/openwsn-berkeley/coap 31/08/17

particle-coap l 8 8 8 C++ ? https://github.com/hirotakaster/CoAP 02/08/17
PhpCoAP PHP ? https://github.com/cfullelove/PhpCoap 04/02/15
PicoCoAP l 8 8 8 C BSD-3-

Clause
https://github.com/exosite-garage/PicoCoAP 11/08/15

qcoap C++ MIT https://github.com/romixlab/qcoap 12/12/15
QtCoap l l l 4 C++ GPLv3 https://github.com/t-mon/qtcoap 22/09/16
ruby-coap 4 4 l 4 Ruby MIT https://github.com/nning/coap 26/01/16
scala-CoAP Scala ? https://github.com/fbertra/scala-CoAP 17/12/16
Soletta-CoAP 4 4 8 8 C Apache-2.0 https://github.com/solettaproject/soletta/tree/

master/src/lib/comms
23/08/16

SSN_Milli_CoAP 4 l 8 l C++ MIT https://github.com/kurtgo/SSN_Milli_CoAP 01/06/17
SwiftCoAP 4 4 4 l Swift MIT https://github.com/stuffrabbit/SwiftCoAP 17/04/17
tcoap l l l 8 C BSD-2-

Clause
https://github.com/Mozilla9/tiny-coap 16/02/18

TinyCoAP l l 8 l C/nesC BSD-2-
Clause

https://github.com/AleLudovici/TinyCoAP 11/11/13

tokio-coap Rust MIT,
Apache-
2.0

https://github.com/azdle/tokio-coap 19/11/17

txThings 4 4 4 4 Python MIT https://github.com/mwasilak/txThings 17/01/18
Waher.Net-
working.CoAP

4 4 4 4 C# Waher https://github.com/PeterWaher/IoTGateway/tree/
master/Networking/Waher.Networking.CoAP

09/02/18

https://github.com/nodemcu/nodemcu-firmware/blob/master/app/modules/coap.c
https://github.com/nodemcu/nodemcu-firmware/blob/master/app/modules/coap.c
https://github.com/NZSmartie/CoAP.Net
https://github.com/openthread/openthread/tree/master/src/core/coap
https://github.com/openthread/openthread/tree/master/src/core/coap
https://github.com/openwsn-berkeley/coap
https://github.com/hirotakaster/CoAP
https://github.com/cfullelove/PhpCoap
https://github.com/exosite-garage/PicoCoAP
https://github.com/romixlab/qcoap
https://github.com/t-mon/qtcoap
https://github.com/nning/coap
https://github.com/fbertra/scala-CoAP
https://github.com/solettaproject/soletta/tree/master/src/lib/comms
https://github.com/solettaproject/soletta/tree/master/src/lib/comms
https://github.com/kurtgo/SSN_Milli_CoAP
https://github.com/stuffrabbit/SwiftCoAP
https://github.com/Mozilla9/tiny-coap
https://github.com/AleLudovici/TinyCoAP
https://github.com/azdle/tokio-coap
https://github.com/mwasilak/txThings
https://github.com/PeterWaher/IoTGateway/tree/master/Networking/Waher.Networking.CoAP
https://github.com/PeterWaher/IoTGateway/tree/master/Networking/Waher.Networking.CoAP

A
P

P
E

N
D

IX
A

.
A

P
P

LIC
A
T

IO
N

S,IM
P

LE
M

E
N

TA
T

IO
N

S
A

N
D

P
R

O
D

U
C

T
S

U
SIN

G
C

O
A

P
77

Table A.1 continued from previous page

CoAP
Implementation

RFC
7252
Base

RFC
7641
Obs.

RFC
7959
Block

RFC
6690
Link

Language License Repository or Reference(s)
Last

Updated

webiopi-coap l 8 8 8 Python Apache-2.0 http://webiopi.trouch.com/DOWNLOADS.html 02/10/15
YaCoAP l 8 8 4 C MIT https://github.com/RIOT-Makers/YaCoAP 25/11/16

http://webiopi.trouch.com/DOWNLOADS.html
https://github.com/RIOT-Makers/YaCoAP

A
P

P
E

N
D

IX
A

.
A

P
P

LIC
A
T

IO
N

S,IM
P

LE
M

E
N

TA
T

IO
N

S
A

N
D

P
R

O
D

U
C

T
S

U
SIN

G
C

O
A

P
78

Table A.2: Cloud Services and Platforms Supporting CoAP.

Platform/Application
Name Reference Repository Additional Notes and References Language

Thingsboard https://github.com/thingsboard/thingsboard
Uses Californium.
https://thingsboard.io/docs/reference/coap-api/ Java

AVSystem Coiote Closed Source Device Management Server, including support for CoAP and LWM2M.
https://www.avsystem.com/products/coiote/ Java

Creator Device
Server

https://github.com/CreatorDev/DeviceServer
LWM2M Management Server. Uses CoAP.net.
http://console.creatordev.io/ C#

FIWARE Orion
NGSI Lab

https://github.com/telefonicaid/fiware-
orion

Supports CoAP and LWM2M. Probably uses node-coap.
https://catalogue.fiware.org/enablers/backend-device-
management-idas;
https://github.com/telefonicaid/lightweightm2m-iotagent;
https://account.lab.fiware.org/

C++,
Javascript

ARM mbed Cloud Closed Source
Supports CoAP and LWM2M.
https://connector.mbed.com/;
https://cloud.mbed.com/

?

thethings.io Closed Source Supports CoAP.
https://thethings.io/ ?

ARTIK Cloud Ser-
vices

Closed Source

Supports CoAP and LWM2M. Uses Californium.
https://my.artik.cloud/;
https://developer.artik.cloud/documentation/data-
management/coap.html;
https://developer.artik.cloud/

Java

Chordant Closed Source Supports CoAP, LWM2M and oneM2M.
https://www.chordant.io/ ?

Exosite Murano Closed Source
Uses libexositecoap, which in turn uses PicoCoAP.
http://docs.exosite.com/portals/coap/;
https://exosite.com/iot-platform/

?

Meshblu’s Octoblu https://github.com/octoblu/meshblu
Uses node-coap.
https://meshblu-coap.readme.io/docs/devices;
https://github.com/octoblu/meshblu-core-protocol-adapter-coap

Javascript

Autodesk Fusion
Connect

Closed Source Supports CoAP.
https://autodeskfusionconnect.com/ ?

SiteWhere https://github.com/sitewhere/sitewhere
Uses Californium.
http://www.sitewhere.org/ Java

https://github.com/thingsboard/thingsboard
https://thingsboard.io/docs/reference/coap-api/
https://www.avsystem.com/products/coiote/
https://github.com/CreatorDev/DeviceServer
http://console.creatordev.io/
https://github.com/telefonicaid/fiware-orion
https://github.com/telefonicaid/fiware-orion
https://catalogue.fiware.org/enablers/backend-device-management-idas
https://catalogue.fiware.org/enablers/backend-device-management-idas
https://github.com/telefonicaid/lightweightm2m-iotagent
https://account.lab.fiware.org/
https://connector.mbed.com/
https://cloud.mbed.com/
https://thethings.io/
https://my.artik.cloud/
https://developer.artik.cloud/documentation/data-management/coap.html
https://developer.artik.cloud/documentation/data-management/coap.html
https://developer.artik.cloud/
https://www.chordant.io/
http://docs.exosite.com/portals/coap/
https://exosite.com/iot-platform/
https://github.com/octoblu/meshblu
https://meshblu-coap.readme.io/docs/devices
https://github.com/octoblu/meshblu-core-protocol-adapter-coap
https://autodeskfusionconnect.com/
https://github.com/sitewhere/sitewhere
http://www.sitewhere.org/

A
P

P
E

N
D

IX
A

.
A

P
P

LIC
A
T

IO
N

S,IM
P

LE
M

E
N

TA
T

IO
N

S
A

N
D

P
R

O
D

U
C

T
S

U
SIN

G
C

O
A

P
79

Table A.3: Commercial Products using CoAP.

Product References

Molex Lights CoAP http://www.transcendled.com/

Cisco Digital Building So-
lution

https://www.cisco.com/c/dam/en/us/solutions/collateral/workforce-experience/digital-building/digital-
building-partner-guide.pdf;
https://www.cisco.com/c/dam/en/us/solutions/collateral/workforce-experience/digital-building/molex-digital-
building-design-guide.pdf;
https://www.cisco.com/c/dam/en/us/solutions/collateral/workforce-experience/digital-building/molex-digital-
building-implementation-guide.pdf;
http://www.microchip.com/design-centers/ethernet/ethernet-of-everything/firmware/page/2;
https://www.cisco.com/c/en/us/solutions/digital-ceiling/partner-ecosystem.html

Microchip Smart Lighting
http://www.microchip.com/promo/smart-connected-lighting;
http://ww1.microchip.com/downloads/en/AppNotes/00002512A.pdf;
http://ww1.microchip.com/downloads/en/DeviceDoc/release_notes_coap_library_v1_0_0.pdf

IKEA Tradfri https://www.ikea.com/us/en/catalog/categories/departments/lighting/36812/

U-Blox SARA R4/N4
LTE Modules

https://www.u-blox.com/en/product/sara-r4n4-series;
https://www.u-blox.com/sites/default/files/SARA-R4-N4_ProductSummary_%28UBX-16019228%29.pdf

Centero WEE Thread
Module

http://centerotech.com/product/wee-thread-module/#how_to_buy

http://www.transcendled.com/
https://www.cisco.com/c/dam/en/us/solutions/collateral/workforce-experience/digital-building/digital-building-partner-guide.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/workforce-experience/digital-building/digital-building-partner-guide.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/workforce-experience/digital-building/molex-digital-building-design-guide.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/workforce-experience/digital-building/molex-digital-building-design-guide.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/workforce-experience/digital-building/molex-digital-building-implementation-guide.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/workforce-experience/digital-building/molex-digital-building-implementation-guide.pdf
http://www.microchip.com/design-centers/ethernet/ethernet-of-everything/firmware/page/2
https://www.cisco.com/c/en/us/solutions/digital-ceiling/partner-ecosystem.html
http://www.microchip.com/promo/smart-connected-lighting
http://ww1.microchip.com/downloads/en/AppNotes/00002512A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/release_notes_coap_library_v1_0_0.pdf
https://www.ikea.com/us/en/catalog/categories/departments/lighting/36812/
https://www.u-blox.com/en/product/sara-r4n4-series
https://www.u-blox.com/sites/default/files/SARA-R4-N4_ProductSummary_%28UBX-16019228%29.pdf
http://centerotech.com/product/wee-thread-module/#how_to_buy

	Introduction
	Motivation
	Objectives
	Contributions
	Dissertation Outline

	Background and Related Work
	CoAP Specifications
	CoAP Testing
	Robustness/Security Testing through Fuzzing

	System Architecture and Testing Methodology
	Process Monitor
	Fuzzer Controller
	Test Case Generation Engines
	Random Fuzzing
	Mutational Fuzzing
	Generational Fuzzing

	Workload Executor, Gathered Information & Offline Analyzers
	Test Case Execution and Failure Detection Mechanisms
	Gathered Information & Offline Analyzers

	Experimental Evaluation
	Data Preparation - Applications, Implementations and Products using CoAP
	Results and Discussion

	Conclusion
	Limitations
	Future Work

	Bibliography
	Applications, Implementations and Products using CoAP

